Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Highly efficient subcloning of rodent malaria parasites by injection of single merosomes or detached cells

Abstract

This protocol describes a method for obtaining rodent Plasmodium parasite clones with high efficiency, which takes advantage of the normal course of Plasmodium in vitro exoerythrocytic development. At the completion of development, detached cells/merosomes form, which contain hundreds to thousands of merozoites. As all parasites within a single detached cell/merosome derive from the same sporozoite, we predicted them to be genetically identical. To prove this, hepatoma cells were infected simultaneously with a mixture of Plasmodium berghei sporozoites expressing either GFP or mCherry. Subsequently, individual detached cells/merosomes from this mixed population were selected and injected into mice, resulting in clonal blood stage parasite infections. Importantly, as a large majority of mice become successfully infected using this protocol, significantly less mice are necessary than for the widely used technique of limiting dilution cloning. To produce a clonal P. berghei blood stage infection from a non-clonal infection using this procedure requires between 4 and 5 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Collection of individual detached cells/merosomes under the microscope.
Figure 2: Analysis of blood stage parasites resulting from the injection of individual detached cells/merosomes.

Similar content being viewed by others

References

  1. de Koning-Ward, T.F. et al. The selectable marker human dihydrofolate reductase enables sequential genetic manipulation of the Plasmodium berghei genome. Mol. Biochem. Parasitol. 106, 199–212 (2000).

    Article  CAS  Google Scholar 

  2. Janse, C.J. et al. High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol. Biochem. Parasitol. 145, 60–70 (2006).

    Article  CAS  Google Scholar 

  3. Janse, C.J., Ramesar, J. & Waters, A.P. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei . Nat. Protoc. 1, 346–356 (2006).

    Article  CAS  Google Scholar 

  4. Menard, R. & Janse, C. Gene targeting in malaria parasites. Methods 13, 148–157 (1997).

    Article  CAS  Google Scholar 

  5. Thathy, V. & Menard, R. Gene targeting in Plasmodium berghei . Methods Mol. Med. 72, 317–331 (2002).

    CAS  PubMed  Google Scholar 

  6. Jongco, A.M., Ting, L.M., Thathy, V., Mota, M.M. & Kim, K. Improved transfection and new selectable markers for the rodent malaria parasite Plasmodium yoelii . Mol. Biochem. Parasitol. 146, 242–250 (2006).

    Article  CAS  Google Scholar 

  7. Mota, M.M., Thathy, V., Nussenzweig, R.S. & Nussenzweig, V. Gene targeting in the rodent malaria parasite Plasmodium yoelii . Mol. Biochem. Parasitol. 113, 271–278 (2001).

    Article  CAS  Google Scholar 

  8. Sultan, A.A., Thathy, V., Nussenzweig, V. & Menard, R. Green fluorescent protein as a marker in Plasmodium berghei transformation. Infect. Immun. 67, 2602–2606 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Natarajan, R. et al. Fluorescent Plasmodium berghei sporozoites and pre-erythrocytic stages: a new tool to study mosquito and mammalian host interactions with malaria parasites. Cell. Microbiol. 3, 371–379 (2001).

    Article  CAS  Google Scholar 

  10. Franke-Fayard, B. et al. A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol. Biochem. Parasitol. 137, 23–33 (2004).

    Article  CAS  Google Scholar 

  11. Frevert, U. et al. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol. 3, e192 (2005).

    Article  Google Scholar 

  12. Amino, R. et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat. Med. 12, 220–224 (2006).

    Article  CAS  Google Scholar 

  13. Amino, R. et al. Imaging malaria sporozoites in the dermis of the mammalian host. Nat. Protoc. 2, 1705–1712 (2007).

    Article  CAS  Google Scholar 

  14. Thiberge, S. et al. In vivo imaging of malaria parasites in the murine liver. Nat. Protoc. 2, 1811–1818 (2007).

    Article  CAS  Google Scholar 

  15. Ono, T., Tadakuma, T. & Rodriguez, A. Plasmodium yoelii yoelii 17XNL constitutively expressing GFP throughout the life cycle. Exp. Parasitol. 115, 310–313 (2007).

    Article  CAS  Google Scholar 

  16. Sturm, A. et al. Alteration of the parasite plasma membrane and the parasitophorous vacuole membrane during exo-erythrocytic development of malaria parasites. Protist 160, 51–63 (2009).

    Article  Google Scholar 

  17. Stanway, R.R., Witt, T., Zobiak, B., Aepfelbacher, M. & Heussler, V.T. GFP-targeting allows visualization of the apicoplast throughout the life cycle of live malaria parasites. Biol. Cell 101, 415–430 (2009).

    Article  CAS  Google Scholar 

  18. Graewe, S., Retzlaff, S., Struck, N., Janse, C.J. & Heussler, V.T. Going live: a comparative analysis of the suitability of the RFP derivatives RedStar, mCherry and tdTomato for intravital and in vitro live imaging of Plasmodium parasites. Biotechnol. J. 4, 895–902 (2009).

    Article  CAS  Google Scholar 

  19. Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 1287–1290 (2006).

    Article  CAS  Google Scholar 

  20. Mueller, A.K. et al. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite–host interface. Proc. Natl. Acad. Sci. USA 102, 3022–3027 (2005).

    Article  CAS  Google Scholar 

  21. Mueller, A.K., Labaied, M., Kappe, S.H. & Matuschewski, K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433, 164–167 (2005).

    Article  CAS  Google Scholar 

  22. van Dijk, M.R. et al. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc. Natl. Acad. Sci. USA 102, 12194–12199 (2005).

    Article  CAS  Google Scholar 

  23. Janse, C. & Waters, A.P. In Malaria Methods and Protocols (ed. Doolan, D.L.) 311–312 (Humana Press Inc., Totowa, New Jersey, 2002).

  24. Meissner, M., Brecht, S., Bujard, H. & Soldati, D. Modulation of myosin A expression by a newly established tetracycline repressor-based inducible system in Toxoplasma gondii . Nucleic Acids Res. 29, E115 (2001).

    Article  CAS  Google Scholar 

  25. Armstrong, C.M. & Goldberg, D.E. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum . Nat. Methods 4, 1007–1009 (2007).

    Article  CAS  Google Scholar 

  26. Herm-Gotz, A. et al. Rapid control of protein level in the apicomplexan Toxoplasma gondii . Nat. Methods 4, 1003–1005 (2007).

    Article  Google Scholar 

  27. Waters, A.P., Thomas, A.W., van Dijk, M.R. & Janse, C.J. Transfection of malaria parasites. Methods 13, 134–147 (1997).

    Article  CAS  Google Scholar 

  28. Silvie, O., Goetz, K. & Matuschewski, K. A sporozoite asparagine-rich protein controls initiation of Plasmodium liver stage development. PLoS Pathog. 4, e1000086 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Chris Janse and Andrew Waters for supplying GFPCON parasites.

Author information

Authors and Affiliations

Authors

Contributions

R.R.S. and V.T.H. conceived the method. A.R., S.G., S.H. and R.R.S. carried out the experiments. R.R.S., S.G. and V.T.H. prepared the paper. All authors corrected the paper.

Corresponding author

Correspondence to Rebecca R Stanway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanway, R., Graewe, S., Rennenberg, A. et al. Highly efficient subcloning of rodent malaria parasites by injection of single merosomes or detached cells. Nat Protoc 4, 1433–1439 (2009). https://doi.org/10.1038/nprot.2009.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.172

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing