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2.2 Magic with complex exponentials

We don’t really know what aspects of complex variables you learned about in
high school, so the goal here is to start more or less from scratch. Feedback
will help us to help you, so let us know what you do and don’t understand.
Also, if something is not immediately clear you should work through exam-
ples ... as usual.

The introduction to square roots in school often makes the point that
the square root of a negative number is not defined, since after all when
we square a number we always get something positive. Then at some point
you are told about imaginary numbers, where the basic object is i =

√
−1.

It is not clear, perhaps, whether this is some sort of joke (calling them
“imaginary” probably doesn’t help!). Here we are asking you to take these
things very seriously.

Remember that when you first learned about negative numbers (a long
time ago ... ) there was some mystery about what you do when you add,
multiply, etc.. In the end the answer is that the rules are the same, and you
have to apply them in a consistent way. This is true also for complex or
imaginary numbers.

We begin by recalling that with x and y real numbers, we can form the
complex number z = x+ iy. The object i is the square root of negative one,
i =

√
−1. Then if we have two of these numbers

z1 = x1 + iy1 (2.45)
z2 = x2 + iy2 (2.46)

we can go through all the usual operations of arithmetic:

z1 + z2 ≡ (x1 + iy1) + (x2 + iy2) (2.47)
= (x1 + x2) + i(y1 + y2); (2.48)

z1 − z2 ≡ (x1 + iy1)− (x2 + iy2) (2.49)
= (x1 − x2) + i(y1 − y2); (2.50)

(z1)× (z2) ≡ (x1 + iy1)× (x2 + iy2) (2.51)
= x1x2 + x1(iy2) + iy1x2 + iy1(iy2) (2.52)
= x1x2 + i(x1y2 + x2y1) + (i2)y1y2 (2.53)
= x1x2 + i(x1y2 + x2y1)− y1y2 (2.54)
= x1x2 − y1y2 + i(x1y2 + x2y1), (2.55)

where in the second to last step we use the fact that i2 = −1. Note that
this list leaves out division, which we’ll get back to in a moment.
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One very useful operation that is new for complex numbers is called
“taking the complex conjugate,” or “complex conjugation.” For every com-
plex number z = x + iy, the complex conjugate is defined to be z∗ = x− iy.
Note that in elementary physics we usually use z∗ to denote the complex
conjugate of z; in the math department and in some more sophisticated
physics problems it is conventional to write the complex conjugate of z as
z̄, but of course this is just notation. The crucial fact is that

z × z∗ ≡ (x + iy)× (x− iy) (2.56)
= x2 + x(−iy) + iyx + (i)(−i)y2 (2.57)
= x2 + i(−xy + yx)− (i2)y2 (2.58)
= x2 + y2. (2.59)

Often we write zz∗ = |z|2, just the way we write the length of a vector in
terms of its dot product with itself, !x·!x = |!x|2. This is an important thing
on its own, as we will see, but also it makes division a lot easier, which we
do now.

There is a trick, which is to clear the complex numbers from the denom-
inator any time we divide:

z1

z2
≡ (x1 + iy1)

(x2 + iy2)
(2.60)

=
z1

z2
· z∗2
z∗2

(2.61)

=
z1z∗2
z2z∗2

(2.62)

=
z1z∗2
|z2|2

(2.63)

=
(x1x2 + y1y2) + i(y1x2 − x1y2)

x2
2 + y2

2

(2.64)

Problem 29: You should be able to add, subtract, multiply and divide these pairs of
complex numbers: (a) z1 = 3+4i, z2 = 4+3i. (b) z1 = 3+4i, z2 = 4−3i. (c) z1 = 7−9i,
z2 = 27 + 12i. And you should be able to make up your own examples!
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It is useful to think about a complex number as being a vector in a two
dimensional space, as in Fig. 2.3. In this view, the x axis is the real part
and the y axis is the imaginary part, as is hinted when we write z = x + iy.
The length of the vector is

|z| ≡
√

x2 + y2 =
√

|z|2 =
√

zz∗, (2.65)

and the angle that this makes with the x axis is given by

θ = tan−1
(y

x

)
. (2.66)

In this notation,

z ≡ x + iy (2.67)

=
√

x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
(2.68)

= |z|(cos θ + i sin θ). (2.69)

Now there is a very pretty thing, which is that if we multiply two complex
numbers, the magnitudes get multiplied and the angles just add:

z1 × z2 ≡ |z1|(cos θ1 + i sin θ1)× |z1|(cos θ1 + i sin θ1) (2.70)
= (|z1||z2|)[(cos θ1 cos θ2 − sin θ1 sin θ2)

+i(sin θ1 cos θ2 + sin θ1 cos θ1)] (2.71)
= (|z1||z2|)[cos(θ1 + θ2) + i sin(θ1 + θ2)], (2.72)

where in the last step we use the trigonometric identities

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 (2.73)
sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ1 cos θ1. (2.74)

Figure 2.3: Thinking of a com-
plex number z = x+iy as a vec-
tor in the x−y plane. This is of-
ten called the “complex plane.”
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By the same reasoning, one finds

z1

z2
=

|z1|
|z2|

[cos(θ1 − θ2) + i sin(θ1 − θ2)]. (2.75)

Problem 30: Derive Eq (2.75). Also, in terms of these θ1 and θ2, what is the
condition for multiplying two complex numbers and getting a real answer?

We now have enough tools to figure out what we mean by the exponential
of a complex number. Specifically, let’s ask what we mean by eiφ. This is a
complex number, but it’s also an exponential and so it has to obey all the
rules for the exponentials. In particular,

eiφ1eiφ2 = ei(φ1+φ2) (2.76)
eiφ1

eiφ2
= ei(φ1−φ2). (2.77)

You see that the variable φ behaves just like the angle θ in the geometrial
representation of complex numbers. Furthermore, if we take the complex
number z = eiφ and multiply by its complex conjugate ...

eiφ ×
[
eiφ

]∗
= eiφ ×

[
e−iφ

]
= ei(φ−φ) = 1. (2.78)

Thus z = eiφ is a complex number with unit magnitude, and the angle in
the complex plane is just φ itself. Thus we see that

eiφ = cos φ + i sinφ, (2.79)

which finally tells us what we mean by the complex exponential. Notice that
something like this formula had to be true because we know that the solution
to the differential equation for the harmonic oscillator can be written either
in terms of sines and cosines or in terms of complex exponentials; since
solutions are unique, these must be ralted to each other.

If you consider the special case of φ = π, then sinφ = 0 and cos φ = −1,
leading to the famous Euler formula

eiπ + 1 = 0. (2.80)
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This is a really beautiful equation, linking the mysterious transcendental
numbers e and π with the imaginary numbers.

Problem 31: Derive the sum and difference angle identities by multiplying and
dividing the complex exponentials. Use the same trick to derive an expression for cos(3θ)
in terms of sin θ and cos θ.

Armed with these tools, let’s get back to our (complex) expression for
the trajectory,

x(t) = A exp(+iωt) + B exp(−iωt). (2.81)

We now know that

exp(±iωt) = cos(ωt) ± i sin(ωt), (2.82)

so at least it’s clear what our expression means.
To really solve the problem we need to match the initial conditions. We

can see that

x(0) = A exp(iω · 0) + B exp(−iω · 0) (2.83)
= A + B, (2.84)

because e0 = 1, as always. Now in principle A and B are complex numbers,

A = ReA + iImA (2.85)
B = ReB + iImB, (2.86)

while of course x(0) is the actual position of an object and thus has to be a
real number. Let’s substitute and see how this works:

x(0) = A + B

= ReA + iImA + ReB + iImB (2.87)
= (ReA + ReB) + i(ImA + ImB). (2.88)

So we can match the reality of the initial condition (never mind its value!)
only if

ImB = −ImA. (2.89)
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Now we need to do the same thing for the initial velocity. By differenti-
ating we see that

v(t) ≡ dx(t)
dt

= A
deiωt

dt
+ B

de−iωt

dt
= A(iω)eiωt + B(−iω)e−iωt, (2.90)

and hence

v(0) = iω(A−B). (2.91)

Substituting once again,

v(0) = iω(A−B)
= iω(ReA + iImA− ReB − iImB) (2.92)
= iω(ReAReB) + (i)(iω)(ImA− ImB) (2.93)
= −ω(ImA− ImB) + iω(ReA− ReB). (2.94)

Notice that the real part of the velocity actually comes from the imaginary
parts of A and B. In order that the imaginary part of the velocity cancel
must have

ReA = ReB. (2.95)

Thus there really is only one independent complex number here, since
we have shown that

A = ReA + iImA (2.96)
B = ReA− iImA. (2.97)

When two complex numbers have this relationship—equal real parts and
opposite imaginary parts—we say that they are complex conjugates, and
the notation for this is B = A∗. The operation ∗ simply replaces i by −i in
a complex number, and clearly (z∗)∗ = z. Hence we can write our solution

x(t) = A exp(+iωt) + B exp(−iωt)
= A exp(+iωt) + A∗ exp(−iωt). (2.98)

But note that exp(−iωt) = [exp(+iωt)]∗, so we can write

x(t) = A exp(+iωt) + A∗[exp(+iωt)]∗ (2.99)
= A exp(+iωt) + [A exp(+iωt)]∗. (2.100)
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Now x(t) is the sum of a complex number and its complex conjugate. But
when we add a complex number to its complex conjugate, we cancel the
imaginary part and double the real part:

z + z∗ = [Re(z) + iIm(z)] + [Re(z)− iIm(z)] (2.101)
= 2Re(z). (2.102)

Thus x(t), according to Eq (2.100) will be real at all times. This is good,
of course (!). Interestingly, we didn’t actually use this condition—all we did
was to be sure that we match the initial conditions, which of course are real.
This is sufficient to insure that trajectories are real forever, which is nice.

To proceed further, we recall that all complex numbers can be written
as

z = Rez + iImz (2.103)
= |z|(cos φ + i sinφ) (2.104)
= |z| exp(iφ), (2.105)

where z is the magnitude of the complex number and φ is its phase,

|z| =
√

[Re(z)]2 + [Im(z)]2 (2.106)

φ = tan−1

[
Im(z)
Re(z)

]
. (2.107)

If we do this rewriting of A,

A = |A| exp(iφA), (2.108)

then the trajectory becomes

x(t) = [|A| exp(iφA) exp(+iωt)] + [|A| exp(iφA) exp(+iωt)]∗ (2.109)
= [|A| exp(+iωt + iφA)] + [|A| exp(+iωt + iφA)]∗. (2.110)

Thus

x(t) = [|A| exp(+iωt + iφA)] + [|A| exp(+iωt + iφA)]∗

= 2Re[|A| exp(+iωt + iφA)] (2.111)
= 2|A|Re[exp(+iωt + iφA)] (2.112)
= 2|A| cos(ωt + φA). (2.113)

So, we are done, except that we have to connect this solution to the initial
conditions.
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We want to find the arbitrary parameters |A| and φA in terms of the
initial position and initial velocity. Let’s just calculate:

x(t = 0) = 2|A| cos(ω(0) + φA) (2.114)
= 2|A| cos φA (2.115)

v(t = 0) =
dx(t)

dt

∣∣∣∣∣
t=0

(2.116)

=
d

dt
[2|A| cos(ωt + φA)]

∣∣∣∣∣
t=0

(2.117)

= −2|A|ω sin(ωt + φA)

∣∣∣∣∣
t=0

(2.118)

v(t = 0) = −2|A|ω sinφA (2.119)
v(t = 0)

ω
= −2|A| sinφA. (2.120)

So we have two equations, Eq’s (2.115) and (2.120), that link our parameters
to the initial conditions. To solve these equations, note that if we sum the
square of the two equations we have

[x(0)]2 +
[
v(0)
ω

]2

= (2|A|)2 cos2 φA + (2|A|)2 sin2 φA (2.121)

= (2|A|)2, (2.122)

so that

2|A| =

√

[x(0)]2 +
[
v(0)
ω

]2

. (2.123)

Similarly, if we take Eq (2.120) and divide by Eq (2.115), we find

v(0)
ωx(0)

= − 2|A| sinφA

2|A| cos φA
(2.124)

= tanφA, (2.125)

and hence

φA = tan−1

[
v(0)

ωx(0)

]
. (2.126)

Thus the amplitude |A| of the oscillation is related to the initial position,
with an extra contribution from the initial velocity, while the phase depends
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Figure 2.4: Position as a func-
tion of time for the harmonic
oscillator, from Eq (2.113).
Note that when the initial ve-
locity is zero the phase φA also
is zero. Positive initial veloc-
ities correspond (in this nota-
tion) to negative phases, and
vice versa.

on the relative magnitudes of the initial velocity and position. This is shown
schematically in Fig 2.4.

Problem 32: Consider the carbon monoxide molecule CO. To a good approximation,
the bond between the atoms acts like a Hooke’s law spring of stiffness κ and equilibrium
length $0. For the purposes of this problem, neglect rotations of the molecule, so that
motion is only in one dimension, parallel to the bond.

(a.) Write the differential equations corresponding to F = ma for the positions xC

and xO of the two atoms. Remember that the two atoms have different masses mC and
mO.

(b.) Look for oscillating solutions of the form

xC(t) = x0
C + A exp(−iωt) (2.127)

xO(t) = x0
O + B exp(−iωt), (2.128)

where the resting positions x0
c and x0

O are chosen to match the equilibrium length of the
bond. Show that solutions of this form exist, and find the natural frequency ω for these
oscillations.
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