

Overview of Nuclear Cogeneration in High-Temperature Industrial Process Heat Applications

Karl Verfondern

Institute of Energy and Climate Research (IEK-6) Research Center Jülich, Germany

OECD-IAEA Workshop, April 4-5, 2013, Paris

World Energy Situation

- World primary energy demand steadily increasing in each scenario
- Fossil fuels were 81% in 2010 and will remain dominant contributor through 2035

World primary energy demand in 2010 and projection by scenario

Status of Nuclear Energy

- Of global final energy, 17.7% is used for electricity generation, of which 12.9% comes from nuclear energy (= 2756 TWh)
- As of March 2013, total 437 nuclear power plants with 372 GW(e) capacity in operation with 82% being LWR providing 89% of all nuclear electricity
- 68 NPP with 65 GW(e) capacity under construction, of which 48 GW(e) was started after 2006 (of which 85% accounted for by China and India)
- Majority of operating NPP will be shut down within the next two decades
- Primary uranium production in 2010 was 54 000 t, barely enough to even meet the NEA low-case scenario for the next 10-20 years [EWG 2013]

Industrial Heat Demand

Of global final energy consumption, 28% was in industrial sector

Data include feedstock use for petrochemicals, coke ovens and blast furnaces, and exclude petroleum refineries' energy use.

UNIDO 2010

Strong Points of (Nuclear) Combined Heat and Power

Minimize heat losses

Improve energy (fuel) efficiencies

Reduced CO₂ emissions

Enhance energy security

CHP since long applied in many industries

Karl Verfondern, FZJ-IEK-6

Nuclear Non-Electric Energy

- Nuclear electricity generation means that two thirds of the heat produced is wasted.
- Potential for utilization of nuclear heat/steam in four areas:
 - desalination
 - district heating in residential/commercial areas
 - industrial process heat
 - fuel synthesis
- Less than 1% of the nuclear heat used for non-electric applications
- Nuclear heat/steam experience of ~750 reactor operation years from 74 NPP (mainly district heating and desalination)

Experience from

Nuclear Industrial Non-Electric Applications

Country / reactor type	Power (MW(th) / MW(e)net)	Heat delivery (MW(th))	Temp. at interface feed / return (°C)	Distance to industry	Industrial application	Operation period of application
Norway / Halden BWR	20 / -	20		adjacent site	Paper mill	1964 –
Switzerland / Gösgen PWR	2806 / 985	45	220 / 100	1.8 km	Cardboard factory	1979 –
Canada / Bruce CANDU	4 x 848 4 x 860	5350		on-site	D_2O production and others	1981 – 1997
Germany / Stade PWR	1892 / 630	30	190 / 100	1.5 km	Salt refinery	1984 – 2003

Heavy Water from Nuclear Process Heat

- Canada, Bruce NPP, 6232 MW(e)
- BHWP provided with medium-pressure steam from steam supply plant (one of the largest process steam systems with 5350 MW)
- BHWP operated until 1997, max. capacity ~700 t/yr, total D₂O production was ~16 000 t

Required: 35 t of H₂O, 25 GJ of thermal, 700 kWh of electric energy per 1 kg of D₂O

Steam from Nuclear Process Heat

 Norway, Halden NPP since 1964: 30 t/h of process steam to adjacent paper mill

 Switzerland, Gösgen NPP since 1979: 1% of lifesteam diverted to heat a water/steam cycle 70 t/h of process steam
 200°C and 1.2 MPa

since 1996: district heating

to cardboard factory;

since 2007: 2nd water/steam cycle

with 10 t/h to another paper factory

- Reactor with fuel and heavy water
- 2. Steam Transformer
- 3. D₂O Subcooler
- 4. Heavy water circ. pump
- 5. Steam Drum
- Light water circ. pumps
- 7. Steam Generator
- 8. Hot Well
- 9. Light water subcooler
- 10. Feed Water Tank

Gen-IV Nuclear Reactor Systems

Reactor type	Thermal power (MW)	Coolant outlet (°C)
Gas-Cooled Fast Reactor	600	~ 850
Lead-Cooled Fast Reactor	2400	~ 800
Sodium-Cooled Fast	2000-4000	~ 550
Molten Salt Reactor	2250	~ 800
Supercritical Water Reacto	or 900-3800	~ 550
Very High Temperature Re	eactor 250-600	~1000

Requirements for Nuclear Process Heat Plants

- Secure and economic supply of power, heat, steam to guarantee continuous and reliable operation
- Smaller-scale units to match with needs of industries
- 2-6 units, practicable in terms of redundancy, reliability, reserve capacity
- To be easily switched between electricity and process heat production mode
- Intermediate heat exchanger to minimize tritium migration to industrial product
- Sufficient safety distance between nuclear island and industrial application

Recovery of Unconventional (Tertiary) Oil FORSCHUNGSZENTRUM

Flooding with steam @ 200-340°C, 10-15 MPa

(makes more nuclear concepts applicable)

Steam-Assisted Gravity Drainage

one well for steam injection, one for production

Nuclear Production of Synthetic Crude Oil FORSCHUNGSZEN

Crude Oil Refinery

Schad 1988 Reimert 2010

Helium-heated naphtha cracker

LURGI study in 1988:

Integration of process heat from HTR-M is possible in different refinery components with heat demand < 540°C

- separation (e.g., distillation)
 most energy-intensive processes
- conversion (e.g., cracking)
- finishing (e.g., hydrotreating)

Reforming of Natural Gas

Nuclear-simulated steam reforming tested at 10 MW pilot plant scale in Germany and Japan

Capacity: 13.8 t/h or 153,000 Nm³/h corresponding to 550 – 630 MW (HHV)

OECD-IAEA Workshop 2013

Coal Gasification

Nuclear-simulated coal gasification tested at semi-technical scale in German PNP project Feedstock savings up to 35%

Helium

Prototype Plant PNP-500

Methanol from Natural Gas

Conv.: $1000 \text{ m}^3 \text{ natural gas} \Rightarrow 1 \text{ t methanol} + 1.5 \text{ t CO}_2$

Nuclear: 1000 m³ natural gas + 10 MWh_{th} ⇒ 2 t methanol

Liquid Fuels from Biomass and Nuclear

CO₂-neutral

Conv.: 12 t Biomass \Rightarrow 1 t liquid HC (e.g., CH₃OH)

Nuclear: 12 t Biomass + 10 MWh_{th} \Rightarrow 2 t liquid HC (e.g., CH₃OH)

Nuclear Hydrogen from Water-Splitting

S-based Thermochemical Cycles

Hydrogen H_2O H₂ Common Chemical Chemical reactions high temperature reactions reaction H₂SO₄ Reject heat Oxygen Water SO₂ H₂O -Heat H₂SO₄ Electrolysis 850 °C Decomposition Hydrogen H₂SO₄ Hydrogen H₂O Electrolysis Chemical reactions HBr 77 °C

High-Temperature Electrolysis

OECD-IAEA Workshop 2013

Dönitz 1982

Nuclear In

Nuclear H₂ Production with GTHTR300C

Nuclear H₂ Production with H2-MHR

Nuclear-Assisted Steel Production

Direct reduction of iron ore

H₂ to replace natural gas/syngas as reducing agent CO₂ emission reduction are minimal (comsumption of graphite electrode)

Nuclear-Assisted Aluminum Production

Process steps:

- (i) Leaching Al₂O₃ from bauxite with liquid salt @ ~250°C, 10 MPa to produce Na[Al(OH)₄]; upon cooling, crystallization to Al(OH)₃
- (ii) Calcination to Al₂O₃

Air + Steam

(iii) Electrolytic reduction in a smelter to Al

Calcination @ up to 1100°C exceeds current capability of HTGR

→ Process modification to lower temperatures

460 °C Helium Helium 680 °C 850°C Al (OH) 200 ℃ 800°C Al₂O₃ 950 °C CO CO യയ യയ യയ Electrically heated 700°C Helium heated

OECD-IA

Circulating Fluidized Bed (CFB) heat exchanger for fine-grained solid material

Summary and Conclusions

- Significant potential for nuclear energy to penetrate the huge heat market existing
- Potential for utilization of nuclear heat in 4 areas:
 - desalination
 - district heating in residential/commercial areas in cold countries
 - industrial process heat
 - fuel synthesis
- Nuclear reactors to supply energy (apart from power) in form of
 - low-temperature heat (low-quality steam) ← demonstrated in practice
 - high-temperature heat (high-quality steam)
- Gen-IV concepts promise ability to deliver process heat / steam for industrial applications (VHTR as dedicated system)
- HT industrial processes with integrated nuclear heat (like steel or aluminum or fuels production) might not be economic at the moment, but represent promising candidate applications