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A B S T R A C T

Three-dimensional effects due to rotation which decrease the accuracy of predicting the wind

turbine aerodynamic performance, are correlated with coherent structures near the blade

roots, specifically with the flow separation. This study aims to give an insight into the com-

plex coherent structures and the 3D rotational effects on the flow over spinners of horizontal

axis wind turbines. The flow fields for the identification of the coherent structures and the 3D

rotational effects are obtained by solving the Reynolds-averaged Navier-Stokes equations. The

complex coherent structures, dominated by viscous shear layers are identified in this study

by using various vortex detection methods. The coherent structures near the blade roots of

the baseline wind turbine include helical root vortices, trailing edge vortices, flow separation

with significant radial flows, von Kármán vortex streets, pairs of counter-rotating base vor-

tices, horseshoe vortices, and a low-speed nacelle wake. The correlation between the helical

root vortex and the blade-bound circulation is verified. The dominant sources responsible for

the 3D rotational effect on attached and detached boundary layers are estimated by means of

order of magnitude analysis. The 3D rotational effect on the baseline wind turbine results in

lift augmentation, drag reduction, and significant radial flows in the flow separation region.

The significant radial velocity components in the flow separation region are predictable, and

substantially driven by the centrifugal acceleration. The Coriolis acceleration in the chordwise

direction, induced by these significant radial velocity components in the bottom of the de-

tached boundary layer, is balanced by a pressure gradient in the chordwise direction. This

pressure gradient in the chordwise direction over the rotating blade agree well with the ana-

lytical expression derived in this study. The separation point is determined accurately in this

study by a new criterion based on skin friction coefficients. The limited shift of separation

points on the rotating blade, either towards the trailing edge or leading edge, indicates differ-

ent effects due to rotation on the attached and detached boundary layers.
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K U R Z FA S S U N G

Die dreidimensionalen Rotationseffekte, die die Vorhersagegenauigheit der Leistung von hori-

zontalachsigen Windenergieanlagen senken, hängen mit den kohärenten Strukturen im Naben-

bereich, speziell mit der Ablösung, zusammen. Das Verständnis der komplexen kohärenten

Strukturen und der dreidimensionalen Rotationseffekte auf die Strömung im Nabenbereich

der horizontalachsigen Windenergieanlagen ist die Zielsetzung dieser Arbeit. Die Strömungs-

felder zur Identifikation der kohärenten Strukturen und der 3D Rotationseffekte werden

durch die Berechnungen der Reynolds-gemittelten Navier-Stokes Gleichungen ermittelt. Die

komplexen kohärenten Strukturen, die von der viskosen Scherströmung behaftet sind, wer-

den in dieser Arbeit durch verschiedene Methoden identifiziert. Die kohärenten Strukturen

im Nabenbereich der Referenzanlage beinhalten den spiralförmigen Wurzelwirbel, den Hin-

terkantenwirbel, die Ablösung mit erheblicher radialer Geschwindigkeitskomponente, die

Karman’sche Wirbelstraße, das gegenläufige Fußwirbelpaar, den Hufeisenwirbel und die lang-

same Nachlaufströmung hinter der Gondel. Der Zusammenhang des Ursprungs und der En-

twicklung der spiralförmigen Wurzelwirbels mit der Zirkulation der Tragflügel wird veri-

fiziert. Die dominante Parameter, die für die 3D Rotationseffekte auf die anliegende und

abgelöste Grenzschichten verantwortlich sind, werden durch die Größenordnungsanalyse ab-

geschätzt. Die Rotationseffekte auf die Referenzanlage haben den Anstieg des Auftriebsbei-

werts, den Abfall des Widerstandsbeiwerts und die erhebliche radiale Strömung der Ablö-

sung zur Folge. Die erhebliche radiale Geschwindigkeitskomponente der Ablösung entsteht

durch die Zentrifugalkräfte und ist vorhersagbar. Die Coriolis-Beschleunigung in Richtung

der Sehnenlänge, die durch die radiale Geschwindigkeitskomponente der Ablösung induziert

wird, steht mit einem Druckgradienten in Richtung der Sehnenlänge im Gleichgewicht. Der

Gradient des Druckbeiwerts in Richtung der Sehnenlänge der 3D rotierenden Rotorblätter

stimmt mit der analytischen Korrelation, die in dieser Arbeit hergeleitet wurde, überein. Der

genaue Ablösepunkt wird durch ein neues Kriterium, das auf Basis der Wandschubspannung

definiert wurde, ermittelt. Die geringe Verschiebung des Ablösepunktes entweder in Rich-

tung Hinter- oder Vorderkante des rotierenden Blattes zeigen die verschiedenen Einflüsse der

Berücksichtigung der Rotationseffekte auf die anliegende und abgelöste Grenzschichten.
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N O M E N C L AT U R E

latin symbols

Symbol Unit Description Definition

A m2 area

a - axial induction factor

a′ - rotational induction factor

as m/s sound speed

B - number of blades

CD - drag coefficient Eq. (3.4)

C f - skin friction coefficient τw/(0.5ρU2
ref)

CL - lift coefficient Eq. (3.3)

CP - power coefficient Eq. (2.6) or Eq. (2.21)

Cp - pressure coefficient Eq. (2.53)

Cp, mod - modified pressure coefficient Eq. (4.15)

CQ - torque coefficient Eq. (2.20)

CT - thrust coefficient Eq. (2.5) or Eq. (2.19)

c m chord length

D N drag

F - Prandtl’s correction factor Eq. (2.32)

g - velocity ratio Eq. (2.51)

L N lift

Ma - Mach number Eq. (3.2)

ṁ kg/s mass flow rate Eq. (2.1)

n m coordinate normal to wall Fig. 4.26

P W power

p Pa pressure

pt Pa total pressure

Q N m torque or Q-invariant Eq. (4.3)

R m rotor radius

Re - Reynolds number Eq. (3.1)

r m radius

r, θ, z m, -, m cylindrical coordinates

Si,j 1/s strain-rate tensor Eq. (4.5)

T N thrust

U∞ m/s undisturbed wind speed

Uref m/s reference wind speed

ue m/s external free stream velocity ue = umax along n

ui m/s velocity vector

uτ m/s friction velocity
√

τw/ρ

x, y, z m Cartesian coordinates

n+ - dimensionless wall distance ρuτn/µ

xvii



xviii nomenclature

greek symbols

Symbol Unit Description Definition

α ◦ angle of attack Eq. (2.23) or Fig. 2.3

αgeo
◦ geometric angle of attack Eq. (4.10)

β ◦ blade pitch and twist angle Fig. 2.3

Γ m2/s blade-bound circulation, vortex strength Eq. (4.7)

δ m boundary layer thickness Eq. (4.11)

δ1 m displacement thickness
∫ δ

0

(

1−
√

u2
i /ue

)

dn

ζP - power deviation factor Eq. (4.8)

ζT - thrust deviation factor Eq. (4.9)

η - Glauert’s efficiency factor Eq. (A.3)

θ ◦ azimuthal angle

µ kg/(m s) dynamic viscosity

ρ kg/m3 density

τ N/m2 shear stress

φ ◦ inflow angle Eq. (2.24) or Fig. 2.3

Ω 1/min rotor speed

Ωi,j 1/s vorticity tensor Eq. (4.4)

ω 1/s rotational speed, vorticity

subscripts

Symbol Description

∞ undisturbed flow

⊥ perpendicular

‖ parallel

2D stationary, two-dimensional airfoils

3D + Ω rotating, three-dimensional wind turbine blades

D rotor plane

e external free stream

eff effective

E Ekman layer

max maximal

mod modified

ref reference

s separation point

W wake

w wall

operator

Symbol Description

∆ difference or distance

≡ definition to



A C R O N Y M S

2d two-dimensional

3d three-dimensional

bc blunt conical

be blunt elliptical

bem blade element momentum

cad computer-aided design

cfd computational fluid dynamics

coe cost of energy

eea European Environment Agency

el elliptical

eu European Union

ewea European Wind Energy Association

gci grid convergence index

hawt horizontal axis wind turbine

mexico model experiments in controlled conditions

nasa National Aeronautics and Space Administration

nrel National Renewable Energy Laboratory

rans Reynolds-averaged Navier-Stokes

rms root mean square

sst shear stress transport

xix





1
I N T R O D U C T I O N

Wind turbines convert the kinetic energy of the wind into electrical power. In contrast, wind-

mills convert the wind’s energy into mechanical power and have been used in this way for at

least the 3000 years (Burton et al. 2011, Gasch and Twele 2010). The first use of wind energy

to generate electricity appeared at the end of the 19th century. At that time, people tried to

couple electrical generators with a windmill rotor. A notable example is the windmill that was

built in 1887 by Charles Brush in the USA (Sørensen 2011). Since then, the use of small wind

electric generators has become wide spread and from them, the forerunners of modern wind

turbine rotors appeared which have three blades and true airfoil shapes (Sørensen 2011).

Wind played an important role in energy generation until the advent of the steam engine

and the appearance of other technologies for converting fossil fuels into useful energy. In the

mid of the 20th century, the awareness of the environmental consequences of burning fossil

fuels and its finite reserves caused people to look for alternative clean and renewable energy

sources. As wind is one of the most promising renewable energy sources available, wind

energy emerged again in the late 1960s. The 1990s saw a strong worldwide resurgence in the

wind industry, with an installed capacity over five-fold of what was previously there at the

beginning of the decade. This can be attributed to the political policies and financial support

for the research and development of wind technologies (Manwell et al. 2009).
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Figure 1.1: European annual and cumulative offshore wind installation (source: Corbetta et al.

2014)
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2 introduction

The rated power of a horizontal axis wind turbine (HAWT) is proportional to the square

of the rotor diameter, whereas the rotor mass and cost increase with the cube. The optimal

rotor size of a HAWT is determined by the minimum specific cost of energy (COE) and varies

from 44 m for zero wind shear using a simplified cost model, to approximate 70 m using

the National Renewable Energy Laboratory (NREL) cost model for an isolated wind turbine

with a rated performance of 1.5 MW (Burton et al. 2011). The current largest commercial

wind turbine was introduced by MHI Vestas Offshore WindTM in January 2014 (❤tt♣✿✴✴

✇✇✇✳♠❤✐✈❡st❛s♦❢❢s❤♦r❡✳❝♦♠). The rotor has a diameter of 164 m, apparently larger than the

optimum values. Larger turbines are chosen because they can better exploit the wind energy

in a limited area in order to reach a greater annual energy production.

According to the European Wind Energy Association (EWEA) report, the European Union

(EU) plans to increase the capacity of renewable energy by up to 20% and reduce the carbon

emissions by 20% by 2020 (European Wind Energy Association 2013). Due to the lack of

available land with good wind resources for wind turbines, offshore wind technology has

been of great interest in the past twenty years, particularly in northern Europe. Europe’s

offshore wind potential was estimated by the European Environment Agency (EEA) to be

able to meet Europe’s demand. Therefore, the installed capacity of offshore MW-scaled wind

turbines is now growing rapidly (Fig. 1.1).

1.1 motivation

With the increasing rotor size of wind turbines, the structural stability plays a more crucial role

in the design process. Cylindrical shells are one of the most employed designs for blade roots

because they provide great structural stiffness and fit pitch-bearing configurations for pitch-

controlled wind turbines. With this design, the cylindrical blade root transits smoothly to the

innermost airfoil section, forming a thick inboard region. Although the cylindrical shape ben-

efits structural strength, it induces a von Kárman vortex street which leads to periodic loads

on the rotor blades. This periodic vortex street, which is usually characterized by Strouhal

numbers (Schlichting 1979), may cause failure if it meets the resonant frequency of the ro-

tor blade. Another significant flow structure near the blade roots is root vortices (Fig. 1.2 a),

which are caused by the sudden drop in the blade-bound circulation. The root vortices are

responsible for the power loss due to wake rotation. The thick inboard section also leads to

an unfavorable flow separation (Fig. 1.2 b), which usually represents an aerodynamic loss for

stationary airfoils. However, the flow behavior over rotating airfoils, particularly those with

massive flow separation, differ from that of two-dimensional (2D) stationary profiles because

of the three-dimensional (3D) effect due to rotation (Fig. 1.2 c). The 3D effect due to rotation

causes significant lift augmentation, and consequently leads to power overshoot (Fig. 1.3). The

rotational augmentation can be considered in the design process by implementing empirical

correction models into design codes to correct the aerodynamic coefficients of the stationary

profiles (Fig. 1.3). However, a comparison of the existing correction models for the 3D rota-

tional effect shows that these models are inconsistent, and considerably dependent on the

rotor blade design (Breton et al. 2008).

http://www.mhivestasoffshore.com
http://www.mhivestasoffshore.com
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Since the flow near the blade roots is responsible for the aerodynamic stabilities and power

overshoot, the coherent structures and 3D rotational effects are in the area of interest of this

study. Flows passing over the spinner of the wind turbine accelerate and induce radial velocity

components. Due to the fact that various spinner geometries exist within wind turbines, it is

of importance to know how the spinner geometry affects the accelerated and radially-induced

flow components. It is also important to know if the induced flow interacts with the inboard

flow structures and affects the inboard aerodynamic performance.

1.2 literature survey

There has been a wide range of work conducted regarding coherent structures near the blade

roots of horizontal axis wind turbines and 3D effect due to rotation. As such, this section

critically reviews the relevant literature and research attempts in the same direction as this

work. This review will help identifying the gaps in the literature and hence help to articu-

late this research problem. This section is divided into three subsections. The first subsection

discusses prior research related to the effects of spinner and nacelle design on wind turbine

performance. The second subsection reviews a number of closely related efforts to identify

the coherent structures near the blade roots. This is followed by an illustration of a number of

works in the field of three-dimensional effects due to blade rotation.

(a) Complex inboard flows (b) Flow separation

Photography

3D Simulation

(c) 3D rotational effects

2D flow

3D+Ω, c/r = 0.3

Figure 1.2: Flow features near the blade roots of horizontal axis wind turbines: (a) Complex

inboard flows. Reprinted from “Experimental investigation of the root flow in a

horizontal axis wind turbine” by Akay, Ragni, Ferreira and van Bussel, 2013, Wind

Energy, Vol. 17(7):pp. 1093–1109. Copyright 2013 by John Wiley and Sons. Reprinted

with permission. (b) Flow separation. Reprinted from “3D numerical simulation

and evaluation of the air flow through wind turbine rotors with focus on the hub

area” by Rauch, Krämer, Heinzelmann, Twele and Thamsen, 2007, Wind Energy:

Proceedings of the Euromech Colloquium, pp. 227–230. Copyright 2007 by Springer.

Reprinted with permission. (c) 3D effect due to rotation. Adapted from “Investi-

gating three-dimensional and rotational effects on wind turbine blades by means

of a quasi-3D Navier-Stokes solver” by Chaviaropoulos and Hansen, 2000, Journal

of Fluids Engineering, Vol. 122(2):pp. 330–336. Copyright 2000 by ASME. Adapted

with permission.
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Figure 1.3: Comparison of the measured and predicted power curves of a NORTANK 300 kW

turbine. Adapted from “Sectional prediction of lift coefficients on rotating wind

turbine blades in stall” by Snel, Houwink and Bosschers, 1994, Technical report

ECN-C–93-052. Copyright 1994 by the Energy research Center of the Netherlands

(ECN). Adapted with permission.

1.2.1 Effects of spinner geometries on wind turbine aerodynamic performance

There have been few studies which consider the influence of spinner design on the perfor-

mance of wind turbines. Johansen et al. (2006) investigate the inboard aerodynamic per-

formance of a redesigned wind turbine with and without an egg-shaped spinner. In their

study, the radius of the spinner is approximately 7% of the rotor radius. Their computational

fluid dynamics (CFD) results showed no absolute increase in overall power and thrust coeffi-

cients. However, at selected operating conditions, local power and thrust coefficients slightly

increased in the inboard region of the wind turbine with the egg-shaped spinner. They demon-

strated that the increase in the local performance was caused by an increase in tangential ve-

locities due to the spinner, which led to a pressure drop in the wake. Later, Johansen et al.

(2009) proposed a similar rotor design in order to achieve the maximum mechanical power

output. However, spinners and nacelles were excluded in their CFD models.

1.2.2 Coherent structures near the blade roots

Flows passing through wind turbines induce turbulent shear flows which may subsequently

develop vortical structures, called coherent structures (Jeong and Hussain 1995). The coherent

structures near the blade root of modern horizontal axis wind turbines, which have been
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identified so far in the literature, include helical root vortices (Vermeer et al. 2003, Sherry

et al. 2013, Akay et al. 2013, Chow and van Dam 2012), trailing edge vortices, flow separation

(Vermeer et al. 2003, Chow and van Dam 2012, 2013), von Kármán vortex shedding from

cylinder blade roots (Zahle and Sørensen 2011), and a nacelle wake (Akay et al. 2013).

The formation of the root vortex, similarly to tip vortices, is basically caused by the abrupt

drop of the blade-bound circulation in the blade root region. The root vortex shedding from

the blade root further moves downstream and forms a helical structure due to the blade rota-

tion. The occurrence of the root vortex represents an unfavorable power loss. The power loss

due to the root vortex can be taken into account in the design process, by implementing loss

factors such as Prandtl’s loss factors into design codes (Burton et al. 2011). Root vortices were

found shedding from the inboard section of the rotor blades experimentally and numerically,

i. e., Whale et al. (2000) and Sherry et al. (2013). Akay et al. (2013) particularly demonstrated

that root vortices were released from the maximum chord blade section and then rolled up

towards a slightly larger radius. Sherry et al. (2013) observed that the root vortex was only

evident closer to the rotor plane and dissipated rapidly due to the effects of the supporting

structures of the wind turbine, i. e., the tower. The root vortex dissipates more slowly with the

decreasing tip speed ratios (Chow and van Dam 2012). The accurate knowledge of the root

vortex origin and development improves the accuracy of predicting the wind turbine aerody-

namic performance, specifically the accuracy of the root-loss correction models (Lindenburg

2003). In comparison with tip vortices, whose properties have been thoroughly investigated

such as its spatial position and vortex strength with increasing vortex age (Ebert and Wood

2001, Sherry et al. 2013), the corresponding information of root vortices are still unclear.

Flows over rotating wind turbine blades, particularly those in the flow separation region,

are highly three-dimensional (Fig. 1.2 b). Significant radial flows in the flow separation region

may lead to the extension of the flow separation region towards a larger radius, and subse-

quently result in an additional power loss (Corten 2001). Chow and van Dam (2012) used a

simple full-chord fence to suppress the radial flows and improved the power performance by

nearly 1%.

Von Kármán vortices are released from cylindrical blade roots and convected above the

nacelle (Sherry et al. 2013, Zahle and Sørensen 2011). Zahle and Sørensen (2011) particularly

demonstrated three prominent vortices shedding from each blade root in a series of vorticity

contours at the planes perpendicular to the rotor axis near the nacelle end. One of these vor-

tices referred to the root vortex, and the other two vortices forming a pair of counter-rotating

vortices referred to von Kármán vortex street. This pair of unsteady vortices dominated the

flow in the nacelle region and interacted with the root vortices, generating a high-velocity

gradient. As a result, a significant variation in the wind speed and flow angle was measured

above the nacelle. Zahle and Sørensen (2011) suggested that data measured by such as nacelle

anemometers should be corrected for a more accurate rotor control.

Sherry et al. (2013) and Akay et al. (2013) observed the formation of a low speed, high

turbulent, recirculated flow behind the nacelle. Sherry et al. (2013) concluded that the nacelle

wake has a pronounced effect on root vortex stability.

In the past decade, coherent structure near the blade roots of horizontal axis wind turbine

receive increasing attention, which is due to the urge to optimize wind park designs and accu-
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Table 1.1: Classification of the 2D and 3D effects on non-yawed horizontal axis wind turbines

category mechanism influence models/solutions

2D effects blade cascade limited and negligible Weinig’s coefficient

3D effects

blade solidity unclear but supposed to be limited -

3D blade geometry limited because of high aspect ratios -

end effect significant at tips/roots Prandtl’s loss factor

wake expansion significant at highly loaded sections unclear

turbulent wake significant at highly loaded sections Glauert’s relationship

blade rotation significant inboard inconsistent models

rate wind turbine controls. Although there have been many experimental and computational

attempts, a lack of physical descriptions remains, such as where is the origin of this pair of

counter-rotating vortices, and how the root vortex develops as a function of traveling distances

or life time. Aside from the root vortices, trailing edge vortices, flow separation, von Kármán

vortex street, and nacelle wake, does another coherent structure exist near the blade roots of

horizontal axis wind turbines and how do they interact with each other?

1.2.3 Classification of 2D and 3D effects

Because of complex rotor geometries, it is clear that in addition to the 3D effect due to rotation

there are also other 3D effects influencing the blade aerodynamic characteristics. An apparent

example is the end effect near the blade tip and the blade root. In order to accurately iden-

tify the 3D effect due to rotation, the presence of other 3D effects and their extent must be

understood.

Table 1.1 lists the 2D and 3D effects due to various mechanisms which may affect the aero-

dynamic characteristics of the rotating wind turbine blade relative to those at stationary con-

ditions. The 2D effects on the 3D flow over the wind turbine blades only change the velocity

components parallel to the profile plane, i. e., there is no change in the velocity components

perpendicular to the profile plane. The 3D effects further involve velocity components perpen-

dicular to the profile plane. The profile plane of a 2D airfoil in a plane flow is defined in a

flat plane. In contrast to the 2D airfoil, the profile plane in the wind turbine system is defined

in a cylindrical surface which wraps about the rotor axis with a constant radius (Fig. 1.4 a).

By unwrapping this cylindrical surface into a flat plane, a cascade with an infinite number of

airfoils presents because of the circumferential periodicity of the rotor blades (Fig. 1.4 b).

A blade cascade is usually characterized by the space-to-chord ratio and the stagger angle

for axial turbomachines, where the space implies the distance between the trailing edges of

two neighboring profiles. The stagger angle implies the angle between the rotor axis and the

blade chord. The reciprocal of the space-to-chord ratio is equivalent to the blade solidity for

wind turbines. When the space-to-chord ratio is very large, i. e., low blade solidity, each blade

can be regarded as isolated and no significant interference occurs. When the space-to-chord
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(a) Cylindrical profile plane (b) Unwrap the profile plane

low

high

Velocity

Figure 1.4: The profile plane in the wind turbine system

ratio reduces, i. e., high blade solidity, the aerodynamic characteristics of the profile in the

cascade may change due to the increasing interference from neighboring profiles. The change

in the airfoil aerodynamics due to the blade cascade can be approximately estimated by multi-

plying the lift coefficient of an isolated profile by Weinig’s coefficients (Lakshminarayana 1996,

Sec. 3.3.1). This study uses Weinigs’s coefficients for a circular-arc-profile cascade to estimate

the 2D effect due to blade cascade on the modern horizontal axis wind turbines, including

the NREL/NASA-Ames Phase VI turbine (Hand et al. 2001) and the conceptual NREL 5 MW

offshore baseline wind turbine (Jonkman et al. 2009). The space-to-chord ratios and stagger

angles of these wind turbines are higher than 5 and 53◦, respectively. The corresponding

Weinig’s coefficients asymptotically approach 1. Based on this estimation, the 2D effect due to

blade cascade on the aerodynamic performance of horizontal axis wind turbines is supposed

to be limited and assumed to be negligible in this study.

In contrast to the 2D profile cascade where the flow is restricted in the 2D plane, the cas-

cade of the 3D wind turbine blades allows radial flow motion. With increasing blade solidities

approaching the rotor axis and the blockage of the spinner, radial flows which are induced in

the inboard region may lead to a 3D effect on the blade aerodynamics. This 3D effect due to

the blade solidity is, however, unclear. This study assumes that the 3D effect due to the blade

solidity is restricted near the rotor axis and has no significant effect on the inboard airfoil

sections.

An optimum and efficient blade design usually involves complex blade geometries, see e. g.,

Burton et al. (2011, Chap. 3.7). The 3D blade geometry may induce radial velocity components

and then lead to a 3D effect. This study suggests that this 3D effect due to the 3D blade ge-

ometry is limited and negligible because of the high aspect ratios of the modern wind turbine

blades. An another 3D effect which is also related to the 3D blade geometry is the end effect

at the blade tip and blade root. The 3D effect due to the end effect is usually significant and

predictable by Prandtl’s loss factor (Burton et al. 2011).

Due to the flow deceleration through the wind turbine blades, flow expansion occurs and

induces radial velocity components. The 3D effect due to flow expansion is significant for

highly-loaded blade sections. Although the accurate 3D effect due to flow expansion is still
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unclear and difficult to identify, this study assumes that the 3D effect due to flow expansion

in the inboard region of horizontal axis wind turbines is limited and negligible.

The decelerated flow which passes through the wind turbine rotor induces turbulent shear

layers adjacent to external free streams. Due to the mass, momentum, and kinetic energy mix-

tures within the turbulent shear layer, the local blade sections may exceed the limitation of

the maximal power output predicted by the momentum theory. The turbulent wake state is

significant when the blade section is highly loaded. The 3D effect due to turbulent wake on

the local aerodynamic performance is usually estimated by Glauert’s empirical relationship

(Buhl 2005).

As the rotor blade rotates, another 3D effect due to blade rotation occurs. This 3D effect

can be preliminarily understood by considering the flow near a rotating disc which rotates

about an axis perpendicular to its plane at a constant angular velocity in a rest fluid. The 3D

flow near the rotating disc has been accurately described by Schlichting (1979, pp.102-107):

“The layer near the disc is carried by it through friction and is thrown outwards owing to the

action of centrifugal forces. This is compensated by particles which flow in an axial direction

towards the disc to be in turn carried and ejected centrifugally.” This process is usually known

as the centrifugal pumping effect (McCroskey and Yaggy 1968). The radial flows due to the

centrifugal pumping effect are only significant in the boundary layer over the rotating disc,

specifically in the bottom of the boundary layer. Schlichting (1979, pp.102-107) also drew some

important conclusions, for example that the pressure gradient as function of the distance from

the wall is very small for small viscosities, and there is no pressure gradient in radial direction

over the rotating disc. Although the flow near the wind turbine blade is more complex, under-

standing the flow behavior over a rotating disc and its mechanism help in understanding the

complex flow behavior over the rotating wind turbine blades, and the mechanism responsible

for the corresponding flow behavior.

In contrast to the rotating disc in a stationary fluid, the incoming flow over the rotating wind

turbine blades further induces significant spanwise pressure gradient. This study categorizes

the spanwise pressure gradient into the 3D effect due to rotation since the spanwise pressure

gradient is closely correlated with the relative fluid velocity with respect to the rotating blade.

In the remainder of this thesis, the 3D effects due to rotation are also called the 3D rotational

effects for simplification.

Based on the reconsideration of the possible 2D and 3D effects due to various mechanisms

and the estimation of their extent, this study suggests that flows over 3D rotating wind turbine

blades and flows over 2D stationary profiles can be regarded as flows with and without the

3D rotational effect, once the effects due to the other mechanisms have been carefully taken

into account.

1.2.4 The 3D effects due to rotation

The 3D effect due to rotation is not a unique phenomenon to wind turbines, it also occurs

in the boundary layers over propellers and airscrews. Through the development of propellers

and airscrews, the 3D rotational effect was widely investigated. However, at that time due

to the limitation of experimental techniques and computational capacities, the understand-
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ing of the 3D boundary layers over rotating blades relied on flow visualization experiments

and analytical solutions. Since then, with increasing computational capacities and the devel-

opment of experimental technologies, more accurate flow features have been captured, which

improved the understanding of the mechanism responsible for the 3D rotational effect. This

section which gives a historical overview of former work regarding the 3D rotational effect is

further divided into four groups according to the methodology.

a . early experimental and analytical studies The publication of Himmelskamp

(1950) is one of the first research investigating the 3D rotational effect on the aerodynamic char-

acteristics of rotating profiles. Himmelkamp’s work detected the most important phenomena

caused by the 3D rotational effect such as the lift augmentation, thus the 3D rotational effect

is also known as Himmelskamp effect, (see e. g., Ronsten 1992, Björck et al. 1994).

Before Himmelskamp’s investigation, the 3D effect due to rotation on the boundary layer

properties of rotating profiles relative to those of stationary profiles had already received

attention. Significant radial flows in the flow separation region over rotating profiles were

familiar. For instance, Gutsche (1940) used the ink dot technique of flow visualization to show

that flows in the attached boundary layer on a rotating profile traveled chordwise parallel to

external free streams, whereas flows in the flow separation region, specifically in the ‘dead-wa-

ter’ region (‘Totwasserbereich’ in German), traveled radially towards the blade tip (Fig. 1.5). In

suction side −→ ←− pressure side

(a) Low aspect ratio

suction side −→ ←− pressure side

(b) High aspect ratio

Figure 1.5: Flow directions on rotating flat plates of (a) low aspect ratios and (b) high aspect

ratios by means of ink dot of flow visualization. Reprinted from “Versuche an um-

laufenden Flügelschnitten mit abgerissener Strömung” by Gutsche, 1940, Mitteilun-

gen der Preußischen Versuchsanstalt für Wasser-, Erd- und Schiffbau, Berlin. Copyright

1940 by the German Federal Waterways Engineering and Research Institute (Bun-

desanstalt für Wasserbau, BAW). Reprinted with permission.
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Figure 1.6: Lift coefficients of a rotating propeller blade at various radial positions. Adapted

from “Profiluntersuchungen an einem umlaufenden Propeller” by Himmelskamp,

1950, Mitteilung aus dem Max-Planck-Institut für Strömungsforschung. Copyright 1950

by the Max Planck Institute for Dynamics and Self-Orgazination. Adapted with

permission.

his dimensional analysis, he derived that flows in the dead-water region were pumped radially

outwards by the centrifugal acceleration and pressure gradients in the radial direction.

Himmelskamp (1950) evaluated the aerodynamic coefficients of rotating propeller blades

(Fig. 1.6 left) based on pressure measurements over the profile surface. He compared the

aerodynamic data of the rotating profiles with those of stationary wind tunnel tests. His

results show that the maximum lift coefficients of the rotating blade considerably increase,

particularly in the inboard region, whereas no significant change occurs at the angles of attack

of the linear region (Fig. 1.6 right). The maximal lift coefficients also shift to higher angles of

attack, which implies the shift of stall angles of attack towards higher values, known as stall

delay. Himmelskamp’s results show an increase in the drag coefficients of the rotating profiles

at high angles of attack.

Himmelskamp (1950) posited that the lift augmentation and stall delay occurred because

the turbulent, detached boundary layer became attached due to the 3D rotational effect. He

considered a boundary layer flow element dm at radius r and at an angular velocity ω, thus

the centrifugal force acting on the flow element is rω2dm. Because of the centrifugal acceler-

ation, he posited that the radial velocity of this flow element increased with the radius. He

verified the significant radial flows in the boundary layer by flow visualization with filaments

glued on the surface of the propeller (Fig. 1.7). As a result of these increasing radial velocity

components with radii, he concluded that the boundary layer thickness of the propeller rela-

tive to that at stationary conditions decreased. The radial velocity components then yielded
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(a) Tip speed ratio RΩ/U∞ = 2.18 (b) Tip speed ratio RΩ/U∞ = 4.37

Figure 1.7: Flow directions on a rotating propeller blade by means of flow visualization.

Reprinted from “Profiluntersuchungen an einem umlaufenden Propeller” by Him-

melskamp, 1950, Mitteilung aus dem Max-Planck-Institut für Strömungsforschung.

Copyright 1950 by the Max Planck Institute for Dynamics and Self-Orgazination.

Reprinted with permission.

chordwise Coriolis acceleration against unfavorable chordwise pressure gradient on the pro-

file suction side. This chordwise Coriolis acceleration benefited the attached boundary layer

at higher angles of attack.

The author of this study argues against some of Himmelskamp’s interpretations from his

experimental results and the explanation of stall delay due to the 3D rotational effect. First,

Himmelskamp regarded the boundary layers with significant radial flows as attached bound-

ary layers, which basically contradicted Gutsche’s (1940) illustration of the flow directions in

the attached and detached boundary layers on rotating profiles. Thus, there should be still

massive flow separation with significant radial flows over the rotating propeller blades. As a

result of that, the increase in lift coefficient should not be caused by the shift of flow separation

toward the trailing edge.

Second, since lift augmentation occurs while massive flow separation still exists over the

rotating profiles, it means that the absence of stall does not imply the absence of flow sepa-

ration for the rotating profiles. In contrast to a typical flat pressure distribution in the flow

separation region over a stationary profile, the absence of a similar flat pressure distribution

in the flow separation region over a rotating profile does not imply the absence of boundary

layer separation, since the presence of the boundary layer separation over the rotating profile

has been verified.

Third, Himmelskamp did not consider the period of time for the boundary layer element

to be driven by the centrifugal force, which is basically inversely proportional to the radius.

Thus, the radial velocity components in the attached boundary layer driven by the centrifugal

force over this period of time should be approximately constant. Since the radial velocity com-

ponents relative to the dominant, circumferential fluid momentum is inversely proportional

to the radius, their influence on the blade section far from the rotor axis is negligible. Conse-

quently, the boundary layer thickness of the rotating profile is supposed to be identical to that

of the stationary profile. The limited radial velocity components yield limited chordwise Cori-

olis acceleration against unfavorable chordwise pressure gradients on the profile suction side.
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The magnitude of this chordwise Coriolis acceleration due to the radial velocity components

determines the change in the boundary layer properties and the shift of separation lines.

After Himmelskamp, much analytical work has been performed in order to confirm his

experiments and verify his explanation that the 3D rotational effect delayed the flow separa-

tion towards the trailing edge. To this end, most analyzed the 3D boundary layer equations

attached to a steadily rotating profile surface in order to accurately predict the onset of the

flow separation.

Here, two things must be kept in mind: First, the boundary layer equations are not valid

for the detached boundary layers due to a so-called Goldstein singularity (Goldstein 1948

and White 1991, p.6). Second, stall and flow separation are two distinctly different concepts

in this study. Stall is specifically used to describe the abrupt loss of lift for airfoils at high

angles of attack, while massive flow separation occurs on the profile suction side. That is to

say, stall only regards the profile aerodynamic characteristics, whereas flow separation regards

the physical flow conditions. It is rational to relate the presence of stall due to the occurrence

of flow separation, but the absence of stall does not imply the absence of flow separation,

particularly for the rotating profiles.

Fogarty (1951) considered boundary layers at stations several chord lengths from the rotor

axis of a thin blade. He neglected relative small terms in the 3D boundary layer equations

based on the order of magnitude analysis. The simplified 3D boundary equations show that

the chordwise velocity is independent of the spanwise velocity due to rotation, thus the sepa-

ration line is unaffected by rotation. At the end of his paper, he commented that his results

contradicted the common expression of significant 3D effects due to rotation. He explained

that rotation may have significant effects on the flow after separation lines. He also commented

that his theory was not valid beyond the separation line, thus cannot predict lift augmentation

of a rotating blade.

In contrast to Fogarty’s analysis, Banks and Gadd (1963) considered the full 3D boundary

layer equations attached to a rotating helical surface with a constant angular velocity Ω. They

assume that flows over the helical surface undergo unfavorable pressure gradients and the

tangential velocity components outside the laminar boundary layer at radius r and the az-

imuthal position θ is rΩ(1− kθ), where k is a constant representing the velocity gradient

outside the boundary layer. The radial velocity outside the boundary layer was assumed zero.

Their parameter study of various k shows that for k ≥ 6.8, the boundary layer separation oc-

curs very near the leading edge of the helical surface and the separation point is identical

to that of the 2D stationary boundary layer. For smaller values of k, the 3D effect due to

rotation postpones the separation line towards the trailing edge. For example, for k = 0.7, the

separation point postpones approximately 13% relative to that of the 2D stationary boundary

layer. For k less than about 0.548, the laminar boundary layer is completely stabilized and

flow separation never occurs. They explained that the 3D effect due to rotation benefited the

attached boundary layer against the unfavorable pressure gradient and increased the pressure

rise between the leading edge and the separation point. The author of this study comments

that the increase in the shift distance of the separation line with the decreasing velocity gradi-

ent k is a natural consequence because the period of time for centrifugal forces to accelerate

the flow passing through the attached boundary layer increases with decreasing k. Corten
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(2001) examined the minimum value of k for modern horizontal axis wind turbines, which is

approximately between 2 and 4. He then suggested that the postpone of the flow separation

towards the trailing edges of modern horizontal axis wind turbine blades due to the 3D

rotational effect is limited and negligible.

Later, McCroskey and Yaggy (1968) analyzed the 3D boundary layer equations of helicopter

rotors in forward flight with small-crossflow assumptions and quasi-steady approximations.

Similar to Fogarty (1951), they only considered the boundary layers far from the rotor axis.

Thus they drew a conclusion agreeing with Fogarty that the dominant primary flow was in-

dependent of the crossflow. Their numerical results show a considerable increase in the cross-

flow velocities on the verge of boundary layer separation. They concluded that the centrifugal

pumping effects are more prominent in the retarded flow. They commented that their work

with the small-crossflow assumption cannot predict stall characteristics accurately.

Dwyer and McCroskey (1970) extended previous work to the region near the axis of ro-

tation by discarding the small crossflow assumption and considering the full 3D boundary

layer equations. Their numerical and perturbation solutions of the laminar viscous flow over

rotating profiles show that the 3D rotational effect is limited to the immediate vicinity of the

rotor hub. Their results agree with McCroskey and Yaggy (1968) that the 3D rotational effect is

sensitive to the chordwise pressure gradients. They explained that the postpone of flow sepa-

ration towards the trailing edge was caused by the crossflow in the bottom of the boundary

layer, which directly led to a favorable chordwise pressure gradient. The induced chordwise

velocities, accompanied by an increase in the wall shear, then resisted flow separation.

Dwyer and McCroskey (1970) also performed flow visualization experiments of ammonia

vapor. Similar to Gutsche (1940), they identified the laminar separation bubble as the region

with significant outward flows driven by centrifugal forces. The separation lines, observed

from their flow visualization experiments of the rotating cylinder and NACA0012 profile,

agree with 2D calculations, which supports their conclusion that the 3D rotational effect only

results in limited shifts of separation lines. They remarked that “the actual separation bubble

appeared to be in the form of a short bubble, followed by an attached turbulent boundary

layer.” Based on this observation, they posited that the 3D rotational effect on separation lines

and stall characteristics may be more significant in turbulent boundary layers.

Savino and Nyland (1985) conducted flow visualization studies on a full-scale wind turbine,

in order to determine flow patterns on the blade suction side. They described that flows in

the attached boundary layer was in the chordwise direction; flows in the separation region di-

rected towards the blade tip, similar to Gutsche (1940). Their experiments, however, contradict

the common expression that the 3D rotational effect postpones flow separation lines towards

the trailing edges. “If the position of the separation line observed in these tests is compared

to that obtained in two-dimensional wind tunnel tests for similar angles of attack, it appears

that the separation line is from 10 to 20 percent of a chord length forward (toward the leading

edges) for the rotating blade compared to the position found for a nonrotating blade.” Corten

(2001) posited that the significant radial flows in the separation region can enter attached flow

at a larger radial position, and thereby advanced flow separation to a certain extent.
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The 3D effect due to rotation on the separation line, specifically postpone or advance, based

on the cumulated literature survey has no consistent conclusion, but it is supposed to be

limited for horizontal axis wind turbines because of the high chord-to-radius ratios.

b . numerical investigations based on integral momentum equations Snel

et al. (1994) conducted the order of magnitude analysis of the 3D boundary layer equations for

the attached and detached boundary layers over a rotating blade, respectively. Their analysis

for attached boundary layers is identical to that obtained by Fogarty (1951). Based on their

oder of magnitude analysis, they simplified the 3D boundary layer equations by neglecting

the relative small terms. They derived a set of quasi-3D boundary layer equations valid for

both attached and detached boundary layers. They transformed this set of equations into

dimensionless integral quantities. Le Balleur’s model (Le Balleur 1981) is used to determine

velocity profiles in the boundary layer because it is well suited for attached and separated

flows.

Snel et al. (1994) numerical results show that lift augmentation is more pronounced near

the axis of rotation, agreeing with Himmelskamp (1950). However, the drag coefficients of the

rotating profile slightly decrease, contracting Himmelskamp results. Snel et al. particularly

detected triangular pressure distributions in the flow separation region of the rotating profile,

different from typical flat pressure distributions over a stationary profile. They identified the

flow separation region with these triangular pressure distributions by means of negative sur-

face friction coefficients and shape factors. Similar triangular pressure distributions in flow

separation regions were also observed experimentally by Butterfield et al. (1990), Ronsten

(1992), Brand et al. (1997), Schreck et al. (2007), Sicot et al. (2008), and computationally by

Guntur and Sørensen (2015) who particularly commented on the inaccuracy of using pressure

distributions to locate separation points of rotating profiles. The surface friction coefficient

distribution over the rotating blade also shows a limited postpone of flow separation. The dis-

placement thickness distributions show that the boundary layer thickness of the attached flow

over the rotating blade is almost identical to that over the 2D stationary profile. The boundary

layer thickness of the detached boundary layer slightly increases near the separation point

then decreases considerably. Snel et al. explained that lift augmentation is caused by the de-

cambering effect due to the reduction in the displacement thickness of the detached boundary

layer.

Corten (2001) argued the validity of Snel et al. (1994) order of magnitude analysis for the de-

tached boundary layers based on the boundary layer equations. He proposed another model

based on the full 3D Navier-Stokes equations to deal with the detached boundary layers with

significant radial velocities. His model predicts triangular pressure distributions in the flow

separation region, agreeing with Snel et al. (1994). He commented that chordwise pressure

gradients in the flow separation region must exist in order to balance the chordwise acceler-

ation caused by Coriolis effect on the significant radial velocity component. Sicot et al. (2008)

derived a semi-empirical relationship from Corten’s model for the prediction of pressure distri-

butions in the flow separation region. However, their semi-empirical relationship significantly

deviates from their experimental results. Although there is some concern about the validity of

the integral momentum equations proposed by Snel et al. (1994), their computational results
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support the proposition of Fogarty (1951) that the 3D rotational effect significantly influences

detached boundary layers.

Later, Du and Selig (2000) extended the work of Snel et al. (1994) to investigate rotational

effects on the boundary layer properties. They introduced Pohlhausen and power-law type of

velocity profiles for laminar and turbulent boundary layers, respectively, to solve the integral

equations. They demonstrated that the postpone of separation point due to the 3D rotational

effect is more prominent with increasing rotor speed or decreasing radius. The decrease in the

displacement thickness is more significant near the trailing edge. They further demonstrated

that the effect of Coriolis forces on the boundary layer thickness was stronger than the cen-

trifugal forces. Thus, they concluded that the 3D rotational effect will be smaller for larger

wind turbines because of the reduction in Coriolis forces in thinner boundary layers.

Schreck and Robinson (2002) indicated that lift augmentation caused by the 3D effect due

to rotation can occur independently of Reynolds number influences. However, Hu et al. (2006)

agreed with the conclusions of Du and Selig (2000) that for increasing radius, the effect of

Reynolds numbers on the separation position is stronger than the effects of Coriolis and cen-

trifugal forces. Hu et al. explained that the significant radially outward flow in the separation

region induced a chordwise acceleration through the Coriolis forces, which acts as a favorable

pressure gradient, tending to delay the separation position towards trailing edges.

Dumitrescu et al. (2007, 2009, 2010) presented a series of work considering integral momen-

tum equations. They concluded that lift augmentation was the consequence of the flow sepa-

ration reattachment over a rotating blade at high angles of attack. Moreover, they concluded

that Coriolis forces were mostly important near the rotor axis while crossflow derivatives

were important at the onset of flow separation. Recently, Ramos-García et al. (2014) proposed

a viscous-inviscid interaction model where the inviscid part used a 2D panel method and the

viscid part used integral momentum equations to predict the aerodynamic behavior of rotating

wind turbine blades. This strong interaction made it possible to overcome Goldstein singular-

ity and to compute the boundary layer flow at and beyond the separation point. Instead of

using surface friction coefficients, they used shape factors of H = 2.5 to define the onset of

flow separation. Their numerical results showed that rotational effects decreased the growth

of boundary layer and delayed the onset of flow separation, which led to lift augmentation

and drag reduction.

c . recent computational work Shen and Sørensen (1999) developed a quasi-3D

Navier-Stokes model in a rotating reference frame whose computational costs were similar

to typical 2D airfoil computations. They neglected the radial convective terms in all momen-

tum equations by assuming the spanwise velocities to be radially constant. They employed

a velocity-vorticity form of the Navier-Stokes equations to determine the spanwise velocity

components. Their order of magnitude analysis, similar to Snel et al. (1994), shows that the

3D rotational effect has significant influences on the attached and detached boundary layers

near the rotor axis. On the outer part of the blade, rotational effects may only be related to

separated flows. Based on the numerical results of NACA profiles, they concluded that the

effect of rotation stabilized vortex shedding and suppressed the separation volume. The pres-

sure coefficients on the suction side of the airfoils at a high incident angle of 20◦ decreased
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near the blade root, whereas the pressure coefficients on the pressure side and the overall

surface friction coefficients experienced no significant change. They concluded that the rota-

tional effects only influenced the pressure distribution. This influence was only significant in

the separation region. Similar results were also derived by Chaviaropoulos and Hansen (2000).

They explained that the 3D rotational effects were strictly caused by the Coriolis force and not

by the centrifugal force. The centrifugal term was well-hidden in the pressure-like term in the

governing equations. The separated flow in the 3D boundary layer was sucked and redirected

radially by the Coriolis force, leading to a reduction in the separation volume. This reduction

in the separation volume then led to a pressure drop on the airfoil suction side.

Narramore and Vermeland (1992) used 3D Navier-Stokes methods to investigate the mech-

anism responsible for the lift augmentation and drag reduction of a rotating blade near stall.

However, their research was based on the assumption that the lift augmentation was caused

by the delay of separation to higher angles of attack by Coriolis accelerations. No advanced

description about the flow properties in the separation region was contributed. Hansen et al.

(1994) developed a general purpose 2D/3D Navier-Stokes solver including the standard k-

ǫ turbulence model where centrifugal and Coriolis terms were also considered in order to

compute rotational effects. Their computational results confirmed the significant radial flow

towards the blade tip in the separation region at the blade root. Carcangiu et al. (2007) de-

veloped a post-process tool to evaluate boundary layer properties for their CFD results of an

untwisted blade with a constant chord length. The evaluated velocity profiles showed signifi-

cant radial velocity components in detached boundary layers. They also observed that the lift

and drag coefficients of the 3D rotating blade were higher than the 2D stationary case for the

whole range of flow angles. They explained that the increase in lift coefficients at low angles

of attack might be caused by cascade effects. More recently, Herráez et al. (2014) conducted

CFD computations and compared with the model experiments in controlled conditions (MEX-

ICO) of Boorsma and Schepers (2003). They concluded that stall delay and lift enhancement

could exist independently of each other. Guntur and Sørensen (2015) further showed that the

increase in the blade-bound circulation due to the 3D rotational effect yielded a disagreement

in the position of stagnation points between stationary and rotating profiles at similar angles

of attack.

d. engineering correction models The 3D rotational effect must taken into account

in the design process in order to predict the wind turbine aerodynamic performance more

accurately. This is usually accomplished by implementing correction models into design codes

to correct the aerodynamic coefficients of stationary profiles.

Snel et al. (1994) proposed a simple correction formula for lift coefficients based on order

of magnitude analysis. Their model includes a key parameter of the chord-to-radius ratio

and a calibration constant determined by measurements. Later, Lindenburg (2003) modified

the model of Snel et al. (1994) by considering the local speed ratio as an additional param-

eter. Chaviaropoulos and Hansen (2000) extended the correction model of Snel for lift and

drag coefficients. They introduced blade twist angles as another key parameter. The correc-

tion model proposed by Du and Selig (1998) considered the lift augmentation and the drag

reduction. They used the chord-to-radius ratio and local speed ratios as key parameters. Sev-
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eral correction models were also proposed, such as Lindenburg (2004) and Dumitrescu and

Cardoş (2009). Breton et al. (2008) implemented six different stall delay models to correct 2D

aerodynamic coefficients into a lifting-line-prescribed wake vortex scheme and compared the

predicted performance with the NREL phase VI measurements. They observed considerable

discrepancies between the prediction and measurements. They concluded that these models

cannot represent the flow physics accurately. Additionally, there was no generality within

these correction models.

The 3D effect due to rotation on the aerodynamic characteristics and boundary layer proper-

ties has been investigated experimentally, analytically, and computationally for several decades.

Although many attempted to explain the mechanism responsible for the lift augmentation,

heretofore there is still no general, common explanation. The conflicting descriptions of the

flow over the rotating profiles imply that there is insufficient knowledge to understand the

complex 3D flow.

1.3 objectives and approach

The objective of this study is to ascertain the mechanisms responsible for the 3D rotational

effects by giving an accurate knowledge of the 3D rotational effects on the aerodynamic char-

acteristics and boundary layer properties of 3D rotating wind turbine blades. This study also

aims to identify the coherent structures near the blade roots of horizontal axis wind turbines,

particularly those closely correlated to the 3D effects.

Direct measurements of the flow fields over the blades of a full-scale wind turbine are

difficult and expensive. A scaled wind turbine in a wind tunnel is unable to accurately present

the aerodynamic characteristics in the full-scale. As a result, the detailed flow fields over a full-

scale wind turbine are captured in this study by means of CFD computations, specifically by

solving the Reynolds-averaged Navier-Stokes (RANS) equations.

CFD computations are usually time-consuming and have some restrictions. The CFD com-

putations of an isolated wind turbine with a rotor diameter D needs a wide computational

domain in order to avoid disturbance from the boundary conditions. The distance from the

rotor center to the boundaries varies from 2 to 20 rotor diameters (Tachos and Filios 2009,

Sørensen and Schreck 2012, Chow and van Dam 2012). Since the flow near the blade roots are

of interest in this work, a simplified model with a reduced computational domain is proposed

in this study in order to accelerate computations and to reduce computational requirements.

The concept of the simplified model is based on a smooth and steady streamtube through

which no mass flow passes. The choice of the streamtubes is limited because of the 3D flow

structures at the blade roots and tips (Fig. 1.8 left). The possible streamtube position as the

boundary of the simplified model is within the 2D attached flow region (Fig. 1.8 right). There

is no shortcut to determine the coordinates of the streamtube, because they are dependent on

the operating conditions and the aerodynamic performance of every blade section. The only

way to determine the streamtube coordinates is from CFD computations with conventional

farfield boundaries.

In order to accurately identify the 3D effect due to rotation on profile aerodynamics and

boundary layer properties, this study further conducts 2D CFD computations of stationary
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Figure 1.8: The possible streamtube location as the boundary of the simplified CFD model

(right) in consideration of the 3D flows near the blade tips and roots (left)

profiles at various angles of attack. The power overshoot of a horizontal axis wind turbine

is identified in this study by the comparison between the aerodynamic performance evalu-

ated from the 3D CFD results and that of blade element momentum (BEM) predictions using

stationary profile data from the 2D CFD computations.

The approach of this study based on the preceding concepts are summarized in the fol-

lowing. First, CFD computations of a horizontal axis wind turbine with conventional farfield

boundaries at various operating conditions are conducted so as to obtain streamtube coor-

dinates and corresponding inlet/outlet boundary conditions for the simplified CFD models.

2D CFD computations of stationary profiles at various angles of attack are also conducted,

in order to predict the wind turbine aerodynamic performance by means of BEM methods.

The coherent structures near the blade roots are detected by various vortex detection meth-

ods and summarized in a sketch. The 3D rotational effects on the wind turbine aerodynamic

performance, namely the power overshoot, is identified by comparing the overall and local

aerodynamic performance evaluated from the 3D CFD results with that of BEM predictions.

Once the streamtube coordinates are determined, additional RANS computations using the

streamtube-based simplified CFD models are conducted in order to validate the simplified

CFD models and evaluate the errors that arise through their use. Subsequently, CFD com-

putations using the streamtube-based simplified models with various spinner geometries are

conducted in order to identify the influence of the spinner geometry on the inboard coherent

structures and aerodynamics. A comprehensive and thorough investigation of the 3D rota-

tional effect is carried out by comparing flows over the 3D rotating wind turbine blades, and

those over the 2D stationary profiles. This comparison gives an insight into the 3D rotational

effect on the aerodynamic characteristics and boundary layer properties. Mechanisms respon-

sible for the 3D rotational effects are also estimated by the order of magnitude analysis. This

study attempts to derive an analytical solution from Corten’s model, in order to accurately
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predict the pressure distributions in the flow separation region over the rotating blade. This

analytical solution is validated in this study by comparing with the 3D CFD results.

1.4 overview

This thesis consists of five chapters. In Chap. 2, the related fundamentals are introduced, in-

cluding the BEM methods and the order of magnitude analysis for the governing equations of

attached and detached boundary layers. The derivation of an analytical expression for accu-

rate prediction of the pressure distributions in the flow separation regions of rotating blades,

is introduced in Sec. 2.2.4. Chapter 3 describes the baseline wind turbine and the computa-

tional setups. The validation of the streamtube-based simplified CFD models is presented in

Sec. 3.4.3. The computational results are analyzed and presented in the subsequent Chap. 4,

including the identification of the coherent structures near the blade roots of the baseline wind

turbine, the influence of spinner geometries, and the 3D rotational effect. The last Chap. 5

draws conclusions from this work and makes some suggestions for future work.
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The power overshoot caused by the 3D effect due to rotation is identified in this study by com-

paring the wind turbine aerodynamic performance evaluated from the 3D CFD computations

and that of BEM predictions which use 2D stationary profile data. The classical BEM method

and some correction models which are usually implemented in wind turbine design codes are

introduced in this chapter. In order to understand how the centrifugal acceleration, Coriolis

effects, and spanwise pressure gradient affect the boundary layer over a rotating blade, the or-

der of magnitude analysis of the 3D governing equations of attached and detached boundary

layers is also discussed in this chapter. The derivation of an analytical expression for accu-

rate prediction of pressure distributions in the flow separation region over rotating profiles is

introduced at the end of this chapter.

2.1 blade element momentum theory

2.1.1 The axial momentum theory

A simple way to describe the wind turbine aerodynamics is the axial momentum theory, also

called Rankine-Froude theory (Glauert 1935). The axial momentum theory, which was origi-

nally developed to analyze the energy conversion and efficiency of propellers, was success-

fully applied to wind turbines. The difference between the wind turbines and the propellers

is the direction of energy conversion. The wind turbine extracts kinetic energy from the wind,

whereas the wind extracts kinetic energy from the propeller, imparting a backward motion

to the fluid in order to provide a forward thrust along its axis. The axial momentum theory

described in this study is from the view of energy extractions by the wind turbine.

The axial momentum theory is a very fundamental knowledge in wind turbine aerodynam-

ics, which can be easily found in wind energy textbooks such as Burton et al. (2011). The most

important assumptions, governing equations, and the maximum energy output predicted by

the axial momentum theory are briefly summarized here.

The axial momentum theory replaces the rotor by a homogeneous and infinitely thin disc,

known as Froude’s actuator disc (Glauert 1935), thus no specific rotor design has to be con-

sidered. Flows passing through the actuator disc is divided from those not passing through

the disc by a slipstream (Fig. 2.1). The axial momentum theory considers only axial velocity

components and ignores all the other energy loss sources. The stationary and incompress-

ible flows in the slipstream decelerate smoothly, whereas their pressures increase smoothly

before entering the actuator disc and abruptly drops at the disc plane yielding a thrust on

the disc. Flows after entering the actuator disc then gradually recover their pressures as the

undisturbed flow.

21
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Flows within a control volume enclosed by the slipstream are described mathematically by

the principles of mass conservation

ṁ = ρA∞U∞ = ρADUD = ρAWUW, (2.1)

momentum conservation

T = ṁ (U∞ −UW) , (2.2)

and energy conservation

P = TUD =
1

2
ṁ(U2

∞ −U2
W), (2.3)

where A and U are cross-sectional areas and axial velocities at various axial positions, and the

subscripts of ∞, D and W denote flows at ultimate upstream, the rotor plane, and ultimate

downstream, respectively. Equation (2.1), Eq. (2.2), and Eq. (2.3) derive that the axial velocity

at the rotor plane is the arithmetic mean of those at ultimately upstream and downstream

UD =
1

2
(U∞ + UW). (2.4)

The axial velocities at the rotor plane and in the ultimate wake are usually further reformu-

lated as UD = (1− a) and UW = U∞(1− 2a) by introducing an axial induction factor a.

The axial momentum theory has some restrictions and is only valid for a < 0.5. For a ≥ 0.5,

the axial velocity in the ultimate wake becoming zero or negative violates the basic assump-

tions in the axial momentum theory. Physically, the flow state of a ≥ 0.5 can occur, but the

flow only slows down rather than reverses due to turbulent mixtures between the flows in the

control volume

T

U∞ U∞ U∞

UWU∞ UD

A∞ AD AW

∞ D W

actuator disc

slipstream

p∞ pW = p∞

u = u(x)

p = p(x)

Figure 2.1: The actuator disc model and the slipstream
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slipstream and the undisturbed flows outside the slipstream. Under this condition, the axial

momentum theory breaks down and empirical relationships should be taken into account in

order to determine rotor’s aerodynamic performance.

The overall aerodynamic performance of the actuator disc is usually expressed by the thrust

coefficient

CT =
T

1

2
ρADU2

∞

= 4a(1− a), (2.5)

and the power coefficient

CP =
P

1

2
ρADU3

∞

= 4a(1− a)2, (2.6)

which are defined as the ratios of the energy extracted by the actuator disc and the available

energy of the undisturbed flow passing through the same area as the disc.

The maximum power output occurs at a = 1/3 while CT = 8/9 and CP, max = 16/27. This

maximum power coefficient is usually known as Betz-limit or Lanchester-Betz-Joukowski-limit

(Van Kuik 2007).

2.1.2 Glauert’s general momentum theory

The rotor shaft receives not only thrust but also torque, which leads to a change in the fluid’s

angular momentum and causes wake rotation. Glauert (1935, Chapter III) extended the axial

momentum theory to a more general theory by considering this angular momentum.

Glauert’s general momentum theory replaces the rotor by a rotating rotor disc. Thus, similar

to the axial momentum theory, no specific rotor design is taken into account. The rotor disc

is then divided into many annular elements. Flows passing through an arbitrary annular disc

of a thickness dr at radius r are independent of neighboring flows and can be divided by

two boundaries through the edges of the annular disc, forming an annular shell. The general

momentum theory assumes that the velocity components and the pressure of the flow in the

annular shell are azimuthally constant, and all the other energy loss sources are negligible.

This rotating rotor disc imparts an additional angular momentum to the fluid, leading to

wake rotation, while the axial and radial components remain unaltered. Because of the wake

rotation, a radial pressure gradient occurs in the wake

dpW

drW
= ρω2

WrW (2.7)

in order to balance fluid’s centrifugal force, where p, ω, and ρ denote pressure, angular veloc-

ity, and fluid density, respectively. Thus, the pressure in the wake is lower than the undisturbed

outer flow, i. e., pW ≤ p∞.

The continuity equation of the flow in the annular shell along the rotor axis is

U∞r∞dr∞ = UDrDdrD = UWrWdrW, (2.8)

where U implies axial velocity component, and the subscripts of ∞, D, and W denote ultimate

upstream, the rotor disc, and ultimate downstream, respectively.
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The thrust on the annular rotor disc is equivalent to the decrease in the axial momentum of

the flow in the annular shell

dT = ρUDdAD(U∞ −UW) + (p∞ − pW)dAW, (2.9)

where dA = 2πrdr is the cross-sectional area of the annular shell. Similarly, the torque of the

annular rotor disc is equivalent to the increase in the angular momentum

dQ = ρUD dAD r2
DωD. (2.10)

Furthermore, the power gained by the annular disc is equal to the multiplication of the torque

of the annular disc and the rotor speed Ω

dP = ΩdQ. (2.11)

By applying Bernoulli’s equation, the fluid’s total pressures before entering the rotor disc

p∞ +
1

2
ρU2

∞ = pD +
1

2
ρ
(

U2
D + V2

D

)

(2.12)

and behind the rotor disc

pD − ∆p +
1

2
ρ
(

U2
D + V2

D + r2
Dω2

D

)

= pW +
1

2
ρ
(

U2
W + r2

Wω2
W

)

(2.13)

determine the pressure drop at the rotor plane

∆p = p∞ − pW +
1

2
ρ
(

U2
∞ −U2

W + r2
Dω2

D − r2
Wω2

W

)

, (2.14)

where r2
Dω2

D and r2
Wω2

W indicate the energy loss due to wake rotation. VD is the radial velocity

component at the rotor plane. Since the induced angular velocities in comparison with the ro-

tor speed is very small, all the terms involving the square of the induced angular velocities are

negligible. Thus, the energy loss due to wake rotation in Eq. (2.14) and the pressure gradient

in the radial direction of the wake flow in Eq. (2.7) are negligible. As a result, the pressure in

the ultimate downstream is equivalent to that of the undisturbed free stream, pW = p∞.

The pressure drop at the rotor plane can be also determined by considering the fluid’s

angular velocity relative to the rotating rotor disc. The relative angular velocities of the flow

before the rotor disc, Ω, and behind the rotor disc, Ω−ωD, imply a pressure drop at the rotor

plane

∆p = ρ

(

Ω +
1

2
ωD

)

ωDr2
D. (2.15)

Since the thrust of the annular disc is also equivalent to the integration of the pressure drop

over the annular disc

dT = ∆pdAD, (2.16)

the axial velocity component at the rotor plane is then obtained from Eq. (2.9), Eq. (2.14), and

Eq. (2.16)

UD =
1

2
(U∞ + UW), (2.17)
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Figure 2.2: The maximum energy output of an ideal wind turbine rotor disc predicted by

Glauert’s general momentum theory

which is identical to Eq. (2.4) derived from the axial momentum theory. The angular velocity

immediately behind the rotor disc is reformulated as

ωD = 2a′Ω, (2.18)

where a′ is the rotational induction factor.

The local aerodynamic performance of the rotor disc is usually expressed by the thrust

coefficient

CT =
dT

1

2
ρU2

∞dAD

= 4a(1− a), (2.19)

the torque coefficient

CQ =
dQ

1

2
ρU2

∞rDdAD

= 4a′(1− a)λr, (2.20)

and the power coefficient

CP =
dP

1

2
ρU3

∞dAD

= 4a′(1− a)λ2
r , (2.21)

which are defined as the ratios of the energy extracted by the annular disc and the available

energy of the undisturbed flow passing through the same area as the annular disc, where

λr = rΩ/U∞ is the local speed ratio.

Based on the general momentum theory, the axial and rotational induction factors as a

function of radius for an ideal propeller with minimum energy loss due to wake rotation

were approximated by Glauert (1935). This study modifies Glauert’s approach by consider-

ing the energy conversion direction and derives approximate solutions for the wind turbine

(Appendix A). Figure 2.2 depicts the maximum energy output of an ideal wind turbine rotor

disc with minimum energy loss due to wake rotation and without any other energy loss in an
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incompressible flow. The local performance coefficients as a function of the local speed ratio

show that the rotational induction coefficient is maximum at the rotor center and then de-

creases rapidly with the local speed ratio. In contrast, the axial induction factor and the local

performance coefficients rapidly increase from zero at the rotor center and asymptotically ap-

proaching constant values. The general momentum theory derives that the overall rotor disc

performs better and approaches Betz-limit at high tip speed ratios.

2.1.3 The blade element momentum theory

The momentum theory evaluates the wind turbine aerodynamic performance, but it does not

indicate what kind of blade designs can achieve this result. The blade element method, which

estimates forces experienced by the rotor blades directly, is an alternative way to predict the

aerodynamic performance. The blade element momentum (BEM) method, which is the combi-

nation of the momentum theory and the blade element method, overcomes the disadvantage

of the momentum theory.

The blade element method divides the rotor blade radially into many elements. Flows over

an arbitrary blade element of a length dr at radius r (Fig. 2.3) are independent of those of

neighboring elements. No induced radial velocity components occur over the blade element.

Basically, the aerodynamic forces of the blade element are determined once the flow speed,

the angle of attack, and the aerodynamic characteristics of the blade profile are known.

The flow speed over the blade element at the rotor plane is called the effective velocity which

considers the induced axial and tangential velocities. According to the momentum theory, the

axial velocity component of the flow at the rotor plane is U∞(1 − a), where a is the axial

induction factor. The tangential velocity at the rotor plane, however, has not been specified yet

in the general momentum theory (Sec. 2.1.2).

The tangential velocity at the rotor plane can be determined by observing the blade-bound

circulation of the blade element, which induces an equivalent but opposite angular velocity

±ω′ immediately before and behind the rotor disc (Glauert 1935). The blade-bound circula-

tions which leave the blade tips and blade roots further form a trailing vortex system. This

trailing vortex system must induce an angular velocity ω′ at the rotor plane in order to cancel

the induced tangential velocity due to the blade-bound circulation immediately before the

rotor disc. As a result, the total induced angular velocity immediately behind the rotor disc is

2ω′, which has to be equivalent to the induced angular velocity 2a′Ω derived in the momen-

tum theory. Thus, the angular velocity at the rotor plane is ω′ = a′Ω. Consequently, the fluid’s

tangential velocity relative to the rotor blade at the rotor plane is rΩ(1 + a′).

The effective velocity of the flow over the blade element at the rotor plane

Ueff =

√

(U∞(1− a))2 + (rΩ(1 + a′))2 (2.22)

and the angle of attack

α = φ− β, (2.23)
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are determined, where the inflow angle

φ = tan−1

(

U∞(1− a)

rΩ(1 + a′)

)

= tan−1

(

1− a

λr(1 + a′)

)

. (2.24)

is the angle between the incoming flow and the rotor plane, and β is the angle between the

blade chord and the rotor plane (Fig. 2.3).

For the blade element of a blade chord c in the fluid of density ρ, the lift of the blade element

dL =
1

2
CLρU2

effcdr (2.25)

and the drag of the blade element

dD =
1

2
CDρU2

effcdr (2.26)

are determined, where CL and CD imply the lift and drag coefficients, respectively. By de-

composing the lift and drag into axial and tangential components (Fig. 2.4), the local thrust

coefficient

CT = σ(CL cos φ + CD sin φ)
U2

eff

U2
∞

(2.27)

and the local torque coefficient

CQ = σ(CL sin φ− CD cos φ)
U2

eff

U2
∞

, (2.28)

based on the forces experienced by the blade element are obtained, where B is the numbers

of blades and

σ =
Bc

2πr
(2.29)

dr
r

U∞

Ω

β

αφ
Rotor plane

U∞(1− a)

rΩ(1 + a′)

Ueff

Figure 2.3: Velocity components experienced by a blade element of a horizontal axis wind

turbine
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dD

dL cos φ + dD sin φ

dL sin φ− dD cos φ

φ

Ueff

Figure 2.4: Decomposition of the lift and drag on the blade element in the axial and tangential

directions

is the local blade solidity.

The BEM method suggests that the aerodynamic loads determined by the blade element

method are equivalent to those determined by the momentum theory, thus the axial induction

factor is obtained from Eq. (2.19) and Eq. (2.27)

a =
1

4 sin2 φ

σCn
+ 1

, (2.30)

where Cn = CL cos φ + CD sin φ. The effective velocity in Eq. (2.27) is replaced by Ueff =

U∞(1− a)/ sin φ. Similarly, the rotational induction factor is determined from Eq. (2.20) and

Eq. (2.28)

a′ =
1

4 sin φ cos φ

σCt
− 1

, (2.31)

where Ct = CL sin φ − CD cos φ. One of the effective velocities in Eq. (2.28) is replaced by

Ueff = U∞(1− a)/ sin φ and the other by Ueff = rΩ(1 + a′)/ cos φ.

The azimuthally uniform flow field assumed in the momentum theory contradicts the re-

ality because the discrete rotor blades induce azimuthally distributed flow fields and lead

to tip/root loss. The tip/root loss is usually considered in the BEM method by employing

Prandtl’s loss correction factor

F =
2

π
cos−1(e− f ) (2.32)

into the axial momentum equation

CT = 4aF(1− a) (2.33)

and tangential momentum equation

CQ = 4a′F(1− a) (2.34)

(Glauert 1935), where

f =
B

2

R− r

r sin φ
(2.35)
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Figure 2.5: The discontinuity of Glauert’s empirical correction in turbulent wake states when

considering the tip loss correction factor

for the tip loss and

f =
B

2

r− Rroot

r sin φ
, (2.36)

for the root loss. Rroot is the root radius. The overall loss factor considering both the tip

and root loss factors is superposed by F = FtipFroot, where Ftip and Froot are tip and root

loss factors, respectively. Thus, the axial and rotational induction factors considering the loss

factors become

a =
1

4F sin2 φ

σCn
+ 1

(2.37)

and

a′ =
1

4F sin φ cos φ

σCt
− 1

, (2.38)

respectively.

As mentioned in Sec. 2.1.1, the momentum theory breaks down for a ≥ 0.5 while the rotor

operates in the turbulent wake state. Glauert measured the thrust coefficient in the turbulent

wake state and observed that the thrust coefficients exceeded the limitation of the momentum

theory. He proposed an empirical relationship fitting the measured data

CT = 0.889− 0.0203− (a− 0.143)2

0.6427
(2.39)

for a > 1/3 (Buhl 2005). However, Buhl (2005) observed a discontinuity between Glauert’s em-

pirical relationship and the momentum theory when the tip loss correction factor is considered

(Fig. 2.5). Buhl proposed another empirical relationship

CT =
8

9
+

(

4F− 40

9

)

a +

(

50

9
− 4F

)

a2 (2.40)
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for a > 0.4 to eliminate this numerical discontinuity (Fig. 2.5).

For a given operating condition and rotor design, the aerodynamic performance of the wind

turbine can be calculated iteratively by the BEM method, see e. g. Hansen (2008).

2.1.4 Determination of angle of attack using inverse BEM methods

Angle of attack is defined in a 2D flow as the angle between the undisturbed incoming flow

and the blade chord. This 2D definition is, however, inappropriate for the 3D flow over wind

turbine blades because of induced axial and tangential velocities. Snel et al. (1994) adopted

the definition of the angle of attack according to the BEM method as the angle between the

effective incoming flow and the blade chord. The effective velocity of the effective incoming

flow is the vectorial sum of the undisturbed wind speed, the blade rotational speed, and the

induced velocity components. The undisturbed wind speed and the blade rotational speed can

be easily measured in field experiments or evaluated from CFD results. The induced velocity

components are, however, a challenge to determine.

The existing methods to determine the angle of attack of the 3D flow include the inverse

BEM approach (Himmelskamp 1950, Snel et al. 1994, Lindenburg 2003, Bak et al. 2006, Guntur

and Sørensen 2015), averaging technique (Hansen et al. 1997, Johansen and Sørensen 2004,

Carcangiu et al. 2007, Herráez et al. 2014), bound vortex (Carcangiu et al. 2007, Shen et al.

2009, Vladimir et al. 2012), and the stagnation angle methods (Ronsten 1992, Brand et al.

1997). The inverse BEM method which solves the induction factors is used in this study to

determine the angle of attack of the 3D flow.

In contrast to the BEM method which evaluate the wind turbine performance coefficients

such as the power coefficient after iteratively solving the momentum equations, the inverse

BEM method requires the performance coefficients as basic input information so as to evaluate

the induction factors. The wind turbine performance, namely the local thrust coefficient

CT =
B∆Fa

1

2
ρU2

∞2πr∆r

(2.41)

and local torque coefficient

CQ =
B∆Ftr

1

2
ρU2

∞2πr2∆r

(2.42)

of a rotor with B number of blades are determined by the axial force ∆Fa and tangential force

∆Ft of a blade section of a length ∆r. By substituting the known performance coefficients

into the momentum equations (Eq. 2.19 and Eq. 2.20), the induced velocities and the angle of

attack are obtained.

The iteration steps of the inverse BEM method implemented in this study are based on

the approach of Snel et al. (1994) and Lindenburg (2003). First, an initial guess for the axial

induction factor, rotational induction factor, and Prandtl’s loss correction factor has to be

specified, e. g., a = a′ = 0 and F = 1. Then,

1. Evaluate the inflow angle using Eq. (2.24).
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2. Evaluate the Prandtl’s loss correction factor using Eq. (2.32).

3. Evaluate the new axial induction factor using Eq. (2.33) or the empirical relationship

such as Eq. (2.40) when CT > CT(a = 0.4, F).

4. Evaluate the new rotational induction factor using Eq. (2.34).

5. Check the relative differences between the new and old induction factors. If the conver-

gence criterion are reached, break the iteration loop and calculate the angle of attack

using Eq. (2.23); otherwise go back to step 1 and repeat the iterations.

2.2 3d boundary layers on rotating blades

The governing equations of the 3D boundary layer on a rotating blade are analyzed here

in order to estimate the dominant parameters which may be responsible for the 3D effect

due to rotation on the boundary layer properties and aerodynamic characteristics. A rotating

reference frame attached to a steadily rotating blade is used. The choice of coordinate systems

is between either the Cartesian coordinates, e. g., Fogarty (1951), Shen and Sørensen (1999),

or the cylindrical coordinates, e. g., Banks and Gadd (1963), Snel et al. (1994). The cylindrical

coordinates are chosen in this study since the 3D effect involves changes in radial components

(Sec. 1.2.3). The origin of the coordinates is at the center of rotation. The velocity components

in directions θ, r, z are vθ , vr, vz, respectively (Fig. 2.6).

The steady, incompressible flow over the rotating blade in the cylinder coordinate system

is expressed by the continuity equation

1

r

∂vθ

∂θ
+

∂vr

∂r
+

∂vz

∂z
+

vr

r
= 0, (2.43)

θ-momentum equation

vθ

r

∂vθ

∂θ
+ vr

∂vθ

∂r
+ vz

∂vθ

∂z
+

vθvr

r
− 2Ωvr =

− 1

ρ

∂p

r∂θ
+

µ

ρ

(

∂2vθ

∂r2
+

∂vθ

r∂r
+

∂2vθ

r2∂θ2
+

∂2vθ

∂z2

)

, (2.44)

r-momentum equation

vθ

r

∂vr

∂θ
+ vr

∂vr

∂r
+ vz

∂vr

∂z
−v2

θ

r
+ 2Ωvθ − rΩ2 =

− 1

ρ

∂p

∂r
+

µ

ρ

(

∂2vr

∂r2
+

∂vr

r∂r
+

∂2vr

r2∂θ2
+

∂2vr

∂z2

)

, (2.45)

and z-momentum equation

vθ

r

∂vz

∂θ
+ vr

∂vz

∂r
+ vz

∂vz

∂z
= −1

ρ

∂p

∂z
+

µ

ρ

(

∂2vz

∂r2
+

∂vz

r∂r
+

∂2vz

r2∂θ2
+

∂2vz

∂z2

)

, (2.46)

where vr/r, vθvr/r and v2
θ/r are coordinate curvature terms due to the choice of the cylindrical

coordinates; 2Ωvr and 2Ωvθ are Coriolis acceleration terms; rΩ2 is the centrifugal acceleration.
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vrvz

Ω

s = rθ
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Figure 2.6: Coordinates system attached to a rotating blade. Adapted from “Sectional predic-

tion of lift coefficients on rotating wind turbine blades in stall” by Snel, Houwink

and Bosschers, 1994, Technical report ECN-C–93-052. Copyright 1994 by the Energy

research Center of the Netherlands (ECN). Adapted with permission.

The occurrence of the centrifugal acceleration over the rotating wind turbine blade is similar

to that over a rotating disc as described in Sec. 1.2.3. The appearance of the Coriolis acceler-

ation is only a consequence of the choice of the non-inertial rotating reference frame. The

chordwise Coriolis acceleration term plays a decisive role in the profile aerodynamic charac-

teristics, once significant radial velocity components are induced.

The order of magnitude of each term in the governing equations is examined in this study,

in order to estimate the dominant parameters in the boundary layer on the rotating blades.

For the attached boundary layer, the boundary layer equations are directly used for the order

of magnitude analysis (Sec. 2.2.1). For the detached boundary layer, the order of magnitude

analysis of Snel et al. (1994) and Corten (2001) model are introduced in Sec. 2.2.2 and Sec. 2.2.3,

respectively. Snel et al. (1994) used the boundary layer equations for the order of magnitude

analysis by considering the different flow features of the detached flow. Corten (2001), how-

ever, dealt with the full set of Navier-Stokes equations because of the invalidity of the bound-

ary layer theory for the flow separation, and proposed a model by neglecting relative small

terms.

In the order of magnitude analysis, each equation is divided by a factor which makes the

dominant terms, or so-called leading terms, become of the order of 1, i. e., O(1). The choice of

the leading terms is important and decisive in the order of magnitude analysis. The chordwise

coordinate rθ is scaled by the chord length c. The radial coordinate r is scaled by the local

radius r. Thus, the azimuthal angle θ is equivalently scaled by the chord-to-radius ratio c/r.

The choice of the reference velocities for the attached and separated flow is different, and is

described in the following sections, respectively.
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2.2.1 Order of magnitude analysis of attached boundary layers

The 3D boundary layer equations considering the boundary layer approximations are formu-

lated as followed, see e. g., Fogarty (1951),

continuity equation:

1

r

∂vθ

∂θ
+

∂vr

∂r
+

∂vz

∂z
+

vr

r
= 0, (2.47)

θ-momentum equation:

vθ

r

∂vθ

∂θ
+ vr

∂vθ

∂r
+ vz

∂vθ

∂z
= −1

ρ

∂p

r∂θ
+

µ

ρ

∂2vθ

∂z2
+

vr

r
(2rΩ− vθ), (2.48)

r-momentum equation:

vθ

r

∂vr

∂θ
+ vr

∂vr

∂r
+ vz

∂vr

∂z
= −1

ρ

∂p

∂r
+

µ

ρ

∂2vr

∂z2
+

(vθ − rΩ)2

r
, (2.49)

z-momentum equation:

∂p

∂z
= 0, (2.50)

where the coordinate curvature term and Coriolis term in the θ-momentum equation are

combined together as a total chordwise Coriolis acceleration, vr(2rΩ− vθ)/r. The coordinate

curvature term, Coriolis term, and the centrifugal term in the r-momentum equation are com-

bined together as a total circumpolar velocity (vθ − rΩ) responsible for the total centrifugal

acceleration (Snel et al. 1994).

The definition of the total centrifugal acceleration explicitly shows that the maximal total

centrifugal force occurs at the wall of a rotating flat disc, and approaches zero at the edge

of the boundary layer. Similarly, considering the flow acceleration on the suction side of a ro-

tating profile, the zero total centrifugal acceleration occurs in the boundary layer rather than

at the edge of the boundary layer. The maximum total centrifugal acceleration occurs at the

profile surface when the circumferential velocity of the external free stream is less than 2rΩ.

The maximum total centrifugal acceleration occurs at the edge of the boundary layer when

the circumferential velocity of the external free stream is higher than 2rΩ.

Because of the dominant chordwise flow motion, the chordwise convective term is chosen

as the leading term, i. e., vθ∂vθ/r∂θ is the leading term of the θ-momentum equation. The

chordwise velocity in the boundary layer is dominated by the external free stream (Fogarty

1951). The external flow velocity which varies along the blade chord is of the same order as

the effective velocity of the flow passing over the blade section at the rotor plane. According

to the BEM method (Eq. 2.22), the effective velocity is reformulated as

Ueff = rΩg, (2.51)

where g = Ueff/rΩ is the ratio of the effective velocity of the flow and the circumferential

velocity of the blade section. This velocity ratio approaches one at high local speed ratios,

particularly near the blade tip. Eq. (2.51) indicates that the effective velocity is approximately

of O(rΩ). Thus, the chordwise velocity in the boundary layer

vθ = O(rΩ) (2.52)
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is scaled with rΩ.

Based on Bernoulli’s equation, the pressure is scaled with (rΩ)2 which leads to the pressure

gradient in the θ-momentum equation of the same order as the leading term vθ∂vθ/r∂θ. The

pressure gradient in radial direction is of O(rΩ2).

The order of the magnitude of the pressure gradient in the radial direction can be alter-

natively approximated by considering the profile pressure coefficient (Snel et al. 1994). The

pressure coefficient of the rotating blade section is defined as

Cp =
p− pref

1

2
ρU2

eff

(2.53)

where the static pressure of the undisturbed free stream is chosen as the reference pressure,

namely pref = p∞. Thus, the pressure gradient in the radial direction in terms of the pressure

coefficient is derived

∂p

ρ∂r
= rΩ2g2

(

Cp +
r

2

∂Cp

∂r
+ Cp

r

g

dg

dr

)

. (2.54)

At the blade section far away from the rotor axis, the pressure coefficient gradient and the

velocity ratio gradient are negligible. Thus, the approximate order of magnitude of the radial

pressure gradient is obtained, ∂p/ρ∂r ≈ rΩ2Cp = O(rΩ2), similar to that obtained from

Bernoulli’s equation.

Because the radial convective motion is substantially driven by the total centrifugal force

and the pressure gradient in the radial direction, the leading term in the r-momentum equa-

tion should be of the same order as them, i. e.,

vθ

r

∂vr

∂θ
= O(rΩ2). (2.55)

Equation (2.52) and Eq. (2.55) yields vr = O(cΩ). Moreover, the shear stress terms and the

convective acceleration normal to the wall in the momentum equations are of the same order

of magnitude according to boundary layer approximations.

The order of magnitude analysis of the continuity equation

1

r

∂vθ

∂θ
+

∂vr

∂r
+

∂vz

∂z
+

vr

r
= 0,

(1)
( c

r

)2
(1)

( c

r

)2
(2.56)

θ-momentum equation

vθ

r

∂vθ

∂θ
+ vr

∂vθ

∂r
+ vz

∂vθ

∂z
=− 1

ρ

∂p

r∂θ
+

µ

ρ

∂2vθ

∂z2
+

vr

r
(2rΩ− vθ),

(1)
( c

r

)2
(1) (1) (1)

( c

r

)2
(2.57)

and r-momentum equation

vθ

r

∂vr

∂θ
+ vr

∂vr

∂r
+ vz

∂vr

∂z
=− 1

ρ

∂p

∂r
+

µ

ρ

∂2vr

∂z2
+

(vθ − rΩ)2

r
( c

r

) ( c

r

)3 ( c

r
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is obtained, where the r-momentum equation is compared to the leading term vθ∂vθ/r∂θ of

the θ-momentum equation. The order of magnitude analysis reveals several important facts:

the radial momentum equation is basically of O(c/r) smaller than the predominant chord-

wise flow, and the chordwise Coriolis acceleration is of the order of (c/r)2 smaller than the

predominant chordwise flow. The effect of the pressure gradient in the radial direction and

the total centrifugal acceleration relative to the chordwise flow is proportional to c/r, which

implies the period of time for the flow passing over the blade.

For the blade sections away from the rotor axis, i. e., c/r ≪ 1, all the terms equal and

higher than the order of (c/r)2 are negligible, which leads to a set of equations identical

to that derived by Fogarty (1951). This set of equations shows that the chordwise flow is

independent of the radial flow and the 3D boundary layer equations become 2D problems.

As the total chordwise Coriolis term no longer effects the chordwise flow, the chordwise

velocity distributions as well as separation positions are the same as under the 2D stationary

conditions. The radial velocity component vr can be solved separately from the r-momentum

equation once the 2D chordwise velocity distribution is known.

For the blade sections near the rotor axis, i. e., c/r ∼ O(1), the total chordwise Coriolis term

in the θ-momentum equation becomes a decisive parameter. Positive total chordwise Coriolis

terms accelerate the flow passing over the rotating blade; negative total chordwise Coriolis

terms decelerate the flow passing over the rotating blade. Since it is expected to have a chord-

wise acceleration on the profile suction side and a chordwise deceleration on the pressure

side, the total chordwise Coriolis terms on the profile suction and pressure sides should be

positive and negative, respectively. In order to estimate the criterion of the total chordwise

Coriolis term, the direction of the radial velocity has to be known first.

The direction of the radial flow is determined by the total centrifugal acceleration and the

spanwise pressure gradient (Eq. 2.58). The total centrifugal acceleration on both the suction

and pressure sides are positive. The spanwise pressure gradient is approximated here by ne-

glecting the pressure coefficient gradient and the velocity ratio gradient in Eq. (2.54). Thus,

negative pressure coefficients on the profile suction side lead to spanwise acceleration to-

wards the blade tip. Similarly, positive pressure coefficients on the profile pressure side lead

to spanwise acceleration towards the blade root. Since both the total centrifugal acceleration

and the spanwise pressure gradient drive the flow on the profile suction side radially towards

the blade tip, the induced radial velocity component is supposed to be positive. Considering

an expected positive total chordwise Coriolis term in the θ-momentum equation and this pos-

itive radial velocity, a criterion of the chordwise velocity distribution on the profile suction is

obtained, vθ ≤ 2rΩ.

Since the flow passing over the profile pressure side decelerates, the chordwise velocity is

lower than that of the external free stream, which means that 2rΩ− vθ > 0. In order to ob-

tain a negative total chordwise Coriolis term in the θ-momentum equation, the radial velocity

component on the profile pressure side has to be negative. That is to say, the absolute value of

the spanwise acceleration due to the spanwise pressure gradient must be higher than the total

centrifugal acceleration, in order to obtain a negative radial velocity component. As a result of

that the spanwise pressure gradient on the profile pressure side is partly balanced by the total

centrifugal acceleration, the induced radial velocity component on the profile pressure side is
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much less than that on the profile suction side. Consequently, the 3D rotational effect on the

profile pressure side is insignificant, agreeing with the results of former research such as Snel

et al. (1994) and Chaviaropoulos and Hansen (2000).

2.2.2 Snel’s order of magnitude analysis of detached boundary layers

The order of magnitude analysis of detached boundary layers was first proposed by Snel et al.

(1994). They considered the very different flow features of detached flows in comparison with

those of attached flows.

They assumed that the chordwise velocity in the flow separation region relative to that of

the attached flow is very small

vθ ≪ rΩ. (2.59)

In contrast to that the chordwise pressure gradient in the flow separation region of a 2D

stationary airfoil is essentially zero, the chordwise pressure gradient of the detached flow

over the rotating blade is assumed very small. Thus, the chordwise velocity is supposed to be

mainly driven by the chordwise Coriolis acceleration

vθ

r

∂vθ

∂θ
= O(Ωvr). (2.60)

Because of the assumption of the relative small chordwise velocity (Eq. 2.59), the coordinate

curvature term vθvr/r in the θ-momentum equation (Eq. 2.44) is also small relative to the

Coriolis term 2Ωvr.

In order to determine the orders of magnitude of the radial and chordwise velocities (Eq.

2.60), Snel et al. (1994) chose the chordwise acceleration in the radial direction as the leading

term in the r-momentum equation and scaled it with the centrifugal acceleration

vθ

r

∂vr

∂θ
= O(rΩ2). (2.61)

Equation (2.59), Eq. (2.60), and Eq. (2.61) derive

vθ = O(c2/3r1/3Ω), vr = O(c1/3r2/3Ω), and vr/vθ = O(c/r)−1/3. (2.62)

The derived results imply that the radial velocity component vr is much greater than the

chordwise velocity vθ for small values of c/r. Consequently, Snel’s order of the magnitude

analysis of the continuity equation
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and r-momentum equation
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of the detached boundary layer over rotating blades is obtained. Snel et al. (1994) commented

that the rotational effect on the detached boundary layer is much stronger than that on the

attached boundary layer. For small values of c/r, the terms of the order of (c/r)2/3 can be

neglected.

2.2.3 Corten’s order of magnitude analysis of detached boundary layers

Because of the invalidity of the boundary layer theory near the onset of flow separation and

in the flow separation region, Corten (2001) argued against Snel’s order of magnitude analy-

sis and proposed another model directly dealing with the full set of Navier-Stokes equations,

which makes his model even valid for the detached flow. Based on the physics of detached

boundary layers, viscous effects are neglected in Corten’s model. Thus the Navier-Stokes equa-

tions become Euler types.

Because flows in the flow separation region, specifically in the bottom of the detached

boundary layer, are nearly motionless in the chordwise direction, all the terms regarding

the chordwise velocity except that in the continuity equation are assumed very small and

negligible, i. e.,

vθ ≈ 0 (2.66)

and

vθ
∂vθ

r∂θ
≈ vr

∂vθ

∂r
≈ vz

∂vθ

∂z
≈ 0. (2.67)

Since the thickness of the detached boundary layer is approximately of the same order as the

chord length, the coordinate normal to the wall, z, is scaled by c, and all the derivatives in the

z direction except that in the continuity equation are neglected. The radial velocity along the

blade chord is assumed approximately constant, thus

∂vr

r∂θ
≈ 0. (2.68)

The second term of the r-momentum equation (Eq. 2.45) is chosen by Corten (2001) as the

leading term rather than the first term as done by Snel et al. (1994) (Eq. 2.61). Equation (2.66)

suggests that the radial motion is substantially driven by the centrifugal force, thus this lead-

ing term should be of the same order as the centrifugal acceleration

vr
∂vr

∂r
= O(rΩ2), (2.69)

which leads to vr = O(rΩ). Subsequently, the orders of magnitude of the chordwise velocity

component

vθ = O(cΩ) (2.70)
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and the velocity component normal to the wall

vz = O(cΩ) (2.71)

are obtained from the continuity equation (Eq. 2.43).

By neglecting these very small terms in the full set of Navier-Stokes equations, the detached

flow over the rotating blade can be illustrated by the continuity equation

1

r

∂vθ

∂θ
+

∂vr

∂r
+

∂vz

∂z
+

vr

r
= 0, (2.72)

θ-momentum equation

1

ρ

∂p

r∂θ
= 2Ωvr, (2.73)

and r-momentum equation

vr∂vr

∂r
= −1

ρ

∂p

∂r
+ rΩ2. (2.74)

Equation (2.73) implies that the chordwise pressure gradient must occur in oder to bal-

ance the chordwise Coriolis acceleration due to the significant radial flows. The commonly

observed triangular pressure distributions suggest that the radial velocity distributions are

constant along the blade chord, agreeing with the assumption of Eq. (2.68). Since the induced

triangular pressure distributions are responsible for the lift augmentation, the lift augmenta-

tion due to the 3D rotational effect on the detached boundary layer can be estimated from

Eq. (2.73) once the radial velocity is known. Equation (2.74) suggests that the radial velocity is

determined by the centrifugal acceleration and the spanwise pressure gradient. Corten (2001)

estimated the spanwise pressure gradient by neglecting the second and third terms in Eq.

(2.54), i. e.,

∂p

ρ∂r
= rΩ2Cp. (2.75)

Substituting Eq. (2.75) into Eq. (2.74) gives

vr = rΩ
√

1− Cp. (2.76)

Corten considered a case that the pressure coefficient on the suction side of a rotating pro-

file varies from −3 at the separation line to 0 at the trailing edge. He then obtained that the

chordwise pressure coefficient gradient varies within

4

r
<

∂Cp

r∂θ
<

8

r
. (2.77)

Sicot et al. (2008) chose an empirical value of Cp = −1 and derived an expression from

Corten’s model

∂Cp

r∂θ
=

1

r

4
√

2

1 + λ−2
r

(2.78)

for the prediction of the chordwise pressure coefficient gradient in the flow separation re-

gion of a rotating profile. However, this semi-empirical relationship is inaccurate and deviates

considerably from their experimental results (Sicot et al. 2008, Fig. 9).
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2.2.4 Pressure distributions in the flow separation regions of rotating blades

Corten’s model gives not only an accurate description of the flow behavior in the flow sepa-

ration region but also a convincing explanation of the mechanism responsible for the 3D

rotational effect. Furthermore, the lift augmentation caused by the triangular pressure distri-

bution due to the 3D rotational effect is able to be estimated from the simplified governing

equations, specifically Eq. (2.73) and Eq. (2.74). Although Corten (2001) and Sicot et al. (2008)

attempted to predict the pressure distribution in the flow separation region, their prediction

deviates considerably from the experimental measurements (Sicot et al. 2008, Fig. 9).

The author of this study supposes, that the inaccuracy of their prediction arises from the

inaccurate prediction of the spanwise pressure gradient by using Eq. (2.75). This study thus

estimates the spanwise pressure gradient directly Eq. (2.54) directly. The pressure coefficient in

the flow separation region on the profile suction side, namely the first term in the parenthesis

of Eq. (2.54), is negative. Since the pressure coefficient on the suction side near the rotor axis

is usually lower than that away from the rotor axis, the spanwise pressure coefficient gradient,

namely the second term in the parenthesis of Eq. (2.54), is supposed to be positive. Because

the velocity ratio decreases with the radius, its radial gradient is negative. In consequence,

the third term in Eq. (2.54) is positive. By considering all these terms, this study posits that

Eq. (2.75) used by Corten (2001) and Sicot et al. (2008) overpredicts the effect of the spanwise

pressure gradient, which eventually results in the inaccurate prediction of the radial velocity

component and the chordwise pressure gradient.

This study suggests that the spanwise pressure gradient in the flow separation region of the

rotating blade is very small and negligible

∂p

ρ∂r
≈ 0. (2.79)

Thus, the radial flow is only driven by the centrifugal force (Eq. 2.74) and

vr = rΩ. (2.80)

Substituting Eq. (2.80) into Eq. (2.73) gives the circumferential gradient of the pressure coeffi-

cient as followed

∂Cp

r∂θ
=

1

r

4

g2
. (2.81)

The derivation in the circumferential direction in Eq. (2.81) is then approximated to the deriva-

tion in the chord direction by

r∂θ ≈ cos β ∂x, (2.82)

where β is the blade twist angle (Fig. 2.3 right). Substituting Eq. (2.82) into Eq. (2.81) gives the

chordwise pressure coefficient gradient as followed

∂Cp

∂(x/c)
=

c

r

4

g2
cos β, (2.83)
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Figure 2.7: The chordwise pressure coefficient gradient in the flow separation region of a ro-

tating profile as a function of the velocity ratio at various chord-to-radius ratios

where the chordwise coordinate x is normalized by the chord length. Since the blade twist an-

gles along wind turbine blades is usually limited, Eq. (2.83) is further simplified as followed

∂Cp

∂(x/c)
=

c

r

4

g2
. (2.84)

The analytical expression Eq. (2.84) used in this study for the prediction of pressure dis-

tributions in the flow separation region of a rotating blade has two advantages. First, it is

suitable for all types of blade profiles since no specific airfoils and no empirical coefficients

are considered. Second, the operating conditions are considered in this analytical expression

by the velocity ratio.

For an arbitrary blade section with known chord-to-radius ratio, the chordwise pressure co-

efficient gradient decrease with increasing velocity ratio (Fig. 2.7). Furthermore, the chordwise

pressure coefficient gradient increases with the chord-to-radius ratio, namely approaching the

blade root. Since the velocity ratio is higher than one, the curves in Fig. 2.7 for g < 1 are

plotted with dashed lines. The analytical expression, Eq. (2.84), derived in this study for the

prediction of pressure distributions in the flow separation region of rotating blades is verified

in Sec. 4.3.2 by comparing with CFD results.
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C O M P U TAT I O N A L S E T U P

This study conducts CFD computations, in order to capture the detailed flow field informa-

tion over a horizontal axis wind turbine for the investigation of the inboard coherent struc-

tures and the 3D effect due to rotation. The computational setup introduced in this chapter is

divided into four sections. The first section describes the geometries and the operating condi-

tions of the baseline horizontal axis wind turbine. This is followed by an illustration of the 2D

CFD computational setup for the determination of the profile aerodynamic characteristics and

the BEM iterations. After that, the 3D CFD setup of the full-scale wind turbine with farfield

boundaries is introduced. This section also demonstrates the determination of the streamtube

coordinates and the inlet/outlet boundary conditions for the streamtube-based CFD models.

The last section describes the CFD setup using these streamtube-based CFD models.

3.1 the baseline wind turbine

This study investigates the flow over the conceptual NREL offshore 5-MW baseline wind

turbine of a rotor diameter of 126 m (Jonkman et al. 2009). The rated mechanical power of the

baseline horizontal axis wind turbine at the rated wind speed U∞ = 11.4 m/s and the rated

rotor speed Ω = 12.1 rpm is 5.30 MW. Its cut-in and cut-out wind speed is 3 m/s and 25 m/s,

respectively. This baseline wind turbine is pitch-controlled. The blade pitch angle and the rotor

speed vary with the operating conditions. For U∞ ≤ 11.4 m/s, the blade pitch angle is zero

and the rotor speed varies from 6.9 rpm to 12.1 rpm. For U∞ ≥ 11.4 m/s, the rotor operates

at the constant rotor speed of Ω = 12.1 rpm, whereas the blade pitch angle varies with the

operating conditions (Tab. 3.1). The rotor rotates clockwise when looking downstream.

The rotor blade of the NREL offshore 5-MW baseline wind turbine consists of various pro-

files (Tab. 3.2). Circular cross-sections are used at the blade root. A series of DU profiles whose

thickness relative to their chord length varies from 40% to 21% are used in the inboard and

Table 3.1: The rotor control of the baseline wind turbine

Wind speed Rotor speed Pitch angle Tip speed ratio Note

U∞ in m/s Ω in rpm in ◦ λ

8 9.16 0 7.55

11.4 12.1 0 7.00 rated

15 12.1 10.45 5.32

20 12.1 17.47 3.99

25 12.1 23.47 3.19

41
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Table 3.2: The blade geometry of the NREL offshore 5-MW baseline wind turbine (Jonkman

et al. 2009)

Rnode Normalized radius Twist Chord Chord-to-radius Pitch axis∗ Airfoil

in m r/R in ◦ c in m c/r -

2.000† 0.0317 0.000 3.542 1.77 0.500 Cylinder

2.867 0.0455 0.000 3.542 1.24 0.500 Cylinder

5.600 0.0889 0.000 3.854 0.688 0.468 Transition

8.333 0.132 0.000 4.167 0.500 0.442 Transition

11.75 0.187 13.31 4.557 0.388 0.403 DU40

15.85 0.252 11.48 4.652 0.294 0.375 DU35

19.95 0.317 10.16 4.458 0.223 0.375 DU35

24.05 0.382 9.011 4.249 0.177 0.375 DU30

28.15 0.447 7.795 4.007 0.142 0.375 DU25

32.25 0.512 6.544 3.749 0.116 0.375 DU25

36.35 0.577 5.361 3.502 0.096 0.375 DU21

40.45 0.642 4.188 3.256 0.080 0.375 DU21

44.55 0.707 3.125 3.010 0.068 0.375 NACA64618

48.65 0.772 2.319 2.764 0.057 0.375 NACA64618

52.75 0.837 1.526 2.518 0.048 0.375 NACA64618

56.17 0.892 0.863 2.313 0.041 0.375 NACA64618

58.90 0.935 0.370 2.086 0.035 0.375 NACA64618

61.63 0.978 0.106 1.419 0.023 0.375 NACA64618

62.90† 0.998 0.000 0.700 0.011 0.375 NACA64618

∗ The blade pitch axis is a dimensionless length from the blade leading edge to the pitch

axis and is evaluated by converting the FAST notations given in Jonkman et al. (2009) to

the actual notations

BladePitch− 0.25 = xbp − xac,

where the terms on the left and right sides are the FAST and actual notations, respectively.

xac is the aerodynamic center, and xbp is the actual blade pitch axis.
† From Bazilevs et al. (2011)
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Figure 3.1: The geometrical properties of the baseline wind turbine

midspan region. NACA profiles with a relative thickness of 18% are used in the outboard re-

gion. The DU airfoils have blunt trailing edges. The blunt trailing edge thickness relative to the

chord length varies from 0.39% to 0.69%, whereas the NACA airfoil has a sharp trailing edge.

This sharp trailing edge of the NACA profile is modified into a blunt trailing edge with a

relative thickness of 0.1% in order to simplify the mesh generation for the CFD computations.

According to the blade design and the profile coordinates (private communication with

N. Timmer, M.Sc., Faculty of Aerospace Engineering, Delf University of Technology), a 3D

computer-aided design (CAD) model of the rotor blade is constructed in Solid Edge (Fig. 3.2).

The CAD rotor blade ignores the blade sections at Rnode = 5.6 m and 8.3333 m in Tab. 3.2

and has a smooth geometry through all the other sections. Specific cylinder aerodynamic data,

used in Jonkman et al. (2009), are also considered in the BEM iterations for these two transition

blade sections. The baseline wind turbine has flat blade tips at Rnode = 62.9 m according to

the design by Bazilevs et al. (2011).

The baseline wind turbine used in this thesis has an elliptical (EL) spinner and a round-

ended nacelle (Fig. 3.3). The spinner and nacelle have cylinder cross-sections when looking

downstream. The spinner and nacelle are connected together smoothly. The maximum diame-

ters of their cross-sections are 4.6 m. The total length of the nacelle and spinner of the baseline

wind turbine is 17 m.

Due to the variety of the spinner forms used by the wind turbine industry, two other spinner

geometries are also considered in this study in order to investigate their influences on the flow

near blade roots. They are blunt elliptical (BE) and blunt conical (BC) spinners (Fig. 3.3). The

blunt elliptical spinner is designed by trimming off the nose of the elliptical spinner. Thus, the

BE spinner has a relative shorter length for the development of the boundary layer. The flow

passing over the BE spinner is expected to be disturbed by the sharp edge of the trimmed

nose. The blunt conical spinner is two times longer than the BE spinner. The BC spinner has a

greater diameter of 5.2 m in order to cover the intersection of the three blade roots. The nacelle
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length of the BC spinner remains the same as the baseline wind turbine. The total length of

the BC spinner and the nacelle is 18.88 m.

3.2 bem iterations and profile aerodynamic data

The BEM method is used in this study to evaluate the overall and local aerodynamic per-

formance of the baseline wind turbine so as to identify the power overshoot due to the 3D

rotational effect by comparing with the CFD results. The BEM iteration requires the profile

aerodynamic data as basic input information. The aerodynamic coefficients of stationary air-

foils are obtained in this study by conducting 2D CFD computations. This section consists

of two subsections. First, the computational setup for the determination of the profile aero-

dynamic data is described in Sec. 3.2.1. The computational setup for the BEM iterations is

subsequently presented in Sec. 3.2.2.

3.2.1 Computational setup of 2D stationary profiles

The aerodynamic data of the 2D stationary profiles used in the BEM iterations, are determined

by conducting 2D CFD computations in the commercial CFD solver ANSYS CFX14.5. Since

CFX provides only 3D solutions, some specific mesh topologies and boundary domain defi-

nitions are considered in order to conduct the 2D computations in the 3D solver. The mesh
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DU35
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Ω
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Figure 3.2: The composition of the baseline wind turbine blade
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Figure 3.3: Various spinner designs of the baseline wind turbine
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SymmetricWall

100c
100c

Figure 3.4: The hexahedral mesh grid (left) and boundary conditions (right) of the 2D CFD

models for the determination of stationary aerodynamic characteristics

grids are generated in ICEM CFD with hexahedral structures (Fig. 3.4). The total number of

elements in the chordwise direction of the profiles is 576. The dimensionless wall distance n+

of the cell adjacent to the blade surface is less than 3. The cell height above the surface has an

expansion ratio of 1.1. This mesh density and its quality are examined by a grid convergence

index (GCI) study (Tab. 3.3). Its estimated, extrapolated relative error is less than 0.2%. Thus,

the error caused by the mesh grid is under control and limited. The 2D mesh grid is generated

in the xy-plane and then extrudes to the z-direction. There is only one element of thickness

0.1 m in the z-direction. The two boundaries parallel the z-plane are set to be symmetric. Us-

ing this mesh design and the symmetric boundary conditions, the computations are quasi

2D because all the components in z direction are zero. The half-circle-shaped inlet boundary

is placed 50 chord lengths away from the trailing edge of the airfoil. The outlet boundary is

placed 100 chord lengths downstream from the trailing edge.

The estimated chord Reynolds numbers

Re =
ρU∞c

µ
(3.1)

and Mach numbers

Ma =
U∞

as
(3.2)

without considering the induced velocities (Fig. 3.5) show that the baseline wind turbine oper-

ate in subsonic flows at high Reynolds numbers of O(106)−O(107), where µ is the dynamic

viscosity and as is the sound speed. Thus, the 2D airfoils are chosen to be operated at the
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Figure 3.5: Estimated chord Reynolds number and Mach number of the baseline wind turbine

without considering induced velocities

Reynolds number of Re = 7 × 106 in isothermal, incompressible air of density ρ = 1.225

kg/m3. Menter’s k-ω shear stress transport (SST) turbulence model is used, because it gives

an accurate prediction of the onset and the amount of flow separation under adverse pressure

gradients (Menter 1994). Since the airfoil operates at a super critical Reynolds number, the

transition from laminar to turbulent boundary layer will occur very near the leading edge.

Thus, no transition model is considered and fully turbulent boundary layer conditions are

employed in all computations.

The angle of attack is controlled by changing the velocity components parallel and perpen-

dicular to the chord at the inlet boundary where a a medium turbulence intensity of 5% is

chosen. Angles of attack between −4◦ and 24◦ with steps of 2◦ are considered. The outlet

boundary has a constant pressure of 101.325 kPa. The two boundaries parallel to the chord

are in phase with each other. No-slip boundary condition is applied on the profile surface.

The flow passing over the airfoil at low angles of attack is attached and steady. In contrast,

boundary layer separation occurs at high angles of attack, causing unsteady flow behavior and

leading to numerical instability. Thus, for each angle of attack, steady RANS computations are

conducted first. If flow separation occurs and leads to periodic aerodynamic loading, unsteady

RANS computations are conducted subsequently. The time step of ∆t = 0.00125 s is used in

the unsteady computations where the aerodynamic coefficients are averaged over 10 periodic

Table 3.3: The grid independence study of the selected NACA64618 airfoil at α = 4◦ for the 2D

CFD models (The conservative order of p = 1 and a safety factor of 1.25 are used.)

Nodes CL CD EERECL
EERECD

GCICL
GCICD

Note

103 % % % %

740 0.908 0.0117 0.49 2.88 −0.61 3.50 baseline

190 0.903 0.0120 0.98 5.75 −2.27 15.3

47 0.887 0.0135 2.75 18.5 −4.51 30.4
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cycles. The steady and unsteady computations are stopped when the residual values less than

the convergence criterion of 10−5. The lift coefficient

CL =
L

1

2
ρU2

∞c

(3.3)

and drag coefficient

CD =
D

1

2
ρU2

∞c

(3.4)

of the 2D airfoils are then evaluated, where L and D are force components perpendicular and

parallel to the undisturbed incoming flow, respectively. U∞ is the velocity of the undisturbed

free stream and c is the chord length.

3.2.2 BEM iterations

The BEM equations are solved iteratively in an in-house Matlab-code. The Matlab-code in-

cludes Buhl’s empirical relationship and Prandtl’s tip/root loss correction factors for the cor-

rection of the 3D effects due to turbulent wake states and end effects. No empirical correction

model for the rotational augmentation is employed in the BEM computations. The BEM itera-

tion stops when the variation of the axial and rotational induction factors are less than 10−5.

An under-relaxation factor is used to avoid numerical divergence. BEM iterations at all the

operating conditions listed in Tab. 3.1 are conducted.

3.3 the farfield cfd models

Steady CFD computations with farfield boundaries are conducted in order to capture the flow

fields for the identification of inboard coherent structures and the preparation of the stream-

tube-based simplified CFD models.

Due to the periodicity of the three bladed rotor, only one rotor blade is considered in this

study, i. e., 120◦ domain. Hexahedral mesh grids with O-grid topologies around the rotor blade

are generated in ICEM CFD (Fig. 3.6). Two dimensionless cell heights adjacent to the blade sur-

face of n+ . 2 and n+ . 30 are considered. Since the expansion ratio of the cell height normal

to the blade surface is kept approximately constant of 1.1, the total number of mesh nodes of

n+ . 2 is 5% higher than that of n+ . 30. However, the difference of the overall power output

between them is less than 0.5%. The mesh grid of n+ . 30 is thus chosen for the CFD computa-

tions with farfield boundaries, in order to reduce computational requirements and accelerate

computations. Computations with three different levels of mesh grid are also conducted for

the mesh independence study. The fine mesh, whose extrapolated relative error of the overall

power coefficient is only approximate 0.1% (Tab. 3.4), is chosen for the computations, because

it has also better resolution for capturing the vortical structures in the near wake. The blade of

the baseline wind turbine is divided into 272 and 196 elements in the chordwise and spanwise

directions, respectively.
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Figure 3.6: The hexahedral mesh grid of the blade section (left) and in the hub region of the

farfield CFD models

The computational domain is divided into a rotational domain and a stationary domain in

order to model the rotational motion of the rotor blades (Fig. 3.7). The total number of mesh

nodes is 29.7× 106, where the rotational domain has the most mesh nodes of 20.3× 106 and

the stationary domain only has 9.38× 106 nodes. The rotational and stationary domains are

connected by interfaces. The stationary domain is 60R and 20R wide in the streamwise and ra-

dial directions, respectively. The rotor is placed 20R downstream from the inlet boundary. The

rotational domain is 3R and 1.5R wide in the streamwise and radial directions, respectively.

The steady CFD computations are conducted in ANSYS CFX14.5 where the same fluid

properties and turbulence model as described in Sec. 3.2 are employed. The rotational domain

has a constant angular velocity which depends on the operating conditions (Tab. 3.1). All the

no-slip walls in the rotating domain rotate together with the rotating domain. This study sim-

plifies the computational setup by neglecting the relative motion between the nacelle and spin-

ner. Similar simplification by rotating the nacelle together with the rotor blades and spinner

was also used by Johansen et al. (2006), Laursen et al. (2007), Rauch et al. (2007). Although the

nacelle does not rotate in reality, its effect is limited and negligible because the shear induced

by the slowly rotating nacelle only occurs near the nacelle surface, having no significant effect

on the airfoil sections. The frozen rotor method is applied to the interfaces of the rotational and

stationary domains. The inlet boundary has a uniform velocity distribution with a medium

Table 3.4: The grid independence study of the farfield CFD models at the rated operating

conditions of U∞ = 11.4 m/s (The conservative order of p = 1 and a safety factor of

1.25 are used.)

Nodes CP CT EERECP
EERECT

GCICP
GCICT

106 % % % %

29.7 0.475 0.739 0.11 0.01 −0.14 −0.01

12.0 0.474 0.739 0.15 0.01 −3.09 −1.44

3.75 0.469 0.735 1.32 0.62 −4.56 −2.12
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Figure 3.7: The boundary conditions of the 3D CFD models

turbulent intensity of 5%. The opening boundary condition has a static pressure of 101325 Pa.

All the operating conditions listed in Tab. 3.1 are considered.

The computations reach convergence when the root mean square (RMS) values of residuals

are less than 10−5. However, this stop criterion is difficult to reach because of the occurrence

of the unsteady von Kármán vortex street in the blade root region. Thus the computations

stop when the mean power output and the mean thrust force of the rotor are stable. The total

number of nodes with residual values higher than 10−3 is about 0.005%. The CFD setup is

thus adequate for the steady computations.

3.4 the streamtube-based simplified cfd models

3.4.1 Determination of streamtube coordinates

Once the CFD computations using farfield boundaries have been conducted, the streamtube

coordinates for the simplified models can be determined. An axisymmetric streamtube cross-

ing through the blade midspan is considered, where the flow is fully attached and approx-

imately two-dimensional (Fig. 3.8). This axisymmetric streamtube is generated by revolving

a streamline passing through a selected start point (r, θ, x). The radial position of the start

points is approximately two times the extent of the flow separation on the suction of the rotor

blade. Here, r = 45 m is used. The start point is chosen at the azimuthal angle of θ = −40◦

and at the rotor plane of x = 0.

3.4.2 Computational setup

The mesh grids of the streamtube-based CFD models are generated in ICEM CFD by removing

the outer blocks and re-associating the edges of the blocks to the curves of the computational

domains. Thus, the mesh nodes of the simplified CFD models are almost identical to those

of the farfield CFD models. The blade has an unchanged number of chordwise elements.

The span-wise number of elements is reduced from 272 to 144. The computational domain

is 3R in the axial direction. The rotor is placed 1R downstream from the inlet boundary. The
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Figure 3.8: Determination of the streamtube coordinates

streamtube-based CFD models have a total number of mesh nodes of approximate 15.1× 106.

The streamtube-based simplified model only has a rotational domain. The inlet boundary

has a medium turbulence intensity and a nonuniform velocity distribution, which is deter-

mined by extracting the flow velocities at the same position from the farfield CFD results.

The outlet boundary has a nonuniform pressure distribution which is similarly obtained from

the farfield CFD results. Because the streamtubes are dependent on the operating conditions,

every operating point has its own corresponding streamtube, mesh grids, and boundary con-

ditions. Steady computations of the streamtube-based simplified CFD models are conducted

and compared with the farfield CFD results so as to validate the streamtube-based simplified

CFD models. The computations of the simplified CFD models using the mesh grids generated

in ICEM CFD have similar difficulties as the farfield computations in reaching the conver-

gence criteria. There are approximate 0.00003% nodes whose maximal residual values are

higher than 10−3.

Table 3.5: The grid independence study of the streamtube-based CFD models at the rated

operating conditions of U∞ = 11.4 m/s (The conservative order of p = 1 and a

safety factor of 1.25 are used.)

Nodes CP CT EERECP
EERECT

GCICP
GCICT

Note

106 % % % %

14.4 0.508 0.672 0.68 0.15 −0.85 −0.19 baseline

2.09 0.505 0.671 1.29 0.29 −24.8 −16.6

0.27 0.407 0.583 20.5 13.3 −49.1 −32.9
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Figure 3.9: The mesh grid generated in AutoGrid5 (left) and the boundary conditions (right)

of the streamtube-based CFD models

In order to improve the mesh quality and accelerate the meshing process, AutoGrid5 9.0-1 is

used to generate the mesh grids for the streamtube-based simplified CFD models. AutoGrid5

provides many templates, which are called row wizards in AutoGrid5, for different turboma-

chines. The axial fan wizard is chosen to generate the mesh grids for the streamtube-based

simplified models. The hub and shroud defined in the axial fan wizard correspond to the hub

and the streamtube of the streamtube-based simplified models.

Computations with three different mesh densities are conducted for the grid independence

study. The aerodynamic performance of the baseline wind turbine with different mesh den-

sities and the corresponding grid convergence indexes are presented in Tab. 3.5. The finest

mesh which has an estimated extrapolated errors of less than 0.7% is chosen for the simpli-

fied models. The blade in this mesh density is discretized into 353 and 129 elements in the

chordwise and spanwise direction, respectively (Fig. 3.9). The dimensionless cell height n+

adjacent to the blade surface is less than 2. The total number of mesh nodes for the simplified

model using the mesh grids generated in AutoGrid is 14.4× 106.

Since two meshing tools are used to generate the mesh grids of the streamtube-based mod-

els, the sensitivity of the aerodynamic performance to the mesh quality and the dimension-

less cell height adjacent to the blade surface has to be identified. Steady computations of

the streamtube-based CFD models using the mesh grids generated in ICEM CFD and Au-

toGrid are conducted. Figure 3.10 depicts the local performance coefficients of the baseline

wind turbine at the rated wind speed of U∞ = 11.4 m/s. The relative differences in the local

performance coefficients between the computations using different meshing tools are also

depicted in Fig. 3.10 with filled bars. Since the streamtube-based simplified CFD model only

includes the domain up to r = 45 m, Fig. 3.10 shows the local performance coefficients only

up to r/R = 0.71. The local performance coefficients of the model using the mesh generated in

ICEM CFD is overall lower than those of AutoGrid5. Significant deviation occurs in the blade

root region. Because the steady computation is unable to capture the unsteady von Kármán

vortex shedding from the cylindrical and blunt blade roots, and the flow state is predomi-

nantly determined by the last iteration where the computation stops, the significant deviation

in the blade root region is supposed to be caused by this reason. Thus, the sensitivity study

focuses only on the positions of r/R > 0.2. The relative differences in the local power and
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Figure 3.10: Sensitivity study of the local performance coefficients to the mesh quality and di-

mensionless cell height adjacent to the blade surface of the baseline wind turbine

at U∞ = 11.4 m/s by using different mesh tools

thrust coefficients except in the inboard region are within 2% and 6%. This manifests that the

mesh quality and dimensionless cell height adjacent to the blade surface have only limited

influence on the local aerodynamic performance.

Similar setups are used in the unsteady computations for the investigation of the rotational

effects, as well as the influences of the spinner geometries on the flow near the blade roots.

The results of steady computations are used as initial conditions. The timestep of the un-

steady computation is 0.00138 sec in which the rotor rotates approximate 0.1◦. This timestep

results in an average Courant number of approximate 4 at U∞ = 11.4 m/s and 20 m/s. The

total simulation time is more than 7 revolutions. The variables such as velocity and pressure

are averaged over the last four revolutions, while the fluid in the computational domain is

completely exchanged by fresh fluid.

The streamtube-based CFD model only has a rotational domain which rotates at a constant

rotational speed depending on the operating conditions (Tab. 3.1). The rotational motion of

the wind turbine rotor in the simplified model is modeled by using the same method as

applied in the farfield models, i. e., rotating all the no-slip walls together with the rotating
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Table 3.6: Comparison of the cumulated aerodynamic performance of the baseline wind tur-

bine up to r = 40 m/s using the farfield and simplified CFD models at U∞ = 11.4

m/s

P T |∆P| /P |∆T| /T Note

kW kN % %

Farfield model 2217.23 286.52 - - baseline

Simplified model 2227.02 286.51 0.44 0.0024

domain. The same fluid properties and turbulence model as used in the farfield computations

are employed in the streamtube-based models. The inlet boundary conditions use the velocity

distributions obtained from the farfield computations (Fig. 3.9). In a similar way, the opening

boundary uses pressure distributions. Two selected operating conditions of U∞ = 11.4 m/s

and 20 m/ with the elliptical, blunt elliptical and blunt conical spinners are considered.

3.4.3 Validation of the simplified CFD models

This study proposes a streamtube-based simplified CFD model in order to reduce computa-

tional requirements and therefore accelerate the unsteady computations. By using the local ve-

locity and pressure distributions as the inlet and outlet boundary conditions, and the free-slip

wall as the boundary condition for the axisymmetric streamtube, the simplified CFD model

is supposed to represent the flow field of the farfield model. For the purpose of validating

the simplified CFD model, the aerodynamic performance and the flow structures of the based

wind turbine of the simplified CFD model are compared with those of the farfield model in

this section. The errors arisen by using the simplified CFD model are also presented here.

The simplified CFD model is identified by comparing two steady computations using the

farfield and streamtube-based simplified CFD models. Both simulations use the mesh grids

generated in ICEM CFD of the dimensionless cell height n+ . 30. Table 3.6 presents the cu-

mulated power and thrust on the baseline wind turbine using the farfield and simplified CFD

models at the rated wind speed of U∞ = 11.4 m/s. Because the simplified CFD model only

considers the domain up to approximately r = 45 m, the aerodynamic performance presented

in Tab. 3.6 cumulates only up to r = 40 m in order to identify the influence of using the sim-

plified model on the overall aerodynamic performance. Table 3.6 explicitly shows that the

relative errors of the overall aerodynamic performance arisen by using the simplified CFD

model up to 0.44% are limited.

Although the overall errors arisen by using the simplified CFD model are limited, its effect

on local aerodynamic performance and local flow structures is of interest to be further inves-

tigated. Figure 3.11 shows the local power and thrust coefficients of the baseline wind turbine

using the farfield and simplified CFD models at the rated wind speed of U∞ = 11.4 m/s.

The differences in the local performance coefficients between the farfield and simplified CFD

models are also depicted in Fig. 3.11 with filled bars. The local performance coefficients of the

simplified CFD model in Fig. 3.11 present only up to r/R = 0.71 because the simplified model
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Figure 3.11: Comparison of the local performance coefficients of the baseline wind turbine

using the farfield and simplified CFD models at U∞ = 11.4 m/s

only considers the domain up to approximately r = 45 m. Figure 3.11 shows an overall good

agreement between the simplified model and the farfield model except near the streamtube

boundary and in the inboard region. The deviation near the blade roots is substantially caused

by unsteady von Kármán vortices shedding from cylindrical blade roots. Due to the insuffi-

cient ability to capture the unsteady vortex shedding when using the RANS computations, the

differences of the local performance coefficients between the farfield and simplified models

are decisively dependent on the last iteration where the simulation stops. Thus, For the valida-

tion of the streamtube-based simplified CFD models, only the deviation near the streamtube

boundary is of interest. Figure 3.11 shows that the deviation near the streamtube boundary

is very limited. The deviation near the streamtube boundary abruptly vanishes at the radial

position slightly away from the streamtube boundary. This observation manifests that the er-

rors arisen by using the streamtube-based simplified model is limited and negligible for all

the flow slightly away from the streamtube boundary. Thus, the streamtube-based simplified

model is validated for the investigation of the flow near the blades roots of the baseline wind

turbine.
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R E S U LT S A N D D I S C U S S I O N

This study utilizes CFD methodology to capture the detailed flow fields over the baseline

horizontal axial wind turbine. The computational results are presented and discussed in this

chapter. This chapter is further divided into three sections, including the coherent structures

near the blade roots, the effect of spinner geometry, and the 3D effect due to rotation.

4.1 coherent structures near the blade roots

4.1.1 An overall description of velocity and pressure fields

A preliminary understanding of the flow field over a horizontal axis wind turbine has been

achieved through momentum theory (Sec. 2.1). The momentum theory adopts many assump-

tions which usually contradict the real flow conditions. With these assumptions, the BEM

method loses accuracy in predicting wind turbine aerodynamic performance. This section

aims to address the deficiency of the 2D flow fields assumed by the momentum theory. In

order to do that, the complex flow field over the 3D baseline wind turbine is presented in the

one-dimensional way, the same as the momentum theory. More specifically, the velocity and

pressure fields are averaged over an annular plane at radius r of a thickness ∆r. This annular

plane moves along the rotor axis, in order to gather the flow variation along the rotor axis. The

wake expansion is neglected by using this evaluation method, thus the flow through the an-

nular planes at various axial positions is approximate to that through an annular shell. At the

rotor plane, the flow is averaged over the effective annular area without the solid rotor blades.

Considering the annular planes at different radii, an overall description of the complex flow

is obtained (Fig. 4.1), where the wind turbine rotor plane is at x/R = 0 and the flow moves

from left, x < 0, to right, x > 0.

The momentum theory assumes that the flow axial velocity decreases smoothly along the

rotor axis and the axial velocity at the rotor plane is the arithmetic mean of the axial velocities

in the ultimate upstream and downstream. By observing the azimuthally averaged 3D flow

over the baseline wind turbine, this description is only valid for the outboard flow (Fig. 4.1 a).

In the inboard region, a flow acceleration, which is unexpected by the momentum theory,

occurs at the rotor plane and yields a velocity peak. The velocity peak is more significant near

the rotor axis. This velocity peak is supposed to be the consequence of the flow acceleration

induced by the 2D effect due to the blade cascade.

Figure 4.1 (a) also shows an unusual flow feature that the axial velocity distribution at

the innermost radius fluctuates behind the rotor plane. This fluctuated velocity distribution

implies complex inboard flow structures and high gradient velocity fields. These complex

inboard flows are presented in the following section (Sec. 4.1.2).

55
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Figure 4.1: Azimuthally averaged velocity components and pressure over the effective annular

area as a function of axial position (rotor plane at x/R = 0)

As described in the momentum theory (Sec. 2.1), accompanying with the smooth decrease

in the axial velocity, the pressure increases smoothly when the flow approaches the rotor plane

and drops abruptly at the rotor plane causing the rotor thrust. The flow pressure then regains

its initial value in the ultimate downstream. These descriptions regarding the variation of the

pressure along the rotor axis agree well with the computational results (Fig. 4.1 b), where the

pressure is expressed by the modified pressure coefficient

Cp,mod =
p− pref

1

2
ρU2

∞

, (4.1)

and the pressure of the undisturbed flow is chosen as the reference pressure, pref = p∞.

In contrast to the axial velocity which has a continuous variation along the rotor axis, the

tangential velocities are zero before the rotor plane and abruptly increases at the rotor plane

(Fig. 4.1 c). The tangential velocity then remains approximately constant in the wake by the

principle of the angular momentum conservation. The induced tangential velocity compo-

nents are more significant near the blade roots, which agrees with the the general momentum

theory (Fig. 2.2 left). Similar to the axial velocity, the tangential velocity in the inboard region

fluctuates behind the rotor plane.
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Figure 4.2: Slice positions and the view direction for studying flow features near the blade

roots

Because the lift augmentation caused by the 3D effect due to rotation is closely related

to radial flows, the radial velocity components are specifically presented here. Figure 4.1 (d)

depicts the azimuthally averaged radial velocity component over the effective annular area

and normalized by the tangential velocity of the local blade sections. This figure shows that

radial velocity components are induced near the rotor plane and there are no significant radial

flow in the ultimate upstream and downstream. Except for the innermost blade section, the

radially outwards velocity components increase approaching the blade tip. At the innermost

blade section, the annually averaged radial velocity distribution is complex and even becomes

negative. This study posits that these radially outwards velocity components are basically

induced by the flow expansion due to flow deceleration. With the increasing complexity of

the rotor geometry and the blade solidity near the rotor axis, the radial velocity distributions

are more complex in the inboard region. Because of the limited quantity of the induced radial

velocity components, specifically in the inboard region, this study suggests that these radial

flows have no significant contribution to the lift augmentation.

4.1.2 Flow near the blade roots

The incoming flow near the rotor axis accelerates when it passes over the spinner and the in-

board blade cascade. Since the blade solidity, which represents the blade cascade, is inversely

proportional to the radius (Eq. 2.29), the flow acceleration due to the blade cascade is sup-

posed to be more pronounced in the inboard region. In order to observe this flow acceleration,

several planes perpendicular to the rotor axis are extracted (Fig. 4.2). The dimensionless veloc-

ity magnitude over these planes are depicted. Because the velocity distributions at different
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Figure 4.3: Time-averaged velocity distributions of the inboard flow over the baseline wind

turbine at the rated wind speed of U∞ = 11.4 m/s.

operating conditions are similar, only the time-averaged velocity fields at the rated wind speed

U∞ = 11.4 m/s are presented.

Figure 4.3 shows that a significant flow acceleration occurs in the near wake of the baseline

wind turbine. This flow acceleration is more prominent near the rotor axis. In the vicinity of

the nacelle surface, low speed shear flows occur due to surface friction (Fig. 4.3 a–d). Moreover,

a low speed region forms behind the nacelle (Fig. 4.3 e–f). Because of the azimuthal periodicity,

the three-bladed baseline wind turbine induces three azimuthally periodic flow regions.

The flow near the blade roots has high velocity gradients. These gradients decrease as the

flow travels downstream and eventually become unnoticeable (Fig. 4.3). The flow at x/R =

0.4, whose velocity distribution is nearly azimuthally uniform, is divided into three regions

(Fig. 4.3 f). First is the low speed region corresponding to the nacelle wake and aligned with

the rotor axis. Second is also a low speed region corresponding to the flow passing through

the airfoil-shaped blade sections with a significant loss of kinetic energy. Third is the region

where the flow passes through the cylinder blade roots and the blade transition sections and

has less kinetic energy loss.
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Figure 4.4: The out-of-plane vorticity distributions evaluated from the time-averaged velocity

fields over the baseline wind turbine at the rated wind speed of U∞ = 11.4 m/s

(The root vortex, base vortices, and trailing vortex are denoted by RV, BV, and TV,

respectively.)

In order to accurately characterize the inboard shear flows, the out-of-plane vorticity, namely

the vorticity component in the rotor axis direction

ωx =
∂v

∂z
− ∂w

∂y
(4.2)

is evaluated. The dimensionless out-of-plane vorticity based on time-averaged velocity fields

is depicted in Fig. 4.4. Kutta-Joukowski theorem (Wislicenus 1947, p.170) and the vortex laws

of Helmholtz (Wislicenus 1947, p.295) suggest that horseshoe vortices will shed at both ends

of the wind turbine blades due to the abrupt drop of the blade-bound circulation. The vor-

tex which sheds from the blade roots is called root vortex. The root vortex is identified and

denoted by RV in Fig. 4.4 . The root vortex shedding from the blade root rotates around its

vortex center against the rotor direction. When looking upstream as presented in Fig. 4.4, the

baseline wind turbine rotates counter-clockwise, thus the root vortex rotates around its vortex

center clockwise with ωx < 0.
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Figure 4.4 also shows other small scale vortices in the near wake of the blade roots, such as

the trailing vortices (TV) which shed from the trailing edges of the rotor blade. The formation

of the trailing vortices is similar to that of the root vortex due to the change in the blade-bound

circulation along the blade. Near the surface of the nacelle, a pair of counter rotating vortices

shedding from each blade root are also observed (Fig. 4.4 a–d). This pair of counter rotating

vortices are supposed to be similar to that observed by Zahle and Sørensen (2011). Since this

pair of vortices are found near the base of the blade root, they are named base vortices and

denoted by BV. As a consequence of the periodicity of three-bladed rotor, three root vortices

and three pairs of base vortices are observed. As the base vortices move downstream, they

merge together at the end of the nacelle and form a vortex along the rotor axis. By the principle

of Newton’s third law, this counter-rotating wind turbine rotor exerts an adverse angular

momentum on the flow, i. e. the wake of the wind turbine rotates against the rotor direction.

In consequence, the overall wake flow rotates clockwise around the rotor axis (Fig. 4.4).

4.1.3 Coherent structures near the blades roots

As the flow passes over the cylinder blade root and the blunt inboard section, massive flow

separation occurs. Streamline topology is used in this study to identify flow separation and

critical points (Fiedler 1987). The critical points in the streamline patterns help to efficiently

characterize the flow features. Figure 4.5 presents the streamline patterns on the blade suction

side at various wind speeds. The attached boundary layer, whose streamline patterns are ap-

proximately parallel to the external free stream can be easily identified. Similarly, the detached

boundary layer with significant radial flows are also identified from the streamline patterns.
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Figure 4.5: The streamline patterns on the blade suction side (The notations F and S imply foci

and saddle, respectively.)
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Figure 4.6: The vortex core structures near the blade roots of the baseline wind turbine at

U∞ = 11.4 m/s (isosurface of Q = 0.05)

The extent of the boundary layer separation is from the blade root up to z/R = 0.32. In

order to accurately characterize the detached flow, this study further divides the separation

region into symmetric and asymmetric parts.

The symmetric flow separation region starts from the base of the cylindrical blade root

and ends approximately at z/R = 0.15, whereas the asymmetric separation region is from

z/R ≈ 0.15 up to the end of flow separation. The symmetric flow separation region indicates

the existence of a von Kármán vortex street which is responsible for the unsteady flow behav-

ior in the near wake. On the base of the symmetric flow separation region, a pair of counter-

rotating vortices are received attention. This pair of counter-rotating vortices are supposed

to be the origin of the counter-rotating base vortices observed in Fig. 4.4. The centers of the

base vortices can be approximately determined by the foci of the streamline patterns, which is

denoted by F in Fig. 4.5. The extent of the base vortex is determined by the saddle points which

are denoted by S in Fig. 4.5. The occurrence of the base vortices are basically the consequence

of the flow passing over the conjunction of the cylinder blade root and the spinner. Similar

vortical structures were also observed by Sumner et al. (2004), Pattenden et al. (2005), Ozturk

et al. (2009), Wang et al. (2009), Palau-Salvador et al. (2009) in experimental and numerical in-

vestigations where the base vortices were induced when flows passed over a cylinder mounted

on a flat plate.

The flow behavior in the asymmetric flow separation region is monotonous and significant

radial flows are involved. The streamline patterns in the flow separation region slightly vary

with the operating conditions, specifically at U∞ = 25 m/s. This change in the streamline

patterns with the operating conditions implies the dependency of the detached flow on the

operating conditions.
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(a) Transient (b) Time-averaged
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r/R

Figure 4.7: The vortex core structures based on (a) the transient and (b) the time-averaged

velocity fields near the blade roots of the baseline wind turbine at U∞ = 11.4 m/s

(isosurface of Q = 0.05)

In order to efficiently identify the vortex cores near the blade roots, the Q-criterion proposed

by Hunt (1987)

Q :=
1

2

(

∣

∣Ωi,j

∣

∣

2 −
∣

∣Si,j

∣

∣

2
)

> 0 (4.3)

is used, where

Ωi,j =
1

2

(

∂ui

∂xj
− ∂uj

∂xi

)

(4.4)

is vorticity tensor and

Si,j =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

(4.5)

is strain-rate tensor. According to the definition of Q-criterion, the vortex core is the spatial

volume where the vorticity is more dominant than the strain rate. Q-criterion has been widely

used to detect the secondary flow structures in turbomachines, such as by Natkaniec (2012).

Figure 4.6 shows the vortex cores near the blade roots by means of the Q-criterion, where

the iso-surface of Q = 0.05 is chosen. The prominent root vortex core and its helical structures

are easily identified by this method. The pair of base vortices near the surface of the nacelle

are also detected. A horseshoe vortex which wraps around the blade root on the surface of

spinner is in advance identified (see the zoom-in picture in Fig. 4.6). The size of the horseshoe

vortex is substantially dependent on the boundary layer thickness on the spinner. Thus, its

influence is supposed to be negligible in comparison with the root vortex and another large

scale vortical structures. Most of the small-scale vortical structures diminish at the end of the

nacelle. Only the helical root vortex and the nacelle wake exist further downstream. Although

Q-criterion provides an easy way to detect the complex vortical structures near the blades

roots, the origin of the root vortex is however still difficult to locate.

The Q-criterion can not only be used to detect the vortical structures of the steady flow but

also those of unsteady flows. Figure 4.7 (a) presents typical instantaneous vortical structures
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trailing vortices

horseshoe vortex
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root vortexdirection

nacelle wake

von Kármán vortices

Figure 4.8: The sketch of the coherent structures near the blade roots of a modern wind turbine

near the blade roots of the baseline wind turbine based on the unsteady computational results

of the wind speed of U∞ = 11.4 m/s. The instantaneous flow consists of many small scale

vortical structures. The helical root vortex structure, as observed in Fig. 4.6 based on the RANS

computational results, cannot be easily identified from this instantaneous representation. In

order to capture the coherent structures, the unsteady velocity fields are averaged over a

period of time and the Q-criterion is applied on the time-averaged velocity fields. Figure 4.7 (b)

shows that the helical root vortices based on the time-averaged velocity fields can be explicitly

identified. The detected vortical structures are almost identical to those based on the steady

simulations (Fig. 4.6). Therefore, the RANS computational results are supposed to be sufficient

for the following investigation with respect to the root vortex origin and development.

According to the detected vortical structures, a sketch which summarizes the prominent

coherent structures near the blade root of the horizontal axis wind turbine is depicted in

Fig. 4.8. It includes the helical root vortex, the trailing vortices which shed from the trailing

edges of the rotor blade, the flow separation with significant radial velocity components, the

unsteady von Kármán vortex street shedding from the symmetric separation region, the pair

of counter-rotating base vortices, the horseshoe vortex, and the low speed nacelle wake.

4.1.4 Root vortex origin and development

The root vortex which sheds from the blade root form a helical structure. This helical structure

is basically caused by the relative motion between the fluid and the rotor blades. By neglecting

the induced axial and tangential velocities which are limited near the blade roots, the spatial

distribution of the helical root vortex can be approximately estimated by the wind speed and
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Figure 4.9: The dependence of the helical pitch on the wind speeds (isosurface of Q = 0.05

based on RANS computational results)

the rotor speed, namely the tip speed ratio. This implies that the helical root vortex structure

is simply dependent on the operating conditions. In order to describe the dependence of the

helical structures on the operating conditions more efficiently, the pitch of the helix which is

defined as the the axial distance for the helix to complete one revolution is considered. Since

the pitch of the helical root vortex is inversely proportional to the tip speed ratio, the pitch of

the root vortex increases with the wind speeds (Fig. 4.9).

In order to accurately describe the helical root vortex structure in space, vortex lines which

represent the center of the vortex core along the vortex filament are considered. This study

uses the vortex line detection method proposed by Sahner (2009) who defined the vortex line

is the ridge line of the Q-invariant, i. e. the maximum value of Q along the vortex tube. The

ridge line of the Q-invariant is determined in this study by detecting the maximal Q-invariant

on various planes perpendicular to the rotor axis (Fig. 4.10 a). Since the inboard flow also

involves other vortical structures such as the based vortices, only the velocity fields within

0.08 ≤ r/R ≤ 0.2 are taken into account.
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Figure 4.10: Determination of (a) the spatial position of the root vortex center and (b) the root

vortex size and strength

The spatial distributions of the root vortex line are depicted in Fig. 4.11. Figure 4.11 (a)

presents the radial position of the root vortex line along the rotor axis. By extrapolating the

data at the rotor plane of x/R = 0, it suggests that the root vortex origin of the baseline wind

turbine is at the blade transition section of 0.1 < r/R < 0.15. This estimate of the root vortex

origin agrees with the argument of Lindenburg (2003) that the root vortex does not shed from

the hub nor the radius of the innermost profile. The estimation of the radial position of the

root vortex is relevant because it influences the accuracy of applying the root loss correction

factor and consequently the accuracy of the BEM method.

Figure 4.11 (a) also shows a dependence that the radial position of the root vortex core de-

creases slightly with increasing wind speeds. Furthermore, the root vortex at all the operating

conditions moves radially outwards at the end of the nacelle and then slightly contracts at

x/R = 0.4. For x/R > 0.4, the distance of the vortex center from the rotor axis increases

again.

The variation of the azimuthal angle of the root vortex line along the rotor axis is also

presented in Fig. 4.11 (b), where the azimuthal angle is defined as the angle between the root

vortex center and the reference blade (Fig. 4.10 a). By neglecting the induced velocities, the

azimuthal position of the helical root vortex along the rotor axis is only dependent on the tip

speed ratio

θ =
( x

R

)

λ. (4.6)

Figure 4.11 (b) depicts not only the azimuthal angle of the root vortex lines determined from

the computational results but also this theoretical relationship (Eq. 4.6). The considerable

deviation between the computational results and the theoretical relationship suggests that

the root vortex is influenced by the induced velocities.

Because the life span of the root vortex is one of the decisive parameters for the wind

park design, the development of the root vortex, specifically its size and strength, is further
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Figure 4.11: The variation of (a) the radial position and (b) the azimuthal angle of the root

vortex line as a function of dimensionless axial position
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Figure 4.12: The development of the root vortex core in (a) size and (b) strength at various

wind speeds

investigated. The size of the root vortex core is determined in this study by evaluating the

cross-sectional area enclosed by the Q-criterion at various x-planes (Fig. 4.10 b). The strength

of the root vortex core is then determined by integrating the out-of-plane vorticity over this

area (Fig. 4.10 b).

Figure 4.12 shows that the development of the root vortex is considerably dependent on the

operating conditions. The size of the root vortex core increases gradually when it sheds from

the rotor blade, and then decreases gradually in the downstream (Fig. 4.12 a). The strength of

the root vortex at various operating conditions shows a similar tendency that the root vortex

strength is maximal near the rotor plane and then decreases gradually in the flow direction

(Fig. 4.12 b). The development of the root vortex size and strength illustrates the same story

that the root vortex dissipates at approximately of x/R = 1.4 at the wind speeds of U∞ = 8
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m/s and 11.4 m/s. Furthermore, the root vortex at high wind speeds has higher strength and

greater size. As a result of that, the influence of root vortices on downstream wind turbines

in a wind farm should be taken into account when the wind turbines operate at high wind

speeds.

So far, this study gives an insight into the root vortex origin and its development along the

rotor axis by analyzing the wake flow directly. However, the information of the wind turbine

wake flow is usually unavailable in the design process. As an alternative way, the root vortex

origin and its strength is estimated in the design process from the blade-bound circulation,

since it is responsible for the vortex shedding. The blade-bound circulation, Γ, along the wind

turbine blade is determined in this study according to Kutta-Joukowski theorem (Wislicenus

1947, p.170),

Γ =
|L|

ρUref
, (4.7)

where L implies lift per unit blade length. The reference wind speed of the 2D stationary

profile is the undisturbed wind speed, Uref = U∞. The reference wind speed of the 3D rotating

wind turbine blade section is the effective wind speed, Uref = Ueff. Figure 4.13 (a) shows that

the blade-bound circulation evaluated from the BEM predictions agrees well with that from

the CFD results. This supports the basic concept of predicting the root vortex origin and

strength from the blade-bound circulation and the following analysis to identify them.

At the wind speeds lower and equal to the rated condition of U∞ = 11.4 m/s, significant

drops in the blade-bound circulation at the blade root and the blade tip indicate significant

vortex shedding from there (Fig. 4.13 a). Furthermore, a slight increase in the blade-bound

circulation in the midspan region indicates slight vortex sheet shedding from the trailing

edge.

As the baseline wind turbine operates at the wind speeds higher than U∞ = 11.4 m/s, the

blade-bound circulation distributions are significantly different from those at the wind speeds

lower and equal to the rated conditions (Fig. 4.13 a). As usual, a significant drop in the blade-

bound circulation at the blade root indicates a significant vortex shedding from the blade

root. With increasing wind speeds, the blade-bound circulation at the blade tip considerably

decreases. Furthermore, the blade-bound circulation decreases gradually from the blade root

towards the blade tip. As a result of these blade-bound circulation distributions, the tip vortex

weakens and the trailing vortices strengthen at high wind speeds.

In order to explicitly identify the origin and the strength of the vortices, the spanwise gra-

dient of the blade-bound circulation is in advance investigated. Figure 4.13 (b) shows signifi-

cant peaks at the blade root and blade tip which indicate the root vortex and the tip vortex,

respectively. The blade-bound circulation gradient in the blade midspan corresponding the

trailing vortices are also observed. This study suggests that the origin of the root vortex is

in the inboard region of the maximal blade-bound circulation gradient. Thus, the root vortex

origin of the baseline wind turbine determined from the CFD results in Fig. 4.13 (b) is at

0.1 < r/R < 0.15, agreeing with the vortex line analysis (Fig. 4.11 a). The root vortex origin

determined from the BEM predictions is slightly higher at 0.15 < r/R < 0.2. The discrepancy

of the root vortex origins determined from the BEM predictions arises from the inaccurate

airfoil data for the blade transition sections (Sec. 3.1). This study further suggests that the
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Figure 4.13: Blade-bound circulation and its spanwise gradient evaluated from the BEM pre-

dictions in black and CFD results in orange (symbol legend see Fig. 4.12)

strength of the root vortex is proportional to the maximal blade-bound circulation gradient

in the inboard region, which derives that the root vortex strength increases with the wind

speed, agreeing with the wake flow analysis (Fig. 4.12 b). Figure 4.13 (b) also demonstrates

the increase in the strength of the midspan trailing votices and the decline of the tip vortex

with the wind speeds.

4.2 effects of spinner geometries

This section presents the sensitivity study of the inboard coherent structures and the aerody-

namic performance of the baseline wind turbine to the spinner geometry.
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4.2.1 Coherent structures

The effect of the spinner geometry on the inboard predominant vortical structures, specifically

the root vortices and the nacelle wake, is identified in this study by comparing the vortex core

structures by means of Q-criterion based on the time-averaged velocity fields. Figure 4.14

shows that the vortex core structures over different spinners are similar, including the helical

root vortices, nacelle wake, and small vortical structures near the surface of the nacelle. One

noticeable difference is the size of the nacelle wake (Fig. 4.14 c). Since the nacelle diameter of

the blunt conical spinner is greater than the other spinners, the increase in the diameter of the

nacelle wake is supposed to closely correlated to the nacelle diameter. With the increase in the

nacelle wake diameter, the interference between the root vortices and nacelle wake may occur.

4.2.2 Aerodynamic performance

The effect of the spinner geometries on the wind turbine performance is discussed in this

section from two aspects, regarding the overall and local aerodynamic performance.

Figure 4.15 shows the relative improvement in the overall power output of the baseline wind

turbine with different spinner designs, where the overall performance is evaluated by integrat-

ing the loads from the rotor center up to r/R = 45 m and the elliptical spinner is chosen as

the reference spinner. Figure 4.15 (a) shows no significant improvement or deterioration in the

mechanical power output among these different spinner designs. A limited improvement in

the power output up to 0.25% is obtained for the wind turbine with the blunt conical spinner.

Similarly, the relative increment in the overall rotor thrust is depicted in Fig. 4.15 (b), which

shows that using the blunt elliptical spinner and the blunt conical spinner yields an increase

in the overall rotor thrust up to 0.7%. This increase in the rotor thrust is supposed to be caused

by the increase in the drag due to the blunt nose and the increased nacelle diameter.

Although the effect of the spinner geometry on the overall wind turbine aerodynamic per-

formance is limited, the extent of its influence on the local aerodynamic performance is of

importance further investigated. Because of the von Kármán vortex shedding from the thick

blade roots, the local power coefficient in the inboard region fluctuates with time. Figure 4.16

(a) Elliptical spinner (b) Blunt elliptical spinner (c) Blunt conical spinner

0.1

0.2

r/R

Figure 4.14: The vortex core structures based on the time-averaged velocity fields near the

blade roots over various spinner geometries at U∞ = 11.4 m/s (iso-surface of

Q = 0.05)
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Figure 4.15: The influence of the spinner geometry on (a) the overall power output and (b) the

overall rotor thrust

depicts the time-averaged local power coefficients and its standard deviation along the rotor

blade at various wind speeds, which shows that the local power coefficients of the baseline

wind turbine with different spinners except for the inboard region are identical. In the inboard

region, the local power coefficients of the baseline wind turbine with the elliptical spinner and

the blunt elliptical spinner are even almost identical. A considerable difference in the local

power coefficient occurs in the inboard region of the wind turbine with the blunt conical spin-

ner. Similarly, the effect of the spinner on the local thrust coefficient is also investigated. Figure

4.17 shows that the spinner geometry has only limited effect on the local thrust coefficient in

the inboard region. Because the aerodynamic contribution of the local blade section is basically

proportional to the radius, this change in the inboard local performance due to the spinner

geometries has no significant effect on the overall performance, agreeing with Fig. 4.15. More-

over, since the flow acceleration and the radial velocity components induced by the spinner

is limited for r/R ≥ 0.187 (Fig. 4.16 and Fig. 4.17), the spinner effect on the inboard profile

aerodynamics is supposed to be negligible.

4.3 3d effect due to rotation

This section, comprehensively and thoroughly investigating the 3D effect due to rotation, is

divided into two subsections. In Sec. 4.3.1, the 3D rotational effects on the wind turbine aero-

dynamic performance, namely power overshoot and lift augmentation, are identified. Section

4.3.2 gives an insight into the 3D rotational effect on the circumferential flow behavior, the

profile aerodynamic characteristics, and in particular the boundary layer properties. Based on

the computational results presented in this section and the order of magnitude analysis in

Sec. 2.2, mechanisms responsible for the 3D rotational effects on the attached and detached

boundary layers are subsequently identified. The analytical expression (Eq. 2.84) derived in

this study for the prediction of pressure distributions in the flow separation region of rotating

blades is validated in the end of Sec. 4.3.2.
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Figure 4.16: Local power coefficients of the baseline wind turbine with various spinner designs
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Figure 4.17: Local thrust coefficients of the baseline wind turbine with various spinner designs

4.3.1 Aerodynamic performance

The power overshoot due to the 3D rotational effects is identified in this study by compar-

ing the mechanical power evaluated from the 3D CFD results and the BEM predictions. The

aerodynamic performance of the 3D CFD results and the BEM predictions corresponds to the

aerodynamic performance with and without the 3D rotational effect, since all the other 2D

and 3D effects except that due to rotation are considered in the BEM iterations.

The left column of Fig. 4.18 depicts the overall power output and rotor thrust of the baseline

wind turbine. The power and thrust evaluated from the CFD results are the mean values over

the least one thousand iterations. The CFD results include loads on the spinner and nacelle,

whereas the BEM predictions only consider the loads on the rotor blades.

For the wind speed lower than the rated condition of U∞ = 11.4 m/s, the overall power

and thrust exerted on the rotor of the baseline wind turbine increase gradually against the

wind speed, and reach maximum values at the rated wind speed. For the wind speed higher

than the rated condition, the overall power decreases slightly, whereas the overall thrust de-



72 results and discussion

creases significantly. At the cut-off wind speed, the overall power decreases by 22% relative

to that at the rated condition, while the overall thrust is approximately one-third of that at

the rated condition. The overall good agreement between the 3D CFD results and BEM pre-

dictions (Fig. 4.18 left column) implies that only limited 3D effects due to rotation on the

pitch-controlled wind turbine.

The efficiency of the wind turbine converting the kinetic energy of wind into mechanical

power is illustrated by the overall power coefficient and the overall thrust coefficient (Fig. 4.18

right column). It shows that at the wind speed less and equal to the rated condition, the

wind turbine performs very well, approaching Betz’s limit. The 3D effect due to rotation only

results in a slight increase in the overall power coefficient at the wind speed less and equal to

the rated condition, while no apparent change in the overall thrust coefficient occurs.

The power deviation factor

ζP =
PCFD − PBEM

PBEM
× 100% (4.8)

and the thrust deviation factor

ζT =
TCFD − TBEM

TCFD
× 100% (4.9)

are introduced in this study, in order to quantify the 3D effect due to rotation on the overall

aerodynamic performance of the baseline wind turbine (Fig. 4.18 left column). It shows that

the 3D effect due to rotation leads to a power overshoot up to 3.8% at the wind speed less and

equal to the rated condition and a limited change up to 0.96% in the overall rotor thrust.

The local power, thrust, and torque coefficients as a function of radius, which make it possi-

ble to locate the extent of the 3D effect due to rotation, are depicted in Fig. 4.19. It shows that

the baseline wind turbine performs very well at the wind speed less and equal to the rated

condition, in agreement with Fig. 4.18. The local power coefficient even reaches a maximum

value of 0.93 CP, Betz. Abrupt drops in the local coefficients at the blade tip and blade root

imply the tip and root losses due to the 3D end effect. At the blade tip, the good agreement

of the local performance coefficients with and without the 3D rotational effect indicates that

Prandtl’s approximation formula (Eq. 2.32) is accurate for the correction of the tip loss.

In the blade root region, the local performance coefficients of the baseline wind turbine

evaluated from the 3D CFD results deviate considerably from those of the BEM predictions,

specifically at the cylinder blade root and the blade transition section. This study suggests

that this considerable deviation in the inboard region is substantially caused by the inaccurate

geometrical description and inaccurate profile aerodynamic data given in the BEM iterations

rather than the 3D rotational effect. For the innermost airfoil sections at r/R = 0.187, the local

performance coefficients of the baseline wind turbine with the 3D rotational effect, namely

those evaluated from the CFD results, are higher than those without the 3D rotational ef-

fect (BEM predictions). This deviation of the local performance coefficient is supposed to be

caused by the 3D rotational effect. However, the local performance coefficients without the

3D rotational effect at r/R ∼ 0.25, near the end of flow separation on the blade suction side

are higher than those with the 3D rotational effect (Fig. 4.5). This deviation contradicts the

expectation of the 3D rotational effect, and might imply the presence of another 2D or 3D

effect.
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Figure 4.18: Comparison of the overall power and thrust on the baseline wind turbine at vari-

ous wind speeds predicted by BEM and CFD computations

In order to identify the lift augmentation caused by the 3D effect due to rotation on the

baseline wind turbine blades, the angle of attack should be first determined for evaluating the

lift and drag coefficients. This study adopts the definition of the angle of attack for the rotat-

ing wind turbine blade from the BEM theory (Eq. 2.23 and Eq. 2.24). The axial and rotational

induction factors are solved in this study iteratively by means of the inverse BEM method

(Sec. 2.1.4).

Figure 4.20 depicts these coefficients evaluated from the CFD results by means of the in-

verse BEM method and those from the BEM predictions. It shows an overall good agreement

between the conditions with and without the 3D rotational effect except the inboard region.

Similar to Fig. 4.19, significant deviation is observed at the cylinder blade root and the tran-

sition section, which is supposed to be substantially caused by the inaccurate geometrical

description and inaccurate aerodynamic data given in the BEM iterations. Furthermore, lim-

ited deviation occurs at the inboard profile sections.

The axial induction factor along the rotor blade decreases considerably with the wind speed,

whereas the rotational induction factor shows a monotonic trend against the wind speed (Fig.

4.20). The rotational induction factor is approximately inversely proportional to the radius, in

agreement with the assumption that the tangential velocity is induced by the trailing vortex
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Figure 4.19: Local power, thrust, and torque coefficients as a function of radius at various wind

speeds

system (Glauert 1935), or see Fig. 2.2. In addition, the rotational induction factor in the inboard

region increase with the wind speed.

The distribution of the loss correction factors in Fig. 4.20 shows the interesting fact that

the loss correction factor over the entire rotor blade is lower than one at the wind speeds

higher than the rated condition. This implies that the entire rotor blade at high wind speeds

undergoes losses due to trailing vortices, in agreement with the increase in the spanwise

gradient of the blade-bound circulation against the wind speed (Fig. 4.13).

The good agreement of the angle of attack evaluated from the CFD results by means of the

inverse BEM method with that from the BEM prediction in Fig. 4.20 suggests that the inverse

BEM method is accurate for determining the angle of attack of the rotating blades. Basically,

the angle of attack is higher in the inboard region and then decreases gradually with the ra-

dius. The angle of attack at the wind speeds higher than the rated condition even becomes

negative in the outboard region. The angle of attack in the inboard region among different

operating conditions shows no significant difference. The high values of the angle of attack

in the inboard region suggests the occurrence of flow separation, which may be consequently

responsible for the power overshoot caused by the 3D effect due to rotation on the baseline

wind turbine.
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Figure 4.20: The axial, rotational induction factors and loss correction factors as a function of

radius at various wind speeds

Because an additional post-processing is needed for the determination of the angle of attack,

the geometrical angle of attack

αgeo = tan−1(λ−1
r )− β, (4.10)

which disregards the induced velocities at the rotor plane is commonly used, such as by

Eggers et al. (2003), Lindenburg (2003). Due to the regardless of the induced velocities, the

geometrical angle of attack is higher than the effective angle of attack. Figure 4.21 shows

the significant deviation of the geometrical angle of attack from the effective angle of attack,

particularly when the wind turbine performs efficiently.

With the evaluated induction factors, the effective velocity at the rotor plane is then ob-

tained (Eq. 2.22). Figure 4.22 compares the chord Reynolds number, Re = ρUeffc/µ, along the

wind turbine blade evaluated from the 3D CFD results and the BEM predictions. Because the

induction factors evaluated from the CFD results are almost identical to those from the BEM

predictions, the chord Reynolds number between them are almost identical. The Reynolds
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Figure 4.22: Local chord Reynolds number as a function of radius at various wind speeds

number over the whole span at various wind speeds varies within 1× 106 and 1.3× 107 which

means that the wind turbine blade is in the critical and supercritical flow regime.

The lift and drag forces of the 3D rotating blades are, then, determined based on the effective

angle of attack and the effective velocity. In order to verify the lift augmentation due to the

3D rotational effect, the lift and drag coefficients of the profiles along the wind turbine blade

are compared with those of the 2D stationary airfoils (Fig. 4.23). This study assumes that the

flow over the 3D rotating wind turbine blade and the flow over 2D stationary profile can be

regarded as the flows with and without the 3D rotational effect, respectively. Thus, the lift

augmentation is able to be identified by comparing the aerodynamic coefficients of the 3D

rotating wind turbine blades and those of the 2D stationary profiles.
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Figure 4.23 shows a good agreement over the entire rotor blade except the inboard blade

sections. The blade sections at r/R ≥ 0.382, which involves the DU30, DU25, DU21, and

NACA64618 airfoils, experience attached flows (Fig. 4.5). This indicates no significant 3D

rotational effects on the boundary layer, thus the aerodynamic coefficients agree well with the

2D stationary profile data.

The blade sections in the inboard region regarding the DU40 and DU35 airfoils are at the

post-stall and pre-stall conditions based on the 2D profile data (Fig. 4.23). This implies that

the inboard blade sections are expected to experience the flow separation, which is verified

in Fig. 4.5. The innermost DU40 profile of the 3D rotational blade at U∞ = 8 m/s, 11.4 m/s,

and 15 m/s has a significant lift augmentation relative to the 2D airfoil data at deep stall.

The rotating DU40 profile has a decrease in the drag coefficient relative to the 2D stationary

profile data. The aerodynamic coefficients of the 3D rotating DU35 profile basically agree well

with the 2D profile data in the linear attached flow region, however the lift coefficients of the

rotating DU35 profile deviate from those of the 2D stationary airfoil at the angles of attack

near stall. The drag coefficient of the rotating DU35 profile has no significant change. In order

to understand the mechanism responsible for the change in the aerodynamic coefficients, the

circumferential flow behavior, the aerodynamic characteristics, and the boundary layer prop-

erties of the rotating profiles are in-depth investigated in the following section.
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4.3.2 Mechanisms of the 3D effect due to rotation

This section aims to give an insight into the mechanisms responsible for the lift augmentation

caused by the 3D effect due to rotation. The accurate 3D effect due to rotation on the circum-

ferential flow behavior, the aerodynamic characteristics, and the boundary layer properties

are thus identified by comparing the flow over the 3D rotating wind turbine blade, with that

over the 2D stationary profile at the same angle of attack. Since the 2D and 3D effects due

to the other mechanisms except rotation are either negligible or have been considered in the

inverse BEM iterations for determining the angle of attack of the rotating wind turbine blade,

flows over the 3D rotating wind turbine blade and those over the 2D stationary profile are

reasonably regarded as the flows with and without the 3D rotational effect, respectively.

The flow which passes after the suction peak of a stationary airfoil undergoes an unfa-

vorable pressure gradient and decelerates. When the flow is unable to overcome this pressure

gradient, boundary layer separation occurs. Usually, the pressure distribution in the flow sepa-

ration region over an airfoil is approximately constant, see e. g., Betz (1935, Fig. 21). Moreover,

flows in the separated boundary layer recirculates slowly. So far, all the illustration is based

on the observation of the flow over a stationary profile. Thus a question comes up: Whether

the flow over a rotating profile has similar behavior as the flow over a stationary profile?

The answer to this question is apparently negative since one of the most significant changes

caused by the 3D effect due to rotation has been identified in Fig. 4.5, where significant radial

flows in the flow separation region over the rotating blade occur. In the following, the 3D

rotational effect on the flow features, aerodynamic characteristics, and the boundary layer are

comprehensively and thoroughly investigated.

The streamline patterns and the dimensionless velocity magnitude contours of the flow over

the 2D stationary profile and those over the 3D rotating blade at the same angles of attack are

depicted in the first and second rows of Fig. 4.24 and Fig. 4.25. The velocity magnitude is

normalized by a reference wind speed. The reference wind speed of the 2D stationary pro-

file is the undisturbed wind speed in the ultimate upstream, Uref = U∞. The reference wind

speed of the rotating wind turbine blade which considers the induced velocities is the effec-

tive wind speed, Uref = Ueff. The flow separation over the 2D stationary profile can easily be

identified by the closed streamline patterns on the upper surface. In contrast, the flow over the

3D rotating blade has no significant flow recirculation, which implies that the identification

of the flow separation by means of streamline patterns in the profile planes is not inaccurate.

Even though, the flow separation can be approximately identified by the low speed region

near the trailing edge in the velocity magnitude contour plots. The size of the trailing edge

separation of the 3D rotating blade seems smaller than that of the 2D stationary airfoil.

In order to accurately identify the 3D rotational effect on the size of the trailing edge sepa-

ration, the boundary layer thickness is in depth investigated. The boundary layer thickness

of the 3D boundary layer is the distance from the profile surface to the edge of the bound-

ary layer where the total pressure difference is 99% of the total pressure difference of the

undisturbed flow (Kožulović 2007)

δ = n
∣

∣

∣∆pt = 0.99∆pt, ∞
, (4.11)
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Figure 4.24: The circumferential velocity fields and the aerodynamic characteristics of the 3D

rotating wind turbine blades at U∞ = 11.4 m/s and the 2D stationary profiles at

the same angles of attack
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Figure 4.25: The circumferential velocity fields and the aerodynamic characteristics of the 3D

rotating wind turbine blades at U∞ = 20 m/s and the 2D stationary profiles at
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Figure 4.26: Determination of the boundary layer thickness

where n is the coordinate normal to the wall (Fig. 4.26). The total pressure difference is defined

as the difference between the total pressure of the flow and the total pressure at the wall,

∆pt = pt− pt, w. Similarly, the total pressure difference of the undisturbed flow is the difference

between the total pressure of the undisturbed flow and the total pressure at the wall, ∆pt, ∞ =

pt, ∞ − pt, w.

Figure 4.27 depicts the boundary layer thickness on the suction side of the wind turbine

blades, relative to that of the 2D stationary profiles at the same angles of attack. It shows that

the detached flow experiences a significant change in the boundary layer thickness, whereas

the attached boundary layer except that near the separation line has no significant change.

For the innermost blade section of r/R = 0.187 at the rated wind speed of U∞ = 11.4 m/s,

the boundary layer thickness of the detached flow considerably decreases, which agrees with

the common illustration that the 3D rotational effect results in the reduction in the size of the

boundary layer separation. The boundary layer thickness at the blade section of r/R = 0.187

at U∞ = 20 m/s has no significant change. For the blade sections at r/R = 0.252, the boundary

layer thickness of the detached flow increases. This study posits that this increase in the size

of the separation bubble is substantially caused by the mass flow coming from the blade root.

The boundary layer thickness at the blade section of r/R = 0.317 slightly decreases near the

trailing edge.

Figure 4.27 shows that the boundary layer properties of the attached flow are consider-

ably influenced by the detached flow via viscous and turbulent shear. At the blade section

of r/R = 0.187, the boundary layer thickness of the attached flow near the separation point

decreases with the detached flow. Similarly, the boundary layer thickness of the attached flow

near the separation point at r/R = 0.252 increases with the detached flow.

Due to the centrifugal acceleration, the flow in the bottom of the boundary layer has addi-

tional momentum relative to the stationary condition. This additional momentum in the flow

separation region presents in the displacement thickness (Fig. 4.28). In contrast to the bound-

ary layer thickness at the blade section of r/R = 0.187 at U∞ = 20 m/s, its displacement

thickness considerably decreases indicating the increase in the momentum of the detached

boundary layer. Similar to the boundary layer thickness, the increase in the displacement



4 .3 3d effect due to rotation 83

thickness at the blade section of r/R = 0.252 is supposed to be caused by mass flow coming

from the blade root. Only a slight change in the displacement thickness occurs at the blade

section of r/R = 0.317 where the boundary layer is attached nearly everywhere.

Another significant difference in the overall velocity distribution around the airfoils, specif-

ically for the innermost DU40 profile, is also observed from the contour plots of the velocity

magnitude in the first and second rows of Fig. 4.24 and Fig. 4.25. The maximum velocity

magnitude over the upper surface of the 3D rotating profile is considerably higher than that

of the 2D stationary profile. The maximum velocity magnitude over the lower surface of the

3D rotating blade is lower than that of the 2D stationary profile. This increase in the velocity

magnitude over the profile upper surface indicates a decrease in the pressure; the decrease

in the velocity magnitude over the profile lower surface indicates an increase in the pressure.

Because the pressure distribution is responsible for the profile aerodynamic characteristics,

the pressure coefficient distributions of the 2D stationary profile and the 3D rotating blade are

subsequently investigated in order to identify the 3D rotational effect on the profile aerody-

namics.
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Figure 4.27: Boundary layer thickness on the suction side of the 3D rotating wind turbine

blade relative to that of the 2D stationary profile
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The pressure coefficients of the 2D stationary profile and the 3D rotating blade at the same

angle of attack are depicted in the fourth rows of Fig. 4.24 and Fig. 4.25. The profile upper

surface, which corresponds to the suction side has negative pressure coefficients; the profile

lower surface which corresponds to the pressure side usually has positive pressure coefficients.

The pressure coefficient of the 3D rotating blades is different from that of the 2D stationary

profile, specifically for the innermost DU40 profile. Since the flow features of the attached

and detached boundary layers are substantially different, the subsequent discussion of the

change in the pressure coefficient of the attached and detached boundary layers due to the 3D

rotational effect is separated.

For the attached boundary layer, the pressure coefficients on the profile upper and lower

surfaces of the innermost rotating profiles decrease and increase, respectively. These changes

in the pressure coefficients correspond to the change in the velocity fields, which has been

discussed in the preceding paragraph. The pressure coefficient distribution also shows that

the stagnation point of the 3D rotating blade shifts slightly towards the trailing edge, see the

pressure peaks of the profile lower surfaces. This shift of the stagnation point agrees with the

increase in the blade-bound circulation, namely the lift augmentation, due to the 3D rotational

effect (Fig. 4.13 and Fig. 4.23). Because the spanwise gradient of the blade-bound circulation in

the inboard region is responsible for the strength of the root vortex, this increase in the blade-

bound circulation due to the 3D rotational effect may lead to an increase in the root vortex

strength. In some research, such as Ronsten (1992) and Brand et al. (1997), the stagnation point

is used to determine the angle of attack of the rotating blades. However, the stagnation angle

method is inaccurate, specifically in the inboard region when the 3D effect due to rotation

dominates the profile aerodynamics.

The pressure coefficient on the upper surface of the innermost rotating DU40 profile is

considerably lower than that of the 2D stationary airfoil (see the fourth rows of Fig. 4.24 and

Fig. 4.25). The pressure distributions of the rotating DU35 profiles, which are slightly further

away from the rotor axis relative to the DU40 profiles, are almost identical to those of the 2D

stationary profiles. This suggests that the change in the pressure distribution of the attached

boundary layer due to the 3D rotational effect may be very sensitive to the radial position, or

that there is another significant 2D or 3D effect dominates the aerodynamic performance of

the innermost DU40 profile.

The 3D boundary layer equations (Sec. 2.2.1) show that the change in the pressure coeffi-

cients of the attached boundary layer is caused by the chordwise Coriolis acceleration due

to the radial velocity components. In order to understand the correlation of the change in

the pressure distribution with the chordwise Coriolis acceleration due to the radial velocity

components, the radial velocity distributions over the 3D rotating blades are investigated.

The third rows of Fig. 4.24 and Fig. 4.25 show that the radial velocity components over the

attached boundary layer are limited. The maximum radial velocity component takes place

near the leading edge of the rotating profile, where the flow moves radially towards the blade

tip. The chordwise Coriolis acceleration caused by these limited radial velocity components

on the profile suction side may be responsible for the decrease in the pressure coefficients

near the suction peak on the upper surface. Similarly, an increase in the pressure coefficient

on the profile lower surface requires a corresponding chordwise Coriolis deceleration. This
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Figure 4.29: Displacement thickness of the Ekman layer and the 3D boundary layer on the

suction side of the wind turbine blade

indicates that negative radial velocity components, namely radial flow towards the blade root,

are essential for the cause of this deceleration. However, no significant, negative radial veloc-

ity component over the profile lower surface is observed. This suggests that there might be

another significant 2D or 3D effect which influences the flow features over the 3D rotating

blade.

According to the order of magnitude analysis of the attached boundary layer, the radial

velocity components of the attached flow are driven by the spanwise pressure gradient and the

total centrifugal acceleration. The contribution of the centrifugal acceleration on the attached

boundary layer is estimated using the criterion of Früh and Creech (2015), who suggested that

the rotational augmentation occurs

if and only if δ1, E < δ1, (4.12)

where

δ1, E =
1

2

√

ν

Ω
(4.13)

is the displacement thickness of the Ekman layer and δ1 is the displacement thickness of the

boundary layer. The displacement thickness of the Ekman layer is dependent only on the fluid

properties and the rotational speed, and is approximately 1.71× 10−3 ∼ 1.96× 10−3 for the

baseline wind turbine. The displacement thickness of the 3D boundary layer on the suction

side of the rotating profile is evaluated and depicted in Fig. 4.29. Except the region near the

leading edge, almost the entire profile satisfies Früh’s criterion. This suggests that these wind

turbine blade sections experience the 3D rotational effect considerably. However, the limited

change in the lift coefficient (Fig. 4.23) and the pressure coefficient distribution (the fifth rows

of Fig. 4.24 and Fig. 4.25) of the rotating profiles at r/R = 0.252 and 0.317 contradict this

statement.

The fourth rows of Fig. 4.24 and Fig. 4.25 also show that the pressure coefficients of the

3D rotating profiles increase gradually from the separation point towards the trailing edge,
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whereas the 2D stationary airfoils have typically flat pressure distributions in the flow sepa-

ration region. This chordwise pressure gradient in the flow separation of the rotating blade

indicates a failure to identify the flow separation region by means of the flat pressure distri-

bution. Thus a reliable method for determining the onset of the flow separation is required.

The flow in the detached boundary layer over the 2D stationary profile recirculates due to

the momentum transported from the external flow via the viscous and turbulent shear near

the edge of the boundary layer. This shear flow drives the upper part of the detached boundary

layer to move chordwise towards the trailing edge. Meanwhile, the lower part of the detached

boundary layer moves chordwise towards the leading edge. This reverse flow on the bottom of

the detached boundary layer then departs from the profile surface near the separation point,

and joins to the upper part of the detached boundary layer. This reverse flow on the bottom

of the detached boundary layer leads to negative skin friction coefficients, which is defined

as positive towards the trailing edge. Although the detached boundary layer over the rotating

blade has no significant reverse flow (the second rows of Fig. 4.24 and Fig. 4.25), the skin

friction coefficient is in any case investigated.

In this study, the skin friction coefficient is divided into two components. The component

parallel to the profile plane is called the in-plane skin friction coefficient C f ,‖. The other com-

ponent perpendicular to the profile plane is called the out-of-plane skin friction coefficient

C f ,⊥. The in-plane skin friction coefficient of the 2D stationary airfoil and the 3D rotating air-

foil are depicted in the fifth rows of Fig. 4.24 and Fig. 4.25. The increase in the in-plane skin

friction coefficient on the upper surface of the 3D profiles, relative to the 2D stationary profiles

represents an increase in the chordwise velocity, agreeing with the decrease in the pressure

coefficient. Similarly, the decrease in the in-plane skin friction coefficient of the lower surface

of the rotating profiles corresponds to the decrease in the velocity magnitude and the increase

in the pressure coefficients on the pressure side.

The in-plane skin friction coefficients of the detached flow over the 2D stationary airfoil are

slightly negative due to the reverse flow, whereas the in-plane skin friction coefficients of the

detached flow over the 3D rotating profiles are approximately zero and have no significant

negative quantities. The in-plane skin friction coefficient of the detached flow becomes even

positive near the trailing of the rotating DU35 profiles. Similar positive values of the chordwise

skin friction coefficients were also observed by Guntur and Sørensen (2015, Fig. 7). These

positive in-plane skin friction coefficients agree with the streamline patterns adjacent to the

suction side of the baseline wind turbine blade (Fig. 4.5), showing that the detached flow

moves radially outwards, accompanying with slightly chordwise movement towards to the

trailing edge.

This positive in-plane skin friction coefficient implies the uncertainty of using the in-plane

skin friction coefficient criterion, c f ,‖ ≤ 0, to identify the flow separation over the 3D rotating

blades. Thus this study proposes a new criterion

dC f ,‖
dx

= 0 and
d2C f ,‖

dx2
> 0, (4.14)

as an alternative way to determine the onset of the boundary layer separation when the con-

ventional criterion, C f ,‖ ≤ 0, fails. The first relationship of this new criterion indicates that the

flow separation point is at the position where the chordwise gradient of the in-plane skin fric-
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Figure 4.30: Comparison of the separation points on the 3D rotating wind turbine blade rela-

tive to those of the 2D stationary profiles at the same angles of attack

tion coefficient on the profile suction side is equal to zero. The second relationship is specified

in order to exclude the suction peak.

The significant out-of-plane skin friction coefficients in the flow separation region (the sixth

rows of Fig. 4.24 and Fig. 4.25) agree with the significant radial flows observed in Fig. 4.5. The

spanwise skin friction coefficient increases abruptly after entering the flow separation region,

and then decreases slightly toward the trailing edge. There are also slight skin friction coeffi-

cients in the attached boundary layer which agrees with the slight radial velocity component

over the attached boundary layer (the third rows of Fig. 4.24 and Fig. 4.25).

In order to verify the common description that the 3D rotational effect leads to the shift of

the separation point towards the trailing edge, the separation point is in depth investigated.

Figure 4.30 depicts the position of the separation point of the rotating blade relative to that

of the stationary profile at the same angle of attack. It shows that the separation points of the

blade sections at r/R = 0.187 and 0.317 slightly shift towards the trailing edge up to 6% of the

blade chord, agreeing with the common illustration that the 3D rotational effect results in the

delay of separation lines. However, the separation points of the blade sections at r/R = 0.252

shift towards the leading edge up to 10% of the blade chord. The advance of the separation

point toward the leading edge might be, as Corten (2001) suggested, caused by the significant

radial flow in the detached boundary layer from the blade root.

In the preceding paragraph, it has been shown that there are limited radial velocity compo-

nents of the attached flow and significant radial velocity components in the detached bound-

ary layer (the third rows of Fig. 4.24 and Fig. 4.25). According to the order of magnitude

analysis of the attached and detached boundary layers (Sec. 2.2.1 and Sec. 2.2.3), the total cen-

trifugal acceleration and the spanwise pressure gradient are the sources responsible for the
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radial velocity components. The predominant source among them is discussed in the follow-

ing paragraphs.

The spanwise pressure gradient is estimated by Corten (2001) by neglecting the second and

the third terms of Eq. (2.54). The accuracy of this estimation is verified in this study. The

first column of Fig. 4.31 presents pressure coefficient distributions on the profile suction sides

without and with the 3D rotational effect. The pressure coefficient without the 3D rotational

effect is obtained by interpolating the 2D stationary profile data at the same angles of attack

as the 3D rotating wind turbine blade; the pressure distribution with the 3D rotational effect

is obtained from the 3D CFD results. The separation line is also depicted in Fig. 4.31 with a

dashed line. The pressure coefficient distributions show that the suction peak is more signif-

icant in the inboard region. The estimation of the spanwise pressure gradient by neglecting

the second and the third terms of Eq. (2.54) is quite accurate in the outboard region since the

spanwise gradient of the pressure coefficient, ∂Cp/∂r, is very small and negligible (the second

column of Fig. 4.31). However, this estimation is inaccurate in the inboard region where the

considerable spanwise gradient of the pressure coefficient should be taken into account (the

second column of Fig. 4.31). Thus this study does not suggest to use the method adopted by

Corten (2001) to estimate the spanwise pressure gradient, particularly in the inboard region.

In order to avoid any loss of the accuracy of illustrating the spanwise pressure gradient, a

modified pressure coefficient

Cp, mod =
p− pref

1

2
ρU2

∞

, (4.15)

which uses the free-stream wind speed to define the reference dynamic pressure is consid-

ered. Since the spanwise pressure gradient can be described by the spanwise gradient of the

modified pressure coefficient

∂p

∂r
=

1

2
ρU2

∞

∂Cp, mod

∂r
, (4.16)

the spanwise gradient of the modified pressure coefficient is accurate to present the spanwise

pressure gradient.

The modified pressure coefficient distribution shows that the pressure on the profile suction

near the blade tip is much lower than the inboard region (the third column of Fig. 4.31). Aside

from the flow separation region and near the trailing edge, almost the entire profile suction

side undergoes negative spanwise pressure gradients (the fourth column of Fig. 4.31), which

indicates that the flow passing over the profile suction side accelerates radially towards the

blade tip. However, the order of magnitude analysis of the attached boundary layer (Sec. 2.2.1)

shows that the influence of the spanwise pressure gradient relative to the predominant, chord-

wise convective term is of the order of c/r. This fraction of c/r represents the period of time

for the flow to pass over the profile, thus the effect of the spanwise pressure gradient is in-

versely proportional to the radius and only significant near the blade root. The fourth column

of Fig. 4.31 also shows an important fact that the spanwise pressure gradient of the 3D rotating

blades in the inboard region is more moderate than that of the 2D prediction. This moderation

in the spanwise pressure gradient is the consequence of the decrease in the pressure on the

profile suction side (the fourth rows of Fig. 4.24 and Fig. 4.25).
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Figure 4.31: The pressure distribution on the blade suction side estimated from the 2D sta-

tionary profile data and evaluated from the 3D rotating wind turbine blade at

U∞ = 11.4 m/s

The positive spanwise pressure gradient in the flow separation region indicates radially-in-

ward acceleration (the fourth column of 4.31). Thus the radial velocity in the flow separation re-

gion driven by the centrifugal acceleration and the limited spanwise pressure gradient should

be less than rΩ, agreeing with the contour plots of the radial velocity components in the third

rows of Fig. 4.24 and Fig. 4.25. This positive spanwise pressure gradient in the flow separation

region also indicates the inaccuracy of Corten (2001) model, who simply used the pressure

coefficient to estimate the spanwise pressure gradient and derived that the radial velocity in

the separation region of the rotating profile is vr = rΩ
√

1− Cp. Since the pressure coefficient

in the flow separation region is negative, the radial velocity component is over-predicted by

Corton and higher than rΩ.

In order to accurately identify the predominant source resulting in the radial flow on the

profile suction side, this study explicitly investigates the spanwise acceleration due to the

spanwise pressure gradient and the total centrifugal force in the r-momentum equation. Since
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the mechanisms responsible for the 3D rotational effect on the boundary layers at different

blade sections are similar (Appendix B), this section only presents the boundary layer of the

blade section at r/R = 0.187 at the wind speed of U∞ = 11.4 m/s.

Figure 4.32 (a) depicts the spanwise accelerations due to the spanwise pressure gradient and

the total centrifugal force at the edge of the boundary layer, where the spanwise accelerations

are normalized by the centrifugal acceleration, rΩ2. Because the pressure gradient normal to

the profile surface is approximately zero in the boundary layer, the spanwise acceleration due

to the spanwise pressure gradient at the edge of the boundary layer also represents that in the

boundary layer.

Figure 4.32 (a) shows that at the edge of the attached boundary layer the total centrifugal

acceleration is higher than the spanwise acceleration due to the spanwise pressure gradient,

thus the total centrifugal acceleration is supposed to be a more dominant source contributing

to the radial velocity components in the attached boundary layer. At the edge of the detached

boundary layer, both the spanwise accelerations are very small. The spanwise acceleration due

to the spanwise pressure gradient is even negative, which has been demonstrated in Fig. 4.31,

indicating radially inward acceleration. These limited spanwise accelerations due to the total

centrifugal force and the spanwise pressure gradient at the edge of the detached boundary

layer cannot explain the significant radial flow in the flow separation region. The spanwise

acceleration in the boundary layer are further investigated.

Figure 4.32 (b) depicts the total centrifugal acceleration in the boundary layer and shows

that the total centrifugal acceleration in the attached boundary layer decreases gradually ap-

proaching the profile surface. The total centrifugal acceleration in the detached boundary layer,

however, shows a totally different distribution. The lower part of the detached boundary layer

has a significant total centrifugal acceleration, whereas the upper part of the detached bound-

ary layer has no significant total centrifugal acceleration.

The total centrifugal acceleration comprises the centrifugal acceleration, the coordinate cur-

vature acceleration, and the Coriolis acceleration (see Sec. 2.2.2). Except the centrifugal acceler-

ation, all the other terms involve the circumferential velocity. The circumferential velocity com-

ponents in the boundary layer are depicted in Fig. 4.32 (c). The good correlation between the

total centrifugal acceleration and the circumferential velocity in the boundary layer explicitly

demonstrates that the circumferential velocity, or more specifically the coordinate curvature

term, dominates the total centrifugal acceleration in the attached boundary layer. Additionally,

the flow in the lower part of the detached boundary layer is only driven by the centrifugal

acceleration because of the negligible chordwise velocity. This evidence supports the validity

of Corten’s model which neglects the coordinate curvature term and the Coriolis terms in the

r-momentum equation (Eq. 2.74).

Although both the attached and detached boundary layers have significant spanwise accel-

eration, the effects of the spanwise acceleration on the attached and detached boundary layers

are substantially different. Figure 4.32 (d) shows that the significant spanwise acceleration in

the attached boundary layer yields no significant radial velocity. In contrast, the centrifugal

acceleration effectively yields significant radial velocity components in the detached boundary

layer. Because of the limited radial velocity components in the attached boundary layer, this
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Figure 4.33: The velocity ratio as a function of normalized radius (RANS computations)

study rationally posits that the significant change in the pressure distribution in the attached

boundary layer (the fourth rows of Fig. 4.24 and Fig. 4.25) are caused by other 2D or 3D effects.

The remainder of this section is the verification of the analytical expression (Eq. 2.84) derived

in this study for the prediction of the pressure distribution in the flow separation region. Since

it has been shown that the spanwise pressure gradient in the flow separation region is limited

(Fig. 4.31), it is valid to neglect the spanwise pressure gradient in the r-momentum equation

for deriving Eq. (2.84).

The fourth rows of Fig. 4.24 and Fig. 4.25 show that the pressure coefficient distribution

along the blade chord in the flow separation region is nearly a linear relationship. This study

determines the chordwise gradient of the pressure coefficient in the flow separation region by

finding the slope of a fitted line through the pressure coefficients in the flow separation region

(the orange lines in the fifth rows of Fig. 4.24 and Fig. 4.25).

Equation (2.84) shows that the chordwise gradient of the pressure coefficient is dependent

on the chord-to-radius ratio and the velocity ratio. The velocity ratio along the rotor blade

is evaluated and depicted in Fig. 4.33. Basically, the velocity ratio decreases with radius and

approaches one near the blade tip. The velocity ratio varies with the operating condition, and

reaches the maximum value up to 2 at the innermost blade section of the baseline wind tur-

bine. With the given chord-to-radius ratio, the chordwise gradient of the pressure coefficient

in the flow separation region as a function of the velocity ratio is depicted in Fig. 4.34 accord-

ing to Eq. (2.84). Figure 4.34 also depicts the chordwise gradient of the pressure coefficient in

the flow separation region of the rotating blade sections at at r/R = 0.187 and 0.252 evaluated

from the 3D CFD results. The overall good agreement between the 3D CFD results and the

analytical expression supports the explanation of the mechanism responsible for the pressure

gradient in the flow separation region caused by the 3D effect due to rotation: The centrifugal

force accelerates the chordwise motionless flow in the bottom of the detached boundary layer

radially towards the blade tip. A chordwise Coriolis acceleration is then induced by Coriolis
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sion

effect on the radial velocity component. However, the chordwise Coriolis acceleration is bal-

anced by a chordwise pressure gradient. This chordwise pressure gradient leads to a pressure

drop on the profile suction side and results in lift augmentation.
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C O N C L U S I O N S A N D F U T U R E W O R K

5.1 conclusions

This section draws conclusions from this work contributing to the understanding of the in-

board complex flows, the 3D effect due to rotation, and its mechanisms based on a numerical

investigation of the inboard flow of a horizontal axis wind turbine.

Not only helical root vortices, trailing vortices, flow separation, unsteady von Kármán vortex

streets, pairs of counter-rotating vortices, and a low-speed nacelle wake but also the horseshoe

vortices which wrap around the blade roots adjacent to the spinner are identified in this study.

The origin of the root vortex of the baseline wind turbine is at the blade transition section,

rather than at the blade section of maximum chord length. This thesis demonstrates that the

formation of the root vortex is closely associated with the sudden drop in the blade-bound

circulation. The strength and life span of the root vortex are substantially dependent on the

tip speed ratios. The origin of the pair of counter-rotating vortices is identified at the base of

the blade roots, similar to the base vortices of a cylinder adjacent to a flat plate.

The hub design only has limited influence on the overall and local wind turbine aerody-

namic performance, agreeing with prior publications.

The 3D effect due to rotation only results in limited power overshoot of the pitch-con-

trolled horizontal axis wind turbine. The lift augmentation caused by the 3D effect due to

rotation is significant in the inboard region where flow separation with significant radial

flows towards the blade tip occurs. This study shows that the 3D rotational effect on the flow

features, aerodynamic characteristics, and boundary layer properties of the attached boundary

layer is distinctly different from those of the detached boundary layer.

The 3D effect due to rotation only yields the limited radial velocity components, which

are basically driven by the total centrifugal acceleration and the spanwise pressure gradients.

These induced radial velocity components then induce chordwise Corolis acceleration which

may eventually result in changes in aerodynamic characteristics such as the decrease in pres-

sure on the profile suction side. This decrease in pressure mitigates the spanwise pressure

gradient, whose effect is carefully studied in the present work.

In contrast to attached flow, the 3D effect due to rotation yields significant radial velocity

components in the bottom of the flow separation reigon, which are substantially driven by the

centrifugal force and the negligible spanwise pressure gradients. These radial velocity compo-

nents then induce chordwise Coriolis acceleration. However, a chordwise pressure gradient

occurs which balances this chordwise Coriolis acceleration.

This study specifically contributes to the accurate prediction of the pressure distribution

in the flow separation region of a rotating blade. An analytical expression of the chordwise

gradient of the pressure coefficient as a function of the chord-to-radius ratio and the velocity

ratio is derived from Corten’s model by a physically based simplification.

95
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This study also demonstrates that the 3D rotational effect may result in the shift of separa-

tion point towards the leading edge, due to the significant radial flow in the bottom of the

detached boundary layer as Corten posited. Furthermore, it is possible that the 3D rotational

effect leads to an increase in the boundary layer thickness, due to the increasing mass flow in

the flow separation region from the blade root.

5.2 future work

This work is concluded by putting forward a number of further research suggestions to build

on the existing work. These suggestions stem from the findings and recommendations of this

study. Researchers may choose to pursue some of these suggestions to further contribute to

the wind turbine aerodynamics. Those are discussed below.

The current work reconsiders as many as possible 2D/3D effects and estimates the extent of

their effects on the flows over horizontal axis wind turbines. Based on this estimation, the 3D

rotational effects could be identified accurately by comparing the flows over the 3D rotating

wind turbine blades and those over the 2D stationary profiles. However, the current results

show that the significant change in the inboard aerodynamic performance, specifically in the

attached boundary layers, is far beyond the extent of the 3D effect due to rotation. The 2D/3D

effects due to the blade cascade and blade solidity may be prominent in the inboard region

and need to be addressed by future studies, in order to develop a more reliable engineering

correction model.

Although the analytical expression derived in this study agrees well with the computational

results, it still needs to be verified by experimental measurements. The current CFD model as-

sumes that the boundary layer over the baseline wind turbine is fully turbulent. Thus, further

research seeking to identify the sensitivity of laminar separation bubbles and laminar-turbu-

lent transition to the 3D rotational effects is needed.
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A
A P P R O X I M AT E S O L U T I O N S O F I D E A L R O T O R D I S C S

Glauert’s general momentum theory (Sec. 2.1.2) derives that the aerodynamic performance

of a rotor disc in an inviscid and incompressible flow is only dependent on the axial and

rotational induction factors, and the local speed ratio (Eq. 2.19, Eq. 2.20, and Eq. 2.21). An

alternative expression of the thrust coefficient

CT = 4a′(1 + a′)λ2
r (A.1)

is obtained from Eq. (2.15) and Eq. (2.16). Since the thrust coefficients (Eq. 2.16 and Eq. A.1)

must be equivalent, a relationship as a function of the axial induction factor, the rotational

induction factor, and the local speed ratio is derived

a(1− a) = a′(1 + a′)λ2
r . (A.2)

Glauert (1935) suggested that for an ideal rotor disc with minimum energy loss due to wake

rotation, the efficiency factor

η =
1 + a′

1− a
=

a

λ2
r a′

(A.3)

is constant all over the disc. Substituting Eq. (A.3) into Eq. (2.17) and Eq. (2.18), the axial

induction factor

a =
λ2

r η(η − 1)

1 + λ2
r η2

(A.4)

and the rotational induction factor

a′ =
η − 1

1 + λ2
r η2

, (A.5)

are reformulated. Thus, the thrust of an ideal annular rotor disc

dT = πR2ρU2
∞

2(η − 1)

λ2η2
G(λr, η) (A.6)

and the power of the ideal annular rotor disc

dP = πR2ρU3
∞

2(η − 1)

λ2η3
G(λr, η) (A.7)

are obtained by substituting Eq. (A.4) into Eq. (2.19) and Eq. (2.21), where

G(λr, η) =
2λ3

r η3(1 + λ2
r η)

(1 + λ2
r η2)2

is a particular function, chosen in this study similarly to Glauer’s approach for propellers.

Therefore, the overall thrust coefficient

CT =

∫ AD dT

1

2
ρU2

∞πR2

=
4(η − 1)

η2
H(λ, η) (A.8)
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and the overall power coefficient

CP =

∫ AD dP

1

2
ρU3

∞πR2

=
4(η − 1)

η3
H(λ, η) (A.9)

of the ideal rotor disc as a function of the efficiency factor and the tip speed ratio are obtained,

where

H(λ, η) =
1

λ2

∫ λ

0
Gdλr

= 1− 2− η

λ2η2
ln
(

λ2η2 + 1
)

+
1− η

λ2η2 + 1
. (A.10)

The maximum energy output of the ideal rotor disc occurs when η = 1.5. At this condi-

tion, the axial induction factor and the rotational induction factor approach 1/3 and 0 with

increasing local speed ratios (Fig. 2.2).
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Figure B.1: Spanwise acceleration and velocity components in the boundary layer on the suc-

tion side of the wind turbine blade at r/R = 0.252 and U∞ = 11.4 m/s
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Figure B.2: Spanwise acceleration and velocity components in the boundary layer on the suc-

tion side of the wind turbine blade at r/R = 0.317 and U∞ = 11.4 m/s
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Figure B.3: Spanwise acceleration and velocity components in the boundary layer on the suc-

tion side of the wind turbine blade at r/R = 0.176 and U∞ = 20 m/s
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Figure B.4: Spanwise acceleration and velocity components in the boundary layer on the suc-

tion side of the wind turbine blade at r/R = 0.252 and U∞ = 20 m/s



3d boundary layers on the wind turbine blade 109

0

1

2

S
p

an
w

is
e

ac
ce

le
ra

ti
o

n

(a) Spanwise acceleration at the edge of the boundary layer

−1

ρ

∂p

∂r

1

rΩ2

(vθ − rΩ)2

r

1

rΩ2

Separation line

0

0.5

1

n
/

δ

(b) Sapnwise acceleration in the boundary layer

0

1

2

(vθ − rΩ)2

r

1

rΩ2

0

0.5

1

n
/

δ

(c) Circumferential velocity in the boundary layer

0

1

2

vθ

rΩ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Dimensionless coordinate x/c

n
/

δ

(d) Radial velocity in the boundary layer

0

0.5

1

vr

rΩ

Figure B.5: Spanwise acceleration and velocity components in the boundary layer on the suc-

tion side of the wind turbine blade at r/R = 0.317 and U∞ = 20 m/s





C U R R I C U L U M V I TA E

contact

Shy-Yea Lin, M.Sc.

Glünderstr. 8

30167 Hannover, Germany

Phone: +49-176-2025-4980

Email: shyyealin@gmail.com

personal details

Date of birth 20th of December, 1983

Place of birth Tainan, Taiwan

Nationality Taiwan

education

09.2002-08.2006 Bachelor of Science National Cheng-Kung University (NCKU), Taiwan

09.2006-06.2008 Master of Science NCKU, Taiwan

research experiences

07.2005-02.2006 Project: Microexplosion of gas-in-liquid compound drops

Department of Mechanical Engineering, NCKU, Taiwan

01.2008-05.2008 Master Thesis: Formation and burning of a stream of gas-in-oil compound drops

Department of Mechanical Engineering, NCKU, Taiwan

08.2008-07.2009 Research assistant

Department of Mechanical Engineering, NCKU, Taiwan

08.2009-07.2010 Research assistant

Department of Aerospace and Systems Engineering, Feng Chia University

since 10.2011 Ph.D thesis: Coherent structures and rotational effects on the flow over spinners

of horizontal axis wind turbines

Institute of Turbomachinery and Fluid Dynamics

language

Mandarin native

Taiwanese native

English very good

German very good

Hanover, November 5, 2016

111




	Abstract
	Kurzfassung
	Contents
	List of figures
	List of tables
	Nomenclature
	Acronyms
	Introduction
	Motivation
	Literature survey
	Effects of spinner geometries on wind turbine aerodynamic performance
	Coherent structures near the blade roots
	Classification of 2D and 3D effects
	The 3D effects due to rotation

	Objectives and approach
	Overview

	Wind turbine aerodynamics
	Blade element momentum theory
	The axial momentum theory
	Glauert's general momentum theory
	The blade element momentum theory
	Determination of angle of attack using inverse BEM methods

	3D boundary layers on rotating blades
	Order of magnitude analysis of attached boundary layers
	Snel's order of magnitude analysis of detached boundary layers
	Corten's order of magnitude analysis of detached boundary layers
	Pressure distributions in the flow separation regions of rotating blades


	Computational setup
	The baseline wind turbine
	BEM iterations and profile aerodynamic data
	Computational setup of 2D stationary profiles
	BEM iterations

	The farfield CFD models
	The streamtube-based simplified CFD models
	Determination of streamtube coordinates
	Computational setup
	Validation of the simplified CFD models


	Results and discussion
	Coherent structures near the blade roots
	An overall description of velocity and pressure fields
	Flow near the blade roots
	Coherent structures
	Root vortex origin and development

	Effects of spinner geometries
	Coherent structures
	Aerodynamic performance

	3D effect due to rotation
	Aerodynamic performance
	Mechanisms


	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Approximate solutions of ideal rotor discs
	3D boundary layers on the wind turbine blade
	Curriculum vitae

