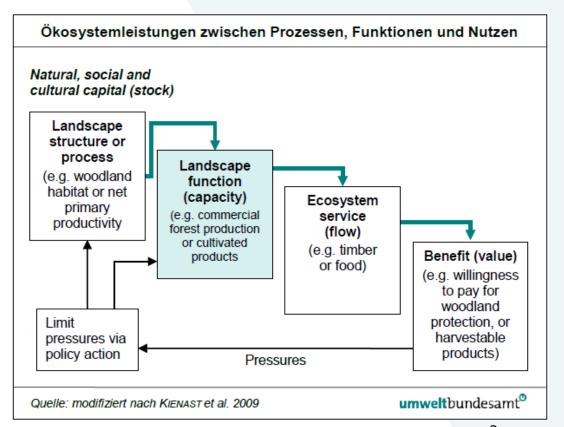
Ökosystemdienstleistungen von Bodenschutzanlagen

Literaturstudie

Thomas Weninger, Peter Strauss Klimagrün Abschlusskonferenz Slavonice, 30. September 2020

Europäischer Fonds für regionale Entwicklung

Grundidee

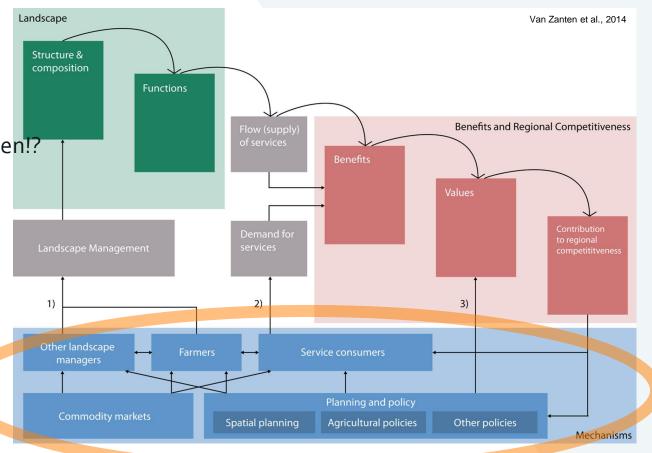


multifunktionelle Landschaft – Funktionen bekannt?

Hecken als Bodenschutzanlagen näher beleuchtet

Intention

- Nutzen, Vorteile in Worte und Zahlen fassen!?
 - Konzept
 Ökosystemdienstleistungen
 (ÖSDL)



Intention

 Nutzen, Vorteile in Worte und Zahlen fassen!?

KonzeptÖSDL

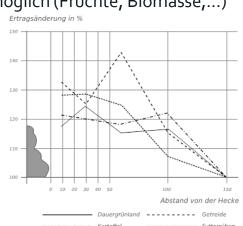
Zusammenspiel
 Ökosysteme <->
 Gesellschaft

Inhalt Studie

- 12 relevante ÖSDL von Hecken ausgewählt
- entsprechen Klassifikation von **EU** Kommission und österr. Umweltbund
- qualitative Literaturstudie

	Gruppe	Untergruppe	Erklärung	110	
	Bereitstellend	<u>Produktion von Biomasse</u>	Essbare Pflanzen, kultiviert oder wild; Fasern, Material - kultiviert oder wild; Heilkräuter; Wildtiere zur Ernährung	100	
		Genetische Ressourcen und Biodiversität	Samen, Sporen, etc zum Populationserhalt; Individuelle Gene		
	Regulierend	Regulieren von Nähr- und Schadstoffkreisläufen	Abbau, Umwandlung, Filtration, Stabilisierung von Schadstoffen; durch Organismen oder physikalische Eigenschaften		
		Regulation atmosphärischer Belastungen	Reduktion von Lärm, Geruch, Luftschadstoffen; visuelle Abgrenzung	40,0	
d		Regulation physikalischer und chemischer Bedingungen	Erosionsverminderung, Wasserhaushalt in Qualität und Quantität, Erhalten der Bodenfruchtbarkeit, Kohlenstoffkreislauf, Windschutz, Luftreinhaltung, Mikro- und Mesoklima		
de	esamt	Regulation biologischer Bedingungen	Bestäubung, Lebensraum, Schädlings- und Krankheitskontrolle	4	
	Kulturell	Direkte physische Interaktion	Ermöglichen von Aktivitäten zur Förderung von Gesundheit und Wohlergehen	0	
		Direkte psychische Interaktion	Ermöglichen von Intellektuellen Tätigkeiten wie Forschung, Wissensvermittlung, Erhalt von Kulturgut,	×	

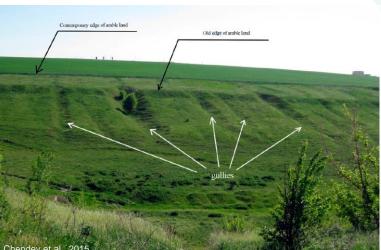
Landschaftsästhetik

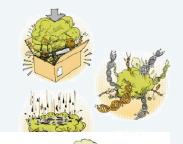


- Biomasse, Ertrag
 - Auswirkungen auf angrenzende Äcker sehr variabel,
 je nach Kultur, Standort, Bearbeitung, Witterung...
 - Diversifikation der Produktpalette möglich (Früchte, Biomasse,...)

USDA National Agroforestry Center, CC BY

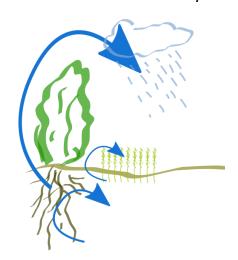
Thomas Weninger, 30. September 2020

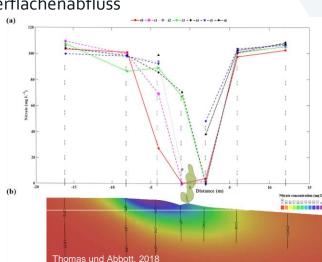

Landwirtschaft, 2005


Schutz vor Bodenerosion durch Wind und Wasser

Abschwächen der erodierenden Kräfte, Stabilisieren des fruchtbaren Oberbodens

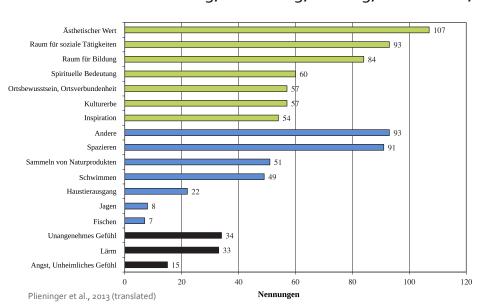
bis zu 90% Abminderung → 70 – 140 €/ha.a (Borrelli et al., 2018)





Thomas Weninger, 30. September 2020

- Regulieren des Wasserkreislaufes
 - Verminderte Austrocknung kleiner und Mikro-Wasserkreislauf
 - Filterfunktion, Rückhalt von Oberflächenabfluss


Thomas Weninger, 30. September 2020

Kulturelle Dienstleistungen

Erholung, Forschung, Bildung, Gesundheit, Therapie, Kulturerbe

Genetische Resourcen, Biodiversität, Lebensraum, Bestäubung, Regulieren von Schädlingen

- Artenverlust mit dramatischer Geschwindigkeit
- Bewertung über Opportunitätsansatz: Kosten für Verlust?

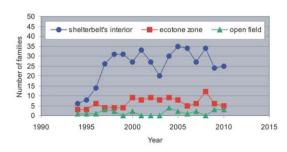
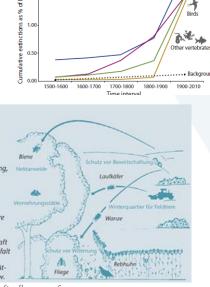



Figure 5. Number of insect families wintering in young shelterbelts and in adjacent crop fields (after Kedziora and Kayzer 2012) Kedziora, 2015

Accelerated modern human-induced species losses: Entering the sixth mass extinction

Ceballos et al., 2015

Bewertungen

Flussgrößen, relativ zu freiem/heckenlosem Feld

	Crop yield	C stock in soil	N interception: surface	N interception: subsurface	P interception	Soil sediments interception	Pest control: predator density	Pest control: predator diversity
General effect	0.85	1.15	3.19	1.52	3.06	11.5	NS	1.70
Intercept-only	[-0.22, -0.09]	[0.08, 0.19]	[0.93, 1.50]	[0.10, 0.75]	[0.63, 1.62]	[1.21, 3.67]	N = 5	[0.06, 1.00]
	(p < 0.001)	(p < 0.001)	(p < 0.001)	(p = 0.0112)	(p < 0.001)	(p < 0.001)	n = 13	$(p = 0.0762)^a$
	N = 11	N = 10	N = 8	N = 3	N = 9	N = 9		N = 4
	n = 343	n = 80	n = 49	n = 71	n = 36	n = 25		n = 10

- van Vooren et al., 2017
- Monetär wenige Studien bis jetzt, starke Vereinfachungen
 - Kulhreshta et al., 2019: 1 kanad. Provinz, externer Nutzen min. € 0,20/Pflanze
 - Alam et al., 2014: Konzeptstudie, Mischung Agroforst/Hecken, Kanada:
 \$ 2 700,-/ha.a, 1/3 Ernteerträge, 2/3

Table 2 Indicators and economic values of ecosystem services of tree-based intercropping system

TBI ecosystem services	Indicators	Indicator quantity	Economic value (\$ ha ⁻¹ y ⁻¹)	References		
Nutrient mineralization	N input	$7 \text{ kg ha}^{-1} \text{ y}^{-1}$ 3.8		Thevathasan and Gordon (2004);		
	P input	$11.42 \text{ kg ha}^{-1} \text{ y}^{-1}$	7.5	Zhang (1999); Rivest et al. (2009);_		
	K input	$21.22 \text{ kg ha}^{-1} \text{ y}^{-1}$	13.5	Toor et al. (2012); USDA ^a		
	Change in yield (timber)	$0.162 \text{ m}^3 \text{ ha}^{-1} \text{ y}^{-1}$	6.4			
Water quality	N decontamination	$11 \text{ kg ha}^{-1} \text{ y}^{-1}$	93.5	Olewiler (2004)		
	P decontamination	$7.5 \text{ kg ha}^{-1} \text{ y}^{-1}$	459	Olewiler (2004)		
	Sediment dredging	_	5.6	Wilson (2008a)		
Soil quality	Earthworms	$2.5 \text{ ton ha}^{-1} \text{ y}^{-1}$	125	Sandhu et al. (2008); Price (1999)		
	Invertebrates	$1 \text{ ton ha}^{-1} \text{ y}^{-1}$	50	Pimentel et al. (1995, 1997)		
Pollination	Yield changes (crop)	$1.47 \text{ ton ha}^{-1} \text{ y}^{-1}$	24.1	Morse and Calderone (2000); Toor et al. (2012)		
Biological control	Pest infestation levels	_	75	Kellermann (2007)		
Air quality	Pollutant removal	1.67 kg/tree	462	Wilson (2008a)		
Windbreak	Productivity change	1.47 ton ha^{-1}	39.2	Brandle et al. (2004, 2009)		
Timber provisioning	Annual yield	$3.5 \text{ m}^3 \text{ ha}^{-1} \text{ y}^{-1}$	140	Toor et al. (2012)		
Agriculture provisioning	Annual yield	1.47 ton $ha^{-1} y^{-1}$	784.9	Toor et al. (2012)		
Climate regulation	Carbon sequestration	$8.3 \text{ Mg CO}_2\text{e ha}^{-1} \text{ y}^{-1}$	356.9	Unpublished data		

