Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleation-mediated growth of chiral 3D organic–inorganic perovskite single crystals

Abstract

Although their zero- to two-dimensional counterparts are well known, three-dimensional chiral hybrid organic–inorganic perovskite single crystals have remained difficult because they contain no chiral components and their crystal phases belong to centrosymmetric achiral point groups. Here we report a general approach to grow single-crystalline 3D lead halide perovskites with chiroptical activity. Taking MAPbBr3 (MA, methylammonium) perovskite as a representative example, whereas achiral MAPbBr3 crystallized from precursors in solution by inverse temperature crystallization method, the addition of micro- or nanoparticles as nucleating agents promoted the formation of chiral crystals under a near equilibrium state. Experimental characterization supported by calculations showed that the chirality of the 3D APbX3 (where A is an ammonium ion and X is Cl, Br or mixed Cl–Br or Br–I) perovskites arises from chiral patterns of the A-site cations and their interaction with the [PbX6]4− octahedra in the perovskite structure. The chiral structure obeys the lowest-energy principle and thereby thermodynamically stable. The chiral 3D hybrid organic–inorganic perovskites served in a circularly polarized light photodetector prototype successfully.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controllable growth of chiral and achiral 3D MAPbBr3 single crystals.
Fig. 2: Chiroptical properties of 3D HOIPs and CsPbBr3 single crystals.
Fig. 3: Lattices, electronic structures, energies and bond angles of MAPbBr3 unit cells and supercells.
Fig. 4: The CPL photodetection of chiral and achiral MAPbBr3 single crystals.
Fig. 5: The CPL photodetection performance of a typical MAPbBr3-R crystal.

Similar content being viewed by others

Data availability

All data are available in the main article and supplementary information, or on request from the corresponding authors. Source data are provided with this paper.

References

  1. Li, W. et al. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Article  Google Scholar 

  2. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Billing, D. G. & Lemmerer, A. Bis[(S)-ß-phenethylammonium] tribromoplumbate(II).Acta Crystallogr. Sect. E 59, m381–m383 (2003).

    Article  CAS  Google Scholar 

  6. Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    Article  CAS  Google Scholar 

  7. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Article  Google Scholar 

  8. Dong, Y. et al. Chiral perovskites: promising materials toward next-generation optoelectronics. Small 15, 1902237 (2019).

    Article  Google Scholar 

  9. Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).

    Article  CAS  Google Scholar 

  11. Yang, C. K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 31, 1808088 (2019).

    Article  Google Scholar 

  12. Li, L. S. et al. Molecular disorder induces an unusual phase transition in a potential 2D chiral ferroelectric perovskite. Chem. Eur. J. 27, 9054–9059 (2021).

    Article  Google Scholar 

  13. Li, L. et al. Bilayered hybrid perovskite ferroelectric with giant two-photon absorption. J. Am. Chem. Soc. 140, 6806–6809 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Fu, D. Y. et al. Chirality-dependent second-order nonlinear optical effect in 1D organic–inorganic hybrid perovskite bulk single crystal. Angew. Chem. Int. Ed. 60, 20021–20026 (2021).

    Article  CAS  Google Scholar 

  15. Ma, J. Q., Wang, H. Z. & Li, D. H. Recent progress of chiral perovskites: materials, synthesis, and properties. Adv. Mater. 33, 2008785 (2021).

    Article  CAS  Google Scholar 

  16. Peng, Y. et al. White-light emission in a chiral one-dimensional organic–inorganic hybrid perovskite. J. Mater. Chem. C 6, 6033–6037 (2018).

    Article  CAS  Google Scholar 

  17. Zhu, L. L. et al. Stereochemically active lead chloride enantiomers mediated by homochiral organic cation. Polyhedron 158, 445–448 (2019).

    Article  CAS  Google Scholar 

  18. Long, G. et al. Theoretical prediction of chiral 3D hybrid organic–inorganic perovskites. Adv. Mater. 31, 1807628 (2019).

    Article  Google Scholar 

  19. Cacciuto, A., Auer, S. & Frenkel, D. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428, 404–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Senevirathna, D. C. et al. Impact of anion impurities in commercial PbI2 on lead halide perovskite films and solar cells. ACS Mater. Lett. 3, 351–355 (2021).

    Article  CAS  Google Scholar 

  21. Chang, J. et al. Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. J. Mater. Chem. A 4, 887–893 (2016).

    Article  CAS  Google Scholar 

  22. Yu, Y. C. et al. Ultrastable laurionite spontaneously encapsulates reduced-dimensional lead halide perovskites. Nano Lett. 20, 2316–2325 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Fletcher, N. H. Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–576 (1958).

    Article  CAS  Google Scholar 

  24. Kondepudi, D. K. et al. Kinetics of chiral symmetry breaking in crystallization. J. Am. Chem. Soc. 115, 10211–10216 (1993).

    Article  CAS  Google Scholar 

  25. Kondepudi, D. K., Kaufman, R. J. & Singh, N. Chiral symmetry-breaking in sodium-chlorate crystallization. Science 250, 975–976 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Saito, Y. & Hyuga, H. Grinding-induced homochirality in crystal growth. J. Cryst. Growth 318, 93–98 (2011).

    Article  CAS  Google Scholar 

  27. Saito, Y. & Hyuga, H. Chiral crystal growth under grinding. J. Phys. Soc. Jpn 77, 113001 (2008).

    Article  Google Scholar 

  28. Becker, R. & Döring, W. Kinetische Behandlung der Keimbildung in Übersättigten Dämpfen. Ann. Phys. 24, 719 (1935).

    Article  CAS  Google Scholar 

  29. Katsuno, H. & Uwaha, M. Mechanism of chirality conversion by periodic change of temperature: role of chiral clusters. Phys. Rev. E 93, 013002 (2016).

    Article  PubMed  Google Scholar 

  30. Kapon, Y. et al. Evidence for new enantio specific interaction force in chiral biomolecules. Chem 7, 2787–2799 (2021).

    Article  CAS  Google Scholar 

  31. Al-Bustami, H. et al. Spin-induced organization of cellulose nanocrystals. Biomacromolecules 23, 2098 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Peng, X. D. et al. Liquid nitrogen passivation for deep-blue perovskite quantum dots with nearly unit quantum yield. J. Phys. Chem. C 126, 1017–1025 (2022).

    Article  CAS  Google Scholar 

  33. Kumar, S. et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 10, 9720–9729 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Bohn, B. J. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 18, 5231–5238 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Maestre, M. F., Bustamante, C., Hayes, T. L., Subirana, J. A. & Tinoco, I. Differential scattering of circularly polarized light by the helical sperm head from the octopus Eledone cirrhosa. Nature 298, 773–774 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Bustamante, C., Maestre, M. F. & Tinoco, I. Circular intensity differential scattering of light by helical structures. I. Theory. J. Chem. Phys. 73, 4273–4281 (1980).

    Article  CAS  Google Scholar 

  37. O’Loane, J. K. Optical activity in small molecules, nonenantiomorphous crystals, and nematic liquid crystals. Chem. Rev. 80, 41–61 (1980).

    Article  Google Scholar 

  38. Xu, L. L. et al. Chiroptical activity from an achiral biological metal–organic framework. J. Am. Chem. Soc. 140, 11569–11572 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Gautier, R., Klingsporn, J. M., Van Duyne, R. P. & Poeppelmeier, K. R. Optical activity from racemates. Nat. Mater. 15, 591–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Claborn, K., Isborn, C., Kaminsky, W. & Kahr, B. Optical rotation of achiral compounds. Angew. Chem. Int. Ed. 47, 5706–5717 (2008).

    Article  CAS  Google Scholar 

  41. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51, 1383–1395 (1990).

    Article  CAS  Google Scholar 

  42. Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015).

    Article  CAS  Google Scholar 

  43. Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jana, M. K. et al. Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nat. Commun. 12, 4982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Du, K.-Z. et al. Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 56, 9291–9302 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, Y. H. et al. The structural origin of chiroptical properties in perovskite nanocrystals with chiral organic ligands. Adv. Funct. Mater. 32, 2200454 (2022).

    Article  CAS  Google Scholar 

  48. Zhang, S. et al. Chirality evolution from sub-1 nanometer nanowires to the macroscopic helical structure. J. Am. Chem. Soc. 142, 1375–1381 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Ma, L., Huang, Z., Duan, Y., Shen, X. & Che, S. Optically active chiral Ag nanowires. Sci. Chin. Mater. 58, 441–446 (2015).

    Article  CAS  Google Scholar 

  50. Jin, X. et al. A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. Nano Res. 15, 1047–1053 (2022).

    Article  CAS  Google Scholar 

  51. Han, Z. et al. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 13, 3248–3252 (2020).

    Article  CAS  Google Scholar 

  52. Du, Z. et al. Cross-fibrillation of insulin and amyloid β on chiral surfaces: chirality affects aggregation kinetics and cytotoxicity. Nano Res. 11, 4102–4110 (2018).

    Article  CAS  Google Scholar 

  53. Caram, J. R. et al. Persistent interexcitonic quantum coherence in CdSe quantum dots. J. Phys. Chem. Lett. 5, 196–204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tepliakov, N. V. et al. Chiral optical properties of tapered semiconductor nanoscrolls. ACS Nano 11, 7508–7515 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Gao, X. Q. et al. Distinct excitonic circular dichroism between wurtzite and zincblende CdSe nanoplatelets. Nano Lett. 18, 6665–6671 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, Y., Xu, X. X. & You, X. Z. Colloidal organometal halide perovskite (MAPbBrxI3−x, 0 ≤ x ≤ 3) quantum dots: controllable synthesis and tunable photoluminescence. Sci. Rep. 6, 35931 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu, M. R. et al. Degree of supersaturation-regulated chiral symmetry breaking in one crystal. J. Phys. Chem. B 111, 11346–11349 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Viedma, C. Selective chiral symmetry breaking during crystallization: parity violation or cryptochiral environment in control? Cryst. Growth Des. 7, 553–556 (2007).

    Article  CAS  Google Scholar 

  60. Beecher, A. N. et al. Direct observation of dysnamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1, 880–887 (2016).

    Article  CAS  Google Scholar 

  61. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    Article  PubMed  Google Scholar 

  62. Alvar, M. S., Blom, P. W. M. & Wetzelaer, G.-J. A. H. Space-charge-limited electron and hole currents in hybrid organic–inorganic perovskites. Nat. Commun. 11, 4023 (2020).

    Article  Google Scholar 

  63. Corre, V. M. L. C. et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wei, Y. Q. et al. Rashba effect in perovskites and its influences on carrier recombination. Acta Phys. Sin. 68, 158506 (2019).

    Article  Google Scholar 

  65. Ryu, H. et al. Static Rashba effect by surface reconstruction and photon recycling in the dynamic indirect gap of APbBr3 (A = Cs, CH3NH3) single crystals. J. Am. Chem. Soc. 142, 21059–21067 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Martiradonna, L. Riddles in perovskite research. Nat. Mater. 17, 377–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Peng, Y. et al. Realization of vis–NIR dual-modal circularly polarized light detection in chiral perovskite bulk crystals. J. Am. Chem. Soc. 143, 14077–14082 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Niesner, D. et al. Giant rashba splitting in CH3NH3PbBr3 organic–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Article  PubMed  Google Scholar 

  69. Wang, L. et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. 132, 6504–6512 (2020).

    Article  Google Scholar 

  70. Yao, F. et al. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals. Nat. Commun. 11, 1194 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Ding, J. & Yan, Q. Progress in organic–inorganic hybrid halide perovskite single crystal: growth techniques and applications. Sci. Chin. Mater. 60, 1063–1078 (2017).

    Article  CAS  Google Scholar 

  73. Maculan, G. et al. CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781–3786 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, X. et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature. ACS Appl. Mater. Interfaces 13, 15383–15390 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Ma, L. et al. A polymer controlled nucleation route towards the generalized growth of organic–inorganic perovskite single crystals. Nat. Commun. 12, 2023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, Y. C. et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater. Today 22, 67–75 (2019).

    Article  CAS  Google Scholar 

  78. Zhang, L. L. et al. Anisotropic performance of high-quality MAPbBr3 single-crystal wafers. ACS Appl. Mater. Interfaces 12, 51616–51627 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Miao, X. et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 30, 1704740 (2018).

    Article  Google Scholar 

  80. Isomura, Y. et al. Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst in Ullmann-coupling reaction. Chem. Commun. 48, 3784–3786 (2012).

    Article  CAS  Google Scholar 

  81. Hou, J. H. et al. Laurionite competes with 2D ruddlesden–popper perovskites during the saturation recrystallization process. ACS Appl. Mater. Interfaces 13, 6505–6514 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Jansons, A. W. & Hutchison, J. E. Continuous growth of metal oxide nanocrystals: enhanced control of nanocrystal size and radial dopant distribution. ACS Nano 10, 6942–6951 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Xu, X. X. & Wang, X. Size- and surface-determined transformations: from ultrathin InOOH nanowires to uniform c-In2O3 nanocubes and rh-In2O3 nanowires. Inorg. Chem. 48, 3890–3895 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Saidaminov, M. I. et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv. Opt. Mater. 5, 1600704 (2017).

    Article  Google Scholar 

  85. Dang, Y. et al. Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence. J. Phys. Chem. Lett. 11, 1689–1696 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  87. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  88. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  89. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  90. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Bechtel, J. S., Seshadri, R. & Van der Ven, A. Energy landscape of molecular motion in cubic methylammonium lead iodide from first-principles. J. Phys. Chem. C 120, 12403–12410 (2016).

    Article  CAS  Google Scholar 

  92. Castelli, I. E., García-Lastra, J. M., Thygesen, K. S. & Jacobsen, K. W. Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2, 081514 (2014).

    Article  Google Scholar 

  93. Papavassiliou, G. C. & Koutselas, I. B. Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems. Synth. Met. 71, 1713–1714 (1995).

    Article  CAS  Google Scholar 

  94. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  95. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  PubMed  Google Scholar 

  96. Gernald, L., Hutter, J. & Parrinello, M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–488 (1997).

    Article  Google Scholar 

  97. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  98. Hoover, W. G. Canonical dynamics: equilibrium phase–space distributions. Phys. Rev. A 31, 1695 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFA0700101 and 2021YFA1500900), the National Natural Science Foundation of China (NSFC, nos. 22241502, 22035004, 22175095, 21871143, 22075147, 61775097, 22076095 and 22222605). The calculations were performed using supercomputers at Tsinghua National Laboratory for Information Science and Technology. We thank Y. K. Wang and Q. Q. He for their help in perovskite nanocrystal synthesis; P. Wang for the discussion of CD measurement; and J. H. Li, F. J. Li and H. Bian for the help in CPL photodetection experiments.

Author information

Authors and Affiliations

Authors

Contributions

X.X. and X.W. conceived the project and supervised the research. G.C., X.L., J.A., J.B. and X.X. performed the synthesis and characterizations of the perovskite crystals. G.C. and X.L. contributed equally on the synthesis work. J.A. measured the dark IV curves. X.X. and G.C. did the POM characterization. X.X., G.C., X.L., J.A., Z.G. and C.Y. performed the experiments of CPL photodetection. S.W., X.Z. and H.-S.H. developed the DFT and AIMD calculation models, and performed the theoretical analyses. X.X., H.-S.H., J.L. and X.W. co-wrote the paper with help from the other authors.

Corresponding authors

Correspondence to Xiangxing Xu, Han-Shi Hu or Xun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jooho Moon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Tables 1 and 2, and Methods 1.

Supplementary Data 1

Source data of Figs. 17, 20, 21, 30, 31 and 34.

Source data

Source Data Fig. 1

Source data of Fig. 1.

Source Data Fig. 4

Source data of Fig. 4.

Source Data Figs. 3–5

Source data of Figs. 3–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Liu, X., An, J. et al. Nucleation-mediated growth of chiral 3D organic–inorganic perovskite single crystals. Nat. Chem. 15, 1581–1590 (2023). https://doi.org/10.1038/s41557-023-01290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01290-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing