\mathbf{EVM}

Laborbericht / Versuchsprotokoll des Laborpraktikas Nr.5

Gallus Kaufmann, 16-921-223 Nando Galliard, 14-938-211 Serafin Herger, 14-932-040

227-0117-10L Mess- und Versuchstechnik

ETH Zürich 07.05.2020

Hinweis: Dieser Bericht wurde zu gleichen Teilen verfasst von Nando Galliard, Serafin Herger und Gallus Kaufmann.

Contents

1.1 Versuchsziel 3 1.2 Theorie 3 1.2.1 Induktive Kopplung auf Messleitungen 3 1.2.2 Kapazitive Kopplung auf Messleitungen 5 1.2.3 Galvanische Kopplung auf Messleitungen 6 1.2.4 Kapazitive Kopplung auf PCB-Prints 8 1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen 8 1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.1 Umgebungsbedingungen 16 17 2.4 Messergebnisse kapazitive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung 18 2.6 Messergebnisse kapazitive Kopplung 17 2.4 Messergeb	1	Eint	ürung	3								
1.2 Theorie 3 1.2.1 Induktive Kopplung auf Messleitungen 3 1.2.2 Kapazitive Kopplung auf Messleitungen 5 1.2.3 Galvanische Kopplung auf PCB-Prints 8 1.2.4 Kapazitive Kopplung auf PCB-Prints 8 1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen 9 1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.2.4 Messergebnisse induktive Kopplung 16 2.5 Messergebnisse galvanische Kopplung 16 2.5 Messergebnisse galvanische Kopplung 12 3.1 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 </th <th></th> <th>1.1</th> <th>Versuchsziel</th> <th>3</th>		1.1	Versuchsziel	3								
1.2.1 Induktive Kopplung auf Messleitungen 3 1.2.2 Kapazitive Kopplung auf Messleitungen 5 1.2.3 Galvanische Kopplung auf PCB-Prints 8 1.2.4 Kapazitive Kopplung auf PCB-Prints 8 1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen 9 1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 15 2.1 Verwendete Infrastruktur 15 2.1.1 Ungebungsbedingungen 16 2.2 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse galvanische Kopplung 16 2.4 Messergebnisse galvanische Kopplung 17 2.4 Messergebnisse galvanische Kopplung 22 3 Messunsicherheiten 22 3.1 Messunsicherheiten Signallaufzeiten und Messabschlüsse		1.2	Theorie	3								
1.2.2 Kapazitive Kopplung auf Messleitungen 5 1.2.3 Galvanische Kopplung auf PCB-Prints 8 1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen 8 1.3 Versuchsaufbau 9 1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.2 Messergebnisse kapazitive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung 18 2.5 Messergebnisse kapazitive Kopplung 22 3 Messergebnisse kapazitive Kopplung 23 4			1.2.1 Induktive Kopplung auf Messleitungen	3								
1.2.3 Galvanische Kopplung auf Messleitungen 6 1.2.4 Kapazitive Kopplung auf PCB-Prints 8 1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen 8 1.3 Versuchsaufbau 9 1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Infrastruktur 15 2.1.3 Verwendete Geräte 15 2.1.4 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messensicherheiten 22 3 Messunsicherheiten Signallaufzeiten und Messabschlüsse 21			1.2.2 Kapazitive Kopplung auf Messleitungen	5								
1.2.4 Kapazitive Kopplung auf PCB-Prints 8 1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen 8 1.3 Versuchsaufbau 9 1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung auf PCB-Prints 10 1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 15 2.1 Verwendete Infrastruktur 15 2.1.1 Ungebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.2 Verwendete Geräte 15 2.1.4 Messergebnisse kapazitive Kopplung 16 2.3 Messergebnisse galvanische Kopplung 17 2.4 Messergebnisse galvanische Kopplung auf PCB-Print 19 2.6 Messergebnisse galvanische Kopplung auf PCB-Print 22 3 Messunsicherheiten 22 3.1 Messunsicherheiten Signallaufzeiten 22			1.2.3 Galvanische Kopplung auf Messleitungen	6								
1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen 8 1.3 Versuchsaufbau 9 1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Ungebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.3 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messunsicherheiten 22 3.1 Messunsicherheiten Phasenverschiebungsmessung 22 3.1 Messunsicherheiten Phasenverschiebungsmessung 22 3.2 Messunsicherheiten Signallaufzeiten 22 <tr< td=""><td></td><td></td><td>1.2.4 Kapazitive Kopplung auf PCB-Prints</td><td>8</td></tr<>			1.2.4 Kapazitive Kopplung auf PCB-Prints	8								
1.3 Versuchsaufbau 9 1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.2 Verwendete Geräte 15 2.1.4 Wessergebnisse kapazitive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse kapazitive Kopplung auf PCB-Print 22 3.1 Messunsicherheiten 22 22 3.1 Messunsicherheiten 22 23 3.3 Messunsicherheiten 23 23 3.4.1 Induktive Kopplung 23 <			1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen	8								
1.3.1 Induktive Kopplung 9 1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung and PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einflührung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.2 Verwendete Geräte 15 2.1.4 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messensicherheiten 19 2.6 Messensicherheiten 22 3.1 Messunsicherheiten 22 3.2 Messunsicherheiten 22 3.4 Messunsicherheiten 22 3.4 Hergebnis 23 4 </td <td></td> <td>1.3</td> <td>Versuchsaufbau</td> <td>9</td>		1.3	Versuchsaufbau	9								
1.3.2 Kapazitive Kopplung 10 1.3.3 Galvanische Kopplung auf PCB-Prints 10 1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Ungebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.2 Verwendete Geräte 16 2.3 Messergebnisse kapazitive Kopplung 16 2.4 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten 22 3.2 Messunsicherheiten 22 3.3 Messunsicherheiten 22 3.4 Messunsicherheiten Signallaufzeiten 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Ergebnis<			1.3.1 Induktive Kopplung	9								
1.3.3 Galvanische Kopplung 10 1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messunsicherheiten 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.2 Verwendete Kopplung 16 2.3 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messensicherheiten 22 23 3.1 Messunsicherheiten Spannungsmessungen 22 22 3.1 Messunsicherheiten Signallaufzeiten 22 23 3.3 Messunsicherheiten Signallaufzeiten 22 23 4 Ergebnis 23 23 41 3.4.1 Induktive Kopplung 25 25 <td></td> <td></td> <td>1.3.2 Kapazitive Kopplung</td> <td>0</td>			1.3.2 Kapazitive Kopplung	0								
1.3.4 Kapazitive Kopplung auf PCB-Prints 10 1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.3 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 2 3.1 Messunsicherheiten 22 2 3.2 Messunsicherheiten 22 2 3.4 Induktive Kopplung 22 2 3.4 Induktive Kopplung 23 23 4 Ergebnis 23 23 23 4.1			1.3.3 Galvanische Kopplung	0								
1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen 11 1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.3 Verwendete Geräte 15 2.1.4 Wessergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messensicherheiten 19 2.6 Messunsicherheiten Spannungsmessungen 22 3.1 Messunsicherheiten Phasenverschiebungsmessung 22 3.2 Messunsicherheiten Signallaufzeiten 22 3.4 Induktive Kopplung 23 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 23 4.6 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung auf PCB-Print 27 4.3			1.3.4 Kapazitive Kopplung auf PCB-Prints	0								
1.4 Messunsicherheiten 13 1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.3 Verwendete Geräte 15 2.4 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Signallaufzeiten 22 3.3 Messunsicherheiten Signallaufzeiten 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5<			1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen	1								
1.5 Ergänzende Einführung 14 2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.2 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Phasenverschiebungsmessung 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Induktive Kopplung 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung auf PCB-Print 27 4.4 Kapazitive Kopplung 23 4.2 Kapazitive Kopplung 23 4.2 Kapazitive Kopplung auf PCB-Print 27 4.4 Kapazitive Kopplung auf PCB-Print 27 <		1.4	Messunsicherheiten	3								
2 Messprotokoll 15 2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.2 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse galvanische Kopplung auf PCB-Print 19 2.6 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Signallaufzeiten 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Ergebnis 23 4.1 Induktive Kopplung 25 4.3 Galvanische Kopplung auf PCB-Print 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30		1.5	Ergänzende Einführung	4								
2.1 Verwendete Infrastruktur 15 2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.1.2 Verwendete Geräte 15 2.1.2 Verwendete Geräte 15 2.1.2 Verwendete Geräte 15 2.2 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse galvanische Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung auf PCB-Print 27 4.3 Galvanische Kopplung auf PCB-Print 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29	2	Mes	sprotokoll 1	5								
2.1.1 Umgebungsbedingungen 15 2.1.2 Verwendete Geräte 15 2.2 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Induktive Kopplung 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30		2.1	Verwendete Infrastruktur	5								
2.1.2 Verwendete Geräte 15 2.2 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse galvanische Kopplung 17 2.4 Messergebnisse galvanische Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.3 Messunsicherheiten Phasenverschiebungsmessung 22 3.4 Messunsicherheiten Signallaufzeiten 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Induktive Kopplung 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 </td <td></td> <td></td> <td>2.1.1 Umgebungsbedingungen</td> <td>5</td>			2.1.1 Umgebungsbedingungen	5								
2.2 Messergebnisse induktive Kopplung 16 2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse galvanische Kopplung 18 2.5 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Induktive Kopplung 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30			2.1.2 Verwendete Geräte	5								
2.3 Messergebnisse kapazitive Kopplung 17 2.4 Messergebnisse galvanische Kopplung auf PCB-Print 18 2.5 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Induktive Kopplung 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung auf PCB-Print 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30		2.2	Messergebnisse induktive Kopplung	6								
2.4 Messergebnisse galvanische Kopplung 18 2.5 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Induktive Kopplung 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 23 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30		2.3	Messergebnisse kapazitive Kopplung	7								
2.5 Messergebnisse kapazitive Kopplung auf PCB-Print 19 2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galv		2.4	Messergebnisse galvanische Kopplung	.8								
2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse 21 3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30		2.5	Messergebnisse kapazitive Kopplung auf PCB-Print	9								
3 Messunsicherheiten 22 3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.4 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 23 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30		2.6	Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse	1								
3.1 Messunsicherheiten Spannungsmessungen 22 3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.3 Messunsicherheiten Signallaufzeiten 22 3.3 Messunsicherheiten Signallaufzeiten 22 4 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30	3	Mes	sunsicherheiten 2	2								
3.2 Messunsicherheiten Phasenverschiebungsmessung 22 3.3 Messunsicherheiten Signallaufzeiten 22 4 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 23 4.3 Galvanische Kopplung 25 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30		3.1	Messunsicherheiten Spannungsmessungen	2								
3.3 Messunsicherheiten Signallaufzeiten 22 4 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 23 4.3 Galvanische Kopplung 25 4.3 Galvanische Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30		3.2	Messunsicherheiten Phasenverschiebungsmessung	2								
4 Ergebnis 23 4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 31		3.3	Messunsicherheiten Signallaufzeiten	2								
4.1 Induktive Kopplung 23 4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 30	4	Erg	eb nis	3								
4.2 Kapazitive Kopplung 25 4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 30 5.1.3 Galvanische Kopplung 31		4.1	Induktive Kopplung	23								
4.3 Galvanische Kopplung 27 4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 31		4.2	Kapazitive Kopplung	25								
4.4 Kapazitive Kopplung auf PCB-Print 27 4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 31		4.3	Galvanische Kopplung	27								
4.5 Einfluss der Signallaufzeiten und Messabschlüsse 29 5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 31		4.4	Kapazitive Kopplung auf PCB-Print									
5 Diskussion 30 5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 31		4.5	Einfluss der Signallaufzeiten und Messabschlüsse	9								
5.1 Ergebnisse 30 5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 31	5	Disl	xussion 3	0								
5.1.1 Induktive Kopplung 30 5.1.2 Kapazitive Kopplung 30 5.1.3 Galvanische Kopplung 31	2	5.1	Ergebnisse	0								
5.1.2 Kapazitive Kopplung		U.T	5.1.1 Induktive Kopplung	0								
$5.1.3$ Galvanische Kopplung $\ldots \ldots 31$			5.1.2 Kapazitive Kopplung	0								
			5.1.3 Galvanische Kopplung	51								

		5.1.4	Kapazitive Kopplung auf PCB-Prints	31
		5.1.5	Einfluss der Signallaufzeiten und Messabschlüssen	32
	5.2	Messu	Insicherheiten	32
6	Anl	hang		34

1 Einfürung

1.1 Versuchsziel

In diesem Praktikum messen und diskutieren wir induktive, kapazitive und galvanische Störungen und ihr Einfluss auf die Signalqualität mithilfe verschiedener Messkreise. Zudem wird der Einfluss von Signallaufzeiten, von Messkreisdesigns und von potenziellen Störquellen auf die Signalqualität der verschiedenen Versuchsanordnungen untersucht.

1.2 Theorie

Figure 1: Beeinflussungsmodel mit Störquelle, Koppelmechanismus und Störsenke [2]

Wie in der Vorlesung gesehen bildet Abbildung (1) das grundlegende Beeinflussungsmodel. Somit stört ein Sender (Störquelle) über einen Kopplungspfad den Empfänger (Störsenke). In den folgenden Unterkapiteln werden verschiedene Kopplungsmechanismen untersucht.

1.2.1 Induktive Kopplung auf Messleitungen

Aus der Vorlesung [2] ist folgende Abbildung 2 bekannt mit Störspannung im Frequenz- und Zeitbereich:

$$U_{st}(\omega) = I_I(\omega) \cdot j\omega \cdot M_{I/II} \tag{1}$$

$$u_{st}(t) = \frac{di_I(t)}{dt} \cdot M_{I/II} \tag{2}$$

Figure 2: Magnetische (induktive) Kopplung zwischen zwei Stromkreisen. [2]

Figure 3: ESB für den Aufbau zur Messung von induktiv eingekoppelter Störung. [1]

In Abb. 3 ist das Ersatzschaltbild gezeigt, welches auf induktive Kopplung untersucht wird. Die Störspannung in diesem ESB mit magnetischen Kopplung $M_{I/II}$ ergibt sich mit dem Ohmschen Gesetz zu:

$$U_I(\omega) = I_I(\omega) \cdot (j\omega \cdot M_{I/II} + 2 \cdot \Delta R)$$
(3)

Aus dieser Gleichung 3 lässt sich der Strom berechnen:

$$I_I(\omega) = \frac{U_I(\omega)}{j\omega \cdot M_{I/II} + 2 \cdot \Delta R}$$
(4)

Mit

$$I_I(\omega) = \sqrt{2}I_I \cdot \sin(\omega) \tag{5}$$

Die Gegeninduktivität berechnet sich aus 3 zu:

$$M_{I/II} = \frac{1}{j\omega} \cdot \left(\frac{U_I(\omega)}{I_I(\omega)} - 2 \cdot \Delta R\right) \tag{6}$$

Diese Gegeninduktivität kann vereinfacht werden, wenn die Widerstände ΔR vernachlässigt werden:

$$M_{I/II} = \frac{|U_I(\omega)|}{2 \cdot \omega \cdot |I_I(\omega)|} \tag{7}$$

Offensichtlich ist die Impedanz j ω L frequenzabhängig. Allerdings ist die Gegeninduktivität $M_{I/II}$ gemäss Gleichung 7 nicht frequenzunabhängig. Die Widerstände werden als frequenzunabhängig angenommen. Die Spannung U_{II} ergibt sich zu:

$$U_{II}(\omega) = \frac{U_{St}(\omega)}{2} = \frac{1}{2} \cdot I_I(\omega) \cdot j\omega \cdot M_{I/II}$$
(8)

Die Störspannung U_{II} in der einkoppelnden Leiterschleife hängt somit proportional vom Störstrom I_I ab und somit auch von veränderten Widerstands- und Frequenzwerten. Es wird eine negative Phasenlage des Störstroms I_{II} erwartet, weil Induktivitäten mitspielen.

1.2.2 Kapazitive Kopplung auf Messleitungen

Figure 4: ESB für den Aufbau zur Messung kapazitive eingekoppelter Störung. [1]

Das Oszilloskop wird in diesem Messaufbau mit einem hoch
ohmigen (1M Ω) Innenimpedanz betrieben.

$$U_{II}(\omega) = U_{ST}(\omega) = U_{I}j\omega C_{I/II}\Delta R/2$$
(9)

$$C_{I/II} = \frac{U_{II}(\omega)}{U_I(\omega)j\omega R/2} \tag{10}$$

$$\frac{U_I(\omega)}{U_{II}(\omega)} = \frac{1/j\omega C_{I/II} + (\Delta R/2)/(1+j\omega(\Delta R/2)C_E)}{(\Delta R/2)/(1+j\omega(\Delta R)C_E)}$$
(11)

Da $\Delta R/2 \ll 1/(\omega C_E)$ kann die Gleichung (11) gekürzt werden zu:

$$\frac{U_I(\omega)}{U_{II}(\omega)} = \frac{1/j\omega C_{I/II} + \Delta R/2}{\Delta R/2}$$
(12)

Wenn man Formel (9) betrachtet, ist ersichtlich, dass mit höheren Frequenzen der Spannung $U_I(\omega)$ linear höhere Störspannungen zu erwarten sind. Allerdings ist die Kapazität $C_{I/II}$ invers linear zur Frequenz. Aus diesen beiden Erkenntnissen schliessen wir, dass die Amplitude der Störspannung frequenzunabhängig ist. Des weiteren ist $U_I(\omega) = \sqrt{2}U_I sin(\omega)$ und dadurch ist die Amplitude der Spannung sowie der Störspannung konstant über alle Frequenzen. Das alles jedoch unter der Annahme, dass sich die Relation U_{II}/U_I nicht verändert mit der Frequenz.

Wir erwarten, dass die Störspannung $U_{II}(\omega)$ die Frequenz der Spannung $U_I(\omega)$ übernimmt bedingt durch die kapazitive Koppelung.

Es wird ein direkter Einfluss eines höheren Widerstandes auf die Störspannung erwartet, da diese Formel (9) linear abhängig ist.

Die Streukapazität $C_{I/II}$ ist ebenfalls frequenzabhängig, wie in Formel (10) ersichtlich ist. Des weiteren sind diese Kapazitäten stark abhängig von der Geometrie des Aufbaus.

Für einen Teil des Experimentes erden wir die Ader 4 niederohmig: Wir vermuten, dass die Streukapazität $C_{I/II}$ dadurch kleiner ausfällt bedingt durch die abschirmende Eigenschaft einer nahen Erdung. Dadurch wird in Ader 4 jedoch ein neuer Strom fliessen, welcher sich wiederum auf Ader 3 und 5 ausüben wird, welcher jedoch verschwindend klein ist.

Die Phasenlage des Störstromes I_{II} vermuten wir als eher klein und positiv, da I_{II} über einen grossen Widerstand fliesst im Vergleich zu der eher kleinen Streukapazität $C_{I/II}$.

1.2.3 Galvanische Kopplung auf Messleitungen

Aus der Vorlesung [2] sind folgende Abbildungen 5 bekannt:

Figure 5: Galvanische Kopplung zweier Stromkreise über eine gemeinsame Impedanz Z (links) und (rechts) ein Beispiel mit Erdschleife und Kopplungsimpedanz Z_K . [2]

Die rechte Abbildung in 5 führt zu folgendem Verhältnis zwischen Gleichtaktspannung und Störspannung:

$$\frac{U_{Gl(\omega)}}{U_{St(\omega)}} = \frac{Z_Q + Z_E}{Z_E} \tag{13}$$

Wobei die Kopplungsimpedanz mit einer Länge l gegeben ist aus der Vorlesung [2]:

$$Z_K(\omega) = \frac{U_{St(\omega)}}{I_{St(\omega)} \cdot l}$$
(14)

Figure 6: ESB für den Aufbau zur Messung galvanisch eingekoppelter Störung. [1]

In Abb. 4 ist das Ersatzschaltbild gezeigt, welches auf galvanische Kopplung untersucht wird. Mit den Gleichungen 13, 14 und dem Wissen, dass $I_I(\omega)$ direkt vom Frequenzgenerator abgelesen werden kann, folgt:

$$I_{II}(\omega) = I_I(\omega) \cdot \frac{2R}{\Delta R + 2R}$$
(15)

$$I_{III}(\omega) = I_{II}(\omega) \cdot \frac{\Delta R}{R}$$
(16)

Es wird eine kleine oder gegen Null gehende Phasenlage des Störstroms I_{II} erwartet aufgrund eines rein resistiven Stromes. Weiter ergeben sich:

$$U_{II}(\omega) = \frac{\Delta R \cdot I_{II}(\omega)}{2} = I_I(\omega) \cdot \frac{\Delta R \cdot R}{\Delta R + 2R}$$
(17)

Die Amplitude dieser Störspannung aus Gleichung 17 ist frequenzunabhängig, obwohl sie indirekt zeitabhängig ist aufgrund von $I_I(\omega)$. Und wenn R gross ist, kann R vernachlässigt werden, weil R viel grösser als ΔR ist und somit die ganze Spannung über die zwei ΔR abfällt.

$$U_{II}(\omega) = \frac{\Delta R \cdot I_{II}(\omega)}{2} = \frac{U_I(\omega)}{4}$$
(18)

1.2.4 Kapazitive Kopplung auf PCB-Prints

Figure 7: ESB für den Aufbau zur Messung der kapazitiven Koppelung auf dem PCB-Print

$$U_{II}(\omega) = U_{ST}(\omega) = U_I j \omega C_{I/II} \Delta R \tag{19}$$

$$C_{I/II} = \Delta \epsilon A/d \sim l/d \tag{20}$$

l: Koppelstrecke d: Leiterbahnenabstand

Die Phase des Störstromes I_{II} erwarten wir als eher klein, da der Strom über einen grossen Widerstand fliesst im Vergleich zu der eher klein vermuteten Streukapazität $C_{I/II}$.

In Formel (20) ist ersichtlich, dass die Streukapazität $C_{I/II}$ proportional abhängig ist von der Länge l der Koppelstrecke der beiden Leiter und invers proportional abhängig vom Abstand dder Leiterbahnen.

Falls wir nun Option B mit dem Leerlauf der Leiterschlaufe verwenden, erwarten wir eine niedrige Störspannung. In der Leiterschlaufe sollte mit einem hochohmischen Abschlusswiderstand eine stehende Welle entstehen, die jedoch wenig Leistung aufgrund des schwach fliessenden Stromes führt. Wenn allerdings Option A benutzt wird, sind die Impedanzen der beiden Bahnen gleich (50 Ω), was eine bessere Signalübertragung ermöglicht bedingt durch die Impedanzanpassung.

1.2.5 Einfluss von Signallaufzeiten und Messabschlüssen

Hochfrequente Messsignale und signifikante Distanz zwischen Messgerät und der Signalquelle haben einen Einfluss auf die Signallaufzeiten. Weiter können Signalreflexionen das Messsignal verzerren. Beides kann das Ergebnis beeinflussen. Deshalb wird eine Analyse über den Einfluss der Leitungslänge und Messabschlüsse auf die Signalqualität mittels Messkreis (siehe Abb. 8) durchgeführt.

Figure 8: Messkreis zur Analyse von Signallaufzeiten und des Einflusses der Messabschlüsse [1]

1.3 Versuchsaufbau

Im folgenden stellt der Funktionsgenerator
stets den Signalgenerator Agilent33120 (Sinus und Rechteck
, $15~\rm MHz)$ dar.

Mit Oszilloskop ist immer das Oszilloskop Agilent MSOX3014A (4-kanal, 100 MHz, 2 GSa/s) gemeint. Bei Spannungs- und Phasenmessungen wird jeweils die V/dec, s/dec, und - sofern verhanden - den Zählwert und die Standardabweichung notiert.

1.3.1 Induktive Kopplung

Der Versuchsaufbau folgt nach dem in Abbildung 3 ersichtlichen Ersatzschatbild. Die Spannungen $U_I(\omega)$ und $U_{II}(\omega)$ werden mit dem Oszilloskop und Koaxialkabeln gemessen. Damit werden ebenfalls die Phasen der Spannungen gemessen. Die Phasenlage von den Strömen entsprechen der jeweiligen Phase der dazugehörigen Spannungen: $\angle U_I = \angle I_I$ und $\angle U_{II} = \angle I_{II}$.

Weiterhin wird wie in der Abbildung 3 ersichtlich, ist die aus Ader 2 und Ader 5 gebildete Schleife mit dem Funktionsgenerator betrieben. Dieser hat als Output eine sinusförmige Wechselspannung, deren Frequenz im Rahmen des Versuches moduliert wird.

Messplan zur induktiven Kopplung

Gemessen werden die beschriebenen Spannungen und deren relative Phase für folgende Einstellungen: Frequenz $f \in \{20, 40, 60, 80, 100\}$ kHz und Widerstand $R \in \{5, 10\}$ k Ω . Schliesslich haben wir folgende Vorlage für unsere Messungen: Tabelle 7

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{c} \text{Amplitude } U_I \\ \text{in V} \end{array}$	$\begin{array}{c} \text{Amplitude } U_{II} \\ \text{in V} \end{array}$	Phasenverschiebung ϕ in °	

Table 1:	Messplan	zur	induktiven	Kopplung
----------	----------	-----	------------	----------

1.3.2 Kapazitive Kopplung

Der Versuchsaufbau folgt nach dem in Abbildung 4 ersichtlichen Ersatzschatbild. Die Spannungen $U_I(\omega)$ und $U_{II}(\omega)$ werden mit dem Oszilloskop und Koaxialkabeln gemessen. Damit werden ebenfalls die Phasen der Spannungen gemessen. Die Phasenlage von den Strömen entsprechen der jeweiligen Phase der dazugehörigen Spannungen: $\angle U_I = \angle I_I$ und $\angle U_{II} = \angle I_{II}$.

Weiterhin wird wie in der Abbildung ersichtlich, ist die Schaltung mit einer Wechselspannung betrieben. Diese wird ebenfalls wieder mit dem Funktionsgenerator generiert. Der Funktionsgenerator bildet somit die Spannungsquelle und den damit verbundenen 50 Ω Widerstand (Innenwiderstand des Funktionsgenerators) der Abbildung. Auch hier wird die Frequenz im Rahmen des Versuches moduliert. Die benachbarten Leitungen sind über die Streukapazitäten $C_{I/II}$ und C_E gekoppelt, sodass ein kapazitiver Strom fliesst. Ebenso ist in der Abbildung ersichtlich, dass die Leitung der Ader 3 mit zwei Widerständen der Grösse R geerdet sind. Über diese Widerstände wird $U_{II}(\omega)$ gemessen.

Messplan zur kapazitiven Kopplung

Gemessen werden die beschriebenen Spannungen und deren relative Phase für folgende Einstellungen: Frequenz $f \in \{20, 40, 60, 80, 100\}$ kHz und Widerstand $R \in \{5, 10\}$ k Ω . Schliesslich haben wir folgende Vorlage für unsere Messungen: Tabelle 2

Frequenz f Widerstand R		Amplitude U_I	Amplitude U_{II}	Phasenverschiebung ¢	
in kHz	in k Ω	in V	in V	in °	

Table 2: Messplan zur kapazitiven Kopplung

1.3.3 Galvanische Kopplung

Der Versuchsaufbau folgt nach dem in Abbildung 6 ersichtlichen Ersatzschatbild. Die Spannungen $U_I(\omega)$ und $U_{II}(\omega)$ werden mit dem Oszilloskop und Koaxialkabeln gemessen. Damit werden ebenfalls die Phasen der Spannungen gemessen. Die Phasenlage von den Strömen entsprechen der jeweiligen Phase der dazugehörigen Spannungen: $\angle U_I = \angle I_I$ und $\angle U_{II} = \angle I_{II}$.

Weiterhin wird wie in der Abbildung ersichtlich, ist die Schaltung mit einer Wechselspannung betrieben. Auch hier bildet die in der Abbildung gezeichnete Spannungsquelle mit dem damit verbundenen 50 Ω Widerstand (der auch hier wieder der Innenwiderstand ist) den Funktionsgenerator. Auch hier wird die Frequenz im Rahmen des Versuches moduliert.

Messplan zur galvanischen Kopplung

Gemessen werden die beschriebenen Spannungen und deren relative Phase für folgende Einstellungen: Frequenz $f \in \{20, 40, 60, 80, 100\}$ kHz und Widerstand $R \in \{5, 10\}$ k Ω . Schliesslich haben wir folgende Vorlage für unsere Messungen: Tabelle 3

1.3.4 Kapazitive Kopplung auf PCB-Prints

Der Versuchsaufbau folgt nach dem in Abbildung 7 ersichtlichen Ersatzschaltbild. Die Spannungen $U_I(\omega)$ und $U_{II}(\omega)$ werden mit dem Oszilloskop und Koaxialkabeln gemessen. Damit werden ebenfalls die Phasen der Spannungen gemessen. Damit werden ebenfalls die Phasen der

Frequenz f	Widerstand R	Amplitude U_I	Amplitude U_{II}	Phasenverschiebung ϕ
in kHz	in k Ω	in V	in V	in °

Table 3:	Messplan	zur	galvanischen	Kopplung
----------	----------	-----	--------------	----------

Spannungen gemessen. In der Abbildung ist auch der Funktionsgenerator mitsamt seiner 50Ω Impedanz eingezeichnet. Dieser soll das Störsignal mit einem 10 MHz Sinussignal geben. Der Messpfad wird einseitig an das Oszilloskop (Kopplung 50Ω) angeschlossen. Das andere Ende (in der Tabelle Abschluss genannt) kann an einen 50Ω Widerstand angeschlossen werden (Option A, Impedanzangepasst), oder aber offen im Leerlauf gelassen werden (Option B, hochohmscher Abschluss).

Messplan zur kapazitiven Kopplung auf PCB-Prints

Die Messungen sollen mit folgenden Einstellungen durchgeführt werden (vgl. Tabelle 4:

Koppelstrecke	Leiterbahnenabstand	Schirmung
in mm	in mm	
100	0.2	keine
100	0.5	keine
100	1	keine
50	0.5	keine
100	1	mittels geerdeter stiches

Table 4: Konfigurationen PCB-Print Messungen

Schliesslich haben wir folgende Vorlage für unsere Messungen: Tabelle 5

Länge	Leiter-	Abschluss	Schrimung	Amplitude	Amplitude	Phasenver-
Koppelstrecke	abstand	Option	stiches	U_I in V	U_{II} in V	schiebung ϕ
in mm	in mm	A oder B	keine oder			in °

Table 5: Messplan kapazitive Kopplung auf PCB-Prints

1.3.5 Einfluss der Signallaufzeiten und Messabschlüssen

Der Versuchsaufbau folgt nach dem in Abbildung 8 ersichtlichen Ersatzschaltbild. Der Funktionsgenerator erzeugt hier ein Rechtecksignal mit einer Frequenz von 100 kHz und einem Duty-Cycle von 20%. Die Spannung wird mit dem Oszilloskop gemessen (wie in der Abbildung eingezeichnet), wir nennen diese U_I .

Messplan zur Analyse der Signallaufzeiten und Messabschlüssen

Zu Tabelle 22 folgende Bemerkung: Abschluss \in { Offen, $R = 50\Omega$ Kurzschluss }

Kabelzustand \in { Unverdrillt, Teilverdrillt, Verdrillt }

Abschluss	Kabelzustand	Spannung U_I in V	Zeitverzögerung in s	Ausbreitungsgeschwindigkeit in m/s	
	•••				

Table 6: Messplan zur Analyse der Signallaufzeiten und Messabschlüssen

1.4 Messunsicherheiten

Betrachten wir zuerst die Messunsicherheiten der Spannungsmessungen mittels des Oszilloskops. In erster Linie existiert eine Standardunsicherheit σ durch Mittelung (berechnet durch das Oszilloskop) der Spannungsmessungen $U_{Mittelwert}$. Die Standardunsicherheit hat den Erweiterungsfaktor k = 1.

$$u_1 = U_{Mittelwert} \cdot \sigma \tag{21}$$

Der Hersteller des Oszilloskops gibt eine maximale Ungenauigkeit von $\pm 2\%$ des vollen Messbereiches $U_{Messbereich}$. Dies interpretieren wir als eine maximale Ungenauigkeit bei Spannungsmessungen (unter der Annahme einer Gleichverteilung dieser Ungenauigkeit über den vertikalen Messbereiches). Dazu muss dieser Wert noch durch $\sqrt{3}$ dividiert werden, um die vergleichbare Standardabweichung zu erhalten mit Erweiterungsfaktor k = 1.

$$u_2 = \frac{0.02 \cdot U_{Messbereich}}{\sqrt{3}} \tag{22}$$

Ob einer dieser beiden Unsicherheiten überwiegt, kann erst bei betrachten der Messungen beurteilt werden.

Falls keine der beiden Unsicherheiten vernachlässigbar ist, so lassen sich diese beiden folgendermassen kombinieren (mit k = 1):

$$u_{kombinierteMessunsicherheit} = u_k = \sqrt{u_1^2 + u_2^2}$$
(23)

Als nächstes interessiert uns die Messunsicherheit der Messung des Phasenwinkels.

Die Messunsicherheit des Phasenwinkels beträgt beim Oszilloskop 25ppm $\pm 5\frac{\text{ppm}}{\text{Jahr}}$. Da wir davon ausgehen, dass das Oszilloskop erst wenige Jahre alt ist, können wir diesen Fehler vernachlässigen.

Wir erhalten weiter einen Unsicherheit des Phasenwinkels ϕ durch Mittelung.

$$\Delta_{Messunsicherheit}\phi = u_1 = 2\pi \cdot f \tag{24}$$

wobei f die Frequenz ist. $[\phi] = \operatorname{rad}, [f] = \operatorname{Hz}$

Es existieren in der Realität noch weitere Unsicherheitsquellen für unsere Messungen:

- Die Frequenzgenauigkeit des Frequenzgenerators wird vernachlässigt, da die statistische Unsicherheit der Spannungsmessung bei den Berechnungen des Phasenwinkels überwiegt.
- Allfällige Nichtidealitäten der Bauteile, Steckkomponenten und Innenwiderstände der Messinstrumente werden vernachlässigt. Somit auch deren Temperaturabhängigkeit und etwaige Einflüsse der Luftfeuchtigkeit und anderen Umwelteinflüssen. Insbesondere werden auch zeitliche Verzögerungen und parasitäre Impedanzen der Kabel vernachlässigt.
- Wir betrachten unser Experiment elektromagnetisch isoliert. Das soll heissen, eventuelle Einflüsse anderer elektromagnetischer Felder und Wellen werden vernachlässigt (z.B. anderer Experimente, Handy, Infrastruktur, etc.).

1.5 Ergänzende Einführung

Korrektur

Korrektur zu Formel 21: Die Unsicherheit resultierend aus der Mittelung der Werte ist gerade nur die Standartabweichung. Korrekt ist also:

$$u_1 = \sigma \tag{25}$$

Weierhin berechnet sich die Unsicherheit des Phasenwinkels nicht wie in Gleichung 24 beschrieben, sondern auch hier ist die Unsicherheit einfach die Standartabweichung durch Mittelung, also sozusagen das σ der Mittelung der Phasenwinkel. Wobei hier mit Phasenwinkel der relative Phasenwinkel, also die Phasenverschiebung gmeint ist.

Induktive Kopplung

Wir konnten den Strom nicht, wie in der Einleitung angenommen, vom Signalgenerator ablesen. Stattdessen berechnen wir den Strom I_I mit dem ohmschen Gesetz.

$$I_I = \frac{U_I}{2\Delta R + j\omega M_{I/II}} \tag{26}$$

Die Gegeninduktivität wird somit direkt mit Variablen berechenbar und ersetzt Formel (6) aus der Einführung.

$$M_{I/II} = \frac{4U_{II}\Delta R}{\omega(U_I - 2U_{II})} \tag{27}$$

Mit Messunsicherheit $\Delta M_{I/II}$

$$\Delta M_{I/II} = \sqrt{\left(-\frac{4U_{II}\Delta R}{\omega(U_I - 2U_{II})^2}\Delta U_I\right)^2 + \left(\frac{4U_I\Delta R}{\omega(U_I - 2U_{II})^2}\Delta U_{II}\right)^2}$$
(28)

Kapazitive Kopplung

Die Messungenauigkeit für die Gleichung (10) des Kapazität ist wie folgt:

$$\Delta C_{I/II} = \sqrt{\left(-\frac{j\omega R/2}{(U_I j\omega R/2)^2} \Delta U_I\right)^2 + \left(\frac{1}{(U_I j\omega R/2)^2} \Delta U_{II}\right)^2}$$
(29)

Kapazitive Kopplung auf PCB-Prints

Zur Kapazitätsberechnung wird folgende Formel benötigt:

$$C_{I/II} = \frac{U_{II}}{U_I \cdot 2\pi \cdot f \cdot R} \tag{30}$$

Aus der Fehlerfortpflanung folgt für den Fehler:

$$\Delta C_{I/II} = \sqrt{\left(\frac{\Delta U_{II}}{U_I \cdot 2\pi \cdot f \cdot R}\right)^2 + \left(-\frac{\Delta U_I \cdot U_{II}}{U_I^2 \cdot 2\pi \cdot f \cdot R}\right)^2} \tag{31}$$

2 Messprotokoll

2.1 Verwendete Infrastruktur

2.1.1 Umgebungsbedingungen

Ort: ETZ C99 Datum: 07.05.2020

2.1.2 Verwendete Geräte

Oszilloskop	Agilent Technologies MSOX-X 3014A (4-Kanal, 100MHz, 2GSa/s)
	Impedanz von $1M\Omega$, falls nichts spezifiziert
	DC-Kopplung, falls nichts spezifiziert
	Tastkopf 1:1, falls nichts spezifiziert
Signalgenerator	HP 33120A (15MHz Waveform Generator)
	50Ω Ausgangsimpedanz, Sinussignal, Ausgangsspannung $U_{pp} = 10V$
Koaxialkabel	RG58 mit BNC Steckern (Länge: ca. 1m)
Flachbandkabel	verdrillt, normal, beide 10-adrig, gem. Datenblatt Aderwiderstand:
	237 Ω/km , geschätzte Länge $l = 40\mathrm{cm}$, $\rightarrow \mathrm{max}$. Aderwiderstand
	$\Delta R = 0.0948 \ \Omega$
Platinen	spezielle Koppel-PCB's und
	PCB zur Analyse kapazitiver Signalkopplungen
DC-Spannungsquelle	GW Instek GPS-3303S (Output Rating: 0~30V, 0~6A))

Figure 9: Spezielle Kopplungs-PCBs mit normalem oder verdrilltem Flachbandkabel

Figure 10: PCB zur Analyse kapazitiver Signalkopplungen

2.2 Messergebnisse induktive Kopplung

Es ist die Verschaltung gemäss Abbildung 3 gewählt. Nur für Messplan 9 wird die Ader 3 auf Ader 9 verschoben. Die jeweiligen Oszilloskopbilder sind im Anhang ersichtlich. Die HF-Signal-Unterdrückungsfunktion am Oszilloskop (DSO) wird genutzt für U_I .

- f Frequenz im Mittel
- *R* Widerstand
- U_I Amplitude der Störspannung im Mittel
- U_{II} Amplitude der Störspannung im Mittel
- $\Delta \phi$ Phasenverschiebung im Mittel
- Stdv. Standardabweichung der jeweiligen Messgrösse

f	Stdv.	R	U_I	Stdv.	U_{II}	Stdv.	$\Delta \phi$	Stdv.	Count	Oszi
in kHz	in Hz	in k Ω	in mV	in uV	in mV	in uV	in °	in $^{\circ}$		Bild
20	9.835	5	186.09	146.73	3.568	32.778	-109.74	0.754	500	18
40	47.931	5	205.45	147.31	7.156	91.476	-128.6	0.609	500	19
60	169.10	5	228.01	104.88	10.781	69.925	-146.30	0.550	500	20
80	30.349	5	255.3	0.0	14.511	78.810	-159.70	0.321	500	21
100	8.606	5	295.74	1154.9	16.957	43.744	-170.82	0.094	500	17
100	8.641	10	294.06	2318.9	14.965	78.143	-201.55	0.456	500	22

Table 7: Messplan induktive Kopplung, Flachband: normal, Adern: benachbart

Wobei hier (Tabelle 7 das Oszilloskop folgendermassen eingestellt war:

Messung (f, R)	Einstellung für	Einstellung für
in $(kHz, k\Omega)$	U_I Messung	U_{II} Messung
(20,5)	$50\frac{\text{mV}}{\text{div}}$	$1\frac{mV}{div}$
$\{(40,5), (60,5), (80,5), (100,5)\}$	$50\frac{\text{mV}}{\text{div}}$	$2\frac{mV}{div}$
(100,10)	$50\frac{mV}{div}$	$5\frac{mV}{div}$

Table 8: Oszilloskopeinstellungen zur Messtabelle 7

f	Stdv.	R	U_I	Stdv.	U_{II}	Stdv.	$\Delta \phi$	Stdv.	Count	Oszi
in kHz	in Hz	in k Ω	in mV	in uV	in mV	in uV	in °	in $^{\circ}$		Bild
100	10.591	10	339.79	551.75	43.317	54.141	-183.66	0.238	500	23

Table 9: Messplan induktive Kopplung, Flachband: normal, Adern: grösserer Abstand (Ader 3 wird auf Ader 9 umgesteckt beidseitig, die Grundschaltung wird aber beibehalten)

Wobei hier (Tabelle 9) das Ozilloskop hier folgendermassen eingestellt war: für U_I : $50\frac{\text{mV}}{\text{div}}$ und für U_{II} : $10\frac{\text{mV}}{\text{div}}$.

f	Stdv.	R	U_I	Stdv.	U_{II}	Stdv.	$\Delta \phi$	Stdv.	Count	Oszi
in kHz	in Hz	in k Ω	in mV	in uV	in mV	in uV	in °	in °		Bild
100	9.517	10	291.92	1212.0	5.214	36.645	99.993	0.979	500	24

Table 10: Messplan induktive Kopplung, Flachband: verdrillt, Adern: benachbart

Wobei das Ozilloskop hier (Tabelle 10) folgendermassen eingestellt war: für U_I : $50\frac{\text{mV}}{\text{div}}$ und für U_{II} : $1\frac{\text{mV}}{\text{div}}$.

2.3 Messergebnisse kapazitive Kopplung

Es ist die Verschaltung gemäss Abbildung 4 gewählt. Nur für Messplan 14 wird die Ader 5 auf Ader 7 verschoben. Die jeweiligen Oszilloskopbilder sind im Anhang ersichtlich. Die HF-Signal-Unterdrückungsfunktion am DSO wird nicht genutzt für U_I .

- f Frequenz im Mittel
- R Widerstand
- U_I Amplitude der Störspannung im Mittel
- U_{II} Amplitude der Störspannung im Mittel
- $\Delta \phi$ Phasenverschiebung im Mittel
- Stdv. Standardabweichung der jeweiligen Messgrösse

f	Stdv.	R	U_I	Stdv.	U_{II}	Stdv.	$\Delta \phi$	Stdv.	Count	Oszi
in kHz	in Hz	in k Ω	in V	in mV	in mV	in uV	in °	in °		Bild
20	4.189	5	20.254	7.903	56.439	556.38	84.672	0.814	500	25
40	9.439	5	20.245	8.479	109.30	201.25	81.236	0.658	500	26
60	18.112	5	20.227	13.114	167.08	1199.2	78.825	0.581	500	27
80	23.020	5	20.218	13.122	218.62	1538.1	75.970	0.423	500	28
100	27.823	5	20.220	14.145	262.39	1664.4	73.310	0.426	500	29
20	4.207	10	20.269	11.675	111.80	1521.5	81.532	1.008	500	30
40	8.890	10	20.246	9.430	217.30	1421.7	76.125	0.463	500	31
60	18.207	10	20.232	11.365	308.28	1085.5	70.496	0.269	500	32
80	21.362	10	20.220	13.219	399.53	1398.9	66.072	0.258	500	33
100	29.214	10	20.220	14.574	472.69	926.35	60.855	0.189	500	34

Table 11: Messplan kapazitive Kopplung, Flachband: normal, Ader 4: Leerlauf

Wobei das hier (Tabelle 11) Oszilloskop folgendermassen eingestellt war:

Messung (f, R)	Einstellung für	Einstellung für
in $(kHz, k\Omega)$	U_I Messung	U_{II} Messung
(20,5)	$50\frac{\mathrm{mV}}{\mathrm{div}}$	$10\frac{\mathrm{mV}}{\mathrm{div}}$
$\{(40,5),(20,10)\}$	$5\frac{V}{diy}$	$20\frac{\text{mV}}{\text{div}}$
$\{(60,5), (80,5), (100,5), (40,10), (60,10)\}\$	$5\frac{V}{diy}$	
$\{(80, 10), (100, 10)\}$	$5\frac{V}{div}$	$50\frac{\mathrm{mV}}{\mathrm{div}}$

Table 12: Oszilloskopeinstellungen zur Messtabelle 11

f	Stdv.	R	U_I	Stdv.	U_{II}	Stdv.	$\Delta \phi$	Stdv.	Count	Oszi
in kHz	in Hz	in k Ω	in V	in mV	in mV	in uV	in °	in $^{\circ}$		Bild
20	4.017	10	20.270	12.219	26.023	510.78	80.792	1.737	500	37
60	18.766	10	20.235	10.486	74.331	807.76	71.95	0.887	500	36
100	30.497	10	20.219	15.036	112.92	811.34	61.797	0.467	500	35

Table 13: Messplan kapazitive Kopplung, Flachband: normal, Ader 4: geerdet

Wobei das Ozilloskop hier (Tabelle 13) folgendermassen eingestellt war: für U_I : $5\frac{V}{div}$ und für U_{II} : $20\frac{mV}{div}$. Ausser für die letzte Messung (f=100kHz) dort ist es folgendermassen eingestellt: ür U_I : $5\frac{V}{div}$ und für U_{II} : $5\frac{mV}{div}$.

f	Stdv.	R	U_I	Stdv.	U_{II}	Stdv.	$\Delta \phi$	Stdv.	Count	Oszi
in kHz	in Hz	in k Ω	in V	in mV	in mV	in uV	in °	in °		Bild
20	4.211	10	20.267	11.680	48.979	1276.4	81.706	2.203	500	38
100	31.245	10	20.218	14.568	212.21	1570.3	61.684	0.502	500	39

Table 14: Messplan kapazitive Kopplung, Flachband: normal, Ader: grösserer Abstand (Ader 5 wird auf Ader 7 umgesteckt beidseitig, die Grundschaltung wird aber beibehalten)

Wobei das Ozilloskop hier (Tabelle 14) folgendermassen eingestellt war: Für die erste Messung (f=20Hz): für U_I : $5\frac{V}{\text{div}}$ und für U_{II} : $10\frac{\text{mV}}{\text{div}}$. Für die zweite Messung (f=100kHz): für U_I : $5\frac{V}{\text{div}}$ und für U_{II} : $50\frac{\text{mV}}{\text{div}}$.

f	Stdv.	R	U_I	Stdv.	U_{II}	Stdv.	$\Delta \phi$	Stdv.	Count	Oszi
in kHz	in Hz	in k Ω	in V	in mV	in mV	in uV	in °	in $^{\circ}$		Bild
100	28.240	10	20.214	13.804	506.36	3009.3	61.532	0.264	500	40

Table 15: Messplan kapazitive Kopplung, Flachband: verdrillt, Ader: benachbart

Wobei hier (Tabelle 15 das Ozilloskop hier folgendermassen eingestellt war: für U_I : $5\frac{V}{div}$ und für U_{II} : $100\frac{mV}{div}$.

2.4 Messergebnisse galvanische Kopplung

Es ist die Verschaltung gemäss Abbildung 6 gewählt. Die jeweiligen Oszilloskopbilder sind im Anhang ersichtlich. Speziell hier: Für die Messung von U_{II} wird eine Impedanz am DSO von 50 Ω gewählt.

- f Frequenz im Mittel
- R Widerstand
- U_I Amplitude der Störspannung im Mittel
- U_{II} Amplitude der Störspannung im Mittel
- $\Delta \phi$ Phasenverschiebung im Mittel
- Stdv. Standardabweichung der jeweiligen Messgrösse

f	Stdv.	R	U_I	Stdv.	U_{II}	Stdv.	$\Delta \phi$	Stdv.	Count	Oszi
in Hz	in mHz	in k Ω	in mV	in uV	in mV	in uV	in °	in °		Bild
50	5.695	5	177.83	67.420	41.855	57.516	0.359	0.107	100	41
100	8.018	5	177.81	44.222	41.943	53.664	0.395	0.128	100	42
50	5.024	10	177.54	49.889	81.274	210.64	-0.299	0.163	100	43
100	6.079	10	177.61	60.126	81.167	144.99	-0.345	0.196	100	44

Table 16: Messplan galvanische Kopplung, Flachband: normal, Ader: benachbart

Bei allen 4 Messungen war das Oszilloskop folgendermassen eingestellt (Tabelle 16: für U_I : $50 \frac{\text{mV}}{\text{div}}$ und für U_{II} : $20 \frac{\text{mV}}{\text{div}}$.

2.5 Messergebnisse kapazitive Kopplung auf PCB-Print

Es ist die Verschaltung gemäss Abbildung 7 gewählt. Die jeweiligen Oszilloskopbilder sind im Anhang ersichtlich. Die HF-Signal-Unterdrückungsfunktion am DSO wird genutzt sowie die Rauschunterdrückungsfunktion für U_I .

- f Frequenz im Mittel
- *l* Länge der Kopplungsstrecke
- d Leiterbahnenabstand

 $U_{I,pp}$ Spitze-Spitze-Störspannung im Mittel

- $U_{II,pp}$ Spitze-Spitze-Störspannung im Mittel
- $\Delta \phi$ Phasenverschiebung im Mittel
- Stdv. Standardabweichung der jeweiligen Messgrösse

f	Stdv.	1	d	$U_{I,pp}$	Stdv.	$U_{II,pp}$	Stdv.	$\Delta \phi$	Stdv.	Oszi
in MHz	in kHz	in mm	in mm	in V	in mV	in mV	in uV	in °	in $^{\circ}$	Bild
10	16.957	100	0.2	10.149	58.536	87.556	509.30	59.310	0.944	54

Table 17: Messplan kapazitive Kopplung auf PCB-Print, Abschlussoption B (Leerlauf) gemäss Abbildung 7, Schirmung: keine, Zählwert: 500

Wobei hier (Tabelle 17) das Ozilloskop hier folgendermassen eingestellt war: für U_I : $2\frac{V}{div}$ und für U_{II} : $20\frac{mV}{div}$.

f	Stdv.	1	d	$U_{I,pp}$	Stdv.	$U_{II,pp}$	Stdv.	$\Delta \phi$	Stdv.	Oszi
in MHz	in kHz	in mm	in mm	in V	in mV	in mV	in uV	in °	in °	Bild
10	16.908	100	0.2	10.152	61.177	93.752	662.85	59.094	0.925	45
15	44.917	100	0.2	10.521	40.628	128.99	161.29	48.498	1.158	46
7	14.710	100	0.2	10.103	18.141	66.795	188.38	68.054	0.874	47
5	6.036	100	0.2	10.098	15.320	48.161	274.03	73.162	1.044	48
1.5	1.821	100	0.2	10.099	11.761	15.202	129.41	80.560	1.256	49
10	19.122	100	0.5	10.211	68.259	44.045	248.59	57.710	1.327	50
10	21.816	50	0.5	10.224	64.668	23.499	153.51	57.880	1.491	51
10	19.743	100	1	10.261	56.832	20.002	144.07	57.310	1.505	52

Table 18: Messplan kapazitive Kopplung auf PCB-Print, Abschlussoption A (mit Abschlusswiderstand von 50Ω) gemäss Abbildung 7, Schirmung: keine, Zählwert: 500

Wobei das Oszilloskop folgendermassen eingestellt war:

Messung (f, l, d)	Einstellung für	Einstellung für
in (MHz, mm,mm)	U_I Messung	U_{II} Messung
$\{(10, 100, 0.2), (15, 100, 0.2), (7, 100, 0.2), (5, 100, 0.2)\}$	$2\frac{V}{div}$	$20\frac{\mathrm{mV}}{\mathrm{div}}$
$\{(10, 50, 0.5), (10, 100, 1)\}$	$2\frac{\nabla}{\text{div}}$	$5\frac{mV}{div}$
$\{(1.5, 100, 0.2)\}$	$2\frac{V}{div}$	$10\frac{\mathrm{mV}}{\mathrm{div}}$

Table 19: Oszilloskopeinstellungen zur Messtabelle 18

f	Stdv.	1	d	$U_{I,pp}$	Stdv.	$U_{II,pp}$	Stdv.	$\Delta \phi$	Stdv.	Oszi
in MHz	in kHz	in mm	in mm	in V	in mV	in mV	in uV	in °	in °	Bild
10	20.004	100	1	10.166	66.825	7.156	136.48	54.862	2.919	53

Table 20: Messplan kapazitive Kopplung auf PCB-Print, Abschlussoption A (mit Abschlusswiderstand von 50Ω) gemäss Abbildung 7, Schirmung: mit Erdung, Zählwert: 500

Wobei hier (Tabelle (20) das Ozilloskop hier folgendermassen eingestellt war: für U_I : $2\frac{V}{div}$ und für U_{II} : $5\frac{mV}{div}$.

f	Stdv.	1	d	$U_{I,pp}$	Stdv.	$U_{II,pp}$	Stdv.	$\Delta \phi$	Stdv.	Oszi
in MHz	in Hz	in mm	in mm	in V	in mV	in mV	in uV	in °	in $^{\circ}$	Bild
10	17.251	100	0.2	10.150	58.539	100.38	485.87	58.514	1.175	55

Table 21: Messplan kapazitive Kopplung auf PCB-Print, Kurzschluss gemäss Abbildung 7, Schirmung: keine, Zählwert: 500

Wobei hier (Tabelle 21) das Ozilloskop hier folgendermassen eingestellt war: für U_I : $2\frac{V}{div}$ und für U_{II} : $20\frac{mV}{div}$.

2.6 Messergebnisse Einfluss der Signallaufzeiten und Messabschlüsse

Der Versuchsaufbau folgt nach dem in Abbildung 8 ersichtlichen Ersatzschaltbild. Der Funktionsgenerator erzeugt hier ein Rechtecksignal mit einer Frequenz von 100 kHz und einem Duty-Cycle von 20%. Es werden mehrere Koaxialkabel verwendet, wobei jedes Kabel ein Impedanz von 50 Ω hat. Speziell hier: Der Signalgenerator generiert in diesem Abschnitt eine Rechteckfunktion mit $U_{pp} = 10$ V.

Die Werte des Zeitverzugs in der Tabelle 22 werden graphisch ausgelesen (siehe vermerkte Oszi.-Bilder in der Tabelle, welche im Anhang ersichtlich sind). Weil im Video das Frequenzgenerator-Referenzsignal nicht aufgezeichnet wurde und somit der Zeitverzug nicht berechnet werden kann, nehmen wir an, dass der Zeitverzug die Einschwingzeit darstellt, also die für die Einschwingung eines Signal benötigte Zeit. Theoretisch wird er ab dem Zeitpunkt als beendet angesehen, wenn sich die Signalgrösse nur noch um $\pm 5\%$ des Endwertes des Sollsignals unterscheidet.

Mit der gegebenen Kabellänge von 5m, Impedanz des Oszilloskops (DSO) und der graphischen Auswertung des Zeitverzugs lässt sich die Ausbreitungsgeschwindigkeit für die ersten sechs Zeilen in der Tabelle 22 unten berechnen.

Für die unterste Zeile soll die Kabellänge ausgerechnet werden, nachdem ein weiteres Koaxialkabel angeschlossen wurde. Hierbei wird angenommen, dass sich die Ausbreitungsgeschwindigkeit bei gleichbleibender Impedanz des Oszilloskops nicht verändert. Der Zeitverzug kann mithilfe der Oszilloskop-Bilder (siehe Tabelle 22 und somit im Anhang) graphisch ausgelesen werden. Mit dem Wissen der Grössen von Zeitverzug und Ausbreitungsgeschwindigkeit lässt sich auf die Gesamtkabellänge schliessen (siehe letzten drei Zeilen). Es wird angenommen, dass die Kabelverbindungs- und Abschlussstücke ideal sind und keinen Einfluss auf die Ausbreitungsgeschwindigkeit haben.

Abschluss \in \cdot	{ Leerlauf,	Abschlusswiderstand $R = 50\Omega$, Kurzschluss }	

Abschluss	Kabellänge	Impedanz DSO	Zeitverzug	Ausbreitungsgesch-	Oszi
	in m	in Ω	in ns	windigkeit in m/ns	Bild
Leerlauf	5	1 M	276.923	0.018056	56
$R = 50\Omega$	5	1 M	103.846	0.048148	57
Kurzschluss	5	1 M	438.461	0.011404	58
Leerlauf	5	50	553.846	0.009028	59
$R = 50\Omega$	5	50	161.539	0.030952	60
Kurzschluss	5	50	623.077	0.008025	61
Leerlauf	5.139	1 M	284.615	0.018056	62
$R = 50\Omega$	6.481	1 M	134.616	0.048148	63
Kurzschluss	9.567	1 M	838.923	0.011404	64

Table 22: Messplan zur Analyse der Signallaufzeiten und Messabschlüssen

3 Messunsicherheiten

3.1 Messunsicherheiten Spannungsmessungen

Wie in der Einführung erwähnt (genauer Kapitel 1.4), gilt es noch zu bestimmen, ob eine der beiden dort beschriebenen Unsicherheiten bei Spannungsmessungen vernachlässigbar sei. Die Standartabweichung der gemittelten Spannungsmessungen überwiegt in keinem Fall die maximale Ungenauigkeit von $\pm 2\%$ des Oszilloskopes. Folglich lässt sich u_2 , wie es in Gleichung 22 beschrieben ist, nicht vernachlässigen. Auch der umgekehrte Fall ist im Allgemeinen nicht gültig. Es exisitieren durchaus vereinzelte Messungen, bei denen die Standartabweichung vernachlässigbar ist. Da wir diese im allgemeinen Fall aber nicht vernachlässigen können, verwenden wir für sämtliche Spannungsmessungen die Kombinierte Messunsicherheit, diese ist beschrieben in Gleichung 23.

3.2 Messunsicherheiten Phasenverschiebungsmessung

Die Messunsicherheit der Phasenverschiebung ist, wie in Kapitel 1.4 beschrieben, lediglich die Standardabweichung aus der Mittelung mehrerer Messungen.

Für die weiteren Annahmen verweisen wir dazu auf das Unterkaptiel Messunsicherheiten 1.4 der Einführung 1 und deren Ergänzungen und Korrekturen im Unterkapitel Ergänzende Einführung 1.5.

3.3 Messunsicherheiten Signallaufzeiten

Bei der Messung der Signallaufzeiten, wird angenommen, dass die Verbindungsstücke der Kabel keinen Einfluss auf die Signallaufzeiten haben. Da die Verbindungselemente viel kürzer sind als das Kabel, scheint diese Annahme sinnvoll. Die Singallaufzeiten, bzw. deren Zeitverzögerung wird mittels graphischer Auswertung ermittelt vgl. Kaptiel 4.5. Die mit Abstand grösste Unsicherheit resultiert aus der Bestimmung, von wo bis wo auf der horizontalen Achse überhaupt gemessen werden soll. Aus dieser Unbestimmtheit schätzen wir einen Fehler von $\pm\%10$ bei Messungen der Zeitdifferenz auf der horizontalen Achse der Oszilloskopbilder.

4 Ergebnis

	f	R	U_I	U_{II}	Phasenverschiebung $\Delta \phi$	$M_{I/II}$
in kH	z iı	n kΩ	in mV	in mV	zwischen $U_I \& U_{II}$ in °	in nH
2	0	5	186 ± 4	3.6 ± 0.1	-109.7 ± 0.8	6.08 ± 0.23
4	0	5	205 ± 4	7.16 ± 0.19	-128.6 ± 0.7	5.67 ± 0.21
6	0	5	228 ± 4	10.78 ± 0.19	-146.3 ± 0.6	5.25 ± 0.15
8	0	5	255 ± 4	14.51 ± 0.19	-159.70 ± 0.33	4.84 ± 0.12
10	0	5	295 ± 5	16.95 ± 0.19	-170.8 ± 0.1	3.92 ± 0.09

4.1 Induktive Kopplung

Table 23: Induktive Kopplung, Flachband: normal, Adern: benachbart

f	R	Setting	U_I	U_{II}	$\Delta \phi$	$M_{I/II}$
in kHz	in $k\Omega$		in mV	in mV	in °	in nH
100	10	Flachband: normal	294.1 ± 2.4	14.96 ± 0.08	-201.55 ± 0.46	3.418 ± 0.038
		Adern: benachbart				
100	10	Flachband: normal	339 ± 4	43.32 ± 0.19	-186.7 ± 0.3	1.04 ± 0.18
		Adern: g. Abstand				
100	10	Flachband: verdrillt	291 ± 5	5.21 ± 0.02	99 ± 1	1.121 ± 0.021
		Adern: benachbart				

Table 24: U_I , U_{II} und $\Delta \phi$ in Abhängigkeit der Einstellungen des Flachbands und der Adern (banchbart oder g. Abstand: grösserer Abstand) bei R = 10k Ω

Ersichtlich ist, dass eine höhere Frequenz von I_I grössere Amplituden der Störspannungen zur Folge hat. Ebenso wird mit einer höheren Frequenz die Phasenverschiebung der beiden Spannungen um einiges grösser. Beide Effekte sind in Tabelle 23 ersichtlich.

In Abbildung 11 ist ersichtlich, dass U_{II} mit $R = 5k\Omega$ mit steigender Frequenz ungefähr linear ansteigt. Leider wird im Versuchsvideo das Verhalten der Störspannung bei verschiedenen Frequenzen für $R = 10k\Omega$ nicht untersucht. Wir erwarten aber ein ähnliches Verhalten.

Die Gegeninduktivität $M_{I/II}$ wird mit Formel 27 berechnet. Dabei ist ΔR das Ribonkabel (mit 28 AWG), was wir mithilfe des Datenblattes zu 0.00948 Ω errechnen. Wir erwarten somit eine Frequenzabhängigkeit. In Abbildung 12 plotten wir die Gegeninduktivität gegen die Frequenz der Spannung $U_{I}(\omega)$. Daraus kann man erkennen, dass mit steigender Frequenz die Gegeninduktivität $M_{I/II}$ bis zu der zweitletzten Messung (d.h. ohne die Messung für f = 100kHz) linear abfällt.

Wie in Tabelle 24 ersichtlich ist, nimmt die Störspannung U_{II} und die Phasenverschiebung $\Delta \phi$ zu, wenn der Abstand zwischen den Adern vergrössert oder das Flachband verdrillt wird. Umgekehrt gilt, dass die Gegeniduktivität abnimmt, wenn der Abstand der Adern vergrössert oder das Flachband verdrillt wird bei gleich bleibender Frequenz von 100 kHz und einem Widerstand von 10 k Ω .

Figure 11: Induktive Kopplung: U_{II} mit Widerständen $R \in \{5, 10\}$ k Ω nach der Frequenz graphisch dargestellt. Flachband und Adern benachbart

Figure 12: Induktive Kopplung: $M_{I/II}$ mit Widerständen $R \in \{5, 10\}$ k Ω nach der Frequenz graphisch dargestellt. Flachband und Adern benachbart

4.2 Kapazitive Kopplung

f	R	U_I	U_{II}	$\Delta \phi$	$C_{I/II}$
in kHz	in $k\Omega$	in V	in mV	in $^{\circ}$	in pF
20	5	20.3 ± 0.5	56.4 ± 1.1	84.7 ± 0.9	8.8 ± 3.9
40	5	20.2 ± 0.5	109.30 ± 0.31	81.2 ± 0.7	8.6 ± 2.0
60	5	20.2 ± 0.5	167.1 ± 1.3	78.8 ± 0.6	8.8 ± 1.3
80	5	20.2 ± 0.5	218.6 ± 1.6	75.97 ± 0.42	8.59 ± 0.98
100	5	20.2 ± 0.5	262.4 ± 1.8	73.31 ± 0.43	8.27 ± 0.78
20	10	20.3 ± 0.5	111.8 ± 1.6	81.5 ± 1.1	8.8 ± 2.0
40	10	20.2 ± 0.5	217.3 ± 1.6	76.13 ± 0.47	8.57 ± 0.98
60	10	20.3 ± 0.5	308.3 ± 1.2	70.50 ± 0.27	8.06 ± 0.65
80	10	20.2 ± 0.5	399.5 ± 1.9	66.07 ± 0.26	7.87 ± 0.49
100	10	20.2 ± 0.5	472.7 ± 1.5	60.86 ± 0.19	7.45 ± 0.40

Table 25: kapazitive Kopplung, Normales Flachband und Ader 4 im Leerlauf.

f	R	Setting	U_I	U_{II}	$\Delta \phi$	$C_{I/II}$
in kHz	in $k\Omega$		in V	in mV	in °	in nF
20	10	Flachband: normal	20.3 ± 0.5	26.0 ± 0.7	80.8 ± 1.8	2.0 ± 2.0
60	10	Ader 4 geerdet	20.2 ± 0.5	74.3 ± 1.3	72.0 ± 0.9	2.0 ± 0.7
100	10		20.2 ± 0.5	112 ± 2	61.8 ± 0.5	1.77 ± 0.40
20	10	Flachband: normal	20.3 ± 0.5	49.0 ± 1.6	81.7 ± 2.2	3.8 ± 2.0
100	10	Adern: grösserer Abstand	20.1 ± 0.5	212.2 ± 2.5	61.7 ± 0.5	3.36 ± 0.40
100	10	Flachband: verdrillt	20.2 ± 0.5	506.4 ± 3.6	61.53 ± 0.26	7.98 ± 0.40
		Adern: benachbart				

Table 26: U_I , U_{II} und $\Delta \phi$ in Abhängigkeit der Einstellungen des Flachbands und der Adern bei $R = 10 \mathrm{k}\Omega$

Die Erdung der Ader 4 wirkt sich wie eine Abschirmung auf das System II aus mit einer frequenzunabhängigen Abschwächung von der Störspannung U_{II} um -77%. Eine grösserer Abstand wirkt sich ebenfalls stark dämpfend (-55%) aus. Im Gegenzug wirkt sich ein verdrilltes Kabel kaum (+7%) auf die Spannung aus.

Des weiteren ist bei keinem dieser Versuche eine signifikante Veränderung der Phasenverschiebung festzustellen.

Figure 13: kapazitive Kopplung: U_{II} mit Widerständen $R \in \{5,10\} \mathrm{k}\Omega$ nach der Frequenz geplottet

In Abbildung 13 sieht man, dass U_{II} für beide Widerstände $R = 5k\Omega$ und $R = 10k\Omega$ sich linear zur steigenden Frequenz hält. Wobei auffällt, dass U_{II} steiler linear ansteigt für den grösseren Widerstand $R = 10k\Omega$, als für den kleineren Widerstand.

Figure 14: kapazitive Kopplung: $C_{I/II}$ mit Widerständen $R \in \{5, 10\}$ k Ω nach der Frequenz geplottet

Die Abbildung 14 und 25 zeigt, dass die induktive Kopplung $C_{I/II}$ abnimmt bei zunehmender Frequenz. Hierbei nimmt die induktive Kopplung weniger schnell ab für kleinere Widerstände bei zunehmender Frequenz.

4.3 Galvanische Kopplung

f	R	U_I	U_{II}	$\Delta \phi$
in Hz	in k Ω	in mV	in mV	in $^{\circ}$
50	5	177.8 ± 0.5	41.86 ± 0.23	0.36 ± 0.11
100	5	177.8 ± 0.5	41.94 ± 0.23	0.40 ± 0.13
50	10	177.5 ± 0.5	81.27 ± 0.32	-0.30 ± 0.17
100	10	177.6 ± 0.5	81.16 ± 0.28	-0.35 ± 0.20

Table 27: Galvanische Kopplung, Normales Flachband und grösserer Abstand zwischen Adern.

Wie der Tabelle 27 ersichtlich ist, verändert sich U_{II} bei Änderung der Frequenz nicht massgeblich. Die Veränderung ist sogar so klein, dass sich die beiden Werte der jeweiligen Widerstandseinstellungen jeweils innerhalb ihrer gegenseitigen Toleranzintervalle befindet. Die Phasenverschiebung $\Delta \phi$ bleibt im Betrag ebenfalls beinahe unverändert bei veränderter Frequenz und bei verändertem Widerstand.

Der Aderwiderstand ΔR kann mittels den gegeben Daten aus Kapitel 2 (Aderwiderstand: 237 Ω/km , mit geschätzter Länge von $40cm \pm 1cm$) berechnet werden und ergibt (0.00948 ± 0.00024) Ω .

4.4 Kapazitive Kopplung auf PCB-Print

f	1	d	U_I	U_{II}	$\Delta \phi$	$C_{I/II}$
in MHz	in mm	in mm	in V	in mV	in $^{\circ}$	in pF
10	100	0.2	10.15 ± 0.07	87.6 ± 0.6	59 ± 1	2.747 ± 0.027

Table 28: kapazitive Kopplung auf PCB-Print, Abschlussoption B (Leerlauf), Schirmung keine.

f	1	d	U_I	U_{II}	$\Delta \phi$	$C_{I/II}$
in MHz	in mm	in mm	in V	in mV	in °	in pF
10	100	0.2	10.15 ± 0.07	93.8 ± 0.8	59 ± 1	2.942 ± 0.033
15	100	0.2	10.52 ± 0.05	128.99 ± 0.29	48.5 ± 1.2	2.602 ± 0.014
7	100	0.2	10.10 ± 0.03	66.8 ± 0.3	68.5 ± 0.9	3.008 ± 0.017
5	100	0.2	10.52 ± 0.03	48.16 ± 0.36	73 ± 1	2.914 ± 0.024
1.5	100	0.2	10.10 ± 0.03	15.20 ± 0.14	80.6 ± 1.3	3.194 ± 0.031
10	100	0.5	10.21 ± 0.08	44.05 ± 0.26	57.7 ± 1.3	1.373 ± 0.014
10	50	0.5	10.22 ± 0.07	23.50 ± 0.17	57.9 ± 1.5	0.732 ± 0.008
10	100	2	10.26 ± 0.07	20.00 ± 0.19	57.3 ± 1.5	0.620 ± 0.008

Table 29: kapazitive Kopplung auf PCB-Print, Abschluss
option A (50 Ω Widerstand), Schirmung keine.

Aus der Tabelle 29 ist ersichtlich, dass bei steigendem Durchmesser d die Spannung U_{II} sinkt. Weiterhin erkennt man, dass für sinkende Länge l, die Spannung U_{II} ebenfalls sinkt.

f	1	d	U_I	U_{II}	$\Delta \phi$	$C_{I/II}$
in MHz	in mm	in mm	in V	in mV	in °	in fF
10	100	1	10.17 ± 0.026	7.16 ± 0.15	54 ± 3	224.1 ± 4.8

Table 30: kapazitive Kopplung auf PCB-Print, Abschlussoption A (50 Ω Widerstand), Schirmung mit Erdung.

f	1	d	U_I	U_{II}	$\Delta \phi$	$C_{I/II}$
in MHz	in mm	in mm	in V	in mV	in °	in pF
10	100	0.2	10.15 ± 0.07	100.3 ± 0.6	58.5 ± 1.2	3.145 ± 0.029

Table 31: kapazitive Kopplung auf PCB-Print, Abschlussoption C (Kurzschluss), Schirmung keine.

Figure 15: U_{II} und $\Delta \phi$ für gleiche Einstellungen (l=100mm, d=0.2mm, Abschlussoption A (50 Ω Widerstand), keine Schirmung) zu verschiedenen Frequenzen. Die Skala auf der rechten vertikalen Achse bezieht sich auf die Phasenverschiebung (blau), jene auf der linken vertrikalen Achse auf U_{II} (rot).

In der Abbildung 15 ist ersichtlich, dass U_{II} mit steigender Frequenz steigt, wohingegen die Phasenverschiebung $\Delta \phi$ mit steigender Frequenz linear sinkt.

Figure 16: U_{II} für gleiche Einstellungen (l=100mm, d=0.2mm, Frequenz 10 MHz, keine Schirmung) zu verschiedenen Abschlüssen.

In Abbildung 16 ist klar ersichtlich, dass die Störspannung steigt, wenn der Abschluss geschlossen wird. Folglich ist die Störspannung vom Leerlauf am grössten, gefolgt von der Strörspannung mit dem 50Ω Widerstand und schliesslich jene beim Leerlauf.

Abschluss	Kabellänge	Impedanz DSO	Zeitverzug	Ausbreitungsgesch-	Oszi
	in m	in Ω	in ns	windigkeit in m/ns	Bild
Leerlauf	5	1 M	276 ± 28	0.0180 ± 0.0019	56
$R = 50\Omega$	5	1 M	103 ± 11	0.0481 ± 0.0049	57
Kurzschluss	5	1 M	438 ± 44	0.0114 ± 0.0012	58
Leerlauf	5	50	560 ± 60	0.0090 ± 0.0009	59
$R = 50\Omega$	5	50	161 ± 17	0.0309 ± 0.0031	60
Kurzschluss	5	50	620 ± 70	0.0080 ± 0.0009	61
Leerlauf	5.1 ± 0.6	1 M	284 ± 29	0.0180 ± 0.0019	62
$R = 50\Omega$	6.4 ± 0.7	1 M	134 ± 14	0.0481 ± 0.0049	63
Kurzschluss	10 ± 1	1 M	840 ± 90	0.0114 ± 0.0012	64

4.5 Einfluss der Signallaufzeiten und Messabschlüsse

Table 32: Signallaufzeiten und Ausbreitungsgeschwindigkeit (DSO: digitales Oszilloskop)

Mit dem beschriebenen Vorgehen in Kapitel 2.6 lassen sich für die untersten drei Zeilen in Tabelle 32 die Gesamtkabellänge bestimmen. Diese variiert allerdings zwischen 5.1m und 10m. D.h. die Länge des zusätzlich angeschlossenen Kabels variiert zwischen 0.1m und 5m.

5 Diskussion

5.1 Ergebnisse

5.1.1 Induktive Kopplung

Aus den Ergebnissen aus Kapitel 4.1 ist ersichtlich, dass die Störspannung U_{II} mit $R = 5k\Omega$ mit steigender Frequenz linear ansteigt. Dies bestätigt die Gleichung 8 aus der Theorie. Leider wird im Versuchsvideo das Verhalten der Störspannung bei verschiedenen Frequenzen für $R = 10k\Omega$ nicht untersucht. Allerdings kann für 100 kHz die Störspannung U_{II} für verschiedene Widerstandswerte von $5k\Omega$ und $10k\Omega$ untersucht werden. Dabei ist in Abbildung 11 zu erkennen, dass die Störspannung von dem Widerstandswert beeinflusst wird und kleiner wird mit zunehmendem Widerstandswert.

Die Phasenverschiebung gemäss den Ergebnissen aus Kapitel 4.1 zwischen den beiden Störspannungen nimmt mit zunehmender Frequenz immer mehr ab. D.h. mit zunehmender Frequenz eilt die Spannung U_{II} der Spannung immer mehr U_I vor. Mit dem ohmschen Gesetz gilt dasselbe auch für I_{II} . Die Phasenlage für I_{II} ist negativ und wie in der Theorie erwartet und wird mit der Gleichung 6 mit $\frac{1}{i}$ bestätigt.

Die Gegeninduktivität $M_{I/II}$ sinkt mit steigender Frequenz (siehe Ergebnisse unter Kapitel 4.1). Dies lässt sich aus der Theorie mit Gleichung 7 und 27 bestätigen, dass die Gegeninduktivität umgekehrt proportional zur Frequenz ist.

5.1.2 Kapazitive Kopplung

In Kapitel 4.4 ist ersichtlich, dass die Störspannung U_{II} linear mit der Frequenz ansteigt. Sie steigt stärker linear an, wenn der Widerstandswert R ebenfalls höher ist. Die Messdaten verhalten sich so, wie die Theorie mit Gleichung 19 es uns erwarten lässt.

Weiterhin erkennt man, dass die Phasenverschiebung in beiden Fällen (d.h. mit beiden Widerständen) mit steigender Frequenz abnimmt. Die Phasenverschiebung impliziert, dass die Spannung U_I der Spannung U_{II} stets vorauseilt und somit eilt auch I_I dem Störstrom I_{II} voraus.

Die Streukapazität $C_{I/II}$ zeigt eine schwache Abhängigkeit von der Frequenz. Für den Widerstand $R = 5k\Omega$ sinkt dessen Wert leicht (für steigende Frequenz), allerdings in Relation zu den Toleranzangaben, könnten die Werte genau so konstant bleiben. Für den Widerstand $R = 10k\Omega$ steigt der Wert der Kapazität für steigende Frequenz sogar. Formel 10 impliziert, dass die Kapazität umgekehrt proportional zur Frequenz ist (im Falle dass man die Prameter U_I und U_{II} festhält). Da sich die Störspannung U_{II} proportional (mit einem Vorfaktor) zu der Frequenz verändert (wie auch Gleichung 10 bestätigt), überwiegt dieser Teil der Gleichung offenbar bei kleineren Widerständen und bei grösseren Widerständen überwiegt die Frequenzänderung.

Die berechneten Streukapazitäten für den Fall der geerdeten Ader 4 weisen eine sehr hohe Ungenauigkeit auf. Dennoch erkennt man, dass sich die Kapazität durch die Erdung in Relation zur Ader 4 im Leerlauf stark verringert hat. Im Falle eines grösseren Aderabstandes verringert sich die Streukapazität ebenfalls. Das Verdrillen des Flachbands hat eine leicht höhere Kapazität zur Folge, natürlich ist durch das Verdrillen die Länge der einzelnen Drähte nicht mehr gleich lang und der Abstand nicht konstant, was die Geometrie der Anordnung leicht verändert.

5.1.3 Galvanische Kopplung

Wie in Kapitel 4.3 ersichtlich, verändert sich die Spannung U_{II} nicht bei Änderung der Frequenz. Mit dem ohmschen Gesetz, mit der Gleichung 17 und weil die Ströme frequenzunabhängig sind, lässt sich diese Beobachtung einer frequenzunabhängigen galvanischen Kopplung erklären. Gemäss der Theorie und Formel 18 sollte sich die Störspannung U_{II} nicht ändern bei verändertem Widerstand R, weil R viel grösser ist als ΔR und somit vernachlässigt werden kann. Allerdings unterscheiden sich die Werte für U_{II} in Tabelle 27. Folglich ist die Annahme, dass R vernachlässigt werden kann (weil R viel grösser als ΔR ist) in der Realität nicht gerechtfertigt. Oder aber die Nichtidealitäten der Widerstände sind viel grösser als erwartet, sodass eine Veränderung von R durchaus eine Rolle in der Realität spielt.

Die Phasendifferenz zwischen den beiden Spannungen U_I und U_{II} ist wie erwartet sehr klein (erzeugt durch parasitäre induktive und kapazitive Kopplungen), frequenzunabhängig und im Betrag unabhängig vom Widerstand.

5.1.4 Kapazitive Kopplung auf PCB-Prints

Die Kapazität $C_{I/II}$ ist wie erwartet von der Geometrie des Versuchsaufbaus und Leiterplatten abhängig. Dabei verhält sie sich proportional zum Verhältnis l/d der Länge l der Koppelstrecke und Leiterbahnenabstand d.

Wie in Tabelle 29 gut ersichtlich ist, verdoppelt sich die Streukapazität $C_{I/II}|_{l=50\text{mm}} = 0.732\text{pF}$ auf $C_{I/II}|_{l=100\text{mm}} = 1.373\text{pF}$ bei einer Verdoppelung der Länge l von 50 auf 100 mm bei gleichbleibendem Abstand d von 0.5mm.

Dasselbe sieht man bei gleicher Länge l = 100mm und unterschiedlichem Abstand d = 0.2mm versus 0.5mm. Dabei ist $C_{I/II}|_{d=0.2$ mm = 2.942pF im Vergleich zu $C_{I/II}|_{d=0.5$ mm = 1.373pF.

Diese Relation ist allerdings nur für kleine Abstände d erkennbar und mit d > 0.5mm nicht mehr linear. Unsere Vermutung hier ist, dass unsere Näherung nur für kleine Abstände gültig ist und sich sonst weitere Störungen bemerkbar machen.

Die Phasenlage des Störstromes I_{II} ist kapazitiv, positiv und wird durch einen Abschlusswiderstand verringert, da die ganze Schaltung dadurch "ohmscher" wird. Wir haben in der Einleitung eine eher geringe Phasenverschiebung erwartet bedingt durch den grossen Widerstand im Vergleich zu der vermutet kleinen Streukapazität $C_{I/II}$. Gegenübergestellt zur Realität ist zwar ersichtlich, dass ein ohmscher Einfluss auf die Phase existiert, jedoch fällt dieser deutlich kleiner aus als erwartet.

Unsere Theorie hier ist, dass zusätzliche galvanische und induktive Koppelungen entstehen, was weitere Störeinflüsse darstellt. Die Phasenlage ist generell unabhängig von dem Leiterbahnabstand l und dem Plattenabstand d. Daraus ergibt sich die gewonnene Phasenverschiebung von ~60°.

Der Vergleich der Störspannungen zu verschiedenen Abschlüssen könnte aussagekräftiger sein, wenn die Störspannung jeweils zu verschiedenen Frequenzen gemessen wurde. Wie in Abbildung 16 ersichtlich ist, nimmt die Störspannung ab, desto grösser der Widerstand des Abschlusses ist. Sprich die Störspannungn für den Leerlauf ist wesentlich am grössten, gefolgt von jener mit dem 50 Ω Widerstand und schliesslich jene des Leerlaufs.

5.1.5 Einfluss der Signallaufzeiten und Messabschlüssen

Bei einer Leitung mit offenem Ende (Leerlauf) sieht man mit Hilfe der Oszilloskopbilder 56, 59 und 62 im Anhang, dass sich die Amplitude des Signals folgendermassen verändert. Wenn die Impedanz des Oszilloskop von $1M\Omega$ auf 50Ω eingestellt wird, dann halbiert sich die gemessene Amplitude des Signals. Bei allen Bildern ist gut zu erkennen, dass sich die Amplituden des einlaufenden und reflektierten Signals konstruktiv überlagern.

Bei einer Leitung mit kurzgeschlossenem Ende sieht man mit Hilfe der Oszilloskopbilder 57, 60 und 63 im Anhang, dass sich die Amplitude folgendermassen verändert. Wenn die Impedanz des Oszilloskop von $1M\Omega$ auf 50Ω eingestellt wird, dann verkleinert sich die Amplitude des Signals. Bei allen Bildern ist gut zu erkennen, dass es keine Reflexionen der Amplituden der Signale gibt.

Bei einer Leitung mit 50 Ω Abschlussimpedanz am Ende sieht man mit Hilfe der Oszilloskopbilder 58, 61 und 64 im Anhang, dass sich die Amplitude des Signals folgendermassen verändert. Wenn die Impedanz des Oszilloskop von 1M Ω auf 50 Ω eingestellt wird, dann verkleinert sich die gemessene Amplitude des Signals. Bei allen Bildern ist gut zu erkennen, dass sich die Amplituden des einlaufenden und reflektierten Signals destruktiv überlagern.

Weil im Video das Frequenzgenerator-Referenzsignal nicht aufgezeichnet wurde und somit der Zeitverzug nicht berechnet werden kann, wurde angenommen, dass der Zeitverzug die Einschwingzeit darstellt, also die für die Einschwingung eines Signal benötigte Zeit. Aus dem Kapitel 4.5 ist ersichtlich, dass das zusätzliche angeschlossene Kabel für die beiden Konfigurationen Leerlauf und Abschlusswiderstand von 50Ω nur einen geringen Einfluss hat, d.h. die Zeitverzögerung nimmt nur geringfügig zu. Die Zeitverzögerungsunterschied bei der Kurzschluss-Konfiguration nimmt hingegen deutlich zu. Deshalb ergibt sich für die berechnete Länge des angeschlossenen Kabels eine Spanne von 0.1m bis 5m.

5.2 Messunsicherheiten

Die Messunsicherheiten der Spannungsmessungen berücksichtigt jeweils die maximale Ungenauigkeit von $\pm 2\%$ vom Oszilloskop und die Standardabweichung der Mittelung der Werte (wie in Kapitel 3.1 ausführlicher beschrieben). Natürlich ist eine Berücksichtigung der Standardabweichungen nicht in allen Messungen notwendig, da sie aber dennoch oft notwendig ist, und damit die Messunsicherheitsbetrachtung nachvollziehbar bleibt, haben wir uns entschieden, bei allen Spannungsmessungen beide oben erwähnten Unsicherheitsquellen zu berücksichtigen. Zur Messunsicherheit der Phasenverschiebung wurde nur deren Standardunsicherheit durch Mittelung der Werte berücksichtigt. Dies ist definitiv plausibel, da die Genauigkeit der Oszilloskop auf der horizontalen Achse sehr hoch ist. Die Messunsicherheit der Phasenverschiebung variiert somit ebenfalls recht stark, ist aber eher gering (genauer: stets unter 7% oft ungefähr 1% des Messwertes).

Die Messunsicherheit der Gegeninduktivität der Induktiven Kopplung bleibt trotz Gaussscher Fehlerfortpflanzung relativ gering, so beträgt diese lediglich zwischen 2% und 4% des berechneten Wertes. Bei der berechneten Streukapazität der kapazitiven Kopplung fällt insbesondere die Ungenauigkeit des Fehlers der Streukapazität bei 20 kHz auf. Die Unsicherheiten bei den anderen Frequenzmessungen sind in Relation zum Messwert weniger gross, dennoch aber grösser als wenn man die relative Unsicherheit bei den Berechnungen der Gegeninduktivität betrachtet. Der berechnete Aderwiderstand der Galvanischen Kopplung zeigt wiederum eine sehr kleine Unsicherheit auf. Bei der Kapazitiven Kopplung auf dem PCB-Print sind die Unsicherheiten der Streukapazitäten in Relation zum Messwert sehr gering.

Die Messunsicherheiten bei den Signallaufzeiten und Messabschlüsse sind verhältnismässig recht hoch, was daher kommt, dass diese Ergebnisse graphisch ausgelesen wurden.

6 Anhang

Figure 17: Induktive Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 5mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 18: Induktive Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 1mV/div und 20µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 19: Induktive Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 2mV/div und 10µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 20: Induktive Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 2mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 21: Induktive Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 2mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 22: Induktive Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 5mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 23: Induktive Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 10mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 24: Induktive Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 1mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 25: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 10mV/div und 10µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 26: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 20mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 27: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 50mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 28: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 50mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 29: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 50mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 30: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 20mV/div und 10µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 31: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 50mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 32: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 50mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 33: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 100mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 34: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 100mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 35: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 20mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 36: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 20mV/div und 5µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 37: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 5mV/div und 10µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 38: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 10mV/div und 10µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 39: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 50mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 40: Kapazitive Einkopplung, gelb: U_I mit 5V/div und 0.0s/div, grün: U_{II} mit 100mV/div und 2µs/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 41: Galvanische Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 20mV/div und 5ms/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 50 Ω

Figure 42: Galvanische Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 20mV/div und 2ms/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 50 Ω

Figure 43: Galvanische Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 20mV/div und 5ms/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 50 Ω

Figure 44: Galvanische Einkopplung, gelb: U_I mit 50mV/div und 0.0s/div, grün: U_{II} mit 20mV/div und 2ms/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 50 Ω

Figure 45: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 20mV/div und 20ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 46: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 20mV/div und 20ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 47: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 10mV/div und 50ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 48: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 10mV/div und 50ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 49: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 5mV/div und 200ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 50: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 10mV/div und 50ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 51: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 5mV/div und 50ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 52: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 5mV/div und 50ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 53: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 5mV/div und 50ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 54: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 20mV/div und 20ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 55: Kapazitive Einkopplung auf PCB-Print, gelb: $U_{I,pp}$ mit 2V/div und -2ns/div, grün: $U_{II,pp}$ mit 20mV/div und 20ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω

Figure 56: Abschluss: Leerlauf, Gelb: Sprungspannung mit 5V/div und 150ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω , Kabellänge Koaxialkabel = 5m

Figure 57: Abschluss: Abschlusswiderstand von 50 Ω , Gelb: Sprungspannung mit 2V/div und 150ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω , Kabellänge Koaxialkabel = 5m

Figure 58: Abschluss: Kurzschluss, Gelb: Sprungspannung mit 5V/div und 150ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω , Kabellänge Koaxialkabel = 5m

Figure 59: Abschluss: Leerlauf, Gelb: Sprungspannung mit 2V/div und 150ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 50Ω , Kabellänge Koaxialkabel = 5m

Figure 60: Abschluss: Abschlusswiderstand von 50Ω , Gelb: Sprungspannung mit 1V/div und 150ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 50Ω , Kabellänge Koaxialkabel = 5m

Figure 61: Abschluss: Kurzschluss, Gelb: Sprungspannung mit 2V/div und 150ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 50Ω , Kabellänge Koaxialkabel = 5m

Figure 62: Abschluss: Leerlauf, Gelb: Sprungspannung mit 5V/div und 50ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω , Kabellänge Koaxialkabel > 5m

Figure 63: Abschluss: Abschlusswiderstand von 50Ω , Gelb: Sprungspannung mit 2V/div und 50 ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω , Kabellänge Koaxialkabel > 5m

Figure 64: Abschluss: Kurzschluss, Gelb: Sprungspannung mit 2V/div und 574ns/div, DC-Kopplung, Tastkopf 1:1, DSO-Impedanz: 1 M Ω , Kabellänge Koaxialkabel > 5m

References

- [1] Prof. Dr. Christian M. Franck. Laborpraktikum 5 EVM. 2020.
- [2] Prof. Dr. Christian M. Franckr. Vorlesung Elektromagnetische Verträglichkeit. 2020.