
Diss. ETH No. 9858

Programming Real-Time Multi-Computers for Signal Processing

A dissertation submitted to the Swiss Federal Institute of Technology,
Zurich,

for the degree of Doctor of Technical Sciences.

Presented by Urban Andreas Thoeni, Dipl. El.-Ing. ETH

Born January 31, 1961
Citizen of Siterva, GR and Riehen, BS

Accepted on the recommendation of

Prof Dr. H.P. Geering, examiner
Prof. Dr. A. Kündig, co-examiner

1992

also published in revised and expanded edition as:

Urban A. Thoeni

Programming Real-Time Multicomputers for Signal Processing

Prentice Hall International Series in Acoustics, Speech, and Signal
Processing

Hemel Hempstead: Prentice Hall International (UK) Limited, 1994
ISBN 0-13-489857-5

To those who love and encourage me:
my parents Claudia and Gion Peder

my wife Angelika
our children Severin, Roman, and Ursina

viii Contents

Linear State Feedback 24
Linear State Feedback with Estimator 24
Optimal Estimator: The Kalman Filter 24

3.4 General Systems 25
3.4.1 Linear Systems 25
3.4.2 Nonlinear Systems 25

3.5 Solving Nonlinear System Equations by Numerical Integration 26
3.5.1 One-step Method: Fourth-order Runge-Kutta Algorithm 27
3.5.2 Multistep Method: Fourth-order Adams-Bashforth Algorithm 28

3.6 Signal Processing Applications 29
3.6.1 Digital Filtering 30

Finite Impulse Response (FIR) Filters 30
Infinite Impulse Response (IIR) Filters 31

3.6.2 Signal Transforms 32
Discrete and Fast Fourier Transforms 32
Recursive Formulation of the One-dimensional Mixed-
radix FFT 33
Matrix Formulation of the FFT 37
Convolution, Correlation, and Spectral Estimation 40

3.7 Matrix Computations 41
3.7.1 Basic Vector and Matrix Computations 42

Scalar-vector Computations 43
Vector-vector Computations 43
Matrix-vector Computations 44
Scalar-matrix Computations 45
Matrix-matrix Computations 45
Block Matrix Computations 46

3.7.2 Solution of Systems of Linear Equations 46
3.7.3 Matrix Inversion 47

3.8 References 48

4 Preparing the Data Flow Graph for Partitioning 53
4.1 Data Flow Graph Generation 53
4.2 Communication Volume Analysis 56
4.3 Graph Expansion 56

4.3.1 Forall Nodes 57
4.3.2 Function Calls 58

4.4 Execution Cost Analysis 59
4.4.1 Communication Costs 59
4.4.2 Node Execution Costs 61

4.5 References 62

5 Partitioning the Data Flow Graph into Tasks 63
5.1 Building Tasks 63

vii

Contents

Preface xi

Nomenclature xiii

1 Introduction
1.1 Real-time Signal Processing and Data Flow Computations 1
1.2 Book Outline 3

2 Problem Outline 5
2.1 Types of Multiple-processor Systems 5
2.2 Real-time Systems 7
2.3 Aims of Optimization 8
2.4 Trade-offs between Aims and Feasibility 9
2.5 The SISAL and OCCAM Programming Languages 10
2.6 Data Flow Graphs 12
2.7 Survey of the Processing Steps for Partitioning and Allocating an

Application Program 13
2.8 References 15

3 Survey: Algorithms for Control and Signal Processing and their
Characteristics 19
3.1 Introduction 19
3.2 Notation for the Description of Systems 20

3.2.1 Linear Systems 20
3.2.2 Nonlinear Systems 21

3.3 Linear Controllers 21
3.3.1 Single-input Single-output (SISO) Controllers 21

The PID Controller 22
General Dynamic SISO Controller 23

3.3.2 Multiple-input Multiple-output (MIMO) Controllers 23

viii Contents

Linear State Feedback 24
Linear State Feedback with Estimator 24
Optimal Estimator: The Kalman Filter 24

3.4 General Systems 25
3.4.1 Linear Systems 25
3.4.2 Nonlinear Systems 25

3.5 Solving Nonlinear System Equations by Numerical Integration 26
3.5.1 One-step Method: Fourth-order Runge-Kutta Algorithm 27
3.5.2 Multistep Method: Fourth-order Adams-Bashforth Algorithm 28

3.6 Signal Processing Applications 29
3.6.1 Digital Filtering 30

Finite Impulse Response (FIR) Filters 30
Infinite Impulse Response (IIR) Filters 31

3.6.2 Signal Transforms 32
Discrete and Fast Fourier Transforms 32
Recursive Formulation of the One-dimensional Mixed-
radix FFT 33
Matrix Formulation of the FFT 37
Convolution, Correlation, and Spectral Estimation 40

3.7 Matrix Computations 41
3.7.1 Basic Vector and Matrix Computations 42

Scalar-vector Computations 43
Vector-vector Computations 43
Matrix-vector Computations 44
Scalar-matrix Computations 45
Matrix-matrix Computations 45
Block Matrix Computations 46

3.7.2 Solution of Systems of Linear Equations 46
3.7.3 Matrix Inversion 47

3.8 References 48

4 Preparing the Data Flow Graph for Partitioning 53
4.1 Data Flow Graph Generation 53
4.2 Communication Volume Analysis 56
4.3 Graph Expansion 56

4.3.1 Forall Nodes 57
4.3.2 Function Calls 58

4.4 Execution Cost Analysis 59
4.4.1 Communication Costs 59
4.4.2 Node Execution Costs 61

4.5 References 62

5 Partitioning the Data Flow Graph into Tasks 63
5.1 Building Tasks 63

Contents ix

5.2 Approaches Described in the Literature 65
5.3 Deadlock Avoidance 68
5.4 Partitioning the Data Flow Graph 72

5.4.1 Rules For Building Tasks 72
5.4.2 Preparation of the Data Flow Graph 74
5.4.3 Simulation of the Data Flow Graph’s Execution 76
5.4.4 Computational Complexity Analysis of Partitioning 77
5.4.5 Summary of the Properties of the Partitioning Technique 78

5.5 References 79

6 Static Task Allocation and Code Generation 81
6.1 Dynamic versus Static Scheduling and Task Allocation 81
6.2 The Static Task Allocation Problem 84

6.2.1 General Machine Configuration 84
6.2.2 General Static Task Allocation Problem 85
6.2.3 Static Task Allocation Problem for Homogeneous Real-time

Multicomputers 88
6.3 Solutions Proposed in the Literature 93

6.3.1 Graph Theoretic Approach 94
6.3.2 Numerical Optimization Approach 94
6.3.3 List Scheduling Approach 95
6.3.4 Simulated Annealing Approach 96
6.3.5 Clustering Approach 97

6.4 Two-phase Linear Clustering Approach 99
6.4.1 Reducing the Number of Interconnections 101
6.4.2 Phase One: Clustering Heavily Communicating Tasks 103
6.4.3 Phase Two: Matching Interconnection Topology and

Communication Resources 103
6.4.4 Computational Complexity Analysis of the Allocation 104

6.5 Translating the Partitioned and Allocated Data Flow Graph into Target
Code 106

6.6 Generating OCCAM Code 106
6.8 References 108

7 Case Studies 113
7.1 A Small Example 113
7.2 Digital Filters 121

7.2.1 FIR Filters 121
7.2.2 IIR Filters 126

7.3 State Space Controllers with Observers 131
7.4 Nonlinear Controllers 134
7.5 Numerical Integration 137
7.6 Fast Fourier Transform 138
7.7 Conclusions 143

x Contents

8 Conclusions 145
8.1 Assessment of the Data Flow Approach for Real-time Systems 145
8.2 Future Work 145
8.3 Reference 147

Appendix A: Specification of the Multicomputer 149
A.1 Multi-Transputer System 149
A.2 High-speed Data Acquisition System 150
A.3 Firmware 152
A.4 References 152

Appendix B: Detailed Specification of the Processing Steps for Partitioning
and Allocating 153
B.1 Communication Analysis 153
B.2 Graph Expansion 155
B.3 Execution Cost Analysis 160
B.4 Graph Partitioning 166
B.5 Task Allocation 169
B.6 OCCAM Code Generation 173

Index 181

xi

Preface

Parallel computing has been receiving much attention during the past years. New
generations of ever more powerful computers are arriving at an increasing rate. While
vector supercomputers are well understood and routinely used by scientists in all
fields, the situation is different with multicomputers consisting of more than only a
few processors. While hardware design has made rapid progress, the science of
programming such computers is still lagging years behind. Therefore the use of
parallel computers is confined mostly to specialized scientists and engineers.

There have been attempts to parallelize automatically computations formulated in
conventional programming languages. However, such an approach resembles
estimating the original size of the potatoes by inspecting the French fries. Since the
computational concept behind the conventional programming languages is inadequate
for expressing parallelism, new models have to be found. One of these approaches is
the concept of data flow. No artificial serial order is imposed on the computations, but
each operation is ready to execute as soon as its input values are available.

Whereas the efficient incorporation of the data flow approach into hardware has
proved to be difficult, it is very useful for analysis of the interdependence of the
computations. All the relevant information about the computations is preserved in the
data flow graph representation. Particularly in message-passing multicomputers, where
the data exchange contributes a substantial part to the program execution time,
communication overhead can easily be used and minimized for program execution.

As an example of a functional language which allows a data flow analysis, SISAL
(Streams and Iterations in a Single Assignment Language) and the associated data flow
graphs are introduced. This language, jointly developed by universities and research
laboratories, is now promoted by the Lawrence Livermore National Laboratory and
has been ported to major computing platforms.

Apart from communication minimization the sheer complexity of mapping the
computations to several processors prohibits a manual attempt. For the real-time
applications in the project described in this book it would prove impossible to meet all
constraints when partitioning and distributing an application algorithm to a

xii Preface

multicomputer. Therefore, automated tools are indispensable for the process of finding
a good distribution of the application algorithms to the processors.

This book describes a research project on automatic parallelization of computations
for real-time signal processing and control. It was conducted at the Swiss Federal
Institute of Technology (also known under the German acronym ETH) in Zurich.
When I started my doctoral research project in electrical engineering on the fascinating
area of high-performance parallel computing I quickly discovered that the basic
question of how to distribute the computations to several processors was unsolved and
I devoted myself to this problem. While the final and most general solution has not yet
been found, the approach described in this book shows a viable method to solve the
partitioning and allocation problem.

The target system has the architecture of a message-passing multicomputer. The
aim of the allocation is to minimize the iteration time for a set of computations which
is executed periodically in a non-overlapping manner. The execution and
communication cost models are developed for the INMOS Transputer. This processor
is easily available at a low cost to study multiprocessor systems. An additional
advantage is the availability of the OCCAM parallel programming language which is
specially designed to match the capabilities of the processors. (In fact, the
development sequence was the other way around, since the processors were tailored to
allow an optimum implementation of the language.) However, the cost models and the
methodology of distributing the applications to the processors are independent of the
Transputer and are applicable to all message-passing multicomputers.

Extensive literature surveys and references are given on the subjects of partitioning
algorithms and data flow graphs as well as on the allocation of communicating tasks
on multiple processors. The characteristics of the algorithms for signal processing and
control are discussed and again all original references are given for additional studies.

I am indebted to many people who have contributed to the project described in this
book. They include: Oskar Brachs, Hansjörg Diethelm, Monique Faber, John Feo and
his SISAL group at the Lawrence Livermore National Laboratory, Hans P. Geering,
Albert Kündig, Srdjan Mitrovic, Brigitte Rohrbach, Daniel Schweizer, Renato Zanetti,
and the staff of the ETH library. The partial funding of the project by the Swiss
National Science Foundation under the grant no. 21-26,648.89 is acknowledged.

This book is aimed at advanced students, scientists, and engineers working in the
area of high-performance real-time and parallel computing. Some basic concepts of
graph theory and computer science will be helpful, but need not exceed general
engineering knowledge. The basics of signal processing and control algorithms are
carefully developed in this book, followed by a detailed introduction to the architecture
of general multicomputers and partitioning and allocation problems, together with the
special problems posed by real-time environments.

I hope that some readers will be attracted by the fascinating problems connected
with parallel computing and will perhaps become motivated to conduct their own
research to gain additional insights into this developing subject.

Urban A. Thoeni

xiii

Nomenclature

A system matrix, continuous or discrete controller, dimension n × n
task assignment matrix, dimension m × p

Aopt optimum assignment of the tasks to the processors
a coefficients of the denominator polynomial of a transfer function,

coefficients of the Runge-Kutta integration algorithm
B input matrix, continuous or discrete controller, dimension n × m

resource demand matrix, dimension m × p
b coefficients of the numerator polynomial of a transfer function, coefficients

of the Runge-Kutta integration algorithm, number of bytes transmitted
C output matrix, continuous or discrete controller, dimension p × n, basic

transform matrix (signal transform),
resource capacity matrix, dimension m × p

c index denoting the controller, coefficients of the Runge-Kutta integration
algorithm

cint communication time for internal communication
cext communication time for external communication
D direct transmission matrix, continuous or discrete controller, dimension p ×

m
overlap of periodograms for spectral estimation,
communication distance matrix, dimension p × p

d desired output of the control system
E twiddle factor multiplication matrix (signal transform)
E(Tk) execution costs of task k
e control error, difference of desired and actual output of the plant
F system matrix, continuous plant, dimension n × n
F(i) execution cost of partition i of a data flow graph
Fc communication cost of a partition of a data flow graph
f(.) non-linear function in a system equation
G input matrix, continuous plant, dimension n × m
G(s) continuous transfer function

xiv Nomenclature

G(z) discrete transfer function
H output matrix, continuous plant, dimension p × n
Hd output matrix, discrete plant, dimension p × n
h integration step size, impulse response of a dynamic system
I identity matrix
i general counting variable
J direct transmission matrix, continuous plant, dimension p × m
Jd direct transmission matrix, discrete plant, dimension p × m
j imaginary unit, j = -1, general counting variable
K control gain matrix, dimension m × n
KP,KI,KD coefficients of the PID controller
k index denoting the time instance for sampled systems, general counting

variable
L estimator gain matrix, dimension n × p

length of periodograms for spectral estimation
link matrix, dimension m × m

l general counting variable
M E { (x-–x)(x-–x)T }, set of tasks to be allocated (|M| = m)
m dimension of the control vector u, number of factors of the number of data

points of a signal transform, number of tasks to be allocated
N number of data points of a signal transform, number of nodes in a data flow

graph
Nw dimension of the plant input disturbance
n dimension of the state vector, degree of the denominator of a transfer

function, general counting variable
O communication overhead cost matrix, dimension m × m
O(Tk) overhead cost of task k
P E { (x-x̂)(x-x̂)T }, permutation matrix (signal transforms),

set of processors in a system (|P| = p)
PA task assignment with unbounded number of processors
p dimension of the output measurement vector y, number of processors in a

system
q degree of the numerator of a transfer function
R set of resources in a system (|R| = r)
Rv variance of the plant output disturbance, dimension p × p
Rw variance of the plant input disturbance, dimension Nw × Nw
r factor of the number N of data points of a signal transform, correlation

sequence, number of resources in a system
Sxy cross power density spectrum of the signals x and y
Ŝxy estimated cross power density spectrum of the signals x and y
s complex variable for continuous transfer functions and the Laplace

transform
T sampling time interval, transform matrix (signal transforms)
Tsetup communication setup time

Nomenclature xv

TmemI memory access time, internal communication
TmemE memory access time, external communication
Ttrans message transmission time
Tmin minimum task execution cost
T transpose symbol
t continuous time
TP task parallelism matrix, dimension p × p
U set of processors in the final allocation (|U| = u p)
u input/control vector, dimension m × 1, load of a processor
–u mean load of all processors
V communication volume matrix, dimension m × m
v plant output noise or disturbance, dimension p × 1
W set of non-faulted processors (|W| p)
w plant input noise or disturbance, dimension Nw × 1, number of long words (4

bytes) addressed
wi allocation priority of task i

wN abbreviation for e -
2 j

N

x state vector, dimension n × 1
x̂ estimated state vector, dimension n × 1
–x predicted state vector, dimension n × 1
y output measurements, dimension p × 1
z complex variable used for discrete transfer functions and the Z transform

factor for vector multiplication
coefficients of the Adams-Bashforth integration algorithm

(k) Kronecker function, (k) = 1 if k = 0, else (k) = 0
 system matrix, discrete plant, dimension n × n
 input matrix, discrete plant, dimension n × p
1 noise matrix, discrete plant, dimension n × Nw

complex variable describing the poles of a system
i partition i of a data flow graph

partitioning efficiency
* complex conjugate

Time signals are denoted by lower-case letters and their corresponding transforms by
capital letters.

1

CHAPTER 1

Introduction

1.1 Real-time Signal Processing and Data Flow
Computations

Real-time signal processing and automatic control have gained much importance in the
last years. New applications for medical systems, image processing, robotics, avionics,
financial data systems, seismic data processing, intelligent control, and many more areas
have appeared at a fast pace.

These developments have become possible mainly through the rapid development of
computer technology. The computational power of the mainframe systems of some
years ago is now delivered by desktop systems, and the capacity of mass storage
devices has surpassed limits never imagined previously.

The exploitation of parallelism in computing systems has evolved from simply
fetching one instruction and one operand from memory at the same time, or pipelined
instruction execution in the central processing unit to much more complex operating
principles. Now entire systems consisting of multiple highly pipelined vector
supercomputers are cooperating to execute a program.

However, the developments of the hardware have left the software technology for
programming the computers far behind. The programming language Fortran, developed
in the 1950s, is still the programming language used most often for scientific
applications. It is kept alive by regular updates, but is totally inadequate for modern
computers due to its underlying concept of sequential execution on one processor.

Worse still, the formulation of computations in such a language often prevents an
efficient utilization of novel computer architectures through the introduction of artificial
dependencies among computations, through ambiguities (i.e., use of the same variable
for completely different purposes) and uncontrollable sharing of memory regions
(Fortran’s COMMON blocks). Thus it becomes impossible to separate the relevant
information about the computations to be performed from the artificial restrictions
imposed by the means of representing the computations. So far, only a few and
relatively crude tools have become available to aid the task of implementing
computations on multiple processors.

2 Introduction

In contrast, analysis of the flow of data through a graph representing a set of
computations reveals the true dependencies of the atomic operations among themselves.
No artificial serial order is imposed upon the computations as is the case when they are
formulated in a conventional programming language.

However, implementing a real dataflow environment on a conventional computer is
too costly from the point of view of task administration and synchronization overhead.
Another crucial issue is fast communication at predictable costs.

Message-passing architectures as introduced by the Transputer family of computers
have opened up new prospects since they handle communication and synchronization in
special hardware units. The powerful central processing unit, together with a fast
microcoded scheduler, provides an environment for producing systems of tasks where
the execution of the processes is data-driven and handled efficiently. The only condition
is that tasks must be allocated statically to the processing elements.

The algorithms used in signal processing and control possess the properties for
execution on such an architecture. They can be formulated to use only static data, and
the number of processes and their interdependencies can be determined in advance.

Through the self-synchronization of the computations by communication only
minimum delays are introduced. If the communication is sufficiently fast then the
minimum execution time of the computations is achieved by performing operations in
parallel that are independent of each other.

This is where parallel processing comes into play. Given enough processors and an
appropriate distribution of the computations to each of them, the advantages of the data
flow graph formulation of an algorithm can be fully exploited. Even if fewer processing
elements are available than the number of independent tasks, it is possible to distribute
the computations in such a way that the time needed to perform them is significantly
shorter than that required for purely serial execution.

If the execution time is reduced by utilizing several processors, then either the
execution rate of the program can be increased or, if this rate is sufficient, there is room
for additional computations which may improve the results.

The use of multiple processors becomes a necessity when the minimum set of
computations to be performed is given, but the time needed to compute them on one
processor is unacceptably long. Then the only way to reduce this execution time is by
using several processors. However, the distribution must be done carefully because
communication costs are considerable for any computer architecture.

Since the message-passing mechanism of execution is fairly simple, it is possible to
determine precisely the time needed to perform all operations. This is a prerequisite for
programming real-time applications, since one of the design goals is not to surpass a
given time limit for the program’s execution time.

For all these reasons, using the data flow approach is very suited for distributing the
computations to multiple processors. Basically, the problems to be solved in the
distributing process are:

• Generating a data flow graph representation of the algorithms to be produced
• Adjusting the size of the graph components: partitioning the graph into tasks

Book outline 3

• Distributing the tasks to the processors, and
• Scheduling the tasks for execution during run-time.

The prime goal targeted during all operations is to minimize the total execution time.
The first three points are addressed in the project described here, while scheduling is

left aside for the reason that the Transputer as target hardware already possesses a
simple and efficient run-time scheduler.

As soon as computations involving more than a handful of operations are to be
analysed and distributed, it becomes impossible to perform all the operations involved
manually. As a consequence, automated tools must be developed to aid the process of
finding a good mapping of the computations to the processors.

1.2 Book Outline

The introductory issues mentioned above are addressed in Chapter 2, where the
background of multicomputers and real-time systems is described in more detail. The
aims of the partitioning process are outlined, together with the restrictions found in
reality. The SISAL and OCCAM programming languages are introduced which are used
for input and output, respectively. A survey of the single processing steps which are
performed for automated partitioning and allocation close the chapter.

In Chapter 3 the characteristics of the algorithms considered for the target applications
are investigated. All the main classes of algorithms are addressed: various kinds of
controllers (PID controllers, linear state feedback controllers, controllers with
estimator), numerical integration of linear and nonlinear differential equations, signal
processing algorithms (digital filters, signal transforms), and general matrix
computations. For all algorithms extensive references to the literature are given.

The common properties of these algorithms are that they can be formulated to a large
extent by using matrix expressions and that no recursion is needed. The absence of
recursion is important since it allows us to determine in advance the amount of work to
be done. This is an important condition for ensuring in advance that the time constraints
for real-time applications can be met. Readers already familiar with signal processing
and digital control may choose just to browse through Chapter 3 or to skip it entirely.

Chapter 4 addresses the first steps in the automated allocation process: the data flow
graph generation, the communication volume analysis, and some modifications of the
graphs. Then the communication and computation cost analysis is described. The cost
tables apply to the Transputer and are based on a newly developed communication cost
model and execution cost measurements. These models apply to any message-passing
multicomputer.

In Chapter 5 a method is described for partitioning the graph into tasks. The aims of
partitioning are to decrease the number of execution units and to reduce communication
costs, while preserving all the parallelism in the data flow graph. An extensive survey is
given of approaches for partitioning described in the literature.

4 Introduction

The way the tasks are allocated to the processors available in the system is treated in
Chapter 6. After briefly addressing the topic of dynamic and static scheduling, the
general static task allocation problem is formulated and the special conditions for real-
time computations are given. Following an extensive survey of solutions proposed in
the literature, the new two-phase linear clustering approach is described.

Basically, this new approach consists of switching the optimization goal at a certain
point of processing. In the first phase, the emphasis lies on joining heavily
communicating tasks on the same processor and thus eliminating costly interprocessor
communication. In the second phase, the optimization tends towards reducing the
number of links among the processors and the number of processors utilized until the
allocated computations fit the specified hardware. The optimization goal is changed as
soon as the average number of tasks reaches the value specified by the user. The
influence of this allocation parameter on the final processor configuration is investigated
experimentally, as described later in Chapter 7.

One special feature of the allocation procedure is that, a priori, no structure of the
interconnections among the processors is assumed. The available links are connected
according to the specific needs of the application algorithm. Through this optimized
resource utilization bottlenecks in the communication are reduced.

Following some general reflections on the structure of a translator, the details of the
generation of OCCAM code for the Transputers from the partitioned and allocated data
flow graph are described.

Chapter 7 presents case studies of partitioning and allocating the algorithms
introduced in Chapter 3. First, all steps of the allocation process are illustrated using a
small scalar product as an example. For each algorithm, several examples of different
size are processed. The influence of the allocation parameter on the number of
processors used and on the estimated total execution time is explored.

The results show that for most examples the shortest execution time is found for
allocation parameter values of about one fourth to one eighth of the number of tasks to
be allocated. The estimated parallel execution time is lowered to as little as one third of
the serial execution time, typically using two to four processors.

The proposed method works well for all but one of the types of algorithms
considered. The exception is the fast Fourier transform (FFT). In the FFT, either an
inherently sequential execution results or the number of tasks becomes so large (to
several thousand) that the processing time is so long that this approach becomes
unfeasible. However, this restriction results only from the implementation and not from
the method itself, since the FFT is very well suited for parallel implemetation.

Modifications of the task building process are suggested in Chapter 8 as future work
together with a review of computer systems other than Transputers.

Appendix A contains the descriptions of the multicomputer and of the pertinent
versatile high-speed data acquisition system used for this work. Appendix B lists in
detail the processing steps to be performed for partitioning and allocating applications
for parallel processing.

5

CHAPTER 2

Problem Outline

2.1 Types of Multiple-processor Systems

Since the advent of the first multiple-processor computers in the 1960s, a multitude of
architectures has been developed for such systems. The first systematic architectural
classification by Flynn ([Flynn 66]) is not unique in every respect, but is still widely
used. Other, more subtle classification schemes have been proposed by Feng,
([Feng 72]), Händler ([Händle 77]), Giloi ([Giloi 83]), and Skillicorn ([Skilli 88]).

Flynn classifies the computing systems according to the hardware provided to service
the instruction and data streams. He gives the following four machine organizations:

• Single instruction stream-single data stream (SISD)
• Single instruction stream-multiple data stream (SIMD)
• Multiple instruction stream-single data stream (MISD)
• Multiple instruction stream-multiple data stream (MIMD)

A small system such as a workstation is a typical example of the SISD class of
computers. In its single processor, the control unit sends one stream of decoded
instructions to the processor units for execution. These units receive one stream of data
from memory and return the results to memory.

The converse of single instruction and single data streams are multiple instances of
the functional units processing data and instructions, as used in the MIMD class of
computers. Each component of the computer can be regarded as a complete SISD
machine. Depending on the organization of the memory, these computers are further
classified as shared-memory and distributed-memory machines. Shared-memory
computers are sometimes also called multiprocessor systems, whereas for distributed-
memory computers the term multicomputer has been coined ([AthSei 88]), which will be
used throughout this book. However, no rigid and universally acknowledged
terminology has evolved so far for this area.

In multicomputers, the only way for the single computers or processing elements
(PEs) to communicate with each other is by sending messages to each other, since no

6 Problem outline

globally accessible memory space exists. This eliminates access collisions to memory,
but can slow down data transfer depending on the organization and bandwidth of the
interconnection network. In any case, some kind of protocol is used to handle timely
and correct data exchange.

For signal processing systems, the so-called Harvard architecture is widely used (see
[Lee 88], [Lee 89]). There, the memory is split into two parts containing the program
and the data to be processed, respectively. Each part is accessible over a separate data
and address bus. This architecture allows independent and concurrent access to
memory, thus speeding up program execution.

The systems considered so far all belong to the von Neumann family of computers in
which instructions are executed sequentially as controlled by a program counter. They
are also called control flow computers. A completely different approach is used in data
flow computers. The basic concept is to enable the execution of an instruction whenever
its operands become available. Thus no program counters are needed in data-driven
computations, and instructions in a program are not artificially ordered in a linear
sequence.

Theoretically, maximal concurrency can be exploited in data flow machines,
constrained only by the hardware resource availability. In practice, however, expensive
control mechanisms are needed to check the availability of data for an operation and then
to schedule it. Nevertheless, several data flow computers have been built (see
[Veen 86], [Gurd 87], [Dennis 80], [YuShYa 90], and [GauBic 91] with an extensive
bibliography).

Sequential programs are inappropriate for defining computations on data flow
computers since they impose an artificial and partly unnecessary order upon the
statements. However, through intelligent analysis sequentially formulated programs are
also implementable efficiently on data flow machines (see [BeJoPi 89]). Hence, data
flow graphs (see Section 2.6) are used to express the operations to be performed. These
graphs contain only the operations, drawn as nodes, and the data dependencies among
the operations, shown as arrows or edges. An algorithm expressed by means of a data
flow graph is formulated independently of the machine architecture on which it is
eventually executed.

Even if no data flow computer is used to execute the operations defined by the data
flow graph, formulating the problem in this way offers the great advantage that all
parallelism is revealed. With conventional programming languages, obtaining the same
amount of parallelism from the program is almost impossible, even when applying the
most sophisticated compiling techniques.

Computer systems incorporating multiple processing elements are called
inhomogeneous when the PEs are of different type, and homogeneous when all PEs are
identical.

Of all the non-data flow architectures, the message-passing multicomputer possesses
the most appropriate architecture for executing a data flow graph. The graph’s edges can
be created by sending messages, and clusters of nodes can be implemented as tasks on
the computers. With a simple scheduler running on each computer and appropriate
message-handling software, the computations execute in a self-synchronizing manner.

Real-time systems 7

For the project described in this book, a homogeneous message-passing
multicomputer consisting of INMOS T800 Transputers ([Whitby 85], [INMOS 89],
described in Appendix A) was chosen for the following reasons:

• The data flow graph principle matches well the computational model created by
the Transputer

• Message passing is supported in hardware and software
• A fast and efficient run-time scheduler exists for parallel tasks
• High computation power in both fixed-point and floating-point arithmetic
• Complete processor boards are available off the shelf, thus eliminating the need

for own hardware development
• Relatively inexpensive hardware

The area of parallel computer architecture is covered in depth by a variety of books
and articles, starting with the classical books by Hwang and Briggs ([HwaBri 84]) and
Hockney and Jesshope ([HocJes 81]). Other valuable references are [AlmGot 89],
[Anders 89], [Duncan 90], and [Trelea 90], together with the surveys of a large
number of actual systems given in [DeCega 89] and [TreWil 91].

2.2 Real-time Systems

Real-time information processing is defined as “... the processing of data by a computer
in connection with another process outside the computer according to time requirements
imposed by the outside process” ([IEEE 88]). No absolute values of the response time
of a system are contained in the definition. A system receiving a set of input data every
hour and computing results over a period of half an hour could thus be considered a
perfect real-time system.

However, in this context fast real-time systems are considered with cyclic (non-
terminating) programs involved in industrial control and signal processing. The task
turnaround time, i.e., the time elapsed between the arrival of two consecutive sets of
input data, is assumed to be in the range of seconds at most, possibly down to the sub-
microsecond range.

Control systems of any kind belong to the class of hard real-time systems
([StaRam 88]). They are characterized by the fact that there will be severe consequences
if the answer of the system is either incorrect or not in time. Examples of hard real-time
systems are process control systems, avionics and flight control systems, or robot and
vision systems.

Ensuring that the timing and logical correctness requirements are met is a difficult
task. Expensive dynamic pre-emptive scheduling algorithms are necessary for
computers with varying load and for general purposes. If the computers are used as
dedicated systems, with a known set of tasks to be processed, then scheduling becomes
easier. It may then even be possible to use so-called static scheduling, where the task
execution order is fixed prior to run time.

8 Problem outline

While static scheduling saves considerable expenses at run-time, it also needs
substantial efforts to establish a good estimate of the task-execution times for
determining a good task organization without introducing unnecessary delays.
Particularly with multicomputers, the quality of the execution estimates drops rapidly
when unforeseen communication delays are considered.

The approach taken in this project is to keep scheduling costs low by using the data
flow principle to synchronize the task execution. When analysing the data flow of the
application programs in advance, a partial order is determined for the tasks, as opposed
to the total order imposed by a fully static schedule. A partial order means that only the
precedence relations among the tasks are defined, not the exact times of execution.

The tasks are then distributed to the PEs in accordance with the data dependencies. A
simple and efficient round-robin scheduler administers the tasks of each PE at run-time
and schedules them as soon as all input values for a task have arrived. The tasks
themselves are executed in an conventional sequential way.

Therefore, using the data flow principle for organizing the sequence of the
computations has the advantage that only a cheap dynamic scheduler is necessary.
Additionally, no exact estimates of the task execution times need be computed off-line,
since knowing the tasks’ starting times is irrelevant due to the self-synchronization
property of the program execution.

For real-time systems, the utilization of multiple-processor computers is thus the
obvious choice in order to lower the total computation time of an application program
([RoHaMe 88]). Examples of systems used in control applications are described in
[KirKau 84] and [Shaffe 89]. Systems programmed by using the data flow approach are
discussed in [Barkho 87], [Lent 87], and [Campbe 85] and [GaVeTu 85] for the
Hughes Data Flow Machine (HDFM). Transputers have been applied for real-time
control in projects described in [Flemin 88], [Leppäl 87], and [MaIrLi 89].

2.3 Aims of Optimization

When chosing a multicomputer for creating a real-time application, the primary goal is to
achieve a minimum execution time, or, in other words, the processing rate of the input
signals is maximized for a cyclic execution of the task set.

The computation time is minimized if parallelism is maximized. As a consequence,
after analysing the application algorithm, each program section executable in parallel
should be assigned a processor of its own. However, the utilization of the processing
elements should be maximized and the computational load distributed as evenly as
possible among the PEs.

Since the processing elements of the multicomputer communicate by message-
passing, the interconnection network should link all PEs directly to each other at a
maximum speed, thus minimizing communication delays.

For the development phase, the formulation of the application algorithms to be
programmed should be both appropriate and easy. No manual transformation from one
representation to another should be necessary in the path between formulating the

Trade-offs between aims and feasibility 9

computations and generating executable code for the target machine. Also, if at all
possible, the development cycle time should be short.

2.4 Trade-offs between Aims and Feasibility

The actual achievement of an optimum performance of a multicomputer with n
processing elements depends on many details. Achieving linear speed-up is much more
difficult for control and signal processing applications than for, say, linear algebra
algorithms, which scale for any size of input data. There, parallelism increases with
growing problem size, and more processors can be kept busy. With signal processing
applications, however, the problem size is fixed, e.g., it is confined to a given number
of state variables of a controller, or of signal samples to be transformed.

Therefore, for such a problem an upper bound of parallelism exists which cannot be
surpassed. Consequently, the program execution time will decrease to a lower limit
when more PEs are employed. When this limit is reached, it does not make sense to try
to utilize more PEs since they cannot be kept busy with useful work. Moreover, not
only does the processor idle times increase, but the communication overhead may also
rise, thus increasing the total program execution time.

Consequently, for a given application problem there is an optimum number of
processing elements which yields the minimum execution time. PE utilization is the best
possible, and communication among the PEs is minimal. In particular, it will happen
that fewer PEs are utilized than are available in the system, since using more does not
yield any advantages. The opposite may also happen. When there are not enough PEs
for optimum mapping, parallelism must be sacrificed in order to find a solution
realizable on the given computer.

The difficult problem of finding this best assignment of the computations to the PEs
is dealt with in the subsequent chapters of this book.

It is technically difficult to produce a network which interconnects all PEs at a very
high speed. Very high-speed networks are expensive to build. Therefore slower
networks incurring substantial delays are used. In most multicomputers, the PEs
possess only few fast serial links, which connect them to their neighbours. In hypercube
computers, this feature is the essence of the architecture. Communication to distant PEs
is routed along a path passing intermediate processing nodes.

This kind of communication network has two major disadvantages: first, all the
intermediate PEs are burdened to some extent with additional message routing and
passing jobs, and second, the transmission time includes an a priori unpredictable
component due to the unknown number of hops.

Therefore, in this project the four serial links of the T800 Transputer are used only
for communication to the adjacent PEs. A partition of the data flow graph representing
the application algorithm has to be devised such that this distance constraint is met.
Since the limited number of links does not allow mapping the edges of the data flow
graph one-to-one on the links, additional measures such as link multiplexing and link
fusion have to be taken, as outlined in Chapter 6. Through this measure, the flexibility

10 Problem outline

of the multicomputer is lowered, and the difficulty of finding a good mapping of the
problem on the computer is increased, but the advantage of having predictable
communication times is worth sacrificing some flexibility.

The recently announced T9000 Transputer possesses multiplexing hardware to allow
any number of processes to use each link, so that links can be used transparently
([INMOS 91]). Tasks are then linked by virtual channels which are managed by the
virtual channel processor. Communication among the tasks is handled by a packet
switching network implemented on the physical links. However, this again introduces
unpredictable message delays.

2.5 The SISAL and OCCAM Programming Languages

Defining the application algorithm to be implemented on the parallel machine needs a
suitable tool. While a graph editor for drawing the algorithms as a signal-flow diagram
creates easily understood pictures, the editing process itself very soon becomes tedious
and error-prone. Moreover, the amount of parallelism displayed in such a diagram is
limited by the user’s perception of the computations and does not exhibit the true
relations.

Therefore, a tool was chosen which allows the formulation of the computations in an
easily understandable programming language, SISAL. Subsequently, the program code
is converted to a data flow graph representation. The fact that SISAL is a high-level
language similar to well-known computer languages such as Pascal eases familiarization
considerably.

SISAL (Streams and Iterations in a Single Assignment Language [MGSkAl 85]) is a
general-purpose applicative language intended for use on both conventional and new
multiprocessor systems ([FeoCan 90]). It follows the Single Assignment axiom, which
says that each variable must be assigned a value only once. (Well-established
programming languages like Pascal or Fortran allow the same variable to be used for
completely independent purposes at several locations in the program, thus creating
artificial data dependencies.) Through the Single Assignment principle, the existing data
dependencies are identified and shown in the data flow graph.

The SISAL language grew out of work done for VAL (Value-oriented Algorithmic
Language [AckDen 79]) which is described together with other data flow languages and
related topics in [Ackerm 79].

However, some restrictions are imposed on the use of the full SISAL language and
these are shown in Table 2.1. The reason for the restrictions imposed on the data types
is that only “well-behaved” application algorithms are considered which do not generate
or require values indicating an error. The compound data types Stream and Union are
difficult to implement in OCCAM on the Transputer. The type Record can be emulated
with some manipulations, but it is rarely used in signal processing applications.

The SISAL and OCCAM programming languages 11

function controlalgorithm(Inputs: array[type];
NumberOfInputs: integer;
StatesIn: array[type]; NumberOfStates: integer;

returns array[type]; array[type])

… % function code

end function

Figure 2.1 Header of Function control algorithm

Table 2.1 Restrictions on the Use of SISAL

No use of the data type: Error
No use of the compound data types: Stream, Union, Record
No recursive function calls

Since the Transputer assigns static workspace only to its processes, recursive
function calls are not possible. Therefore, they are barred from use in SISAL.

The function containing the computations to be parallelized has the mandatory name
controlalgorithm. It is assumed that at each sampling instance one set of input values is
assembled and passed to the function controlalgorithm. Its header has been defined to
appear as shown in Figure 2.1.

The parameters have the following meaning:

Inputs array of input values
NumberOfInputs number of elements in the input array
StatesIn array of internal states returned in last call
NumberOfStates number of elements in the state array

The first array returned contains the output values computed by the function and the
second array represents the state information which is passed to the next invocation of
controlalgorithm.

After the computations have been analysed and distributed to the PEs, they are
converted to the OCCAM programming language for compilation on the Transputers.
OCCAM ([INMOS 88]) “is a high level language, designed to express concurrent
algorithms and their implementation on a network of processing components”. In
OCCAM, processes are defined which execute concurrently and communicate with other
processes through channels. This allows structuring the application clearly, and
exhibiting the inherent parallelism.

Concurrency and communication are the prime concepts of the OCCAM model which
is based on EPL (Experimental Programming Language) by May, Taylor, and Whitby-

12 Problem outline

#1

Times

Neg Plus

6.0 Times Times

a=2.0 b=5.0 Call

u
sqr

v

Figure 2.2 Example of a Simple Data Flow Graph in IF1

Strevens ([MaTaWh 78]) and on CSP (Communicating Sequential Processes) by Hoare
([Hoare 78]). This model captures the hierarchical structure of a system by allowing an
interconnected set of processes to be regarded as a unified, single process. It is therefore
very well suited to represent program structures derived from data flow graphs.

The most recent proposal for a revision of OCCAM ([Barret 90]), called OCCAM91,
introduces a more comprehensive type system and support for a modular programming
style. Additionally, the facility for sharing objects between processes is provided. These
features will be supported efficiently by the new T9000 Transputer.

2.6 Data Flow Graphs

The principle of data flow graphs is to let the availability of data determine the order of
execution of the statements. As soon as an operation has received its input values, it is
ready to execute and to generate its result values, which flow to the next, connected
statements.

A data flow graph can be described in the same way as an ordinary directed graph. It
consists of a set of nodes which represents the operations. Only a limited number of
well-defined node types exist. The nodes are connected by the set of directed edges
according to the data dependencies. Edges carry data tokens which represent data of any
type.

One of the first data flow models for computations was developed by Adams
([Adams 68]) who used the term “data flow” for the first time. A very influential model
was presented by Dennis, Fosseen, and Linderman in 1973 ([DeFoLi 73]). In this

Partitioning and allocating an application program 13

model, each edge could carry only one token at a given moment in time. To model
asynchronous computations, tagged tokens were introduced by Arvind, Kathail, and
Pingali ([ArKaPi 80]). They defined each token to carry an additional tag identifying the
invocation of the data flow graph to which it belongs.

For signal processing applications which are computed without using pipelining it is
not necessary to introduce tagged tokens. Every execution of the graph must have
finished before the next begins.

The data flow graph model used in this project was developed for use as an
intermediate format in the compiler for SISAL, hence its name IF1 (Intermediate Form
1, [SkeGla 85]).

Figure 2.2 shows as a simple example the graph representing the expression
y = -6.0 × (a × u + b × v2) with a = 2.0, b = 5.0.

Data flow graphs expressed in IF1 are hierarchical, since more complex structures
such as loops are visible on the top layer as compound nodes. These compound nodes
contain several subgraphs, e.g., for the initialization phase, the loop body and the result-
gathering section.

2.7 Survey of the Processing Steps for Partitioning and
Allocating an Application Program

The steps which are taken to transform an application algorithm from its textual
representation to a data flow graph, then to partition it and to map it onto a
multicomputer are outlined in the following section. A preliminary description of this
process has already been given in [Thoeni 91]. Figure 2.3 shows the processing phases
which are described in the following chapters.

From the algorithm expressed as a SISAL program a data flow graph is generated
with the standard SISAL compiler. This graph is then analysed for the amount of
communication transmitted over its edges. Subsequently, the graph is expanded, which
mainly applies to the loop nodes which are unrolled. At the end of the preparatory phase
each node is assigned its execution costs which are read from a processor-specific table.

During the partitioning phase the graph’s nodes are clustered into tasks. These tasks
are carefully formed so that no parallelism in the data flow graph is destroyed.

In the allocation stage the tasks are distributed to the real computer system with a
limited number of processing elements and links among them. The allocation is carried
out in two phases. In the first phase, the emphasis lies more on reducing interprocessor
communication by clustering heavily communicating tasks on the same PE. The second
phase attempts to find an optimum mapping which yields the lowest execution time,
given the constraints imposed by the real multicomputer system. As a result, a list of the
connections among the PEs is generated and the number of PEs used is determined.

For the allocation phase a parameter is requested from the user. Through this
parameter the moment of switching from pure minimization of communication (stage
one) to respecting the hardware constraints (stage two) is influenced.

14 Problem outline

SISAL Program Code

Partitioning into Tasks

Allocation of the Tasks on PEs

OCCAM Code Generation

OCCAM Program Code

Number of PEs used
Interconnection Scheme
Estimated Execution Time

Number of PEs
Number of Links
Control Parameter

Table of Costs of the
Nodes

Graph Preparation:
 • Compilation
 • Communication Volume Analysis
 • Graph Expansion
 • Execution Cost Analysis

Figure 2.3 Processing Steps for Partitioning and Allocating

The partitioned and allocated tasks of the data flow graph are then translated into
OCCAM code in a straightforward manner. The tasks are modelled as OCCAM
processes. All tasks located on one Transputer are defined as executable in parallel. The

References 15

edges connecting tasks on different PEs are mapped to the links connecting the
Transputers. This OCCAM program is then passed through the standard OCCAM
compiler.

The numerical complexity of this partitioning and mapping process is relatively high,
such that the computation time spent on preparing the executable program may be
considerable. However, the effort is justified in that the program execution time at run-
time is lowered to the minimum by solving the very complex partitioning and mapping
problem.

2.8 References

[Ackerm 79] W.B. Ackerman, “Data Flow Languages,” in Proc. National Computer Conference, vol.
48, pp. 1087-1095, 1979.

[AckDen 79] W.B. Ackerman and J.B. Dennis, “VAL–A Value-Oriented Algorithmic Language:
Preliminary Reference Manual,” MIT Laboratory for Computer Science, Technical
Report MIT/LCS/TR-218, June 1979.

[Adams 68] D.A. Adams, “A Computation Model with Data Flow Sequencing,” Computer Science
Dept., Stanford University, Technical Report No. CS 117, December 1968.

[AlmGot 89] G.S. Almasi and A. Gottlieb, Highly Parallel Computing, Redwood City, CA a.o.:
The Benjamin/Cummings Publishing Co., 1989.

[Anders 89] A.J. Anderson, Multiple Processing: A Systems Overview, Englewood Cliffs, NJ:
Prentice Hall, Inc., 1989.

[ArKaPi 80] Arvind, V. Kathail and K. Pingali, “A Dataflow Architecture with Tagged Tokens,”
MIT Laboratory for Computer Science, Technical Memorandum No. 174, 1980.

[AthSei 88] W.C. Athas and C.L. Seitz, “Multicomputers: Message-Passing Concurrent
Computers,” Computer, vol. 21, no. 8, pp. 9-24, 1988.

[Barkho 87] S. Barkhordarian, “RAMPS: A Realtime Structured Small-Scale Dataflow System for
Parallel Processing,” in Proc. Int. Conf. Parallel Proc., 1987, pp. 610-613.

[Barret 90] G. Barrett, “The Development of OCCAM: Types, Classes and Sharing,” in: OUG-13,
Real-Time Systems With Transputers, H.S.M. Zedan (ed.), Amsterdam a.o.: IOS Press,
1990, pp.119-147.

[BeJoPi 89] M. Beck, R. Johnson and K. Pingali, “From Control Flow to Dataflow,” Department
of Computer Science, Cornell University, Ithaca, NY, Technical Report TR 89-1050,
October 1989.

[Campbe 85] M.L. Campbell, “Static Allocation for a Data Flow Multiprocessor,” in Proc. Int.
Conf. Parallel Proc., 1985, pp. 511-517.

[DeCega 89] A.L. DeCegama, The Technology of Parallel Processing, Volume 1: Parallel
Processing Architectures and VLSI Hardware, Englewood Cliffs, NJ: Prentice Hall,
Inc., 1989.

[Dennis 80] J.B. Dennis, “Data Flow Supercomputers,” Computer, vol. 13, no. 11, pp. 48-56,
1980.

[DeFoLi 73] J.B. Dennis, J. Fosseen and J. Linderman, “Data Flow Schemas,” in: Proc.
International Symposium on the Theory of Programming, pp. 187-216, 1973. New
York, a.o.: Springer-Verlag, Lecture Notes in Computer Science, vol. 5, 1974.

[Duncan 90] R. Duncan, “A Survey of Parallel Computer Architectures,” Computer, vol. 23, no. 2,
pp. 5-16, 1990.

[Feng 72] T.Y. Feng, “Some Characteristics of Associative Parallel Processing,” in Proc.
Sagamore Comp. Conference, 1972, pp. 5-16.

16 Problem outline

[FeoCan 90] J.T. Feo and D.C. Cann, “A Report on the Sisal Language Project,” J. Parallel and
Distr. Computing, vol. 10, no. 4, pp. 349-366, 1990.

[Flemin 88] P.J. Fleming, Parallel Processing in Control: The Transputer and Other Architectures,
IEE Control Engineering Series, vol. 38. London: Peter Peregrinus Ltd., 1988.

[Flynn 66] M.J. Flynn, “Very High-Speed Computing Systems,” Proc. IEEE, vol. 54, pp. 1901-
1909, 1966.

[GauBic 91] J.-L. Gaudiot and L. Bic, Advanced Topics in Data-Flow Computing, Englewood
Cliffs, NJ: Prentice Hall, Inc., 1991.

[GaVeTu 85] J.-L. Gaudiot, R.W. Vedder, G.K. Tucker, et al., “A Distributed VLSI Architecture for
Efficient Signal and Data Processing,” IEEE Trans. Computers, vol. 34, no. 12, pp.
1072-1087, 1985.

[Giloi 83] W.K. Giloi, “Towards a Taxonomy of Computer Architecture Based on the Machine
Data Type View,” in Proc. IEEE Conf. Parallel Proc. and Computer Arch., pp. 6-13,
1983.

[Gurd 87] J.R. Gurd, “Dataflow Architectures,” in: Major Advances in Parallel Processing, Chris
Jesshope (ed.), Aldershot: Gower Technical Press Ltd., 1987.

[Händle 77] W. Händler, “The Impact of Classification Schemes on Computer Architecture,” in
Proc. Int. Conf. Parallel Proc., 1977, pp. 7-15.

[Hoare 78] C.A.R. Hoare, “Communicating Sequential Processes,” Communications of the ACM,
vol. 21, no. 8, pp. 666-677, 1978.

[HocJes 81] R.W. Hockney and C.R. Jesshope, Parallel Computers, Bristol: Adam Hilger Ltd.,
1981.

[HwaBri 84] K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing, New York,
a.o.: McGraw-Hill Book Company, 1984.

[IEEE 88] Institute of Electrical and Electronics Engineers, Inc., Standard Dictionary of Electrical
and Electronics Terms, Fourth Edition. ANSI/IEEE Std. 100-1988. New York 1988.

[INMOS 88] INMOS Ltd., occam 2 Reference Manual, New York, a.o.: Prentice Hall, Inc., 1988.
[INMOS 89] INMOS Ltd., The Transputer Databook, Second Edition 1989.
[INMOS 91] INMOS Ltd., The T9000 Transputer Products Overview Manual, 1991.
[KirKau 84] H.D. Kirrmann and F. Kaufmann, “Poolp–A Pool of Processors for Process Control

Applications,” IEEE Trans. Computers, vol. 33, no. 10, pp. 869-878, 1984.
[Lee 88] E.A. Lee, “Programmable DSP Architectures: Part I,” IEEE ASSP Magazine, vol. 5,

no. 4, pp. 4-19, 1988.
[Lee 89] E.A. Lee, “Programmable DSP Architectures: Part II,” IEEE ASSP Magazine, vol. 6,

no. 1, pp. 4-14, 1989.
[Lent 87] B. Lent, “Data Flow Driven Computer for Embedded Control Systems,”

Microprocessors & Microprogramming, vol. 19, pp. 385-399, 1987.
[Leppäl 87] K. Leppälä, “Utilization of Parallelism in Transputer-Based Real-Time Control

Systems,” Microprocessors & Microprogramming, vol. 21, pp. 629-636, 1987.
[MaIrLi 89] L.P. Maguire, G.W. Irwin and G. Lightbody, “Mapping Control Algorithms onto

Transputer Arrays,” Colloquium on Transputer Applications, organized by the
Professional Group C2, 13 November 1989. IEE Digest No. 1989/129.

[MaTaWh 78] M.D. May, R.J.B. Taylor and C. Whitby-Strevens, “EPL–An Experimental Language
for Distributed Computing,” in Proc. 1978 Conf. Distributed Processing: Trends and
Applications, Gaithersburg, MD, pp. 69-71, May 1978.

[MGSkAl 85] J. McGraw, S. Skedzielewski, S. Allan, et al., “SISAL: Streams and Iteration in a
Single Assignment Language, Reference Manual,” Version 1.2, Lawrence Livermore
National Laboratory Report LLL/M-146 Rev. 1, 1 March 1985.

[RoHaMe 88] J.B.G. Roberts, J.G. Harp, B.C. Merrifield, et al., “Evaluating Parallel Processors for
Real-Time Applications,” Parallel Computing, vol. 8, pp. 245-254, 1988.

References 17

[Shaffe 89] P.L. Shaffer, “Experience with Implementation of a Turbojet Engine Control Program
on a Multiprocessor,” in Proc. American Control Conf., 1989, pp. 2715-2720.

[SkeGla 85] S. Skedzielewski and J. Glauert, “IF1, An Intermediate Form for Applicative
Languages,” Version 1.0, Lawrence Livermore National Laboratory Report M-170, July
31, 1985.

[Skilli 88] D.B. Skillicorn, “A Taxonomy for Computer Architectures,” Computer, vol. 21, no.
11, pp. 46-57, 1988.

[Srini 86] V.P. Srini, “An Architectural Comparison of Dataflow Systems,” Computer, vol. 19,
no. 3, pp. 68-88, 1986.

[StaRam 88] J.A. Stankovic and K. Ramamritham (eds.), Hard Real-Time Systems (Tutorial),
Washington D.C.: IEEE Computer Society Press, 1988.

[Thoeni 91] U.A. Thoeni, “RTPSP: A Real-Time Parallel Signal Processing Environment for Fast
Homogeneous Message-Passing Multicomputers,” in Proc. Int. Conf. Parallel Proc.,
pp. II-150–II-157, August 1991.

[Trelea 88] P.C. Treleaven, “Parallel Architecture Overview,” Parallel Computing, vol. 8, pp. 59-
70, 1988.

[TreWil 91] A. Trew and G. Wilson (eds.), Past, Present, Parallel: Computing Systems, A Survey
of Available Parallel Computing Systems, London, Berlin, Heidelberg a.o: Springer-
Verlag, 1991.

[Veen 86] A.H. Veen, “Dataflow Machine Architecture,” ACM Computing Surveys, vol. 18, no.
4, pp. 365-396, 1986.

[Whitby 85] C. Whitby-Strevens, “The Transputer,” in Proc. 12th Ann. Symposium Comp.
Architecture, 1985, pp. 292-300.

[YuShYa 90] T. Yuba, T. Shimada, Y. Yamaguchi, et al., “Dataflow Computer Development in
Japan,” in: Proc. 1990 Int. Conf. Supercomputing, Amsterdam, 11-15 June 1990, pp.
140-147. New York: ACM Press, Inc., 1990.

19

CHAPTER 3

Survey: Algorithms for Control
and Signal Processing and their
Characteristics

3.1 Introduction

Mathematical problems can be formulated in a variety of ways, e.g., with a formula,
verbally, or even graphically. For solving them, however, an algorithm has to be
formulated, and is a set of rules that is supposed to terminate in a finite number of steps
on a computer. Generally, more than one algorithm exists to solve a specific problem.
Depending on its formulation, each can be evaluated numerically in different ways. As
computer arithmetic is of finite accuracy only, different results can evolve, depending on
the algorithm used and its evaluation. The choice of the best algorithm for a given
problem and for a specific computer is a difficult task and depends on many details.

In this chapter, some design issues of algorithms used in control applications and in
signal processing are discussed and the general properties of these algorithms are
outlined. The following algorithms will be reviewed:

1. Controllers single-input single-output (SISO) controller
digital PID controller
general dynamic controller

state space controller
linear state feedback
linear state feedback with estimator
optimal estimator: the Kalman filter

2. General systems linear system
nonlinear system

3. Numerical integration for solving nonlinear system equations
4. Signal processing filtering

FIR filters
IIR filters

signal transforms
discrete Fourier transform (DFT)

20 Algorithms for control and signal processing

fast Fourier transform (FFT)
convolution, correlation, spectrum estimation

5. Matrix computations vector-vector operations
matrix-vector operations
matrix-matrix operations
matrix inversion
solution of linear equation systems

Many of these algorithms can be expressed by matrix computations. They are called
regular iterative algorithms (RIA) ([RaoKai 87], [Rao 85]) due to their very regular
structure. One property of the controllers and filters treated here is that they are causal
systems, i.e., the output values depend only on past input and state values.

In this context, the focus is on the structure of the algorithms, i.e., how the input and
the output values of one control step are dependent on each other. Numerical and other
implementational aspects are of secondary importance for the investigation of the
potential parallelism in those algorithms. For such issues see [Goldbe 91], [Hansel 87],
[Allen 85], or [Morone 83].

3.2 Notation for the Description of Systems

The following notation for describing dynamic, continuous or discrete systems (plants
or controllers) will be used throughout this book. It follows the terminology used in
[FraPow 90], with some extensions.

3.2.1 Linear Systems

State space representation:

continuous: x
.
(t) = F x(t) + G u(t)

(3.1)

y(t) = H x(t) + J u(t) (3.2)

discrete: xk+1 = xk + uk (3.3)

yk = Hd xk + Jd uk (3.4)
Transfer function:

continuous: G(s) =
bq sq + bq-1 sq-1 + ... + b1 s + b0
sn + an-1 sn-1 + .. . + a1 s + a0

(3.5)

Linear controllers 21

discrete: G(z) =
bq zq + bq-1 zq-1 + ... + b1 z + b0
zn + an-1 zn-1 + ... + a1 z1 + a0

(3.6)

The coefficients ai and bi, respectively, of the transfer functions appear in the differential
equation for continuous systems and also in the difference equation describing a discrete
system.

Discrete plant with stochastic disturbances:

plant xk+1 = xk + uk + 1 wk (3.7)

measurements yk = Hd xk + vk (3.8)

The process noise wk and the measurement noise vk are uncorrelated random sequences
with zero mean and known covariances.

3.2.2 Nonlinear Systems

Nonlinear systems are described in general terms of the state x and of the input u.
However, only time-invariant systems will be treated so that the system equation is not
an explicit function of the time t.

Continuous nonlinear plant x
.
(t) = f(x(t), u(t)) , x(0) = x0

(3.9)

y(t) = g(x(t), u(t)) (3.10)

The discrete equivalent of the continuous nonlinear plant will not be used. Instead, a
linearized continuous system will be transformed to a discrete equivalent or the nonlinear
equations will be integrated directly (see Section 3.5).

A nonlinear system defined by 3.9 and 3.10 can be linearized along a nominal state
and input x0 and u0, respectively. The resulting system matrices consist of the partial
derivatives (the Jacobian matrices).

3.3 Linear Controllers

3.3.1 Single-input Single-output (SISO) Controllers

A system is called single-input single-output if the dimension of its input and output
vector is one. This means m = 1 and p = 1 for the respective vectors y and u. However,
the order of the system, that is, the dimension n of the state vector x, is not related to the
dimensions m and p and may be any number.

22 Algorithms for control and signal processing

The PID Controller
A well-known single-input single-output controller is the PID (proportional plus

integral plus derivative) controller with the continuous transfer function

G(s) = KP +
KI
s + KD s =

K D s2 + KP s +KI
s

(3.11)

When discretized using the bilinear transform ([Tustin 47])

s =
2
T

z-1
z+1

the discrete transfer function becomes

G(z) =
U(z)
E(z) =

b2 z2 + b1 z + b0
z2 + a1 z1 + a0

(3.12)

with the corresponding coefficients

a0 = -1, a1 = 0, b0 = -KP +
KI T

2 +
2 KD

T

b1 = KI T -
4 KD

T , b2 = KP +
KI T

2 +
2 KD

T

When computing the output of the controller 3.11 in a sampled control loop, the next
value uk of the control signal is expressed by the difference equation

uk = b2 ek + b1 ek-1 + b0 ek-2 - a1 uk-1 - a0 uk-2 (3.13)

Reformulated as a scalar product, equation 3.13 reads

uk = [b2 b1 b0]
ek
ek-1
ek-2

 - [a1 a0] []uk-1
uk-2

 = bT y02 - aT u12
(3.14)

with the vectors

a = [a1 a0]T , b = [b2 b1 b0]T

describing the controller. The vectors

e02 = [ek ek-1 ek-2]T , u12 = [uk-1 uk-2]T

Linear controllers 23

denote the past values of the error e and of the control vector u which are required for
the computation of the next value of uk.

General Dynamic SISO Controller
Depending on the type of the plant, dynamic systems other than the PID controller

can be used as compensator. Such a general dynamic system of order n with input e and
output u is described by the transfer function 3.6. For the system to be causal it is
required that q n.

The next control output uk is computed by

uk = bT e0q - aT u1n =
i=0

q

bq-i ek-i -
i=1

n

an-i uk-i

(3.15)

with the corresponding vectors

a = [an-1 ... a0]T , b = [bq ... b0]T

e0q = [ek ... ek-q]T , u1n = [uk-1 ... uk-n]T

Again, uk is the difference of two scalar products.

3.3.2 Multiple-input Multiple-output (MIMO) Controllers

In order to achieve better dynamic properties of the control loop than with output
feedback control, state space controllers are applied. Such controllers are more robust
and guarantee better stability of the loop. For the design of such a controller it is
necessary to have a description of the plant in the state space. If the whole state vector xk
is available, such a control system consists of a linear state feedback. In general,
however, not all the internal states of the plant can be measured. In that case, an
observer is needed to supply the necessary information based on an approximate model
of the plant.

Linear State Feedback
Assuming that the plant is in the state space form 3.3 and that its entire state vector xk

is available, a linear state feedback can be set up in the form

uk = - K xk (3.16)

The m × n controller matrix K can be established by pole placement, where the poles i
(the solutions of det(I - [- K]) = 0) of the closed loop are chosen by an appropriate
method. Such a design method could rely on some performance measure of the control
system, e.g., on the requirements of the settling time or of the step response. Other

24 Algorithms for control and signal processing

possibilities for the determination of K are the optimal controller, for example according
to the LQG (Linear Quadratic Gaussian) assumption (see [KwaSiv 72], [ÅstWit 90],
[FraPow 90]) or a robust version thereof, the LQG/LTR design ([Geerin 86],
[Geerin 87]).

The next control input uk is a linear combination of the state variables determined by a
multiplication of the state vector xk by the controller gain matrix K.

Linear State Feedback with Estimator
Again, the control law is uk = - K xk. However, if the state vector xk of the plant is

only partially accessible, a mathematical model of the physical plant is used to estimate
it. Since the difference between the estimated state x̂k and the real state xk should be
minimal even with some parameter uncertainties in the model, it is not wise to use the
system model , alone for the prediction. Instead, the additional information available
through the plant output yk is utilized to correct the predicted state. This leads to the
following equation of the prediction estimator

x̂k+1 = x̂k + uk + L [yk+1 - H x̂k] (3.17)

With this predicted state, the following control input is computed:

uk = - K x̂k (3.18)

The dynamics of the error xk+1 - x̂k+1 depend on the matrix [- LH]. Hence they
can be influenced in an appropriate way by choosing L accordingly.

Instead of the single matrix times vector product in 3.16, the linear state feedback
using an estimator requires further computations of the same type, but again the sum and
the difference of vectors appear, as shown in equations 3.17 and 3.18.

Optimal Estimator: The Kalman Filter
Given a plant with stochastic disturbances as noted in equations 3.7 and 3.8, it is

possible to determine a time-varying gain Lk in order to obtain an estimated state vector
x̂k+1. It is optimal in the sense that the variance of the error xk+1 - x̂k+1 is minimal.
This estimator is called a Kalman filter after R.E. Kalman [Kalman 60]. The required
relations are (from [FraPow 90], chapter 9) between the measurements

–xk+1 = x̂k + uk
(3.19)

Mk+1 = Pk T + 1 Rw 1T (3.20)

Lk+1 = Mk+1 HdT (Hd Mk+1 HdT + Rv)-1 (3.21)

and at the update time

General systems 25

x̂k+1 = –xk+1 + Lk+1 (yk+1 - H –xk+1) (3.22)

Pk+1 = Mk+1 - Lk+1 Hd Mk+1 (3.23)

This procedure requires the update of the matrices M, L, and P between the sampling
times. Whereas for M and P these operations consist mostly of vector additions, vector
subtractions and matrix multiplications, the computation of the new gain matrix L
incorporates a matrix inversion. A detailed analysis of the numerical effort needed is
given in [Mendel 71].

3.4 General Systems

3.4.1 Linear Systems

So far, the controllers described have been either static systems, as the state space
controller 3.17, or dynamic systems, as described by a transfer function of the type 3.6
and the observers given in 3.17 and 3.19-3.23. However, dynamic systems described
by a transfer function can also be expressed by an equivalent state space notation.

The state xk+1 of a linear system described in state space notation can easily be
computed by matrix times vector products and vector additions, as shown in Section
3.3. It may be expressed as in equation 3.11:

xk+1 = xk + uk

The output of a linear system described by a transfer function is computed for a given
input sequence according to the corresponding difference equation 3.15. As shown, it
can also be formulated as the difference of two scalar products.

The difference equation for the output u depending on the input e reads as given in
3.15:

uk = bT e0q - aT u1n =
i=0

q

bq-i ek-i -
i=1

n

an-i uk-i

3.4.2 Nonlinear Systems

When the states of a real plant must be estimated either for a simulation or for a state
feedback this is done with the help of a mathematical model. Real plants can seldom be
described by a completely linear model. Slight nonlinearities are often neglected and
(hopefully) compensated by the robustness of the controller.

Strong nonlinearities arise from real sensors and actuators such as the lambda probe
used in cars to measure the oxygen concentration in the exhaust, or valves in hydraulic

26 Algorithms for control and signal processing

applications. Additionally, the actuator signals must be limited primarily for physical
reasons, for example in robotics where the actuator motors supply only limited torque.

One approach in the simulation of such systems is to linearize the model in the set
point. This is inappropriate when the set point varies greatly. Another approach is the
use of several linearized models according to the actual state. However, a smooth
transfer from one model to another is critical. Then the full nonlinear model 3.9, 3.10
has to be computed in real time, requiring sufficient computational power.

3.5 Solving Nonlinear System Equations by Numerical
Integration

Numerical integration is a demanding subject, since the choice of an appropriate method
depends very much on the problem to be solved. However, in connection with control
and signal processing, only a limited number of types of problems appear. Additionally,
since the computations have to be performed in real-time, not all approaches are feasible
for integrating the equations.

Ordinary differential equations are sufficiently exact to model conventional plants
such as mechanical, hydraulic, and electrical systems. The equations may be linear or
nonlinear, e.g., in robotics they are nonlinear since many trigonometric functions are
used. It is always possible to transform the equations to a system of differential
equations of first order as given in equations 3.9 and 3.10. The problem to be solved is
an initial value problem, i.e., the state xk at time kT given an initial state x0 must be
computed. Results are required after each sampling interval T, but the computation of
intermediate values is allowed if needed.

Standard program libraries provide a variety of codes for solving differential
equations numerically. Some of the best-known algorithms are the Runge-Kutta-
Fehlberg codes RKF45 ([ShaWat 77]) and DVERK ([HuEnJa 76]). Linear multistep
methods are also available through codes based on Adams formulas, for example DVDQ
([Krogh 69]), DIFSUB ([Gear 71]), GEAR ([Hindma 74]), VOAS ([Sedgwi 73]),
EPISODE ([ByrHin 75]), STEP ([ShaGor 75]), and LSODE ([Hindma 80]).

As the computations of the state vector x have to be executed in real-time, an upper
limit of the computation time exists. This does not necessarily put a restriction on the
complexity of the integration method as this can be overcome by exploiting parallelism,
but it does eliminate methods for which no upper bound for the number of operations
exists. Therefore, no implicit integration methods can be used. The amount of
computational work is also undeterminable when explicit methods with variable step size
are used. Furthermore, while these methods are popular and very effective for off-line
simulation, they are of limited use for real-time estimators because the computed states
of the plant’s model are needed at the well-defined times kT.

Since only methods with fixed step size can be used, the accuracy of the
computations is reduced if the step size is too large, or the computational load becomes
unnecessarily large for too small a step size. Above all, it will be difficult to treat stiff
problems because stability of the integration becomes a major factor. (A problem is said

Solving nonlinear system equations 27

to be stiff if the eigenvalues of its Jacobian lie several magnitudes apart (see
[ShaGea 79], [Shampi 83]).) In such a case, either the model must be reduced to the
minimal order necessary or an appropriate integration method must be found. Methods
for general ordinary differential equations are treated in [GuSaTi 85], for nonstiff
problems in [HaNøWa 87], and for stiff problems in [HaiWan 91].

Two examples of general integration routines of order 4 (global discretization error
O(h4) with h representing the step size) for nonstiff problems are given in the following
sections. Methods with a lower order than 4 should not be used for nonlinear systems
due to their considerable integration error. The ordinary Euler integration is of order 1
and the trapezoid and Heun integration (the predictor-corrector method) (see
[Schwar 86]) are of order 2. A Runge-Kutta integration method is given as
representative of a one-step method, and the Adams-Bashforth algorithm is shown for a
multistep method.

The definition of the nonlinear system is

x
.
(t) = f(x(t), u(t)), y(t) = g(x(t), u(t)),

x(0) = x0

(see equations 3.9 and 3.10). Since the aim is to compute xk+1 from a given state xk and
the control vector u(t) is constant during the interval kT t < (k+1)T, the equations
given above reduce to the form in 3.24. For clarity, an additional parameter kT for time
is introduced in the function f:

x
.

k = f(kT, xk, uk), yk = g(xk, uk)
(3.24)

3.5.1 One-step Method: Fourth-order Runge-Kutta Algorithm

With an n-th-order Runge-Kutta algorithm, the nonlinear continuous ordinary
differential equations as given above are solved for time instances t = kT and fixed
spacing of the points by T according to the following rule:

xk+1 = xk + T
i=1

n

bi f(kT + ciT, Xi, uk)
(3.25a)

Xi = xk + T
j=1

n

aij f(kT + cjT, Xj, uk)
(3.25b)

i = 1, 2, .. n

28 Algorithms for control and signal processing

For explicit methods, as used here, the relation aij = 0 holds for j i. The other
parameters aij for a fourth-order method (n=4) are given in Tables 3.1 and 3.2.

Table 3.1 Coefficients aij for the Fourth-order Runge-Kutta Integration

i j-> 1 2 3 4
1 0 0 0 0
2 1

3
0 0 0

3 -
1
3

1 0 0

4 1 - 1 1 0

Table 3.2 Coefficients bk, ck for the Fourth-order Runge-Kutta Integration

k -> 1 2 3 4
bk 1

8
3
8

3
8

1
8

ck 0 1
3

2
3

1

For the fourth-order method, for each time step T four evaluations of the nonlinear
function vector f are necessary plus one of the function vector g if the output vector y
has to be computed as well. The intermediate result vectors Xj have to be summed
during the computation. Thus, computing the next state xk+1 is a relatively expensive
task which is performed with function evaluations and vector additions.

3.5.2 Multistep Method: Fourth-order Adams-Bashforth Algorithm

If the multiple evaluation of the function f is too expensive, considerable savings can
be achieved by using a multistep method. In such a method, several states preceding the
last are used to compute the next. This means that just one function evaluation per time
step T is necessary and that previously computed results are re-used.

Generally, a multistep method of order n has the form

xk+1 = xk + T
i=0

n

i f((k+1-i)T, xk+1-i, uk+1-i)
(3.26)

Applied to the order 4 Adams-Bashforth integration method, the values shown in Table
3.3 result for the weighting factors i.

Signal processing applications 29

Table 3.3 Coefficients for the Fourth-order Adams-Bashforth Integration

i -> 0 1 2 3 4

i 0 55
24 -

59
24

37
24 -

9
24

The difficulty in obtaining the initial values for starting the integration can be overcome
by computing the first n values of f by a single-step method, and then applying the
multistep algorithm for the subsequent computations.

If the shorthand notation fk = f(kT, xk, uk) is introduced, the fourth-order algorithm
reads

xk+1 = xk + T [55
24 fk -

59
24 fk-1 +

37
24 fk-2 -

9
24 fk-3] (3.27)

This form looks very similar to the one found in equation 3.15 for computing the output
of a general dynamic SISO system. The difference is that the new state vector is a linear
combination not just of previous states, but of the nonlinear function of those previous
states. A vector product notation similar to that of equation 3.15 can be as follows:

xk+1 = T f0n + xk (3.28)

with the corresponding vectors

= [0 ... n]T , f0n = [fk ... fk-n]T (3.29)

Thus the calculations to be performed for xk+1 are merely one evaluation of the vector
function f for the purpose of obtaining the first element fk of f0n and the linear
combination of the elements of f0n.

3.6 Signal Processing Applications

Low-pass filters are used to avoid the effects of aliasing in discrete controllers when
connected to a continuous plant. Normally, the filters are realized as analog systems and
are regarded as a part of the plant. In some cases, mixed analog and digital techniques
are applied where a part of the lowpass filter is produced as a discrete system. However,
in most cases this approach offers no advantage or even yields worse performance than
a purely analog design of the anti-aliasing filters (see [Brügge 89]). In particular, the
oversampling method which is very popular in off-line signal processing (example:
compact disc players) introduces substantially longer time delays than analog filters and
thus has a negative influence on the stability of a control loop.

30 Algorithms for control and signal processing

Anti-aliasing filters with linear phase response are desirable because they permit
approximating the filter by a simple time delay. This eases significantly the task of
designing the control loop.

It is often interesting or necessary to observe the spectrum of a signal, for example in
order to know the noise level, to adapt parameters, or just for documentation purposes.
An estimation method using the fast Fourier transform (FFT) is thus applied. The FFT
and other methods for the spectrum estimation are therefore briefly described here.
Many other signal transforms beyond the scope of this survey exist (see for example
[Beauch 87], [Elliot 87]). They are used in special applications such as image
processing or speech processing.

3.6.1 Digital Filtering

Discrete filters are produced by two basic approaches: either as IIR (Infinite Impulse
Response) or as FIR (Finite Impulse Response) filters. The differences between these
two approaches are outlined below.

Finite Impulse Response (FIR) Filters
FIR filters are characterized by the fact that their impulse response is limited in time.

Therefore, the output u is expressed in terms of the input e only and reads

uk =
i=0

q

bq-i ek-i

(3.30)

Reformulated as a vector product, this can be written as

uk = bT e0q (3.31)

with the corresponding vectors b = [bq ... b0]T and e0q = [ek ... ek-q] (cf. Section
3.3.1). This corresponds to a transfer function of

G(z) =
U(z)
E(z) = bq zq + bq-1 zq-1 + ... + b1 z + b0

(3.32)

Such a filter requires a large number of stages or taps to give a smooth amplitude
response, typically from a few dozen to several hundred, which causes unwanted time
delays in control systems. Apart from their guaranteed stability, the main advantage of
this type of filter lies in the exact linear phase response. This allows the use of a simple
delay model.

Many methods have been proposed for the design of FIR filters which aim at a
smooth amplitude response. One well-known algorithm, the Remez exchange method,

Signal processing applications 31

is described in [MCPaRa 73] and other solutions are presented in [RabGol 75],
[CroRab 75], [Elliot 87], [KamWel 83], among others.

From a computational point of view an FIR filter is a simple system since it requires
only the evaluation of the dot product 3.31 with a total of q multiplications and q-1
additions when computed in the time domain.

Infinite Impulse Response (IIR) Filters
IIR filters are the discrete equivalent to the classical continuous analog filter and

incorporate a feedback of their past outputs. Therefore, in contrast to FIR filters, such
filters can become unstable. With input e and output u, the difference equation is

uk =
i=0

q

bq-i ek-i -
i=1

n

an-i uk-i = bT e0q - aT u1n

(3.33)

with

a = [an-1 ... a0]T , b = [bq ... b0]T

e0m = [ek ... ek-m]T , u1n = [uk-1 ... uk-n]T

An FIR filter may be created by discretizing by an appropriate method a continuous
filter designed with the desired characteristics. However, a trade-off is necessary
between good amplitude response (small ripple, steep decrease for low-passes) and
small and linear phase response. As pointed out in [Brügge 89], Bessel low-passes
possess the most linear phase response. This is desirable for easy modelling of the filter
by a time delay. The price for this is a relatively slow decrease in the amplitude
response. Since an absolutely constant amplitude response in the pass-band is not
necessary in control applications (unlike in pure filtering), it is more important to keep
the phase delay as small as possible in order to gain stability in the loop.

Discretizing an analog design must be done carefully in order not to lose precious
phase reserve or even the stability of the filter itself. It is recommended to use the
bilinear transform (Tustin’s approximation) with preceding prewarping (see
[RabGol 75]). The preservation of stability is then guaranteed and a good amplitude
response results.

Another approach is to design the filter in the z plane directly, either by pole
placement or by approximating the frequency response at equidistant points (frequency
sampling). This is an example of a method of design by optimization.

An abundant literature exists on the subject of designing IIR filters, from the classic
tables by Zverev ([Zverev 67]), books by [RabGol 75] and [Elliot 87] to papers such as
[LimLiu 88], [VlcUnb 89], and [SreAga 92].

IIR filters are easily evaluated in the time domain, since the computation of the next
output requires the evaluation of the two dot products in 3.33 with a total of n+q
multiplications and n+q-1 additions.

Signal processing applications 33

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

w

w

w

w

w

w

w

w

w

w

w

w

0

1

2

3

0

2

0

2

0

0

0

0

Figure 3.1 Eight-Point Radix-2 FFT Shown as Butterfly Diagram

Many variants of the FFT are subtle variations of the number theoretic mapping of the
linear time space into the multidimensional index space of the transforms. For a recent
review of the many approaches see [DuhVet 90].

The graphical description of the FFT by the “butterfly” diagrams is very popular, but
not very useful for transforms of the lengths used in practice. However, they give a
good insight into the structure of the algorithm. Figure 3.1 depicts an eight-point radix-2
fast Fourier transform.

Recursive Formulation of the One-dimensional Mixed-radix FFT
The ordinary discrete Fourier transform X(n) of a signal x(k) at times t = kT, where

T stands for the sampling interval, is described for any number N of samples by the
transform pair

X(n) =
k=0

N-1

x(k) e -j
2 nk

N

(3.34)

and

x(k) =
1
N

n=0

N-1

X(n) e j
2 nk

N

(3.35)

For N = r1r2 .. rm, equation 3.34 can be transformed into a recursive formulation (see
[Bergla 67]).

32 Algorithms for control and signal processing

3.6.2 Signal Transforms

The Fourier transform is a classic. It was developed by Joseph Fourier at the
beginning of the nineteenth century to compute the temperature distribution in an iron
bar heated at one end. Many other transforms have been defined since, mostly for
special purposes, e.g., for speech processing or image processing (see [Blahut 87],
[Beauch 87], and [Elliot 87]). Recently, the focus has shifted to multi-dimensional
signal processing.

A major problem with signal transforms has always been the computational effort
required. In the case of the discrete Fourier transform, a great variety of transforms have
been proposed, each differing in the number of computations. The twiddle-factor FFT
approach has been selected here to show the kind of computations required for a discrete
transform.

Discrete and Fast Fourier Transforms
The fast Fourier transform has become a widely used tool in engineering.

Applications range from correlation analysis and filtering to spatial estimation in any area
of engineering science (see [Brigha 88]). For image processing purposes, the two-
dimensional Fourier transform is frequently used. Since its computational properties are
equal to those of the one-dimensional Fourier transform, only the latter is discussed
here.

The method of efficiently computing the discrete Fourier transform has become
highly popular due to the paper by Cooley and Tukey [CooTuk 65], although Good had
earlier proposed another algorithm for this task [Good 58]. In fact, Cooley and others
later discovered that the first concepts of the FFT algorithm date back to C.F. Gauss in
the seventeenth century [Cooley 92]. The computational effort for evaluating the
complex N point Fourier series with the simplest radix-2 algorithm is basically 2 N log
N real multiplications and 3 N log N real additions [Bergla 68], compared to 4 N2 and 2
N2, respectively, for the direct computation of the discrete Fourier transform. Unless
noted differently, in this context “log” always denotes the logarithm to the base 2.

While the group of the Cooley-Tukey algorithms is very commonly used for its
efficiency, another, less frequently employed but even more efficient method has been
developed by Winograd [Winogr 78]. The Winograd group of the so-called prime factor
algorithms uses the fact that the factors of N are mutually prime. Not only is the number
of multiplications greatly reduced thereby but also the amount of additions needed
decreases. This approach has been explored further by Temperton (cf. [Temper 83b],
[Temper 85]) and Stasinski [Stasin 91]).

The more general case of N being composed of any factors has been investigated by
Duhamel and Hollman ([DuhHol 84]) and by Temperton ([Temper 83a]). The latter
regards the Fourier transform as the product of a vector containing the signal samples by
the transform matrix. In his paper the various ways to factorize this matrix in order to
isolate the single computational steps are summarized.

Signal processing applications 33

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

w

w

w

w

w

w

w

w

w

w

w

w

0

1

2

3

0

2

0

2

0

0

0

0

Figure 3.1 Eight-Point Radix-2 FFT Shown as Butterfly Diagram

Many variants of the FFT are subtle variations of the number theoretic mapping of the
linear time space into the multidimensional index space of the transforms. For a recent
review of the many approaches see [DuhVet 90].

The graphical description of the FFT by the “butterfly” diagrams is very popular, but
not very useful for transforms of the lengths used in practice. However, they give a
good insight into the structure of the algorithm. Figure 3.1 depicts an eight-point radix-2
fast Fourier transform.

Recursive Formulation of the One-dimensional Mixed-radix FFT
The ordinary discrete Fourier transform X(n) of a signal x(k) at times t = kT, where

T stands for the sampling interval, is described for any number N of samples by the
transform pair

X(n) =
k=0

N-1

x(k) e -j
2 nk

N

(3.34)

and

x(k) =
1
N

n=0

N-1

X(n) e j
2 nk

N

(3.35)

For N = r1r2 .. rm, equation 3.34 can be transformed into a recursive formulation (see
[Bergla 67]).

34 Algorithms for control and signal processing

Using the abbreviation wN = e -
2 j

N , the transform can conveniently be written as

X(n) =
k = 0

N - 1
 x(k) wN

nk
(3.36)

Since N is composed of m factors r1r2 .. rm, the variables n and k can be expressed as

n = nm-1 (r1r2 .. rm-1) + nm-2 (r1r2 .. rm-2) + .. + n1 r1 + n0 (3.37a)

and

k = km-1 (r2r3 .. rm) + km-2 (r3r4 .. rm) + .. + k1 rm + k0 . (3.37b)

The range of the respective coefficients ni-1 and ki is

ni-1 = 0, 1, 2, .. ri -1 1 i m (3.38a)

ki = 0, 1, 2, .. rm-i -1 0 i m - 1 (3.38b)

Thus a unique representation of n and k is possible for all values between 0 and N-1
with the sets (nm-1, nm-2, .. , n0) and (km-1, km-2, .. , k0), respectively. This allows
3.36 to be written as

X(nm-1, nm-2, .. , n0) =

k0 k1

 ..
km-1

 x0 (km-1, km-2, .. , k0) wN
n k

(3.39)

with x0 (km-1, km-2, .. , k0) = x(k).
Rearranging the terms of the product nk yields

nk = n0 km-1 (r2r3 .. rm) + (n1r1 + n0) km-2 (r3r4 .. rm) + .. +

+ (nm-1(r1r2 .. rm-1) + .. + n0) k0

(3.40)

([Bergla 67], [Brigha 88]). Terms with r1r2 .. rm = N can be omitted since wNN = 1.
The main advantage of this formulation is that each term of the sum contains only one

factor ki, such that the multiplications by wNnk can be distributed to the sums over the
respective ki. Therefore, intermediate variables can be defined, for example,

Signal processing applications 35

x1(n0, km-2, .. , k0) =

km-1

 x0 (km-1, .. , k0) wN
n0km-1(r2 .. rm)

(3.41)

and so forth, leading to the general formulation

xi(n0, n1, .., ni-1, km-i-1, .. , k0) =

km-i

 x i-1 (n0 , n1 , .. , ni-2, km- i , .. , k0) .

wN
[ni-1(r1r2 .. ri-1) + .. + n0] km-i (ri+1 .. rm) (3.42)

i = 1, 2, .. m.

Equation 3.42 represents the recursive formulation of the Cooley-Tukey fast Fourier
transform algorithm.

The final result is obtained by the relation

X(nm-1, .. , n0) = xm(n0, .. , nm-1) (3.43)

The interchange of the order of the coefficients of n means an unscrambling of the
results, the well-known bit reverse permutation for radix-2 FFT algorithms (where all
ris are 2, i.e., N is a power of two).
The product nk can also be factored as follows:

nk = n0 km-1 (r2r3 .. rm) + n0 km-2 (r3r4 .. rm) +

+ n1r1 km-2 (r3r4 .. rm) +

+ (n1r1 + n0) km-3 (r4r5 .. rm) + .. +

+ nm-2(r1r2 .. rm-2) k1 rm +

+ (nm-2(r1r2 .. rm-2) +.. + n0) k0 +

+ nm-1(r1r2 .. rm-1) k0 + 0

(3.44)

By taking together two successive terms, the general expression for xi becomes

36 Algorithms for control and signal processing

xi(n0, n1, .., ni-1, km-i-1, .. , k0) =

km-i

x i-1 (n0, n1, .. ,ni-2, km-i, .. , k0) wN
ni-1 km-i

N

ri
.

wN
[ni-1(r1r2 .. ri-1) + .. + n0] km-i-1 (ri+2 .. rm)

(3.45)

i = 1, 2, .. , m and k-1 = n-1 = 0, rm+1 = rm+2 = 1.

Again, equation 3.43 applies to the final result.
In the intermediate stages, the values of xi in equations 3.45 and 3.42 differ from

each other, while the final result X(n) must obviously be the same.
The last step 3.43 is an unscrambling of the results which is computationally

expensive. Burrus has assembled ways ([Burrus 88]) to modify radix-2m and mixed-
radix FFT algorithms so that the results arrive in the same order as from radix-2 or
radix-4 transforms. Simple unscramblers exist for these cases (see [BurPar 85]).

Each sum in brackets in 3.45 represents a ri-point DFT, while the following term is
called a “twiddle factor”. It twiddles the phase of the whole partial DFT by multiplying
the result of the transform by a complex factor with absolute value one. The advantage
of this twiddle factor algorithm over the formulation in 3.42 lies in the fact that the ri-
point transform can be evaluated with a minimal number of multiplications. Regardless
of the value of N, the factors in the sum are ± 1 for r = 2, ± 1 and ± i for r = 4, and ±

1, ± i, ± e±
i

4 for r = 8. For the single stages of the FFT, standard radix-r algorithms can

thus be used and the intermediate results need to be modified only by the appropriate
twiddle factor.

Radix-4 and radix-8 algorithms are the most efficient since the factors in the sum take
on simple values. They require substantially fewer multiplications and additions than
radix-2 algorithms (see [Bergla 68]).

The factorized formulation also very clearly exhibits the basic concept of the fast
Fourier transform, namely the decomposition of a linear sequence of N points into m
dimensions of length ri.

As an illustration, the formulas for a 512-point transform in the radix-8 formulation
will be given. As 512 = 83 = N = r1r2r3, the expressions to be evaluated are

x1(n0, k1, k0) =
k2 = 0

7
 x0(k2, k1, k0)w512

n0k2 64 w512
n0k1 8

(3.46)

x2(n0, n1, k0) =
k1 = 0

7
 x1(n0, k1, k0)w512

n1k1 64 w512
(8n1 + n0) k0

Signal processing applications 37

x3(n0, n1, n2) =
k0 = 0

7
 x2(n0, n1, k0)w512

n2k0 6 4 w512
0

X(n2, n1, n0) = x3(n0, n1, n2)

with w512 = e -
2 j

512 .

Matrix Formulation of the FFT
As indicated earlier, the discrete Fourier transform can also be described in terms of a

matrix-vector product. Thus, equation 3.34 can be rewritten as

X = T0 x (3.47)

X = [X(0), X(1), .. X(N)]T, x = [x(0), x(1), .. x(N)]T

where X and x are the vectors of the N frequency and time samples, respectively. T0

denotes the N × N transform matrix.
It is inefficient to evaluate the product in this form, since it requires N2 complex

multiplications. But the transform matrix can be factorized in a product of sparse
matrices, which allows computation of the transform with much less expense than
previously. The approach in this notation is due to Pease [Pease 68]. However, his
formulation of the FFT will not be repeated here. Instead, the factored matrix version of
the twiddle-factor Cooley-Tukey algorithm will be given.

In equation 3.39, the splitting of the sum into m smaller sums has been introduced
for N composed of m arbitrary factors, i.e., N = r1r2 .. rm. The introduction of the
intermediate vectors xi for the computation stage i in equation 3.45 suggests a
factorization of T0 in the form

x1 = T1 x0, x2 = T2 x1, .. , xm = Tm xm-1 (3.48)

giving for xm

xm =
i = 1

m
 Ti xi-1

(3.49)

X is obtained by unscrambling xm by a permutation matrix which will be called Pm+1.
This leads to

X = Pm+1 xm (3.50)

38 Algorithms for control and signal processing

According to equation 3.45, for each xi the summation is over km-i, which represents
a scrambled order of xi as it is summed. After the summation, the result is multiplied by
the twiddle factor which does not depend on the summation index.

This leads to the idea of partitioning the original transformation matrix for stage i of
the computation as

Ti = Pi
T Ei Ci Pi (3.51)

where Pi performs the permutation to scrambled order
Ci performs the basic ri point transform at stage i
Ei performs the multiplication by the twiddle factors
Pi

T performs the inverse permutation to natural order

The permutation matrix Pi is filled mainly with zeros and with N ones. Ci is block-
diagonal in structure, and Ei is strictly diagonal.

The main idea of the decomposition is twofold. On the one hand, the large blocks of
similar computations on the data in a specific order (the ri point transforms) are isolated
by partitioning the whole fast Fourier transform into m stages. Each stage corresponds
to one factor of N. On the other hand, each stage divides in single steps: the permutation
of data, the N/ri parallel ri point transforms, the multiplication of the data vector by the
twiddle factors, and unscrambling the data. The regular structure of the algorithm
appears very clearly. One other basic property of the fast Fourier transform is that it is
not data dependent.

For practical purposes, the factorization of Ti in 3.51 can be modified slightly by
combining the inverse permutation at stage i-1 with the (different) permutation at stage i,
yielding

Ti = Ei Ci Pi,i-1 (3.52)

with Pi,i-1 = Pi Pi-1
T , i = 1, 2, .. , m, and P0 = IN

For the specification of the matrices P, C, and E, a notation similar to that of Pease
([Pease 68]) will be used. However, the Kronecker product is defined differently here,
but in accordance with the definition used by Temperton [Temper 83a].

More recently, this kind of description of the FFT algorithms has been compiled
under the name Tensor Product formulation ([GrCoTo 92]).

The Kronecker product of two matrices A and B is defined by

A × B = (aij B)

Ci thus results in the following:

Signal processing applications 39

Ci = IN
ri
× Wri

(3.53)

where

Is denotes the identity matrix of dimension s.
Wri (i, j) = wri

ij stands for the square ri point transform matrix, and
wri is as defined in equation 3.36.

Therefore, Ci has a blockdiagonal form with
N
ri

 square ri point transform matrices Wri

on the diagonal.
For the diagonal twiddle-factor matrix Ei, the expression with exponents is more

convenient than one written in full powers of wri. Therefore, any figure in the matrix

will denote the exponent only, whereas all nondiagonal entries are written as period,
meaning the value zero rather than the exponent zero.

Let Rri = diag(0, 1, 2, .. , ri-1). Then, by inspection of the twiddle factor, the last
term in 3.45, Ei results as

Ei = [(IN
ri
× Rri) r0r1r2..ri-1 +

k = 2

i

(Ir0r1..ri-k × Rri-k+1 × Iri-k+2ri-k+3..rm) r0r1..ri-k] .

[Ir0r1..ri-1 × Rri+1 × Iriri+2ri+3..rm] ri+2ri+3..rm

(3.54)

i = 1, 2, .. , m-1, and r0 = 1, Em = IN

When comparing the above formula with the original formulation in equation 3.45,
the first expression corresponds to the factor ni-1 of the exponent of wN, the sum
corresponds to the factors ni-2 .. n0, and the last term in brackets corresponds to
km-i-1.

Describing Pi requires a construction rule as follows. Any xi(l) is numbered
according to

l = lm-1 (r2r3 .. rm) + lm-2 (r3r4 .. rm) + .. + l1 rm + l0 (3.55)

(see equation 3.37) with the ordered set L = {lm-1, lm-2, .. , l1, l0}, where lm-t stands
for the n or k at position t in 3.45.

For Pi form

L' = {lm-1, lm-2, .. lm-i+1, lm-i-1 .. , l1, l0} (3.56)

40 Algorithms for control and signal processing

by omitting lm-i. For all values of the respective lm-t evaluate 3.55 without the term for

lm-i and order the corresponding values in ascending order. This will result in
N
ri

 values

for l'. Then a new element km-i is added to L', yielding

L'' = {lm-1, lm-2, .. lm-i+1, km-i, lm-i-1 .. , l1, l0} (3.57)

where km-i = 0, 1, .. , ri -1. Evaluated in the same order as L', L'' denotes the order of
xi-1(l'').

Therefore, for Pi, the columns are numbered from left to right according to l, i.e., in
normal order, while the rows are numbered from top to bottom according to l'', i.e., in
scrambled order. The position where l and l'' have the same value is marked by a 1, and
all the other elements of Pi are zero.

When constructing Pi,i-1 = Pi Pi-1
T, the columns are numbered according to li-1''

and the rows according to li''. Written in compact notation, this reads

Pi,i-1 = (i'' li-1'') (3.58)

In sum, the fast Fourier transform is an algorithm which requires large computational
effort, but due to its highly regular structure, the transform matrix can be divided into
successive stages of permutations, small transforms, and the weighting of each
intermediate value.

Convolution, Correlation, and Spectral Estimation
Convolution is applied for the computation of the output of a linear system, for

example, given the input signal and the system’s impulse response. The discrete
convolution differs from its continuous equivalent in that it is periodic. Therefore it is
also called circular convolution. If the sequences to be convolved have length N and are
continued periodically then the resulting convolution is of length 2N and periodic.

Given a system impulse response h(k) and an input sequence x(k), both of length N
and continued periodically, the system output y(k) is computed as follows:

y(k) =
l=0

N-1

x(l) h(k-l), 0 k N-1
(3.59)

The same operation can be performed in the frequency domain with the discrete Fourier
transforms of the signals, reading

Y(n) = X(n) H(n), 0 n N-1 (3.60)

In the frequency domain, only the point-wise multiplication of the transformed
signals is required, rather than the scalar product of x and h shifted by k points.
Therefore, it is often attractive to perform the operation in the frequency domain,

Matrix computations 41

especially if the result has to be transformed to this domain in any case. An efficient
algorithm for the discrete Fourier transform must be available in order to do this quickly.

The cross-correlation and the power-density spectrum of signals are useful tools for
gaining information in radar, adaptive filtering, seismic data processing, speech
processing, underwater acoustics, and many other applications. For practical purposes it
is generally assumed that the signals are stationary, because they have to be observed
over a period of time before they can be processed.

The discrete correlation of two signals x and y of length N is defined by

rxy (k) =
l = 0

N-1

x(l) y(k+l), 0 k N-1
(3.61)

When transforming both signals to X(n) and Y(n), the transformed cross-correlation
function becomes

Rxy (n) = Y(n) X* (n) (3.62)

where * denotes complex conjugate. This means that in the frequency domain the
correlation changes into a point-by-point multiplication of the transformed signals.

From continuous signal processing, it is known that the cross-power density function
Sxy(k) and the crosscorrelation rxy(k) are a Fourier pair. However, in the discrete case
all spectral functions are inaccurate to a certain degree, since the observations of the
signals cover only a limited period of time.

In order to reduce the error, one method is to average a number of estimates
^
Sxy(k).

This was first described by Blackman and Tukey [BlaTuk 59] and has been further
refined by Welch [Welch 67].

The basic idea is to partition the original sequences x(k) and y(k) of length N into k
segments of length L, possibly overlapping. These segments are weighted with a
windowing function (cf. [Harris 78], [Adams 91]) and subsequently transformed. The
transformed segments are then summed and averaged.

From a computational point of view the estimation of spectra is an application of the
fast Fourier transform, with additional averaging at the end, consisting of additions and
divisions on an array of data of length L.

3.7 Matrix Computations

The concept of matrix notation is very attractive for the formulation of mathematical
problems. On the one hand, matrices and vectors allow a very compact and concise
notation for many applications, and on the other, vector computers offer efficient ways
to solve systems of linear equation in a short time. This has made it attractive to
reformulate differential equations, for example for hydrodynamic problems, in large
linear equation systems, which in turn are solved efficiently on vector computers.

42 Algorithms for control and signal processing

With the introduction of parallel computers, increased emphasis has been put on
exploiting aspects other than vectorization of linear equation systems. However, most of
the commercial systems still consist of a very limited number of processors, which in
turn are heavily pipelined vector machines. Nevertheless, the aspect of parallelizing
computations will gain importance. Many approaches have already been made, as
described in [Ortega 88] or [Modi 88].

From the discussion of the algorithms for control in Sections 3.3 and 3.4, and from
the algorithms outlined in Section 3.6 for signal processing, the significance of the
matrix and vector operations has become evident. Most of the algorithms treated can be
formulated in vector form.

After outlining the computational effort for the basic operations with vectors and
matrices, including block matrix techniques, further algorithms are covered here which
may be needed in more advanced applications but which will be rarely used in real-time
environments. The solution of linear systems and matrix inversion will be briefly
outlined. The eigenvalue/eigenvector decomposition and computation of the singular
value decomposition of matrices, however, will not be treated, because they require
fairly subtle numerics and are generally too expensive to be computed in real-time.

Also, the computation of the matrix exponential is not considered here. While it is an
important step in the design of controllers, it should be avoided for run-time
computations due to its high demands on computational effort and numerical accuracy
(cf. [MolVanL 78]). Many implementation aspects of matrix algorithms are outlined in
[VanLoa 90].

Generally, all matrices and vectors are assumed to have real-valued elements. If
complex numbers appear, as with the Fourier transform, all algorithms apply in the
same way, except that the ordinary transposition has to be replaced by the conjugate
transposition, where the transposed elements are replaced by their complex conjugates.

The notation will vary with requirements. The computations are expressed either in
terms of whole vectors (e.g., the addition of such n-dimensional vectors as
z = x + y), or as single components of the vectors or matrices, such as zi = xi + yi,
1 i n. Vectors will be regarded as columns, otherwise they are affixed with the
transpose sign “T”. Matrix names consist of capital letters, while single elements are
referred to by the same letter in lower case, with additional indices indicating the
position. Capital letters with indices are used for submatrices. Many of the algorithms
and much of this notation are referenced in [GolVanL 89].

3.7.1 Basic Vector and Matrix Computations

The basic operations with vectors and matrices comprise addition and multiplication
of operands of corresponding dimensions. This forms the main application of matrices
and vectors in real-time applications for signal processing and digital control. In the
scientific computing community, a larger collection of Fortran subroutines for this
purpose has become known as BLAS (Basic Linear Algebra Subroutines). These
subroutines serve for broader computations than are needed in real-time digital control.

Matrix computations 43

An older subroutine collection is LINPACK, which incorporates most of the basic
algorithms.

Historically, three levels of the BLAS code have emerged. Starting with level one,
only operations on vectors were covered ([LaHaKi 79]). Then, matrix-vector operations
were soon included, typically matrix times vector multiplications ([DoDCHa 88]). These
subroutines have been implemented on many vector computers and are the basis of the
highly efficient software packages for solving linear equation systems. Level three of
BLAS ([DoDCHa 87]) incorporates operations on the matrix-matrix level and will gain
even more importance in the future.

Scalar-vector Computations
There is only one operation which incorporates a scalar and a vector x of dimension

n. This is the scalar-vector multiplication z = x (zi = xi) requiring n multiplications.

Vector-vector Computations
The most frequent operations among vectors in control and signal processing are the

inner or dot product, sometimes referred to as scalar product, and the addition of two
vectors. The inner product appears whenever difference equations have to be evaluated,
for example with the general SISO controller 3.15, or with FIR and IIR filters, as
described in equations 3.30 and 3.33, and in context with correlation (equation. 3.59).
Expressed by the vectors x and y of dimension n, it reads

c = xT y =
i=1

n

x i y i

(3.63)

The computational expense is n multiplications and n-1 additions. The outer product of
two vectors x and y of dimensions m and n, respectively, yielding a m × n matrix Z is
defined by

Z = x yT , zij = xi yj , 1 i m, 1 j n (3.64)

However, this type of vector product is rarely encountered in signal processing. The
number of multiplications to be performed is nm.

On vector computers, the term vector multiplication of two vectors of the same
dimension means the following, requiring n multiplications:

z = x × y, zi = xi yi 1 i n (3.65)

The addition of two vectors x and y yielding the vector z is described by

z = x + y, zi = xi + yi (3.66)
This addition requires n additions.

44 Algorithms for control and signal processing

A well-known composition of scalar-vector multiplication and vector addition,
though less frequently used in the applications discussed here, is the SAXPY operation
(scalar alpha (times) x plus y, while in the original BLAS definition S represents single
precision). It is denoted by

z = x + y, zi = xi + yi (3.67)

Because it contains a scalar-vector multiplication and the addition of two vectors, n
multiplications and additions have to be computed.

Matrix-vector Computations
Matrix-vector computations, specifically the multiplication of a matrix by a vector, are

among the central operations in control and signal processing when systems are
expressed in state space. They appear with linear systems (equations 3.3 and 3.4), state
feedback (equation. 3.16), and the fast Fourier transform 3.49, to name a few.

The so-called row version of the matrix-vector multiplication is to see the result
vector z composed of single dot products. If matrix A has m rows and n columns, the
following algorithm results:

z = A x, zi =
j=1

n

a ij x j, 1 i m, 1 j n
(3.68)

However, it is possible to express z as the sum of the columns of A multiplied by the
corresponding element of x, giving the column version of the matrix-vector
multiplication. Introducing the n intermediate vectors jt, the result z can be expressed as

jti = xj aij 1 j n

zi =
j=1

n
jti 1 i m

(3.69)

Both variants require mn multiplications, and m(n-1) additions.
The GAXPY operation appears occasionally. It is defined by the equation

z = y + Ax (3.70)

with the vectors y and z of dimension m, the vector x of dimension n and the m × n
matrix A. The number of additions and multiplications is mn.

Matrix computations 45

Scalar-matrix Computations
As in the scalar-vector case, the only useful operation involving a scalar and the

m × n matrices A and B is the product defined by

B = A, bij = aij , 1 i m, 1 j n (3.71)

which can be computed element by element.

Matrix-matrix Computations
The addition (or subtraction) of two matrices A and B of the same dimensions m × n

yields the result

C = A + B, cij = aij + bij , 1 i m, 1 j n (3.72)

Given an m × n matrix A and an n × m matrix B, the resulting square matrix C of
dimension m × m is given by

C = A B, cij =
k=1

n

a ik bkj , 1 i m, 1 j m
(3.73)

This formulation relies on the computation of the elements of C by inner products as
defined in 3.63. It is also referenced as the ijk form of matrix multiplication, named after
the order of the indices. However, it is possible to compute the SAXPY operation in the
loop in two variants as given in 3.68 and 3.69. If this innermost loop runs over either i
or j instead of k, another three possibilities for the computations arise. This gives a total
of six possible ways to compute the product of two matrices. The different variants and
their impact on the performance of the implementation are discussed in further detail in
[DoGuKa 84].

Table 3.4 shows six possibilities for the arrangement of the loops.

Table 3.4 Loop Ordering for Matrix Multiplication

Index Order Inner Loop Middle Loop
ijk Inner Product Vector × Matrix
jik Inner Product Matrix × Vector
ikj SAXPY GAXPY by Rows
jki SAXPY GAXPY by Columns
kij SAXPY Outer Prod. (rows)
kji SAXPY Outer Prod. (columns)

46 Algorithms for control and signal processing

The efficiency of a specific implementation of the matrix multiplication depends very
much on the data access scheme provided by the computer and by the programming
language.

The basic computational effort is nm2 multiplications and (n-1)m2 additions. This
high complexity explains why it is worth exploiting every known structural property of
the matrices, for example diagonal sparseness.

Block Matrix Computations
With the advent of computers incorporating multiple processors it has become

attractive to distribute the computations over the processing elements. For this purpose,
the block matrix notation is very appropriate, since it allows the expression of
algorithms in terms of matrix elements which are matrices themselves. The
computational rules, however, remain the same as for the calculation on the level of
matrix elements. It must be kept in mind that matrix products normally do not commute,
in contrast to scalar multiplications.

For example, a vector x and a matrix A could be partitioned as follows:

x =

 x 1
 x 2
 . . .
 x p

, A =

 A 1 1 A 1 2 . . . A1 p
 A 2 1 A 2 2 . . . A2 p

 Aq1 Aq2 . . . Aq p

(3.74)

The subvectors xi and the submatrices Aij can have any matching dimensions. The
vector y = Ax can then be expressed as

y =

 y 1
 y 2
 . . .
 y p

, yi =
j=1

q

A ij x j 1 j q

(3.75)

Obviously, it is possible to formulate all the computations described in previous
sections in the same manner, for example the solution of systems of linear equations.

For multiprocessor systems the introduction of block matrix algebra is a promising
approach, since the costs of transferring submatrices and the results are compensated by
the gain in parallelism. For this type of arithmetic a collection of standard subroutines is
under development ([DeDoDC 87]) and is called LAPACK (Linear Algebra PACKage).

3.7.2 Solution of Systems of Linear Equations

Given a system of linear equations

Ax = b with A Rm × n , x R1 × n , b R1 × m (3.76)

the solution x for a given matrix A and vector b is sought.

Matrix computations 47

If only the case of square matrices A is considered (i.e., m = n), then for a
nonsingular A a solution can be found. One favourite method for determining x is the
Gaussian elimination using LU decomposition. There the matrix A is decomposed so
that with the intermediate vector w the following equations result:

A = L R, Lw = b, Ux = w (3.77)

where L is a lower triangular matrix and U an upper triangular matrix. The vector w is
determined by forward substitution, and the final solution x results from backward
substitution.

This decomposition requires approximately
n3

3 additions and multiplications. If A is

Hermitian, i.e., if the equations are positive definite, the Cholesky decomposition
A = RTR can be applied instead of the LU decomposition, thus halving the
computational effort.

There exists an algorithm by Strassen ([Strass 69]) where the effort is proportional to
less than the third power of n, namely only to nlog2 7 which is approximately n2.8.

The crucial point to obtain numerically exact results is a good choice of pivots. Apart
from scaling the equations to get coefficients of similar order of magnitude, it is essential
to choose pivots that are as large as possible to reduce roundoff errors. Therefore, in a
routine to solve general problems a flexible pivoting strategy has to be implemented.

In on-line applications for control and digital signal processing the solution of linear
systems is rarely computed, except when filters or compensators have to be tuned in
real-time due to varying plant or excitation parameters. One case is the Kalman filter
(equations 3.19-3.23) where the gain matrix Lk changes with each step.

3.7.3 Matrix Inversion

If the inverse A-1 of a square matrix A (A-1A=I) is not explicitly needed its
computation is avoided if possible. In an application of the Kalman filter, however,
computation is inevitable.

The most straightforward way to do this is to use the exchange algorithm for the
matrix to be inverted. The result, however, is n3 additions and multiplications. It is more
appropriate to compute the LR decomposition of A once and then to solve the n linear
equation systems

A xi = ei eik = (k) (Kronecker function), 1 i n (3.78)

Each solution xi (1 i n) is the corresponding column of A-1 = [x1, x2, ..., xn]
because it represents the vector orthogonal to the i-th row of A.

48 Algorithms for control and signal processing

The decomposition needs
2n3

3 operations and is done only once. The subsequent

solution of the n equations by forward and backward substitution requires an effort only
proportional to n2.

3.8 References

[Adams 91] J.W. Adams, “A New Optimal Window,” IEEE Trans. ASSP, vol. 39, no. 8, pp.
1753-1769, 1991.

[Allen 85] J. Allen, “Computing Architecture for Digital Signal Processing,” Proceedings of the
IEEE, vol. 73, no. 5, pp. 852-873, 1985.

[ÅstWit 90] K. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design.
(2nd edition), London: Prentice-Hall International, Inc., 1990.

[Beauch 87] K. Beauchamp, Transforms for Engineers: A Guide to Signal Processing. Oxford:
Clarendon Press, 1987.

[Bergla 67] G.D. Bergland, “The Fast Fourier Transform Recursive Equations for Arbitrary Length
Records,” Mathematics of Computation, vol. 21, pp. 236-238, 1967.

[Bergla 68] G.D. Bergland, “A Fast Fourier Transform Algorithm Using Base 8 Iterations,”
Mathematics of Computation, vol. 22, pp. 275-279, 1968.

[BlaTuk 59] R.B. Blackman and J.W. Tukey, The Measurement of Power Spectra From the Point of
View of Communications Engineering. New York: Dover Publications, Inc., 1959.
Republished from the January and March issues of The Bell System Technical Journal,
vol. 37, 1958.

[Blahut 87] R.E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, MA, a.o.:
Addison-Wesley Publishing Co., 1987.

[Brigha 88] E.O. Brigham, The Fast Fourier Transform and its Applications. London: Prentice-Hall
International Inc., 1988.

[Brügge 89] T. Brüggemann, “Anti-Aliasing-Filterung in regeltechnischen Anwendungen,” Report
No. 23, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Measurement and
Control Laboratory, Sept. 1989.

[ByrHin 75] G.D. Byrne and A.C. Hindmarsh, “A Polyalgorithm for the Numerical Solution of
Ordinary Differential Equations,” ACM Trans. on Mathem. Software, vol. 1, no. 1, pp.
71-96, 1975.

[Cooley 92] J.W. Cooley, “How the FFT Gained Acceptance”, IEEE Signal Processing Magazine,
vol. 9, no. 1, pp. 10-13, 1992. Reprinted from: Proceedings of the ACM Conference
on the History of Scientific and Numeric Computation, May 1987, and from A History
of Scientific Computing, Boston, MA: ACM Press, 1990.

[CooTuk 65] J.W. Cooley and J.W. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Mathematics of Computation, vol. 19, pp. 297-301, 1965.

[CroRab 75] R. Crochiere and L.R. Rabiner, “Optimum FIR Digital Filter Implementations for
Decimation, Interpolation, and Narrow-Band Filtering,” IEEE Trans. ASSP, vol. 23,
no. 5, pp. 444-456, 1983.

[DeDoDC 87] J. Demmel, J. Dongarra, J. Du Croz, et al., “Prospectus for the Development of a
Linear Algebra Library for High-Performance Computers,” Report ANL/MCS-TM-97,
Argonne National Laboratory, Argonne, IL, September 1987.

[DoDCHa 87] J.J. Dongarra, J. Du Croz, S. Hammarling, et al., “A Proposal for a Set of Level 3
BLAS Basic Linear Algebra Subprograms,” Report ANL/MCS-TM-88, Argonne
National Laboratory, Argonne, IL, April 1987.

References 49

[DoDCHa 88] J.J. Dongarra, J. Du Croz, S. Hammarling, et al., “An Extended Set of Fortran Basic
Linear Algebra Subprograms,” ACM Trans. on Mathem. Software, vol. 14, no. 1, pp.
1-17, 1988.

[DoGuKa 84] J.J. Dongarra, F.G. Gustavson and A. Karp, “Implementing Linear Algebra Algorithms
for Dense Matrices on a Vector Pipeline Machine,” SIAM Review, vol. 26, no. 1, pp.
91-112, 1984.

[DuhHol 84] P. Duhamel and H. Hollmann, “‘Split Radix’ FFT Algorithm,” Electronics Letters,
vol. 20, no. 1, pp. 14-16, 1984.

[DuhVet 90] P. Duhamel and M. Vetterli, “Fast Fourier Transforms: A Tutorial Review and a State
of the Art,” Signal Processing, vol. 19, no. 4, pp. 259-299, 1990.

[Elliot 87] D.F. Elliott (ed.), Handbook of Digital Signal Processing: Engineering Applications.
San Diego, New York, a.o.: Academic Press, Inc., 1987.

[FraPow 90] G. Franklin and J. Powell, Digital Control of Dynamic Systems, (2nd edition).
Reading, MA, a.o.: Addison-Wesley Publishing Co., 1990.

[Gear 71] C.W. Gear, “Algorithm 407 – DIFSUB for Solution of Ordinary Differential
Equations,” Communications of the ACM, vol. 14, no. 3, pp. 185-190, 1971.

[Geerin 86] H.P. Geering, “Entwurf robuster Regler mit Hilfe von Singularwerten; Anwendung auf
Automobilmotoren,” GMA-Bericht 11, pp. 125-145, 1986.

[Geerin 87] H.P. Geering, “Neuere Methoden für den Entwurf robuster Regler,” Bulletin SEV, vol.
78, no. 7, pp. 346-349, 1987.

[Goldbe 91] D. Goldberg, “What Every Compouter Scientist Should Know About Floating-Point
Arithmetic,” ACM Computing Surveys, vol. 23, no. 1, pp. 5-48, 1991.

[GolVanL 89] G. Golub and C. Van Loan, Matrix Computations, (2nd edition). Baltimore, London:
The Johns Hopkins University Press, 1989.

[Good 58] I.J. Good, “The Interaction Algorithm and Practical Fourier Analysis,” J. Royal Statist.
Soc., Ser. B, vol. 20, pp. 361-375, 1958. Addendum in vol. 22, pp. 372-375, 1960.

[GuSaTi 85] G.K. Gupta, R. Sacks-Davis and P.E. Tischer, “A Review of Recent Developments in
Solving ODEs,” ACM Computing Surveys, vol. 17, no. 1, pp. 5-47, 1985.

[GrCoTo 92] J. Granata, M. Conner and R. Tolimieri, “The Tensor Product: A Mathematical
Programming Language for FFTs and other Fast DSP Operations,” IEEE Signal
Processing Magazine, vol. 9, no. 1, pp. 40-48, 1992.

[HaNøWa 87] E. Hairer, S. Nørsett and G. Wanner, Solving Ordinary Differential Equations I:
Nonstiff Problems. Berlin, Heidelberg, New York: Springer-Verlag, 1987.

[HaiWan 91] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Berlin, Heidelberg, New York: Springer-Verlag, 1991.

[Hansel 87] H. Hanselmann, “Implementation of Digital Controllers – A Survey,” Automatica, vol.
23, no. 1, pp. 7-32, 1987.

[Harris 78] F.J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51-83, 1978.

[Hindma 74] A.C. Hindmarsh, “GEAR: Ordinary Differential Equation System Solver,” Rep. UICD-
30001, Revision 3, Lawrence Livermore National Laboratory, Livermore, CA, 1974.

[Hindma 80] A.C. Hindmarsh, “LSODE and LSODI, Two New Initial Value Ordinary Differential
Equation Solvers,” ACM SIGNUM Newsletters, vol. 15, pp. 10-11, 1980.

[HuEnJa 76] T.E. Hull, W.H. Enright and K.R. Jackson, “A User’s Guide for DVERK – A
Subroutine for Solving Non-Stiff ODEs,” Tech. Rep. 100, Dept. of Computer Science,
University of Toronto, Ont., 1976.

[Kalman 60] R.E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Trans.
ASME, Series D, J. Basic Eng., vol. 82, pp. 35-45, 1960.

[KamWel 83] Y. Kamp and C. Wellekens, “Optimal Design of Minimum Phase FIR Filters,” IEEE
Trans. ASSP, vol. 31, no. 4, pp. 922-926, 1983.

50 Algorithms for control and signal processing

[Krogh 69] F.T. Krogh, “A Variable Step, Variable Order Multistep Method for the Numerical
Solution of ODEs,” in Information Processing 68, A.J.H. Morrel (ed.). Amsterdam:
North-Holland Publishing Co., 1969, pp. 194-199.

[KwaSiv 72] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems. New York, London,
Sydney: Wiley-Interscience, 1972.

[LaHaKi 79] C.L. Lawson, R.J. Hanson, D.R. Kincaid, et al., “Basic Linear Algebra Subprograms
for Fortran Usage,” ACM Trans. on Mathem. Software, vol. 5, no. 3, pp. 308-323,
1979.

[LimLiu 88] Y.C. Lim and B. Liu, “Design of Cascade Form FIR Filters with Discrete Valued
Coefficients,” IEEE Trans. ASSP, vol. 36, no. 11, pp. 1735-1739, 1988.

[MCPaRa 73] J. H. McClellan, T.W. Parks and L.R. Rabiner, “A Computer Program for Designing
Optimum FIR Linear Phase Digital Filters,” IEEE Trans. AU, vol. 21, no. 6, pp. 506-
526, 1973.

[Mendel 71] J. M. Mendel, “Computational Requirements for a Discrete Kalman Filter,” IEEE
Trans. Automatic Control, vol. 16, no. 6, pp. 718-758, 1971.

[Modi 88] J.J. Modi, Parallel Algorithms and Matrix Computation. Oxford Applied Mathematics
and Computing Series, Oxford: Clarendon Press, 1988.

[MolVanL 78] C. Moler and C. Van Loan, “Nineteen Dubious Ways to Compute the Exponential of a
Matrix,” SIAM Review, vol. 20, no. 4, pp. 801-836, 1978.

[Morone 83] P. Moroney, Issues in the Implementation of Digital Feedback Compensators, MIT
Press Series in Signal Processing, Optimization and Control, Alan S. Willsky (ed.).
Cambridge, MA; London: MIT Press, 1983.

[Ortega 88] J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Frontiers
in Computer Science Series, Arnold L. Rosenberg (ed.). New York, London: Plenum
Press, 1988.

[Pease 68] M.C. Pease, “An Adaptation of the Fast Fourier Transform for Parallel Processing,”
Journal of the ACM, vol. 15, no. 2, pp. 252-264, 1968.

[RabGol 75] L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

[Rao 85] S. Rao, Regular Iterative Algorithms and their Implementation on Processor Arrays.
Ph.D. Dissertation, Stanford University, 1985. Diss. Abstracts No. DA8608214.

[RaoKai 87] S. Rao and T. Kailath, “Architecture Design for Regular Iterative Algorithms,” in
Systolic Signal Processing, Earl E. Swartzlander (ed.). New York, Basel: Marcel
Dekker, Inc., 1987, pp. 209-297.

[Schwar 86] H. Schwarz, Numerische Mathematik. Stuttgart: B. G. Teubner, 1986.
[Sedgwi 73] A.E. Sedgwick, “An Effective Variable Order Variable Stepsize Adams Method,”

Technical Report 53, Dept. of Computer Science, University of Toronto, Ont., 1973.
[Shampi 83] L.F. Shampine, “Measuring Stiffness,” Technical Report SAND83-1119, Sandia

Laboratories, Albuquerque, NM, June 1983.
[ShaGea 79] L.F. Shampine and C.W. Gear, “A User’s View of Stiff Ordinary Differential

Equations,” SIAM Review, vol. 21 pp. 1-17, 1979.
[ShaGor 75] L.F. Shampine and M.K. Gordon, Computer Solution of Ordinary Differential

Equations. San Franscisco, CA: Freeman, 1975.
[ShaWat 77] L.F. Shampine and H.A. Watts, “The Art of Writing a Runge-Kutta Code, Part I,” in

Mathematical Software, J.R. Rice (ed.). Orlando, FL: Academic Press, 1977, pp. 257-
276.

[SreAga 92] V. Sreeram and P. Agathoklis, “Design of Linear-Phase IIR Filters via Impulse-
Response Gramians,” IEEE Trans. Signal Processing, vol. 40, no. 2, pp. 389-394,
1992.

[Stasin 91] R. Stasinski, “The Techniques of the Generalized Fast Fourier Transform Algorithm,”
IEEE Trans. ASSP, vol. 39, no. 5, pp. 1058-1069, 1991.

References 51

[Strass 69] V. Strassen, “Gaussian Elimination is Not Optimal,” Numer. Math., vol. 13, pp. 354-
356, 1969.

[Temper 83a] C. Temperton, “Self-Sorting Mixed-Radix Fast Fourier Transforms,” J. of
Computational Physics, vol. 52, no. 1, pp. 1-23, 1983.

[Temper 83b] C. Temperton, “A Note on Prime Factor FFT Algorithms,” J. of Computational
Physics, vol. 52, pp. 198-204, 1983.

[Temper 85] C. Temperton, “Implementation of a Self-Sorting In-Place Prime Factor FFT
Algorithm,” J. of Computational Physics, vol. 58, pp. 283-299, 1985.

[Tustin 47] A. Tustin, “A Method of Analyzing the Behavior of Linear Systems in Terms of Time
Series,” J. of the IEE, Part IIA, vol. 94, pp. 130-142, 1947.

[VanLoa 90] C. Van Loan, “A Survey of Matrix Computations”, Report CTC90TR26, Cornell
Theory Center, Cornell University, Ithaca, NY, November 1990.

[VlcUnb 89] M. Vlcek and R. Unbehauen, “Analytical Solutions for Design of IIR Equiripple
Filters,” IEEE Trans. ASSP, vol. 37, no. 10, pp. 1518-1531, 1989.

[Welch 67] P.D. Welch, “The Use of the Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,”
IEEE Trans. AU, vol. 15, no. 2, pp. 70-73, 1967.

[Winogr 78] S. Winograd, ”On Computing the Discrete Fourier Transform,” Mathematics of
Computation, vol. 32, no. 141, pp. 175-199, 1978.

[Zverev 67] A.I. Zverev, Handbook of Filter Synthesis. New York: John Wiley and Sons, Inc.,
1967.

53

CHAPTER 4

Preparing the Data Flow Graph
for Partitioning

Partitioning the data flow graph into tasks and allocating them on the processors is based
upon the structure of the graph and on information about the communication and
execution costs.

In the preparatory steps, a data flow graph representation of the algorithm to be
parallelized is first created. The graph’s edges are then analysed for the volume of
communications they carry. Subsequently, the graph is expanded in order to better
exhibit the inherent parallelism. In the last step, each edge is assigned the
communication costs it incurs, and each node is labelled with its execution costs. After
these procedures, all the necessary data are available for statically partitioning and
allocating the data flow graph.

4.1 Data Flow Graph Generation

Once the algorithm to be parallelized has been formulated in SISAL ([MGSkAl 85]), it
is converted into a data flow graph by the standard compiler provided by the Lawrence
Livermore National Laboratory (LLNL), which runs on a variety of host computers.
The data flow graph is structured hierarchically and consists of edges with associated
data types and nodes. Nodes representing basic operations such as addition and
subtraction are called “simple” nodes. “Compound” nodes, e.g, Forall nodes, Iter
nodes, and Select nodes (representing if-statements), are composed of several
subgraphs. A Forall node consists of three subgraphs for range generation, for the body
of the loop, and for returning the results. The graphs are described in textual form in a
format called Intermediate Form 1 (IF1) ([SkeGla 85]).

The compiler carries out some standard optimizations such as common subexpression
removal, constant folding, and loop invariant expression pullout (see [SkeWel 85]).
Therefore, such optimizations are omitted in further processing.

Figure 4.1 shows a sample SISAL code for the multiplication of a vector x by a
constant vector u. It consists of the function controlalgorithm as defined in Chapter 2.

54 Preparing the data flow graph for partitioning

function controlalgorithm(x: array[real];
NumberOfInputs: integer;
returns real)

let
v := array [1: 1.0, 2.0]

in
for j in 1,NumberOfInputs

u := v[j] * dbl(x[j])
returns value of tree sum u

end for
end let
end function

function dbl(a: real; returns real)
2.0 * a

end function

function main(input: array[real];
returns real)
controlalgorithm(input, 2)

end function

Figure 4.1 Sample SISAL Code for a Scalar Product

Inside this function another function dbl is called which simply computes the double of a
value.

The data flow graph representing these operations is used for illustrating the graph
transformations and analyses described in the subsequent sections.

The algorithm to be parallelized is the function controlalgorithm. It receives the vector
x as input parameter. The result is the product of the constant vector v and of x which is
first multiplied by two using the function dbl. The function main is necessary only for
analysis of the compilation and communication volumes analysis. The edges of the data
flow graph are labelled in IF1 with their type, but not with the size of the composed
structures (i.e., the number of elements in an array is not specified). Hence it is
necessary to pass the size of the input vector to the called function as an additional
parameter NumberOfInputs.

The data flow graphs of the functions defined in the example given in Figure 4.1 are
shown in Figure 4.2. This has been drawn with a tool called IF1 Display ([MitMur 91]).

The hierarchical graph structure is clearly visible. The graph of the function
controlalgorithm contains one Forall compound node. This node consists of three
subgraphs. The first subgraph generates the set of indices J = {1, 2} used in the body
subgraph to extract the elements of the vectors v and x to be multiplied in each
invocation of the loop body. The elements of x are first passed to the function dbl. The

Data flow graph generation 55

#1

Call

controlalgorithm
input

2

#1

Times

2.0
a

function dblfunction main

#1

Forall

ABuild

numberofinputs
1 1.0 2.0

x

j

RangeGenerate

1
numberofinputs

u

Times

AElement Call

dbl AElement

v j x

#1

ReduceTree

SUM 0.0
u

function controlalgorithm

Range Generator Subgraph

Body of the Loop Subgraph

Results Subgraph

Figure 4.2 Data Flow Graph of the Scalar Product

results subgraph collects the results from each invocation of the loop body and computes
the result of the node. In the example given above, all values are summed using a tree-
shaped reduction scheme.

56 Preparing the data flow graph for partitioning

4.2 Communication Volume Analysis

As mentioned above, IF1 labels the edges only with the type of data, but not with its
size. As far as basic data types are concerned (e.g., Boolean, integer, real), this does not
pose any problem since it is known how much area is needed for storing data items of
such types. But with the compound data type “array” it is impossible to know how
many elements an array contains. Since the array sizes must be known for determining
the communication cost, the whole graph has to be analysed with respect to the volume
of communication.

This is done in a bottom-up, depth-first way. All edges of the function graphs are
inspected for the size of their data, starting with the output edges. If the quantity of data
is known because the data type is basic, then its size is annotated. If it proves impossible
to find the size of the data type by inspection of the current edge, its source node is
examined together with the input edges.

Depending on the node’s function, useful information can be found (e.g., if the node
was an ArrayBuild node, the number of array elements can be deduced from the number
of input edges) and the amount of data transferred over the edge is attached to the edge.
If the message size is still unknown, the search continues through all predecessor nodes
of the current node. In the case where an Iteration node producing an array is
encountered which has a termination criterion which is impossible to evaluate at compile
time, a default value for the number of array elements is assumed. However, for signal
processing applications this is a very unlikely case which should not occur.

The search is continued until either the size of the data of all edges visited is known
or the edge leaves the top graph of the function controlalgorithm. In that case, the
auxiliary parameter mentioned in Section 4.1 is interpreted as the number of elements in
the input array. This is the only case where an array’s size is impossible to determine,
but the programmer has the necessary information and can provide it through this
additional parameter.

4.3 Graph Expansion

Graph expansion aims at increasing the parallelism available in the data flow graph. The
two main sources of parallelism are

• Forall Nodes
• Function Calls.

These two cases are discussed below in separate sections. Except for expanding
those two nodes, some additional minor changes are made. These consist of removing
NoOp (No Operation) nodes and two consecutive logical negation nodes. All other
compound nodes (i.e., all forms of sequential loops expressed by “while” and
“repeat...until”) except Forall nodes are left untouched.

Graph expansion 57

#1

Plus

Times Times

AElement Call AElement Call

ABuild dbl AElement ABuild dbl AElement

1 1.0 2.0 RangeGenerateExp 1 1.0 2.0

1
numberofinputs x

Figure 4.3 Graph with Expanded Forall Node (NumberOfInputs = 2)

Structures building constant data (e.g., constant matrices) are duplicated so that each
consumer of those values possesses a unique source of them. By this transformation,
unnecessary data dependencies and data transmissions are eliminated, but at the expense
of repeatedly generating constant values.

4.3.1 Forall Nodes

By definition, Forall nodes consist of a set of loop bodies which are independent of
each other, e.g., in each body one element of a vector is processed. Due to this
property, all bodies can be executed independently and concurrently. Hence the Forall
nodes are replaced by their respective sets of body graphs with the inputs rewired
accordingly. Indices are generated by special range-generation nodes and distributed to
the appropriate sites. Since the results subgraph is eliminated as well, a new structure is
built which collects the bodies’ results and processes them according the reduction
function (e.g., Sum, Product, Catenate).

Figure 4.3 shows the graph from Figure 4.2 with the expanded Forall node. Instead
of the Forall node, the body subgraph is inserted twice, once for each invocation.

The range generator subgraph has been replaced by the RangeGenerateExp node
which generates the indices for each body graph. Instead of the Results subgraph there

58 Preparing the data flow graph for partitioning

#1

Plus

Times Times

AElement Times AElement Times

ABuild 2.0 AElement ABuild 2.0 AElement

1 1.0 2.0 RangeGenerateExp 1 1.0 2.0

1
numberofinputs x

Figure 4.4 Graph with Expanded Forall Node and Replaced Function Calls

is one single Plus node which represents the tree-summation reduction for two values.
Each body graph receives its own copy of the constant vector it needs for the scalar

product. The ABuild (Array Build) node generating this vector has been duplicated in
order to remove the dependency of both bodies from this node.

4.3.2 Function Calls

Function calls enhance a graph’s parallelism because they increase its number of
nodes. Their replacement by the function body has in view elimination of the function
call overhead at run time. However, since this matters only for small functions, only a
limited size (as far as the number of nodes is concerned) of the function graph is allowed
for the replacement to take place. The size parameter is requested from the user. A
positive effect of limiting function call replacement is that the growth of the graph is
controllable by this size threshold.

Calls to intrinsic functions such as sine, cosine, and so forth are always left
untouched.

In Figure 4.4, all calls to the function dbl have been replaced by the function’s graph.
The edges carrying the input parameters and the outputs have been connected directly to
the respective ports of the function’s nodes.

Execution cost analysis 59

10 510 410 310 210 110 0
10 0

10 1

10 2

10 3

0

10

20

Comm. Time

Data Rate

Number of Bytes Transmitted

C
om

m
un

ic
at

io
n

T
im

e
[µ

s]

D
at

a
R

at
e

[M
B

yt
es

/s
ec

.]

Figure 4.5 Communication Cost for Internal Channels

4.4 Execution Cost Analysis

For two reasons, it is necessary to know the execution costs of the data flow graph’s
nodes and of the data transmission over the graph’s edges. First, the execution of the
data flow graph is simulated during the partitioning phase in order to cluster the nodes
into tasks so that the minimal execution time results. The time required for each
operation must be known for this. Second, the weight of each task is relevant for
balancing the load among the processors.

The data flow graph is traversed, and each edge and each node is assigned its
execution cost. The edges’ communication costs are determined according the model
given below, and the nodes’ cost is listed in Table B.4 shown in Appendix B.3.

4.4.1 Communication Costs

Since the communication network consists of bidirectional point-to-point serial links
among the PEs, no unpredictable factors such as routing delays or an unknown number
of intermediate stations appear in the communication costs. Nonetheless, the
establishment of an accurate communication cost model remains a difficult task.

Although there is no difference in using links, whether they connect tasks located on
one processor (called internal channels) or on two different processors (external

60 Preparing the data flow graph for partitioning

10 510 410 310 210 110 0
10 0

10 1

10 2

10 3

10 4

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Comm. Time

Data Rate

Number of Bytes Transmitted

C
om

m
un

ic
at

io
n

T
im

e
[µ

s]

D
at

a
R

at
e

[M
B

yt
es

/s
ec

.]

Figure 4.6 Communication Cost for External Channels

channels), the performance is different in each case. Figure 4.5 displays the
communication time and the resulting net data rate for communication over internal links
as a function of the length of the message to be transmitted. Figure 4.6 shows the
communication time for external channels using the Transputer’s (T800) bidirectional
serial link at a speed of 20 MBit/second.

The graphs show actual measurements conducted in the laboratory. In both cases,
communication time grows proportionally to the length of the message, as expected.
However, the net data rate approaches its peak value only for message lengths of at least
200 bytes. As a consequence, messages should have this length in order to achieve
efficient communication. However, in signal processing applications the graphs’ edges
seldom carry more than a few dozen values of 4 or 8 bytes each. For external
communication, the theoretical peak rate of 1.8 MByte/sec is not reached, probably due
to the two acknowledge bits sent for each byte received.

The ratio between the costs for internal and external communication is almost 1:10.
This high cost for external communication justifies the efforts to reduce this kind of data
transmission as much as possible.

The following mathematical model for the communication cost has been developed.
All times are expressed in instruction cycles. At a clock frequency of 20 MHz each cycle

Execution cost analysis 61

lasts 50 nanoseconds.
For internal communication, the communication cost can be computed according to

the following formula:

cint = Tsetup + TmemI × w (4.1)

For external communication, additional terms appear in the formula:

cext = Tsetup + TmemE × w + Ttrans × b (4.2)

The meanings and the values of the symbols are:

cint communication time for internal communication
cext communication time for external communication
b number of bytes transmitted
w number of long words (= 4 bytes) addressed
Tsetup communication setup time 52 cycles
TmemI memory access time, int. comm. 2 cycles/long word
TmemE memory access time, ext. comm. 5 cycles/long word
Ttrans transmission time 11 cycles/byte

If the links are run at a speed of 10 MBit/sec, the transmission time Ttrans doubles to 22
cycles/byte.

It is interesting to note that the memory access time depends on the number of long
words fetched from memory rather than on the amount of bytes transferred. Therefore,
this component of the cost remains the same whether one or four bytes are transmitted.

4.4.2 Node Execution Costs

Some of the graph’s nodes represent basic operations such as addition and
multiplication. For these, there is a simple equivalent in the processor’s instruction set
which takes a known amount of time to execute. However, there are a number of nodes
for manipulating arrays (e.g., ArrayFill) with a varying amount of inputs and others that
require more complex decisions, such as the Max or the Min nodes. The function of
these nodes is emulated by a sequence of statements of the target PE’s programming
language. Determining their execution time accurately is difficult with figures from the
PE’s data book only.

Additionally, there are unexpanded compound nodes which contain whole
subgraphs. These subgraphs are created by functions composed of the associated
statement sequences of the nodes they contain. Finding the execution time is further
hampered by the fact that for many of the nodes their exact number of iterations is
unknown (e.g., for a While loop node).

62 Preparing the data flow graph for partitioning

Further variations of the execution costs are caused by the fact that most nodes accept
a wide range of data types for their input and output values, whereas most programming
languages are strongly typed so that additional type conversion routines have to be used.

For all those reasons, not only were theoretical studies undertaken but execution time
measurements were also conducted for all major kinds of nodes and all possible data
types. The results of those measurements have been assembled in a table showing the
execution time for each node for every legal data type of the arguments (see Table B.4 in
Appendix B.3).

4.5 References

[Jha 90] M. Jha, “Preliminary Results on some Parallel Linear Algebra Applications on
Transputer Networks,” School of Information Sciences, Hatfield Polytechnic,
Numerical Optimization Centre, Technical Report No. 231, April 1990.

[MGSkAl 85] J. McGraw, S. Skedzielewski, S. Allan, et al., “SISAL: Streams and Iteration in a
Single Assignment Language, Language Reference Manual, Version 1.2,” Lawrence
Livermore National Laboratory Report LLL/M-146 Rev. 1, 1 March 1985.

[MitMur 91] S. Mitrovic and S. Murer, “A Tool to Display Hierarchical Acyclic Dataflow Graphs,”
in Proceedings of the International Conference on Parallel Computing Technologies,
September 1991, Novosibirsk, USSR, pp. 304-315.

[Sarkar 89] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, Research
Monographs in Parallel and Distributed Computing. London; Cambridge, MA: The
MIT Press, and London: Pitman Publishing, 1989.

[SkeGla 85] S. Skedzielewski and J. Glauert, “IF1–An Intermediate Form for Applicative
Languages,” Lawrence Livermore National Laboratory Report LLL/M–170, July 31,
1985.

[SkeWel 85] S.K. Skedzielewski and M.L. Welcome, “Data Flow Graph Optimization in IF1,” in:
Functional Programming Languages and Computer Architecture, Jean-Pierre Jouannaud
(ed.), Lecture Notes in Computer Science vol. 201, Berlin a.o.: Springer-Verlag, 1985.

63

CHAPTER 5

Partitioning the Data Flow Graph
into Tasks

5.1 Building Tasks

This chapter treats the problem of defining tasks by clustering nodes of the data flow
graph. Tasks consist of at least one node and are executed as an entity.

The tasks are distributed to the processing elements (PEs) of the system in the
allocation step. The execution of the nodes of a task is serialized even if some nodes
could be executed in parallel. Each PE can host several tasks. Then tasks are sometimes
called processes, meaning “a unit of activity characterized by a single sequential thread
of execution, a current state, and an associated set of system resources” ([IEEE 88]).

Once a graph representation of the computations to be performed has been
established, tasks can be built by clustering the nodes. This need not necessarily be done
since the nodes could be distributed directly to the processing elements (PEs). However,
the aims of partitioning a data flow graph into tasks are as shown in Table 5.1.

Table 5.1 Aims of Partitioning

1. preserve the parallelism inherent to the problem

2. minimize the task administration cost at run-time

3. minimize the total communication between the tasks

4. minimize the communication and synchronization overhead

Not partitioning the graph into tasks is equivalent to creating one task per node. This
clearly exhibits all the parallelism in the problem. However, clustering several nodes in a
task does not necessarily decrease the amount of work potentially executable in parallel.
Since each data flow graph represents a partial ordering of the nodes, there always exist

64 Partitioning the data flow graph into tasks

some nodes which cannot be executed in parallel but have to be computed sequentially.
When such nodes are placed in one task, no parallelism is lost.

As an example, imagine computing a = 2 × log b. Assuming there is a node
performing the “log” operation, the node computing the multiplication depends only on
the output of the “log” node and the constant input “2”. This means that the result “a”
comes from a path containing two nodes with just one external input “b” at the origin.
These two nodes can be placed in one task without losing any parallelism because the
second node is data dependent on the first. However, it is important to maintain as much
parallelism as possible to keep many processing elements busy, because only then can
the total execution time be kept to a minimum. Partitioning is also an issue on single-
processor systems in order to obtain fragments of a program which can be handled
efficiently by the scheduler ([Paige 77]).

Even if the tasks contain only two nodes, the number of tasks is already reduced by
half. As a consequence, at run-time only half the number of tasks have to be
administered. This greatly reduces the overhead cost of creating, starting, and stopping
the tasks at run-time. Having just one task on each PE could be considered optimal.
However, this is not the case. Since generally the number of PEs is much smaller than
that of nodes in the graph, each task would have to contain many nodes in order to have
only one task per PE.

Placing one large task on each PE would enforce some serialization of the
computations, i.e., the introduction of a total ordering of the nodes instead of the partial
order defined in the original graph. If the computations are totally ordered, one specific
architectural feature present in many types of PEs can no longer be exploited. It is now
not possible to overlap computations of one task with the communications of another.

However, this property helps to reduce the total execution time considerably,
especially in the case of fine-grain parallelism where the execution times of the nodes are
of the same order of magnitude as the communication cost. Therefore, it is desirable to
have more than one task per PE in order to allow overlapping communication and
computation, but not too many in order to avoid high scheduling cost ([Cvetan 87]).

Communication is a large part of the total execution cost of a program, as outlined in
Chapter 4. It is therefore important to keep overall communication among the tasks low.
Every connection between two nodes which lies within one task is produced by a
variable and is free. Thus, if nodes can be clustered in such a way that many edges come
to lie within tasks, the total execution cost is lowered.

Due to the data flow principle special procedures for synchronization such as signals,
semaphores, monitors, etc. are not necessary. However, apart from pure transmission
cost, data communication between the processes causes further expense. The
communication cost model defined in Chapter 4 shows the high overhead for set-up.
The ratio between set-up and transmission cost can be lowered only by increasing the
message length.

Unfortunately, nothing can be done about this when partitioning a data flow graph.
Even worse, if several edges of the graph have to be mapped on one physical connection
because too few links are available, additional time multiplexing must be used for the
links. This causes additional communication overhead. The only way to keep this cost

Approaches described in the literature 65

low is to have as few edges connecting the tasks as possible. However, there is often
little choice in this since the interconnections are given by the structure of the problem.

In sum, the data flow graph must be partitioned such that:

• Sufficient parallelism remains among the tasks (aim one)
• The number of tasks per PE is reduced to an optimum (aim two)
• Heavily interconnected nodes are placed in the same task (aim three)
• Tasks have few interconnections among them (aim four)

Above all, the total execution time of the data flow graph should become minimal.
Aims three and four are in conflict with aim one, because minimizing communication
very quickly means eliminating parallelism. Furthermore, it is not clear what are the
optimal values for the task size and the number of tasks. Therefore it is necessary to
formulate some heuristic measure for the quality of a partition. This is proposed in
Section 5.4, together with a partitioning algorithm.

5.2 Approaches Described in the Literature

One approach taken is purely graph theoretical. The method is to find the components of
a graph so that the “min-cut” problem is solved, i.e., groups of nodes are identified so
that the number of edges cut by the task-separation lines is minimal ([Barnes 82]). A
variant of the problem is to find the n-connected components of the graph, that is, the
components which are connected only at n points. However, really efficient algorithms
exist only for n = 2 and n = 3 ([HopTar 73], [Even 75], [Even 79]).

Even if algorithms terminating in polynomial time do exist, minimizing the
communication overhead is difficult since this approach considers only structural
properties of graphs and does not take into account the reduction of communication cost
when nodes are merged in tasks. (Polynomial time means that the number of
computations and therefore the time required for performing them is expressable by
some polynomial formula containing the problem’s size.) Above all, real program
graphs rarely have such regular structures that they can be decomposed into enough n-
connected components.

Taking into account communication and scheduling costs makes matters even worse.
Communication costs for an edge are different whether the edge crosses a task boundary
(and possibly a processor boundary) or not. The cost of scheduling the tasks varies
considerably with the number of tasks. Depending on the scheduling strategy, the cost is
a nonlinear function of the task number. Since each partitioning strategy aims at
minimizing the total execution costs (communication, run-time scheduling, and
computation), and as these costs are very dependent on the particular partition of the
computations, it is understandable that partitioning is a difficult problem to solve.

Sarkar proves in [Sarkar 89] that finding an optimum partition of a data flow graph
with minimum total execution time is NP-hard in the strong sense. NP-hard denotes
solving a problem that is NP-complete, meaning that computing the solution is not

66 Partitioning the data flow graph into tasks

complete after polynomial time. That is, solving a problem with N input values requires
exp(2N) computations, e.g., instead of a number expressed as a polynomial of N, such
as N4 + 3N6. Hence only heuristic approaches are tractable, because finding the best
solution takes too much effort to be feasible. With a heuristic method probably only
suboptimum solutions will be found, but in a much shorter time which may still be
considerable.

All papers dealing with scheduling computations address the topic of partitioning the
application into pieces of an appropriate size. However, most authors assume that this
has already been done previously. In many of the remaining cases, partitioning is only
outlined. In [KoMeVR 88], “maximizing locality of memory reference” is mentioned as
an aim. Identifying “maximal connected subgraphs” is given as a goal in [HoPaFe 86].

Huang ([Huang 85]) develops a formal model of software partitioning which relies
on the module precedence relations for generating tasks from modules specified by the
programmer. The model observes the constraints imposed by PE throughput, memory
space available, and maximal allowed task execution time. The software partitioning
efficiency is defined as

= k=1

N

E(Tk)

k=1

N

[]E(Tk) + O(Tk)

and has to be maximized under various constraints. E(Tk) stands for the execution cost
of task Tk and O(Tk) for the execution overhead, including the task scheduling and the
communication costs. It is shown that maximizing the partitioning efficiency also
minimizes total execution time. When is maximal, the overhead is minimal and thus
the execution time is also minimal.

The crucial point is how to choose the maximal allowed task execution times, and
what strategy to employ to find the maximal partitioning efficiency. Both points are
stated to be currently unsolved. However, the concept of partitioning efficiency can be a
valuable tool to measure the quality of a partition obtained with any method.

In [KoMePe 88], partitioning is approached in two steps. In order to reduce the
number of nodes of the data flow graph, so-called “supernodes” are formed “by
gathering nodes directly connected by arcs in the data flow graph”. This new graph is
called CDFG (Compressed Data Flow Graph). Subsequently, the CDFG is divided
arbitrarily among an unbounded number of PEs. This initial partition is iteratively
improved by moving single nodes from one partition to the neighbouring one until the
restrictions concerning the number of interconnections among the PEs are satisfied. By
this method a modified min-cut problem is solved.

Campbell ([Campbe 85]) limits the complexity of partitioning by a divide and
conquer approach. He creates a so-called module graph using the parse tree. Each
module corresponds to one segment of the program as specified by the programmer,

Approaches described in the literature 67

i.e., modules represent a function, a body of a loop, etc. Each module is then partitioned
using a topological sort by Breadth-First Search (BFS) and its transitive closure.
Partitioning is done so that a cost function becomes minimal. Two cost functions are
suggested: one measuring communication cost, which is proportional to the distance a
message has to travel, the other measuring parallel processing cost, which increases if
two nodes executable in parallel are placed on the same PE.

This modularization concept offers the great advantage of keeping small the size of
each graph to be partitioned. Computations such as the determination of the graph’s
transitive closure can then be performed quickly, even though they require a
computational effort of O(N3), when N nodes are present in the graph. However, the
amount of parallelism contained in the modules depends on the formulation the
programmer chose for the computations since it is derived from the parse tree
representing the source code’s structure. Depending on the programmer’s skill and the
capabilities of the programming language, severe performance degradation could result.
But since the input language used is HDFL (Hughes Data Flow Language), a derivative
of the functional language VAL ([AckDen 79]), the negative effects of this approach are
limited.

The last two approaches described are employed by Gaudiot and Lee, and by Sarkar.
They all use SISAL ([MGSkAl 85]) as an input language and work with data flow
graphs described in the Intermediate Form 1 (IF1) ([SkeGla 85]). As mentioned in
Chapter 2, the work presented here uses the same representation. For this reason, these
projects are examined in more detail.

Gaudiot and Lee ([GauLee 88]) aim at exposing maximum parallelism and achieving
minimum communication cost. However, they do not state how this is can be done.
Furthermore, they do not consider the execution cost of the nodes. Therefore, their
partition will hardly yield a low total execution time.

From the original IF1 graph, a Partitioned Data Flow Graph (PDFG) is created using
a Program Structure Graph (PSG). In this PDFG so-called block nodes are introduced
which represent sub-graphs of compound nodes. For partitioning, the hierarchical graph
is traversed in a Depth-First Search (DFS). Partitions are formed from each simple node
and from all the simple nodes attached to a block node. Generally, the resulting tasks are
small.

Sarkar proposes two heuristic approaches for partitioning. One is designed for
systems with run-time scheduling cost; he calls this the macro-data flow approach. The
other proposal, called the compile-time scheduling approach, is intended for statically
assigning work to an unbounded number of processors in the so-called internalization
pre-pass. These methods, given in [Sarkar 89], are improved versions of results
presented in [SarHen86].

In the macro-data flow approach, an initial partitioning of the hierarchical data flow
graph is set up by expanding all nodes with an execution time greater than Tmin.
Through this parameter the granularity of the initial partition is controllable. Tasks are
then successively merged until only one remains. For each partition i the cost F(i) is
computed. Finally, the partition yielding minimal cost is chosen. The cost F(i) is
defined as max(critical path length, sum of all scheduling overhead cost). In each step

68 Partitioning the data flow graph into tasks

the pair of tasks is merged, which reduces the overhead cost most and results in the least
increase in the critical path’s length. If the graph has N nodes, the maximum complexity
of the partitioning algorithm is given as O(N3), while experiments indicated a
complexity in the region of O(N1.2).

When doing compile-time scheduling, the graph is first expanded. Function calls are
replaced by the functions and compound nodes are expanded (mainly loop unrolling).
Again the execution time threshold Tmin is used, and a node must be a bottleneck node
in order to be chosen for expansion. A node is said to be a bottleneck if all the simple
nodes executable in parallel to it do not contain sufficient work to keep busy all the
processors in the system. This node expansion is done in linear time, i.e., the time
required for performing the computations grows linearly with the size of the problem.

The internalization pre-pass actually belongs to the scheduling of the graph on the
processors, and only the number of PEs is unbounded. Each PE hosts only one task.
The communication cost Fc of the edges is taken into account. A processor assignment
PA is sought which yields the minimum parallel execution time. It is proved that the
solution of this problem is also NP-complete in the strong sense. Therefore, a heuristic
straightforward solution is proposed. Backtracking methods are excluded due to
exponential execution times.

The algorithm works as follows. Initially, all nodes are allocated a task of their own.
All edges are examined in descending order of their communication cost Fc. The two
nodes connected by the edge are joined in the same task (i.e., on the same PE) if
merging them does not increase the parallel execution time of the graph. Joining the two
nodes means replacing the external communication over the edge by internal
communication, hence the name of the procedure. The complexity of the internalization
is maximally O(N2), depending on the structure of the graph, with practical values rather
in the range of O(N).

Simulations by Sarkar indicate that compile-time scheduling offers better speed-up
than the macro-data flow approach due to less run-time overhead. However, the
assumption of only one serial task on each PE means that more parallelism than is
necessary is sacrificed when the actual hardware offers a scheduler with minimum
overhead. The macro-data flow approach has been partially incorporated into the
research version POSC (Partitioning and Optimizing SISAL Compiler) ([SarCan 90]) of
the SISAL compiler distributed by the Lawrence Livermore National Laboratory.

5.3 Deadlock Avoidance

As soon as the execution of computations no longer has total ordering, measures have to
be taken to prevent any two instructions in a program waiting for each other’s output to
start executing. Two reasons can cause a program to lock: either the data flow graph’s
structure, or the implementation of the mechanisms for executing a data flow graph
which makes decisions for serializing the execution.

Structural locking is detectable from the data flow graph’s transitive closure, although
it is expensive to compute. It should never occur when transforming real-world

Deadlock avoidance 69

node 1 node 2

Figure 5.1Two Nodes That Will Never Fire

computations into a data flow graph. Otherwise possibly nonterminating computations
are represented where some equations are connected so that a never-ending recursion is
generated. A simple example of a combination of two nodes which will never be able to
fire is shown in Figure 5.1. It is assumed that no data tokens are present initially. Each
of the nodes can only fire if it receives a data token at its external input and at the input
originating at the output of the other node. But since the other node is unable to fire until
it receives the output token from the first node, each node cannot proceed until the other
has produced a result. This represents a typical deadlock situation where interconnected
cycles exist in the data flow graph.

A data flow graph can be translated into a Petri Net. For this kind of graph there exist
formal methods for analysing the possibility of deadlock (see [Starke 90]). An example
of locking caused by the implementation is shown in Figure 5.2.

On true data flow computers, the the data tokens’ order of arrival is irrelevant, since
they are stored in buffers. During execution, it is periodically checked whether all the
values needed for a node are present.

When implementing a data flow graph on a machine with conventional architecture,
i.e., with sequential execution of code segments, problems can arise when the
communication statements are incorrectly ordered. Sequential execution can be avoided
by creating parallel processes for all communication statements. This corresponds to
implementing true nonblocking communication. With nonblocking communication the
sender of a message can continue processing as soon as the message has been written to
a buffer. There it is eventually read from by the receiver at a later time. Blocking
communication stops the sender until the receiver is ready to execute the “read”
statement and vice versa. Through this mechanism communication also serves as a
means of synchronization.

However, this causes too high an overhead to be feasible in most cases where the
execution time is critical. Therefore, if blocking communication is the default message-
passing mechanism, input and output from the processes have to be handled carefully,
as explained below.

When two parallel edges connect two nodes, as shown in Figure 5.2 a), the
execution is evidently blocked if the sequence of the output statements of node 1 is
different from the sequence of the input statements of node 2. Fortunately, such a

70 Partitioning the data flow graph into tasks

1

1 2

node 1

node 2

I1 I2

node 3

1 2

1 2

node 1

node 2

1 2

1 2

a) b)

Figure 5.2 Example of Implementation Locking

configuration does not occur in IF1 graphs. However, if two tasks each containing
several nodes are connected in this way, the same problem arises. The only way to
exclude locking in this case is to make sure that edges leave the task only from the last
node. Thus the possibility of parallel edges is eliminated.

For the configuration with three nodes given in Figure 5.2 b), the following two
orderings of communication statement execution are assumed.

Ordering 1 Ordering 2

first second first second
node 1 output 2 output 1 output 1 output 2
node 3 input 2 (1) input 1 (2) input 2 input 1

The order of all operations not mentioned is irrelevant. With Ordering 1, everything
works smoothly. As soon as node 1 receives the input data item, it outputs the result at
output 2, where it is received by the waiting node 2. As soon as node 2 has the other
input data item, the output is activated and node 3 receives the result at input 2. Then
node 1 can send the token from output 1 to input 1 of node 3. If the sequence of the
input statements of node 3 is reversed as indicated in parentheses, node 1 can proceed
directly without having to wait until node 3 has finished receiving the result from node
2. Both orders of the input statements of node 3 will work.

Consider Ordering 2. Node 1 receives the input item and proceeds to forward its
result through output 1. However, since node 3 awaits the first data token at input 2,
node 1 is unable to deliver its data token at output 1 and cannot send a value through

Deadlock avoidance 71

output 2 to node 2. Therefore the computations are blocked and no result can be
generated. The computations will terminate only if the sequence of the input statements
of node 3 is reversed.

Basically, the problem is due to the fact that there are two paths from node 1 to node
3. One connects the two nodes directly, representing a direct dependency. The other
path has intermediate nodes, representing an indirect dependency. If the direct
dependency edge is provided with the output data first, then the order of the input
statements at the end node is critical, as shown with Ordering 2 in the above example. If
the indirect dependency edge is first activated, any ordering of the end node’s inputs will
allow the computations to terminate. The execution time may, of course, vary because it
is possible to introduce unnecessary delays.

Since the expense of finding all such paths in a graph is prohibitive, an equivalent
approach is taken. It is similar to the method called Length of Longest Output Path
(LLOP) in [HoIra 83] which is used for the decision of which of two enabled nodes to
execute first. Each output is annotated with the longest path to the result node of the
graph, and the cost of executing it. The length of a path indicates how many nodes are
traversed along the path, and the cost is the sum of the execution cost of all these nodes.

The graph is traversed in a bottom-up fashion in a modified breadth-first search
(BFS). For each node in the graph an order of its output ports is then defined. The sort
criteria are listed in Table 5.2. A second criterion is introduced since it is quite possible
that the data flow graph consists of some geometrically identical subgraphs due to a
regular structure of the computations (e.g., in a matrix multiplication). Several paths
with the same length exist in that case. If the order of the output statements introduced
by the rules just introduced is respected, no execution order of the input statements of
the nodes in the graph can cause the graph to deadlock.

Table 5.2 Criteria for Determining the Execution Order of a Node’s Output Statements

Primary Sort Criterion Longest Path to Result Node First

Secondary Sort Criterion Longest Execution Time Along Path First

Apart from guaranteeing the freedom from deadlock in a graph’s execution, this
ordering reflects the idea of evaluating the nodes of the critical path first in order to
obtain a minimum execution time. While the longest path from a node to the result node
need not necessarily be the critical path, the output port having the longest path to the
result node is likely to be found on it.

72 Partitioning the data flow graph into tasks

5.4 Partitioning the Data Flow Graph

As outlined in Section 5.1, several conflicting aims exist when a data flow graph is
partitioned. Since the total execution time is the most critical issue for signal processing
and control applications, partitioning is formulated as a minimization problem with
respect to program execution time. However, preserving sufficient parallelism among
the tasks at that stage of processing is equally important, because the number of
processing elements (PEs) necessary to perform the computations is still open.

5.4.1 Rules For Building Tasks

In the previous steps, the data flow graph has been assigned all the necessary
information about communication cost and execution cost. Now the tasks are formed
according to the rules defined in Figure 5.5 below. The formalism for building the tasks
is outlined in more detail in Appendix B.4. The most important processing steps are
described in the following sections.

In a first step, the graph is prepared for partitioning. This includes computing the
adjacency matrix and the transitive closure of the graph and defining one task for each
node. Each task is assigned a PE of its own. This is the configuration exhibiting
maximum parallelism as well as maximum communication cost and the lowest PE
utilization.

Subsequently, the execution time is minimized by clustering the tasks which so far
contain only one node. The minimization runs in a loop which is executed until the
minimum execution time is found. In each invocation of the loop, all linked pairs of
tasks are merged temporarily if certain criteria (see below) are fulfilled. For this new
task configuration, the completion time is determined by simulating the flow of the data
tokens through the graph.

If the time is lower than the minimum so far encountered, the edge linking the
investigated task to its successor is recorded together with the new minimum execution
time. Then the changes in the tasks are reversed and the next pair of tasks is examined.
When all possible candidates for merging have been inspected, the task pair yielding the
lowest execution time is merged in a new task, thus eliminating one external
communication channel (an edge crossing the task boundary). This channel is replaced
by communication through a variable. Then the next pair of tasks is sought.

When the minimum execution time has been reached, clustering continues for a while
without affecting the execution time. The execution time is basically determined by the
critical path which is no longer modified after a certain degree of processing. However,
the other tasks grow in size. With larger and therefore fewer tasks the subsequent
allocation step is accelerated.

Candidates for merging are found by inspecting the last node in a task. The criteria
for merging the task of that node and the task of one of its successors are displayed in
Table 5.3.

Partitioning the data flow graph 73

T1

T1'

T2

T1T2

T1'

a) Two External Outputs b) Successor Has Another Internal Input

Figure 5.3 Node Combinations Not Allowed for Combination

In Condition 1 only tasks of directly connected nodes are merged. Merging tasks of
unconnected nodes does not make sense since no external communication channels are
thus eliminated.

Table 5.3 Rules for Merging Tasks

1. The node must have a direct successor

2. The node may have only one external output edge

3. The node at the end of the output edge may only have external or constant inputs

Condition 2 ensures that the resulting new task does not have an edge leaving from
intermediate nodes. This would violate the rule that the results may leave a task only
through its last node. Figure 5.3 a) shows the situation where Condition 2 is violated. If
the existing tasks T1 and T2 were merged in the new task T1', the second (external)
output of the last node of T1 would leave the new task at a different location from the
end. For this reason the last node in a task to be merged must not have two output
edges.

By Condition 3 it is enforced that no parallelism is destroyed. Consider the situation

74 Partitioning the data flow graph into tasks

T1T1'

T2

Figure 5.4 Node Configuration for Combination of Tasks

depicted in Figure 5.3 b). There, the two nodes from tasks T1 and T2 drawn side by
side are executable in parallel since they are not dependent on each other. However, if
tasks T1 and T2 were merged in the new task T1', the execution of the two nodes would
have to be serialized, thus destroying parallelism. The independence of the two nodes
can be tested by inspecting the successor of the last node of task T1. If there is an input
edge leading to the successor from another node in the same task as the successor node,
then parallelism is present and the tasks may not be merged.

Figure 5.4 shows the correct situation for tasks T1 and T2 to be joined in task T1'.
The last node of task T1 possesses only one output to the first node in task T2, thus
satisfying all three conditions defined in Table 5.3.

The tasks constructed by these rules consist of chains of nodes. Of each node’s input
channels, several may be external but only one internal. Only one output edge is
allowed, which leads to a node belonging to the same task. Only the last node in the
chain is allowed to have edges leaving the task. In Figure 5.5, the algorithm for building
the tasks of a graph fgr is shown.

The data flow graph partitioned in that way into tasks still possesses the same amount
of parallelism as though each node were treated as a task of its own. As a consequence,
the resulting tasks are small, mostly containing two to three nodes.

5.4.2 Preparation of the Data Flow Graph

The preparation of the graph includes several steps briefly outlined here. First, the
adjacency matrix is constructed. The original IF1 graph provided by the SISAL compiler
is such that the adjacency matrix is strictly upper triangular. This property is preserved

Partitioning the data flow graph 75

PARTITION (fgr, minfactor):

prepare graph
sort_outputs(fgr)
mintime := simulate(fgr)
repeat

for all nodes nd in fgr with only one external output oed do
if sink node of oed has only external and constant inputs then

join sink node of oed and nd in one process
replace oed by variable
sort_outputs(fgr)
executiontime := simulate(fgr)
if executiontime<mintime then

minedge := oed
mintime := executiontime

end if
separate the two nodes again, restore original state

end if
end for all
join nodes connected by minedge in one process
replace minedge by variable

until execution time has reached the minimum
end partition

Figure 5.5 Partition of a Data Flow Graph

throughout all transformations of the graph. Therefore, computation of the transitive
closure is performed with a modified version of Warshall’s algorithm, saving much
work (complexity O(N3/6) instead of O(N3) with N nodes in the graph).

For each node of the graph, a process is created and located on a PE of its own.
During the whole partitioning process, each task is hosted by a separate PE. Only after
allocating the processes on the PEs it is possible for several tasks to share the same PE.

Nodes which have constant inputs only and therefore no predecessors are treated in a
special way. Nodes with constant inputs only are immediately joined to the tasks of their
successor, if there is only one. It does not make sense to preserve parallelism in
structures which generate constant data and which are evaluated before run-time.

Ordering the outputs has been explained in Section 5.3 above. It is done prior to the
first simulation of the graph’s execution and subsequently after each modification of the
task structure.

76 Partitioning the data flow graph into tasks

5.4.3 Simulation of the Data Flow Graph’s Execution

Each time two tasks are merged temporarily during the search for the lowest
execution cost, the execution of the data flow graph is simulated in order to get an
estimate of the time needed to perform the computations. Another purpose of the
simulation is to establish a partial order of the nodes’ input operations. This order is not
mandatory to ensure that the execution does not block, but it does have a positive impact
on the execution time of the computations. It represents the order of arrival of the input
data with respect to time.

During partitioning, the data flow graph consists of a set of tasks or processes, each
containing one or more (connected) nodes. Each process is located on a PE of its own.
Edges between nodes in the same task represent communication by a variable, those
between nodes in different tasks denoting communication over inter-processor links.
Inter-task communication is costlier than communication by variable, since the
transmission speed is lower and additional overhead for set-up on both the sender and
the receiver results.

On the multiprocessor assumed to consist of T800 Transputers, communication is
blocking, i.e., transmission starts only when the transmitter and the receiver have
reached the corresponding points in their respective programs. They continue the
execution of the program only when all data have been transferred.

For the simulation of the graph’s execution, each PE has a hypothetical clock which
is used to stamp the input and output events. It is driven by the availability of input data
and the operations performed on the PE, i.e., by the time taken by computations and
input/output operations. Time spent waiting for input or output is also taken into
account. Therefore, when the final result has been generated, the clock of the PE on
which the last node of the data flow graph is located shows the time taken by the
execution of the whole graph. Another counter on each PE sums the times consumed by
every action of the PE. From this last counter the utilization of the PE can be computed.

The simulation process is portrayed in detail in Appendix B.4. A short description is
given below to explain the basic principle.

The simulation starts by inserting all nodes which have received their input data (i.e.,
the input node, nodes with only constant inputs) into a circular list. This list is processed
until it is empty.

For each node in the list, the output edges are inspected in the order previously
established for avoiding deadlocks. For each output edge, the set-up time is added to the
PE clock. This is called output time. It is the earliest time that data are ready for
transmission. Then it is checked to see whether its successor node has input data
available at each of its inputs. If the answer is no, the next node in the list is inspected.
In the affirmative case, the successor node is processed (see below), and the clock is
advanced to the “rendezvous time”, i.e., to the time the data transmission has been
completed. Then the next output is inspected. When all outputs of a node have been
processed, it is removed from the list.

Analysis of the output edge of a node in the list may have been postponed after
setting up communication due to the fact that the successor node was not ready. Then

Partitioning the data flow graph 77

two possibilities exist. Either the situation has not changed, in which case the successor
node is inspected and processed if possible, as described above, or the successor has
meanwhile become ready for execution and has been processed. The output edge thus
already carries a rendezvous time stamp, and the PE’s clock is advanced to that time
without further processing.

When a successor node is processed, all outputs connected to it are ready to transmit
data, marked with the output time indicating at what time data are available. The inputs
are sorted according to the time that data are available and are inspected in that order. If
the node is the first one in the task, the input is marked with the input time, i.e., with the
PE clock plus the communication set-up time. The rendezvous time is then the greater of
either the input time or the output time of the corresponding output plus the data
transmission time. The clock is set to the rendezvous time, since processing can then
continue.

If the node has a predecessor in the same task, it may happen that data from the
predecessor arrive much later than data at an external input of the node under
consideration. It will then save time if the external input is served before the function of
the predecessor node is performed. If this situation occurs, the external edge and its
predecessor node are marked accordingly.

Normally, the function of a node is not “executed” (its execution time added to the
clock) immediately. The decision when to execute is postponed to the time when its
successor in the same task is inspected. But if there is no successor, the execution time
is added to the clock and to the counter, and the first output is inspected. Then the
recursive analysis of its successors starts. The node is inserted into the circular list for
further inspection of its outputs.

After the simulation, the clock of the PE on which the edge carrying the final result of
the graph is located shows the total execution time.

5.4.4 Computational Complexity Analysis of Partitioning

It is difficult to determine the exact amount of work done during partitioning. The
reason is that an iterative search for the task configuration causing minimum execution
time is conducted. However, it is possible to estimate the order of magnitude of the
number of operations performed when taking into account results obtained in
experiments. Inserting a node into a list or setting the time values for an edge is
understood by “one operation”. The number of nodes in the graph is indicated by N.
The complexity of the processing steps of partitioning is shown in Table 5.4. The most
important information is how many times the minimization loop is executed. The
experiments conducted so far have shown that, after partitioning, around N/2 tasks
exist. Since the initial number of N tasks is reduced by one with each iteration, the loop
is executed approximately N/2 times.

The complexity is in the magnitude of O(N4 + N3), which is relatively high.
However, since this search is done off-line and the gain of information is considerable,
this effort is justified.

78 Partitioning the data flow graph into tasks

Table 5.4 Computational Complexity of Partitioning

Function Performed Operation Count Total

Preparatory Steps:

- build a list of the nodes N

- compute the transitive closure N3/6 - N2/2 - 2N/3

- define the PEs N

- order the outputs of nodes 2N

- simulate the graph’s execution 2N2

Total Preparation: N3

6 -
5N2

2 +
10N

3
N3

6 -
5N2

2 +
10N

3

Minimization Loop: ~ N/2 iterations

- order the outputs of nodes 2N

- simulate the graph’s execution 2N2

Total per Iteration: 2N2(N+1)

Total Minimization Loop: ~ N3(N+1)

Grand Total (approx.):
N4 +

5N3

6 -
5N2

2 +
10N

3

5.4.5 Summary of the Properties of the Partitioning Technique

The partitioning procedure described in this chapter has been developed specifically
for signal processing and control algorithms. Due to the simple properties of these
algorithms, recursive computations are not treated in a special way. Therefore, iterative
computations are not implemented in periodic schedules which might lower their
execution time. Furthermore, recursive computations which in fact are very untypical in
signal processing must be reformulated as iterative computations before the partitioning
process. This is also required by the aim to exhibit and preserve parallelism in the
computations. The average number of nodes per task is relatively small as a
consequence.

Since the computations are to be carried out in real-time the main emphasis is put on
minimizing the execution time. This is verified by repeated simulation of the execution
of the data flow graph. Special care is taken to reduce the communication cost by
eliminating as many external and internal channels as possible and replacing channels by
variables. These decisions are possible since it is assumed that the tasks are allocated
statically to the processors.

References 79

Also of importance for real-time computations is the fact that the tasks are formed in a
way so that deadlocks are prevented. Such conflicts cannot be resolved by the simple
round-robin scheduler running on each processor.

5.5 References

[AckDen 79] W.B. Ackerman and J.B. Dennis, “VAL–A Value-Oriented Algorithmic Language:
Preliminary Reference Manual,” MIT Laboratory for Computer Science, Technical
Report MIT/LCS/TR-218, June 1979.

[Barnes 82] E.R. Barnes, “An Algorithm for Partitioning the Nodes of a Graph,” SIAM J. Alg.
Disc. Meth., vol. 3, no. 4, pp. 541-550, 1982.

[Campbe 85] M.L. Campbell, “Static Allocation for a Data Flow Multiprocessor,” in Proc. Int.
Conf. Parallel Proc., Aug. 1985, pp. 511-517.

[Cvetan 87] Z. Cvetanovic, “The Effects of Problem Partitioning, Allocation, and Granularity on
the Performance of Multiple-Processor Systems,” IEEE Trans. Computers, vol. 36, no.
4, pp. 421-432.

[Even 75] S. Even, “Algorithm for Determining Whether the Connectivity of a Graph is at Least
k,” SIAM J. Comput., vol. 4, no. 3, pp. 393-396, 1975.

[Even 79] S. Even, Graph Algorithms, Computer Software Engineering Series. Potomac, MD:
Computer Science Press, 1979.

[GauLee 88] J.-L. Gaudiot and L.-T. Lee, “OCCAMFLOW: A Methodology for Programming
Multiprocessor Systems,” J. Parallel and Distr. Comput., vol. 7, no. 1, pp. 96-124,
1988.

[HoIra 83] L.Y. Ho and K.B. Irani, "An Algorithm for Processor Allocation in a Dataflow
Multiprocessing Environment,” in Proc. Int. Conf. Parallel Proc., Aug. 1983, pp. 338-
340.

[HoPaFe 86] Y.-C. Hong, T.H. Payne and L.B.O. Ferguson, “Graph Allocation in Static Dataflow
Systems,” Computer Architecture News, vol. 14, no. 2, pp. 55-64, 1986.

[HopTar 73] J. Hopcroft and R. Tarjan, “Dividing a Graph Into Triconnected Components,” SIAM J.
Comput., vol. 2, no. 3, pp. 135-158, 1973.

[Huang 85] J.P. Huang, “Modeling of Software Partition for Distributed Real-Time Applications,”
IEEE Trans. Softw. Engineering, vol. 11, no. 10, pp. 1113-1126, 1985. Also reprinted
in [ShaWan 89].

[IEEE 88] Standard Dictionary of Electrical and Electronics Terms, Fourth Edition. ANSI/IEEE
Std. 100-1988. New York: The Institute of Electrical and Electronics Engineers, Inc.,
1988.

[KoMePe 88] I. Koren, B. Mendelson, I. Peled, et al., “A Data-Driven VLSI Array for Arbitrary
Algorithms,”, Computer, vol. 21, no. 10, pp. 30- 43, 1988.

[KoMeVr 88] C. Koelbel, P. Mehrotra and J. Van Rosendale, “Semi-Automatic Process Partitioning
for Parallel Computation,” NASA Contractor Report 18163, ICASE Report No. 88-16,
NASA Langley Research Center, Hampton, VA, February 1988.

[MGSkAl 85] J. McGraw, S. Skedzielewski, S. Allan, et al., “SISAL: Streams and Iteration in a
Single Assignment Language, Reference Manual,” Version 1.2, Lawrence Livermore
National Laboratory Report LLL/M-146 Rev. 1, 1 March 1985.

[Paige 77] M.R. Paige, “On Partitioning Program Graphs,” IEEE Trans. Softw. Engineering, vol.
3, no. 6, pp. 386-393, 1977.

[SarCan 90] V. Sarkar and D.C. Cann, “POSC–A Partitioning and Optimizing Sisal Compiler,” in
Proc. Conf. on Supercomputing, Amsterdam, 11-15 June 1990, pp. 148-163. Also:
LLNL preprint UCRL-102737 Rev. 1, April 1990.

80 Partitioning the data flow graph into tasks

[SarHen 86] V. Sarkar and J. Hennessy, “Compile-Time Partitioning and Scheduling of Parallel
Programs,” SIGPLAN Notices, vol. 21, no. 7, pp. 17-26, 1986.

[Sarkar 89] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, Research
Monographs in Parallel and Distributed Computing. Cambridge, MA: The MIT Press,
and London: Pitman Publishing, 1989.

[ShaWan 89] S.M. Shatz and J.-P. Wang (eds.), Tutorial: Distributed Software Engineering.
Washington, D.C.: IEEE Computer Society Press, 1989.

[SkeGla 85] S. Skedzielewski and J. Glauert, “IF1–An Intermediate Form for Applicative
Languages,” Lawrence Livermore National Laboratory Report LLL/M–170, 31 July
1985.

[Starke 90] P.H. Starke, Analyse von Petri-Netz-Modellen, Leitfäden und Monographien der
Informatik. Stuttgart: B.G. Teubner, 1990.

81

CHAPTER 6

Static Task Allocation and Code
Generation

6.1 Dynamic versus Static Scheduling and Task
Allocation

When the application program has been partitioned into tasks representing units of
operations to be executed as a whole, these tasks have to be assigned to the processors
for execution. Generally, this process is called scheduling, i.e., deciding when and
where a task is to be executed with regard to the constraints imposed. Such constraints,
are the demand on resources made by the tasks and and the availability of these
resources from the processors. Some performance measure must be optimized, mostly
either the system utilization (i.e., all components of the system should be busy) or the
response time (i.e., a set of cooperating tasks should be processed in the shortest time).
Examples of resources are memory space, peripherals, or means of communication.

In more specific terms, the assignment process can be split into two phases: the
allocation phase and the scheduling phase (in a more restricted sense than mentioned
above). Allocation deals with assigning the processor on which a task is executed, and
scheduling handles the time of execution, i.e., the order of execution of the tasks
allocated to one specific processor. This order is called a schedule of the tasks assigned
to a processor.

It is obvious that scheduling and allocation are mutually dependent. Changes made in
one phase affect the other. For example, if a schedule includes idle times because a task
is delayed while another task blocks a specific resource, this access conflict can be
resolved by moving the delayed task to another processor where the desired resource is
free at that time. The allocation is thus modified to optimize the schedule.

In general-purpose computing systems, the needs of an application for computation
power and resources are not known in advance. Scheduling and allocation have to be
done at run-time, i.e., dynamically. Therefore, efficient and quick methods must be
employed for this purpose, possibly sacrificing optimality in order not to consume too
much computing power for “non-productive” work. These scheduling duties are
normally performed by the operating system.

82 Static task allocation and code generation

For real-time systems, this trade-off becomes one of the critical issues during the
system design. Whereas in so-called hard real-time systems processing must have
terminated by a given deadline and the tasks must have been computed correctly, the
violation of either requirement is tolerated in soft real-time systems. In the latter,
sometimes even a reduced quality of results can be accepted to meet computation
deadlines ([LiLiSh 91]). A good survey of approaches taken for scheduling in hard real-
time applications is given in [ChStRa 88]. The authors conclude that only dynamic
scheduling is sufficiently flexible to satisfy all the demands in such a system.

When scheduling is done dynamically, both static and dynamic allocation of tasks is
possible. One choice is static allocation which is a less expensive but less flexible
solution. The other possibility is dynamic allocation which needs more computing
power but is more generally applicable ([HaLee 91]). Dynamic scheduling algorithms
can allow or disallow task pre-emption.

However, if the application satisfies certain conditions it is possible to determine
statically an allocation and a schedule. Above all, it must be possible to identify at
compile-time the resources needed (e.g., memory space) and the order and the number
of invocations of the tasks. This condition is fulfilled by signal processing and control
applications, as shown in Chapter 3.

If a set of tasks is executed repeatedly, either a non-periodic or a periodic schedule
can be generated. In non-periodic schedules, no overlapping of the task set executions is
allowed. Therefore, the schedule is determined on the assumption that the tasks are
executed only once, hence the name “non-periodic schedule”. Periodic schedules try to
use overlapping in order to increase the processor utilization (processor load) to reduce
the schedule length (i.e., to increase the rate of results generation). This topic is found in
detail in [Agne 89], [KoKaTa 90], [ParMes 89], [ParMes 91], [CurMad 91].

The difference between a periodic and a non-periodic schedule for the same set of
tasks is illustrated in the Gantt chart in Figure 6.1, with the associated processor loads
shown in Table 6.1. The loads are computed according to equations 6.3 and 6.4 given
in Section 6.2.2.

Table 6.1 Processor Loads for Non-periodic and Periodic Schedules

Non-periodic Schedule Periodic Schedule

Load Load

Mean 28/42 = 0.667 28/33 = 0.848

Processor 1 8/14 = 0.571 8/11 = 0.727

Processor 2 10/14 = 0.714 10/11 = 0.909

Processor 3 10/14 = 0.714 10/11 = 0.909

Dynamic versus static scheduling 83

T1

T2

T3 T4

T5

T6

T7 T8

T1'

T2'

T3' T4'

T5'

T6'

T7' T8'

...

...

T6"

T5"

T7" T8"

0 2 4 6 8 10

a) Non-periodic Schedule, Length 14

b) Periodic Schedule, Length 11

T1 T6

T2

T3 T4

T5

T7 T8

0 2 4 6 8 10 12 14

T1'

T2'

T3'

...

...

...

P1

P2

P3

Time

Figure 6.1 Non-periodic and Periodic Task Schedules

Using static allocation and scheduling has two advantages. Allocation and scheduling
may be performed on a host computer which allows the use of better development tools.
The application code is then transferred to the target system. By this means,
considerable run-time overhead is saved, especially for real-time systems. Since limiting
the expenses for allocation and for scheduling is not an issue with this approach, more
expensive algorithms may be used. Better allocations and schedules are thereby
generated.

If the task allocation is done in an intelligent way, scheduling becomes much easier.
Then, many scheduling conflicts are avoided if not only the kind and the number of
resources needed by the tasks is taken into account but also the time when they are
claimed. One task utilizing one specific resource will then become ready only after the
same resource has been released by another task placed on the same processor.

In order to save the expense of static scheduling, where the exact execution order of
the tasks has to be fixed, a simple dynamic round-robin scheduler can be used, which
activates the tasks as soon as they are ready. The exact times when the tasks execute are
irrelevant for the scheduler. In addition, finding the precise start and termination times of
the tasks would require sophisticated simulations of the program execution. As a
consequence, it is no longer possible to give the exact execution time of the whole
application (sometimes also called response time or task turnaround time). Only an
estimate based on the utilization of the PEs is possible.

84 Static task allocation and code generation

P1 P2 Pp

Interconnection Network

...

...

...

Processors

Memory

Other Resources

Links to Network

Figure 6.2 General Hardware Configuration for a Multicomputer

In the multicomputer used in this project, a simple round-robin scheduler executing
very quickly has been microcoded in each processor by the manufacturer (see Appendix
A). Therefore, only the static task allocation is performed.

6.2 The Static Task Allocation Problem

The static task allocation problem is generally formulated in terms of an optimization
problem where a performance measure has to be optimized under a set of constraints.
The general problem is outlined below, together with a model of the multiprocessor
system assumed in most work on task allocation. For general distributed computing
systems, a good introduction to the subject is given in [ChHoLa 80]. The problem
outlined here applies to real-time data processing (see also [Borrma 86]).

6.2.1 General Machine Configuration

The computing systems treated consist of a set P = {P1, P2, ... Pp} of p processors
which can work independently. Each processor has its own private memory. The set R
= {R1, R2, ..., Rr} includes all resources, such as peripheral devices and

The static task allocation problem 85

communication equipment. In homogeneous multicomputers all processors are identical,
whereas heterogeneous multicomputers consist of various types of processors. The
processors are interconnected by a communication network which allows message
passing between any two elements. Figure 6.2 shows the structure of the general
multicomputer.

There are various ways of creating the interconnection network. In systems with few
processors a bus system may be the cheapest solution. However, bus contention very
soon becomes a problem ([Thoeni 88]). In larger systems, a fast serial network, e.g.,
Ethernet, is feasible. However, such a network also becomes congested under heavy
load. Systems including many processors, such as Hypercube architectures, in most
cases possess only few serial links per processor. Each processor is connected to
neighbours. If the communication is directed to processors not directly connected, the
messages are passed through intermediate processors. The communication delay then
becomes a function of the distance of the communicating processes and may increase
considerably. A communication cost model for such systems is given in [KräMüh 87].

6.2.2 General Static Task Allocation Problem

In general the problem is the distribution of a set of m tasks to p processors so that
the system throughput is maximized (see [ChHoLa 80], [Stone 77]). Stone uses the
term “module” for task or process. Throughput maximization is obtained by
minimization of communication overhead. Therefore, if the amount of intermodule
communication (IMC) is given for all pairs of processes, the interprocessor
communication cost (IPC) is determined by the IMC and the allocation. The aim is to
find an allocation of the tasks to the processors so that the sum of all interprocessor
communication costs and task execution costs on the processors is minimal.

A precise analytical definition of the problem is given by Borrmann ([Borrma 86]).
He also considers the aspect of graceful degradation by assigning a priority to each
process. In a processor failure a new precomputed allocation is activated and as many
processes as possible are reassigned. Each task j is assigned the priority wj. The task
execution costs do not appear explicitly in the equations. Instead the tasks are considered
to use the resource “computing power”. Therefore the execution costs are part of the
equation for the resource constraints.

The following notation is used:

P = {1..p} set of processors

M = {1..m} set of tasks

R = {1..r} set of resources

W P set of non-faulted processors

A = [aih] task assignment matrix aih {0, 1} i M, h P

if task i is assigned to processor h then aih = 1

86 Static task allocation and code generation

B = [bir] resource demand matrix bir 0 i M, r R

task i needs bir units of the resource r (e.g., MFlops of

computational power, or MBytes of memory)

C = [chr] resource capacity matrix chr 0, h P, r R

processor h possesses chr units of the resource r

V = [vij] communication volume matr. |vij| 0 i, j M×M

tasks i and j exchange vij bytes of data. vij is negative if task i

and j must not be allocated on the same processor

D = [dgh] distance matrix dgh 0 g, h P×P

the shortest path from processor g to processor h passes through

dgh intermediate processors

wi priority of task i wi > 0 i P

a low value of wi indicates high priority

The Task Assignment Problem is defined as:

Find an assignment Aopt of the tasks M to the processors P, considering the
following conditions:

1. Objective Function 1 (OF 1) (equation 6.2):
Assignment of as many processes as possible according to their priority

Given the quality q of an allocation A

q(A) =
i=1

m

j=1

p
1

 w i
 aij

(6.1)

maximize this quality to find the optimum assignment Aopt:

q(Aopt) = Max { q(A) } ! (6.2)

2. Objective Function 2 (OF 2) (equation 6.4):
Reduction of Interprocessor Communication (IPC)

The measure z of the communication costs of allocation A is defined in equation 6.2.
Two tasks i and j exchange the amount vij of data when allocated on the processors k
and l with distance dkl.

z(A) =
j=1

m

i=1

j

k=1

p

l=1

p

v ij dkl aik aj l

(6.3)

The static task allocation problem 87

Minimize the interprocessor communication z to find the optimum assignment Aopt,

given that the quality q(A) has its maximum value:

z(Aopt) = Min { z(A) | q(A) = Max } ! (6.4)

3. Constraint 1 (C 1) (equation 6.9): Load balancing
The load uj of processor j is defined as the ratio of the sum of all resources requested

by the tasks on processor j to the value of the sum of all resources available on
processor j:

uj =
i=1

p

l=1

r

b il ai j

l=1

r

c j l

load of processor j

(6.5)

The mean processor load –u is defined as the ratio of all resources requested by all
tasks to the value of the sum of all resources provided by all processors:

–u = i=1

m

l=1

r

b i l

j W
j=1

p

l=1

r

c j l

mean processor load

(6.6)

A bound u can be introduced which depends on the mean load –u as follows:

u = f(–u) =
0 if –u = 1

umax if –u << 1

(6.7)

If the mean load –u is one, i.e., the processors are fully utilized, the bound u is zero.

If the mean load –u is smaller, then an arbitrary bound umax is taken. The load of

processor j is not allowed to be larger than –u+ u:

uj -
–u u j W (6.8)

4. Constraint 2 (C 2) (equation 6.8): Resource utilization

88 Static task allocation and code generation

The amount of resource r requested by all tasks on each processor must not exceed
the capacity of the specific resource:

i=1

m

bir aij cjr j W, r R
(6.9)

5. Constraint 3 (C 3) (equation 6.10): Avoidance of task coresidence
No pair i, j of tasks may be placed on the same processor l if the intertask

communication volume vij has a negative value:

if vij < 0 then ail ajl = 0 i, j M×M, l P (6.10)

6. Constraint 4 (C 4) (equation 6.11): Avoidance of faulty processors
No task may be placed on a defective processor:

i=1

m

ail = 0 l P-W
(6.11)

7. Constraint 5 (C 5) (equation 6.12): Unique assignment
Each task i may be placed on maximally one processor:

l=1

n
 ail {0, 1} i M

(6.12)

6.2.3 Static Task Allocation Problem for Homogeneous
Real-time Multicomputers

The issues of fault tolerance and graceful degradation are not considered in this book.
All tasks are thus allocated. The quality q of the allocation then yields the constant value

q =
i=1

m
1

 w i

according to 6.1. It is independent of the allocation A. The objective function OF 1 is
therefore satisfied in any case, as well as the constraint C 4.

In some approaches, the total cost of the application is the subject of the
minimization. The total cost is composed of the intertask communication costs and the
execution costs of the tasks on the processors. The tasks are thus forced to processors
where their execution is cheapest. However, in a homogeneous system these costs are

The static task allocation problem 89

the same on all processors so there is no point in including these constant costs in the
objective function to be minimized.

In the multicomputer assumed here, no communication network linking all
processors directly to each other exists. Each processor possesses a limited number of
serial links (four for the T800 Transputer) which connect two processors. The links are
regarded as communication resources. The topology of this limited interconnection
network is not previously defined. It results from the allocation phase. Furthermore, in
order to limit the interprocessor communication costs, messages are forwarded only to
processors connected directly, i.e., no message routing through intermediate processors
takes place. Since the elements of the communication distance matrix D then can only
take on the values 1 or 0, the matrix D degenerates to a connectivity matrix, indicating
the connections among the processors.

The difficulty is that the cost of transferring messages becomes dependent on the
allocation. While in a universal network the transmission costs ideally are proportional
to the communication volume vij, communication between two tasks may become
impossible because the tasks have been allocated to two processors not directly linked.
Intertask communication is cheaper if the two tasks reside on the same processor than
when they are located on different ones, but it is not totally free, as assumed in many
papers in the literature. No direct connection exists when the available communication
resources have already been assigned to other interprocess communication channels.
However, it is possible to share links between two pairs of communicating tasks
residing on the same pair of processors.

Handling resources becomes easier in a homogeneous multicomputer because there
are no restrictions as to where to allocate certain tasks requiring special resources.
Moreover, load balancing is eased by the homogeneity of the system.

Due to the advances of VLSI technology and the fact that signal processing
applications require a storage area only of a known size, the memory size constraint has
lost importance and is not considered here. No peripheral devices such as printers etc.
are taken into account. The only remaining resource constraint is the interprocessor link
configuration.

The aspect of load balancing has to be treated with caution in hard real-time systems.
If an application program is repeated periodically, periodic schedules can be generated
which maximize throughput and system utilization, thereby balancing the load of the
processors. This involves some kind of pipelined execution of consecutive invocations
of a task set, i.e., the first tasks of the next execution of the program are started before
the last tasks have finished running, as mentioned in Section 6.1. Through this
overlapping scheme much time that would otherwise be wasted can be saved.

One of the characteristics of control applications, however, is that the acquisition of
new input values and the computation of the next output values can only start when the
previous computation cycle has been terminated. This excludes any pipelined approach
for most algorithms, and only non-periodic schedules are applicable. Inevitably, then, at
the beginning and end of program execution only a few processors can be active, thus
creating an unbalanced load. For this reason, minimizing the program execution time
rather than load balancing is the primary goal.

90 Static task allocation and code generation

Exempt from this general rule are algorithms which are explicitly designed to have
several stages, such as the Kalman filter, where the new state is estimated using old
information and is updated as soon as the new measurements are available. A part of the
computations can then be performed before the sampling instance, thus allowing some
kind of pipelining. However, these algorithms are not treated in a special way since
minimization of execution time is the primary goal in any case.

For a description of the modified task assignment problem some additional notation is
required:

U = {1..u} set of processors utilized in the final allocation, U P

O = [oij] communication overhead oij 0 i, j M×M

communication from task i to task j causes total costs of oij.

These costs depend on the allocation of the tasks

L = [lij] link matrix lij {0, 1} i, j M×M

if lij = 1 then task i sends data to task j

TP = [tpgh] task parallelism matrix tpgh {false, true}

g, h P×P

if tpgh then the tasks g and h can be executed in parallel

The modified Task Assignment Problem for a homogeneous multicomputer then
reads:

Find an assignment Aopt of the tasks M to the processors P and the topology of the
interprocessor communication network, considering the following conditions:

1. Objective Function A (OF A) (equation 6.15)
Reduction of the Interprocessor Communication (IPC)

The measure z of the communication costs of allocation A is defined below. Two
tasks i and j result in oij cost for communication. The cost depends on the intertask
communication volume vij and on whether the two tasks are allocated on the same
processor or on different processors, as described in equation 6.14.

z(A) =
j=1

m

i=1

j

k=1

p

l=1

p

o ij a ik aj l
(6.13)

with

oij =
vij Text + Ts if aik ajk = 0 (ext. comm.)

vij Tint + Ts if aik ajk = 1 (int. comm.)
(6.14)

The static task allocation problem 91

Ts : communication set-up time
Text : communication time per byte for external communication
Tint : communication time per byte for internal communication

Minimize the interprocessor communication I to find the optimum assignment AOpt:

z(AOpt) = Min { z(A) } ! (6.15)

2. Objective Function B (OF B) (expression 6.16):
Minimum program execution time

Finishing time of last task of data flow graph = Min ! (6.16)

3. Constraint A (C A) (equation 6.17):
Maximum communication resource utilization

The maximum number of communication links available on any processor is lmax.
For any processor j, the sum of bidirectional links (pairs of one entering and one leaving
link) must not exceed lmax.

i=1

p
lij + lj i
1 + lijlj i

 - lmax = 0 j P (6.17)

4. Constraint B (C B) (equation 6.18):
Avoidance of task coresidence of tasks executable in parallel

if tpij then ail ajl = 0 i, j M×M, l P (6.17)

with

tpij = true if tasks i and j are executable in parallel

5. Constraint C (C C) (equation 6.20):
Maximum number of processors used

The number |U| of elements of the set U is the number of processors used, and the
number |P| of elements of the set P is the number of processors available. With the set of
unused processors

U P (6.19)

the number of unused processors has to be minimized:

92 Static task allocation and code generation

|P| - |U| 0 = Min !
(6.20)

The main differences in the formulation of the assignment problem for
inhomogeneous multicomputers (as given by Borrmann, e.g.) are:

 • Load balancing among the processors is not primarily sought
 • The program execution time is required to be minimal
 • Resource utilization maximization deals only with communication devices

The objective functions and constraints are discussed briefly in the following.
Because a full allocation of all tasks is sought, objective function A (OF A) contains

no process priorities. The interprocessor communication is computed differently. Not
only is communication between tasks on different processors considered, but also
communication between tasks located on the same processor is taken into account. The
exact communication cost model has been developed in Chapter 4. The distances
between processors no longer appear since messages are forwarded only to those
processors directly connected.

The second objective function introduced is the minimization of program execution
time. This is the central issue of parallel processing for real-time systems. However,
since only the task allocation is handled statically and scheduling is performed
dynamically, the program execution time is difficult to measure in advance.

For this reason, the demand for minimal execution time cannot be a practical measure
for evaluating the quality of an allocation. Instead, the two constraints A and B ((C A)
and (C B)) are introduced. The link matrix L used in (C A) signifies: if any task located
on processor i sends data to any task hosted by processor j, then lij equals one.
Otherwise lij equals zero. The sum in (C A) indicates the number of links of a processor
used unidirectionally or bidirectionally. This number must not exceed the number lmax
of links available in hardware. By requiring the difference to be zero, all links have to be
utilized. Thus maximal parallelism is sought.

Constraint B forbids the placement of two tasks on the same processor if they are
potentially executable in parallel. This minimizes resource access conflicts and task
switching by the scheduler. The scheduler has to activate only one task at a time, since
by this allocation strategy the tasks placed on the same processor become ready at
different times. Again, parallelism is preserved.

Constraint C requires that all processors be used for the execution of the program.
Frequently this proves to be impossible due to the limited number of communication
links. Therefore, the maximum value is sought which must not exceed the number of
PEs available. In some cases it would not even make sense to enforce the use of all PEs
since it is possible that the application program does not exhibit enough parallelism to
keep all processors busy.

Constraints A and B are also likely to collide. When maximum parallelism is
preserved by (C B), the number of links used quickly exceeds that of available links.

Solutions proposed in the literature 93

However, since the number of links available is limited by the hardware, respecting (C
A) is more important than fulfilling (C B).

The three constraints (C A), (C B), and (C C) are necessary but not sufficient
conditions for achieving minimum execution time as required by objective function
(OF B). However, these constraints provide helpful guidelines for the pursuit of a good
allocation of the tasks.

6.3 Solutions Proposed in the Literature

A very large number of solutions to the problem of task allocation (TA) has been
proposed in the literature. The terminology used is inconsistent in that the problem is
called “task assignment problem”, “module allocation problem”, “static scheduling
problem”, and variations thereof. The exact problem formulation differs, but most
authors concentrate on minimizing either the sum of interprocessor communication and
task execution costs or the program execution time.

However, it is possible to group the investigations according to the approaches taken.

Table 6.2 Classification of Allocation Approaches Described in the Literature

Graph Theoretic
[Stone 77], [ChHoLa 80], [Bokhar 81], [SheTsa 85], [Bokhar 87],
[Lo 88], [LeLeKi 92]

Numerical Optimization, Branch-and-Bound
[RaChGo 72], [ChHoLa 80], [MaLeTs 81], [MaLeTs 82], [Sincla 87],
[Fernán 89], [KoKaTa 90], [SheGag 91], [BiCoSu 92], [ShWaGo 92]

List Scheduling
[AdChDi 74], [KasNar 84], [SarHen 86], [Towsle 86], [LoGli 87],
[Thaler 87], [HwChAn 89], [Sarkar 89], [Löffle 90], [ThaMos 90],
[CurMad 91]

Simulated Annealing
[Steele 85], [BolMid 91], [BüEsMa 91], [DHoDev 91]

Clustering Methods
[GylEdw 76], [ChHoLa 80], [Efe 82], [Campbe 85], [Borrma 86],
[HoPaFe 86], [ChuLan 87], [LeeAgg 87], [LoGli 87], [MüGoKr 87],
[KimBro 88], [BaxPat 89], [GeVeYa 90], [Housti 90], [GerYan 91]

One approach described in the literature is to find the optimum solution to the
minimization problem. For solving this problem, graph theoretic approaches have been
found, but they apply only to restricted cases.

Due to the NP-completeness of finding the optimum solution for the general case
([Bokhar 81], [Coffma 76]), most solutions described apply an heuristic method. They
range from numerical optimization (implicit enumeration), list scheduling approaches,

94 Static task allocation and code generation

and simulated annealing to clustering methods where the interconnection structure of the
task graph is used to form clusters of tasks which are allocated to the processors.

Table 6.2 lists the literature according to the approaches. The properties of the single
approaches are pointed out in the following sections citing selected papers. A good
survey of the older work is given by Borrmann ([Borrma 86]).

6.3.1 Graph Theoretic Approach

A method for finding the optimum solution for a restricted version of the Task
Allocation Problem for systems with two processors has been developed by Stone
([Stone 77]). The task graph is augmented with two nodes, one per processor. From
each processor node an edge is drawn to each task node. The edges are labelled with the
sum of the task’s communication and execution costs. The costs are computed assuming
that the task is placed on the processor to which it is linked by that edge. With the
maximum-flow/minimum-cut algorithm by Ford and Fulkerson ([ForFul 56]), the new
graph is cut into two parts so that the edges crossing the boundary represent the
minimum total cost. Lee, Lee, and Kim ([LeLeKi 92]) extend Stone’s work for linear
arrays of processors.

Since focusing only on the communication and execution costs inplies placing all
tasks on one processor, Lo ([Lo 88]) introduced the concept of “interference costs”. If
two tasks need the same resources when placed on one processor, the execution cost is
augmented by an amount representing this conflict. By driving apart tasks competing for
the same resources, parallelism is preserved. Lo also extended the limitation of the
problem to two processors by substituting one processor by a so-called supernode
containing p-1 processors and iteratively applying the original algorithm to that
configuration.

Although an attractive approach, this method becomes very expensive for a large
number of tasks and processors and is difficult to extend to include additional
constraints, e.g., on resource utilization.

A solution for task graphs which are tree-shaped and which can then be transformed
into simpler structures is proposed by Bokhari ([Bokhar 81], [Bokhar 87]). Shen and
Tsai ([SheTsa 85]) use a graph matching method called weak graph homomorphism to
map the task graph onto the processors.

6.3.2 Numerical Optimization Approach

While it is impossible to examine all the potential assignments due to the rapid
expansion of combinatorial work, strategies for partial enumeration originating from
Operations Research are applicable.

Dynamic Programming and two related heuristic methods are utilized in
[RaChGo 72] in order to precompute an optimum schedule, but without considering

Solutions proposed in the literature 95

communication costs. However, due to the large complexity of the problem, only
systems with two processors and 54 nodes at most are treated in the examples.

One approach described in [KoKaTa 90] uses a branch-and-bound technique with
backward- and forward-searching algorithms from the theory of 0-1 integer
programming. Sinclair ([Sincla 87]) employs the branch-and-bound method with
underestimates. After a partial assignment has been achieved, the probable costs of all
full assignments which include that partial assignment are estimated. According to these
estimates it is decided whether to pursue further this branch of the search tree.

In [ShWaGo 92] the 0-1 integer programming problem is solved using the A*
algorithm used in Artificial Intelligence. The authors put the emphasis in their approach
more on maximizing the system’s reliability than on minimizing execution costs.

Billionnet, Costa, and Sutter formulate the task allocation problem as the
minimization of a quadratic pseudo-Boolean function with linear constraints. They use
the Lagrangean dual problem to solve the linear program with a branch-and-bound
method. They are able to handle large numbers of tasks by this approach, but they
neglect intertask communication costs for tasks which reside on the same processor.

Fernández-Baca ([Fernán 89]) even proposes a polynomial-time algorithm for the
assignment using nonserial dynamic programming, but only for task graphs which are
partial k-trees.

The difficulty with these methods is to find an appropriate cost function which does
not prematurely exclude potentially good solutions but which nevertheless limits the
cases to be inspected to a tolerable number.

6.3.3 List Scheduling Approach

List scheduling methods are well known from dynamic schedulers used in operating
systems. The name is based on the fact that a list of the tasks ready to execute is
maintained (dynamically or statically). Each element of the list carries a tag indicating its
priority, determined from deadline or other constraints. The list is sorted according to
the priorities. The order of execution is thus fixed. The priority of a task may change
over time in order to increase its chance of being executed (for the case of deadline-
driven priorities). When performed dynamically, the trade-off is scheduling cost against
accuracy. The better the priorities have to reflect the true relations among the tasks, the
more their computation causes overhead.

Static list scheduling relies mostly on methods using the critical path (CP) of the task
graph. The tasks of the critical path are allocated first so that no delays are introduced.
All the other tasks are then fitted around this partial assignment according to the various
constraints imposed. Since these tasks do not belong to the critical path, the total
program execution time is not increased.

For the allocation of the tasks which do not belong to the critical path, several
heuristic approaches have been proposed. Traditionally, they are given acronyms
representing verbose descriptions. Adam, Chandy, and Dickins in their paper
[AdChDi 74] compare the methods HLFET (Highest Level First with Estimated

96 Static task allocation and code generation

(execution) Times), HLFNET (Highest Level First with No Estimated Times),
RANDOM (this speaks for itself), SCFET (Smallest Colevel First with Estimated
Times), and SCFNET (Smallest Colevel First with No Estimated Times). They define
the level of a task node as the longest path from that task node to an exit node of the
graph, and the colevel as the longest path from an entry node of the graph to the same
task node. Their favourite candidate is HLFET. This performs best because it possesses
the most accurate information on the workload to be performed for completing the
program’s execution. In their experiments they found that HLFET remains within 5% of
the optimal solution. However, Lo and Gligor ([LoGli 87]) compare HLFET to a so-
called group scheduling approach (described in Section 6.3.5). They conclude that list
scheduling is more sensitive to variations of computation parameters (degree and pattern
of task interaction) when few processors are available and cannot completely match the
performance of group scheduling for many processors.

CP/MISF (Critical Path/Most Immediate Successor First), proposed by Kasahara and
Narita ([KasNar 84]), already tends towards the philosophy of the clustering methods
described below by emphasizing the locality of communication. In contrast, ETF
(Earliest Task First) ([HwChAn 89]) relies on the time a task is ready to produce a
greedy scheduling.

The most critical issue in list scheduling approaches is computation of the critical
path. In systems with a good communication network providing high bandwidth, the
communication costs are not greatly influenced by the communication load, in contrast
to architectures with few links (such as hypercubes). All the same, the communication
costs are highly dependent on the mapping which is to be determined with the help of
the critical path. But this critical path, in turn, is computed using these same
communication costs. Therefore, good estimates of the critical path are difficult to
obtain.

This problem can be eased by optimizing the schedule obtained by a CP method.
Thaler ([Thaler 87], [ThaMos 90]) optimizes the completed schedule with respect to
limited resources. Löffler ([Löffle 90]) iterates incremental scheduling and resource
allocation steps in order to take into account the interdependence of scheduling and
resource allocation.

For periodic schedules, Curtis and Madisetti ([CurMad 91]) use a wavefront analysis
to identify the longest path, together with the respective resource and communication
constraints.

6.3.4 Simulated Annealing Approach

Simulated annealing ([KiGeVe 82], [KiGeVe 83]) is becoming a popular method for
avoiding getting trapped in local minima when solving complex optimization problems.
Instead of following a steepest descent trajectory (as in conjugate gradient methods), the
path is perturbed by random walks with decreasing probability.

Steele ([Steele 85]) applies simulated annealing to the allocation problem using an
objective function that incorporates terms to model processor load and communication

Solutions proposed in the literature 97

costs. Since communication costs are directly proportional to the distance between the
tasks, they fail to account for congestion effects on single links.

Bütler, Esser, and Mattmann ([BüEsMa 91]) allocate the tasks representing a Petri
Net on a given set of processors. The objective function is to minimize communication
between the clusters. The authors do not assume any fixed interconnection topology, but
configure the communication network after the allocation according to requirements.

Bollinger and Midkiff ([BolMid 91]) tackle the task allocation problem under the
restriction that there is at most one task per processor. They use a two-step procedure.
First they assign the tasks to the processors (task annealing), then they determine the
communication paths among the processors (connection annealing) for a hypercube
architecture. The objective function to be minimized contains the total communication
cost and the maximum communication on a single link.

D’Hollander and Devis ([DHoDev 91]) form so-called annealing packets of ready
tasks and assign one packet at the time. Their cost function is a sum of normalized
communication and load-balancing terms. Their experiments showed equal or better
performance than the HLFET list scheduling algorithm.

6.3.5 Clustering Approach

The principle of cluster analysis was originally applied to the analysis of statistical
data gathered in biology, chemistry, and medicine (see, for example [Anderb 73],
[Spaeth 85]). Task allocation, as in statistics, seeks to identify clusters of objects which
have some kind of coherence and can therefore be treated as an entity. In most cases,
these clusters are built from task nodes which have strong connections among each
other, thus placing them on one processor eliminates much interprocessor
communication cost.

A clustering is called nonlinear if two independent (i.e., not directly connected) tasks
are mapped in the same cluster. Otherwise it is called linear. Figure 6.3 shows examples
of nonlinear and linear clusterings of a task graph.

In the example for nonlinear clustering, task T2 contains two unconnected nodes.
They could be processed in parallel if they were not placed in the same task. This shows
that nonlinear clustering is unfavourable if maximum parallelism is sought. This fact has
been confirmed by a comparison of clustering algorithms described in [GerYan 91].

Most authors use relatively crude models for the communication costs, where costs
are at best proportional to the distance between processors and to the volume of
communication. However, a few authors have formulated fairly sophisticated models. A
detailed communication model for a hypercube structure set up by Lee and Aggarwal
([LeeAgg 87]) allows several communication channels to use the same hardware link at
different times without increasing the overhead. For a homogeneous bus-based
multiprocessor architecture using message passing, communication costs as a function
of bus utilization are given by Houstis ([Housti 90]). However, all authors assume that
intertask communication on the same processor is free.

98 Static task allocation and code generation

T1

T2

T3

T1

T2

a) nonlinear clustering b) linear clustering

Figure 6.3 Examples of Nonlinear and Linear Clustering

Task assignment basing on cluster analysis is a two-step approach. First, an initial
(possibly only partial) assignment of the task to the processors is made. In the
subsequent steps, this initial solution is refined and optimized until no further
improvement of the solution is found, or some constraints are violated, or the allowed
expenses for the optimization are exceeded.

For the initial assignment, the simplest possibility is one task per processor
([GylEdw 76], [Housti 90]). A random assignment is not very effective since the first
optimization steps would be wasted to correct gross misplacements. Therefore, most
authors construct a fairly sophisticated initial assignment. This is mostly guided by the
objective function to be minimized, sometimes disregarding some of the constraints
([ChHoLa 80], [Efe 82], [Borrma 86]). If communication costs are to be kept low (an
aim that most authors pursue), then tasks which communicate heavily with each other
are allocated on adjacent processors.

Instead of considering all task nodes at a time for allocation, Baxter and Patel
([BaxPat 89]) propose in their LAST algorithm (Localized Allocation of Static Tasks)
following the graph’s topology when selecting the next node to be allocated. Only nodes
connected to other nodes already allocated are eligible for allocation. These nodes are
subsequently placed on the processor of the predecessor to which they have the
strongest connection (i.e., to the node where most of the incoming communication

Two-phase linear clustering approach 99

originates). A very similar idea is presented by Lee and Aggarwal ([LeeAgg 87]) and
Hong, Payne, and Ferguson [HoPaFe 86].

For refining the initial assignment, all or only selected pairs of tasks are inspected for
coresidence. The potential gain in the objective function is then calculated for the case
where such a pair is separated again ([GylEdw 86], [KimBro 88], [Houstis 90]). Other
schemes include exchange mechanisms for improving the first solution or to fulfil all
constraints ([ChHoLa 80], [Efe 82], [ChuLan 87], [LeeAgg 87]). Borrmann
([Borrma 86]) even proceeds in three steps by first choosing single tasks, then pairs of
tasks, and finally whole groups of tasks for exchange.

The fact that the task graph’s topological properties (i.e., the connectivity) and the
activation order of the tasks determine the sequence of allocation ensures that as few
decisions as possible are made which have to be reversed. For this reason, the clustering
approaches are mostly straightforward allocation methods with no costly backtracking
options.

6.4 Two-phase Linear Clustering Approach

Minimizing interprocess communication is an important problem in message-passing
multicomputers, and making effective use of the limited serial communication links is
even more important for good performance. Therefore, the clustering heuristic was
chosen to solve the task allocation problem. It seems the most appropriate of the
methods described in the survey above.

With linear clustering, in each step of the optimization only potentially “good”
candidates are considered for coresidence on the same processor. By placing two
connected tasks on the same processor, at least one communication channel can be
eliminated. This allows direct control of the constraint (C A) on the use of the
communication resources mentioned in Section 6.2.3. An additional advantage of this
local approach is that it is not necessary to evaluate the total communication cost
formulated as objective function (OF A) at every step of the optimization. Finding the
move which maximizes the decrease in the local communication cost (i.e., which
minimizes a PE’s communication cost) also guarantees the largest decrease of the total
communication cost. The constraint (C B) which forbids coresidence of tasks executable
in parallel is fully respected during the initial phase of linear clustering since only serially
dependent tasks are placed on the same PE. However, when each PE hosts several tasks
it may happen that two tasks are placed on the same processor which are both dependent
on the same task but for themselves independent.

In an early phase of the work, experiments were conducted with nonlinear clustering.
This showed no advantages over linear clustering, since only connected tasks could be
merged on one PE. Moreover, the computational complexity was higher than with linear
clustering and resulted in a significantly increased processing time.

Figure 6.4 shows the procedure for allocating the tasks on the processors. In
Appendix B.5 the rules are specified in detail.

100 Static task allocation and code generation

ALLOCATION (fgr, alpha):

(* place each task of fgr on a PE of its own
compute the level of all tasks
(the longest path from entry point of the graph to the tasks)
determine the maximum number maxlinks of links used on any PE
determine the number excesspe of excess PEs in the system *)

excesslinks := maxlinks - numberoflinks_per_PE
while (excesspe>0) or (excesslinks>0) do

if av_tasknumber<alpha then (* PHASE 1 *)
find the pair of PEs mergepair which fulfills the following
conditions:

- the communication between the PEs of mergepair
costs much

- joining the pair’s processes on one PE eliminates the
biggest number of links from the system

join_processes(mergepair)
else (* av_tasknumber alpha *) (* PHASE 2 *)

for all processors PEi do
distribute_processes(PEi, processlist)
(* place tasks to the PE they are most conn. to

(lowest level first) *)
determine the weighted sum of all links used in

the system
keep in minpe the PE which yields the lowest value of

the sum
collect_processes(PEi, processlist)

end for all
distribute_processes(minpe, processlist)

end if
determine the maximum number maxlinks of links used on any PE
excesspe := excesspe - 1
av_tasknumber := numberoftasks / maxpe
excesslinks := maxlinks - numberoflinks_per_PE

end while
end allocation

Figure 6.4 Allocation of the Tasks on the Processing Elements

First, each task is placed on a (hypothetical) PE of its own. Normally, this number
exceeds the number of PEs available in the system. Generally, more links than are
available are needed between the PEs. Therefore, in each iteration one PE is eliminated
from the system so that the number of links decreases monotonically. Since one PE is

Two-phase linear clustering approach 101

T1

T2 T3

T1

T2 T3

PE 1 PE 1

PE 2 PE 2

a) Without Link Fusion b) With Link Fusion

Figure 6.5 Interconnection Elimination By Link Fusion

removed in each step, the algorithm will terminate in any case, at worst yielding the
trivial solution with only one PE. The allocation itself proceeds in two phases as
described below. Switching from phase one to phase two is controlled by the average
number of tasks per PE, which initially has the value one. As soon as it reaches the
threshold value entered by the user, phase two is started.

In an earlier version, the transition condition was the number of PEs. However, this
had the disadvantage that for problems of different sizes the aim of processing switched
at different levels of processing. For large problems, processing was almost ended
before phase two was begun, while it had hardly started for small ones. When choosing
the average number of tasks, for any problem size the number of PEs has decreased by
the same ratio. Phase two is then begun at a state of processing where sufficient room is
left to pursue the aims of phase two.

Finally, each PE has a list of the links associated with it. Through these lists the
topology of the interconnection network among the PEs is defined.

6.4.1 Reducing the Number of Interconnections

So far, each edge in the data flow graph was created by a link of its own. Early
experiments with allocation showed very quickly that this results in so many
communication channels that there is hardly a chance of finding a useful allocation

102 Static task allocation and code generation

T1 T2

T3 T4

T1 T2

T3 T4

PE 1 PE 1

PE 2 PE 2

Multiplexer

Demultiplexer

a) Without Link Multiplexing b) With Link Multiplexing

Figure 6.6 Interconnection Elimination By Link Multiplexing

meeting the hardware constraints. Another observation was that with algorithms
consisting of vector operations many elements of an array often have to be distributed
from or gathered in one task. Many channels then leave from or enter the same task.This
observation led to the development of the concept of link fusion illustrated in Figure 6.5.

Link fusion is applicable if data are sent from one source on PE 1 to multiple sinks
located on PE 2, but not necessarily in the same task. Then, instead of sending the same
data items over multiple links from PE 1 to PE 2, only one link is used for the
transmission between the PEs involved, and data are distributed among the consumers
on the PE.

Through this simple concept, a considerable number of links can be eliminated
without introducing a large amount of overhead.

The other method for eliminating links is by time multiplexing. The outputs from
nodes in any process on PE 1 are sent through a multiplexer task and transmitted over
one link to PE 2 where the inputs waiting for the values are located. Link multiplexing is

Two-phase linear clustering approach 103

shown in Figure 6.6.
The introduction of multiplexer and demultiplexer tasks causes some additional

computation costs and introduces delays in the transmission. All the same, it is worth
paying the price, since many links can be saved by this simple method. Additionally, the
chance is small that two tasks on a PE have to communicate over a multiplexed link at
the same time since they are linearly dependent on each other and execute one after the
other. Messages are therefore not delayed by colliding access to links due to
multiplexing.

These optimizations are applicable independently for both directions of the
bidirectional physical links. Currently, the combination of the link fusion and link
multiplexing optimizations for one monodirectional link is not implemented. Priority is
given to link fusion since it causes less run-time costs.

6.4.2 Phase One: Clustering Heavily Communicating Tasks

Phase one aims at a quick reduction in the number of processors in the system and
the removal of the communication links with the highest cost. For this purpose, in each
iteration a list of all communicating pairs of PEs is built, sorted according to the inter-
processor communication costs. Among those in the top half (i.e., the pairs with high
communication costs) the pair is identified which offers the greatest saving of links
when the task sets of the two PEs are merged onto one PE. One of the two processors is
eliminated from the system and its tasks (initially there will be only one task on it) are
moved to the other PE. The links eliminated are not only those connecting the two PEs
directly. The possibility of eliminating links leading from other processors to the PE pair
to be merged is also investigated. The techniques for further reducing the number of
links are link fusion and link multiplexing, as outlined above.

While the objective is to lower the total number of links used in the system, no
attention is paid to the situation on individual processors. That means that PEs with
many excess links are not more likely to be considered for merging than those with
spare links, unless their communication costs are high. All the same, by removing links
with high communication costs, the aims of the objective function (OF A) from Section
6.2.3 are followed. By considering only half the number of PE pairs, the selection
proceeds quickly.

6.4.3 Phase Two: Matching Interconnection Topology and
Communication Resources

Phase two is activated as soon as the average number of tasks per PE has reached the
threshold value which is typically set to two to four. In this final stage of the allocation
meeting both hardware constraints (C A) and (C C) is the main aim. These constraints
concern the communication resource utilization and the utilization of as many of the
available processors as possible, but not more. Therefore a more extensive search is

104 Static task allocation and code generation

performed for finding a solution which satisfies the physical constraints of the system
while sacrificing as little performance (parallelism and communication time) as possible.

Continuing to merge task sets of PEs would create a very unbalanced load. For this
reason, the tasks of a PE are distributed to the other processors to which they are
connected most in terms of communication costs. This helps to distribute the load as
evenly as possible. The task clusters are modified but still remain linear because only
connected tasks are merged.

In each iteration of the algorithm all PEs are examined. When the tasks of one PE are
distributed, all links used in the system are counted as in phase one. However, this time
the weighted sum of the difference between the number lno of links actually used and
the number noflinks of links available is determined. The formula applied to each PE is

new sum =
old sum + 5 × (lno - noflinks) if lno > noflinks

old sum + (noflinks - lno) if lno noflinks

Excess links are thus counted fivefold whereas spare links count only once. The
specific values for the weights were determined by experiments and emerged as the best
compromise of removing excess links and using spare ones. Through these weights, the
method which eliminates the largest number of excess links is chosen. The PE with the
lowest value of the sum associated with it is selected for the final distribution of its
tasks.

Due to the fact that in each iteration one PE is removed from the system and excess
links are eliminated with priority, the search converges towards a solution which
satisfies all the hardware constraints and still offers the best performance possible.

 6.4.4 Computational Complexity Analysis of the Allocation

Determining the amount of work to be done during the allocation phase is as difficult
as it was for partitioning. While the parameter alpha indicating the average task number
is easy to include in the calculation, much depends on the configuration of the actual
solution found. For a worst-case estimation it has to be assumed that the trivial solution
with only one PE results. All other solutions require fewer computations.

The figure to start with is the number m of PEs after partitioning the data flow graph.
This number m is in the range of N/2 ... N/3, where N denotes the number of nodes in
the expanded graph. Additional variables used are the number ni = m ...(1) of PEs in the
system and the average number of processes pri = 1 ... alpha ... (m) per PE in iteration
i.

The operation counts for the single actions during phases one and two are listed in
Table 6.3. The figures given are the worst-case estimation of the operation count for the
allocation process. It is assumed that processing has to continue until only one PE is left
in the system. In any case, phase two is dominant as far as the workload is concerned.

Two-phase linear clustering approach 105

Table 6.3 Computational Complexity of the Allocation

Function Performed: Operation Count Total

Phase One: m (1-1/alpha) Iterations

build list of PE pairs ni

determine number of links
before merging

ni

determine number of links
after merging

ni

delete list of PE pairs ni

Total per Iteration: 4 ni

Total Phase One: 2 m2 (1- 1/alpha2)

Phase Two: (m - alpha) Iterations

distribute the processes ni(pri2+pri3)

determine sum of
excess/spare links

ni2 pri

collect processes ni pri3

Total per Iteration: pri(ni+ni2) + pri2 ni +
pri3 ni

Total Phase Two: m4 + 4 m3 -
alpha4/2 - alpha3

Grand Total
(approximately):

m4 + 4 m3

The terms of fourth and third order grow so fast that if the number m of PEs after
partitioning exceeds just a few, all other terms become negligible.

It is surprising that the threshold value alpha of average number of tasks does not
appear in the final sum. However, this is due to the fact that in phase one a simple
clustering method is used which does not contribute significantly to the total complexity.

As seen in the partitioning step, the number m of PEs is mostly in the range of N/2
... N/3 for an expanded graph with N nodes. This leads to the complexity for the

allocation phase of O
N4

81 +
N 3

27 which approaches O()N3 if N is less than 100.

106 Static task allocation and code generation

6.5 Translating the Partitioned and Allocated Data Flow
Graph into Target Code

In the preceding steps the data flow graph has been partitioned into tasks. These tasks
have been allocated to the PEs so that the constraints imposed by the hardware are
fulfilled. After these processing stages, the data flow graph contains all the information
necessary for translating it into source code for the target machine. Each node is
associated with a process which in turn belongs to a specific processing element. Each
edge is classified as external channel among two PEs, as internal channel connecting
two processes on the same PE, or as variable linking two nodes of the same process.

The exact characteristics of the target system have so far been irrelevant. The only
data about the target multiprocessor used are the communication cost model, the node
execution cost table, and the information on the maximum number of processors
available. If another type of multiprocessor is used, only the cost tables have to be
replaced. The principle of processing is not changed by such modifications.

For the translation of the data flow graph into source code, the exact syntax of the
target system’s programming language is of no relevance. The only condition is that
constructs for sending and receiving messages must be available, together with the
possibility of placing processes for concurrent execution on the same PE.

Therefore, the language constructs for all these functions and those for realizing the
functions of the nodes are kept separate from the actual translation program. It is thus
theoretically possible to switch the target language without changing the translator itself.

6.6 Generating OCCAM Code

Several projects ([GauLee 88], [SchWüs 88], [Shield 88]) have been described in which
SISAL was ported to the Transputer, i.e., where the data flow graphs described in the
Intermediate Form 1 (IF1) were translated to OCCAM.

However, since full use of the capabilities of SISAL was allowed, great difficulties
arose in their implementation on the Transputer. One obstacle is SISAL’s dynamic use
of memory which is not supported by OCCAM. While this can be partly overcome by a
memory-managing process ([SchWüs 88]), SISAL’s functional recursion conflicts with
the Transputer’s static process model. While Gaudiot and Lee ([GauLee 88]) do not
comment on the subject, Schibli and Wüst ([SchWüs 88]) and Shield ([Shield 88]) come
to the (correct) conclusion that these features are unimplementable on the Transputer, as
presumed in the project described here. All three projects provide some kind of dynamic
process management.

As described in detail in Chapter 2, for real-time signal processing, dynamic process
creation and dynamic data structures are neither necessary nor desirable due to the high
run-time overhead they introduce. For this reason, only static allocation of the
computations is implemented which is easily realizable in OCCAM.

The nodes of the data flow graph are contained in a second data structure apart from
the connections through the edges. In this linked list, each PE carries a list of the

Generating OCCAM Code 107

_141 %Plus
@001 %boolean
$1 := ($2 OR $3)
@002 %integer
$1 := $2 PLUS $3
@003 %real, double
$1 := $2 + $3
@

Figure 6.7 OCCAM Code for the Plus Node

processes allocated on it and of all its links. In turn, each process possesses a list of the
graph nodes it comprises. Therefore, it is possible to convert the data flow graph to
OCCAM code in a single pass.

Two files are generated. The first, occam.all, contains the PE declarations. There, as
required in OCCAM, the type of the PEs is declared, together with the placement of the
channels on the physical links and with the headers of the processes allocated to the
PEs.

The source code generated from the data flow graph is written to the second file,
occam.src. For each PE, a main process is created which handles data communication
over the physical links. If fused or multiplexed links are used, the appropriate protocols
and multiplexer/demultiplexer processes are created. In this main process, all the tasks
residing on the PE are placed in a PAR statement, i.e., the microprogrammed scheduler
runs them in parallel as soon as they are ready to execute.

The translation process is described in detail in Appendix B.6. Here, only the
principle of the language-independent translation of the graph nodes is presented.

The file target_language.txt contains the corresponding OCCAM code sequence for
each IF1 graph node and for all other constructs which are needed (communication,
process declaration). Since the function of some nodes is dependent on the type of its
inputs, several code sequences may exist for one node. In the sequences, dummy
variable names $i, with i any integer, are present which have to be replaced before the
code can be inserted into the final program. As an example, the code for the Plus node
(node identifier 141) is shown in Figure 6.7.

The different cases are labelled @case_number and reach to the next line beginning
with an “@” character. For the Plus node, case one is given if the inputs are Boolean
values; then an OR operation is performed. The ordinary addition is realized for integer
values by the PLUS operator, whereas for real or double real operands the “+” sign is
inserted.

For the compound nodes which represent while-loops and if-clauses, several code
segments are provided for the initialization, body, and returns sections.

Through this concept of separating the translator program from the actual syntax of
the target language, modifications of the code generator are easily possible.

108 Static task allocation and code generation

6.8 References

[AdChDi 74] T.L. Adam, K.M. Chandy and J.R. Dickson, “A Comparison of List Schedules for
Parallel Processing Systems,” Comm. of the ACM, vol. 17, no. 12, pp. 685-690,
1974.

[Agne 89] R. Agne, “Zur Scheduling-Problematik in Echtzeitsystemen,” Universität
Kaiserslautern, Bericht 2/89 des Zentrums für Rechnergestützte Ingenieursysteme, 1989.

[Anderb 73] M.R. Anderberg, Cluster Analysis for Applications, Probability and Mathematical
Statistics Series, vol. 19. New York, London: Academic Press, 1973.

[BaxPat 89] J. Baxter and J.H. Patel, “The LAST Algorithm: A Heuristic-Based Static Task
Allocation Algorithm,” in: Proc. Int. Conf. Parallel Proc., Aug. 1989, pp. II-217–II-
222.

[BiCoSu 92] A. Billionnet, M.C. Costa and A. Sutter, “An Efficient Algorithm for a Task
Allocation Problem,” J. of the ACM, vol. 39, no. 3, pp. 502-518, 1992.

[Bokhar 81] S.H. Bokhari, “A Shortest Tree Algorithm for Optimal Assignments Across Space and
Time in a Distributed Processor System,” IEEE Trans. Softw. Engineering, vol. 7, no.
6, pp. 583-589, 1981.

[Bokhar 87] S.H. Bokhari, Assignment Problems in Parallel and Distributed Computing. Boston,
Dordrecht, Lancaster: Kluwer Academic Publishers, 1987.

[BolMid 91] S.W. Bollinger and S.F. Midkiff, “Heuristic Technique for Processor and Link
Assignment in Multicomputers,” IEEE Trans. Computers, vol. 40, no. 3, pp. 325-
333, 1991.

[Borrma 86] L. Borrmann, Allokation von Rechenprozessen in verteilten Realzeitsystemen, VDI
Fortschrittberichte, Reihe 10: Informatik/Kommunikationstechnik, Nr. 59. Düsseldorf:
VDI Verlag, 1986.

[BüEsMa 91] B. Bütler, R. Esser, and R. Mattmann, “A Distributed Simulator for High Order Petri
Nets”, in: G. Rozenberg (ed.), Advances in Petri Nets 1990, LNCS vol. 483, Berlin,
Heidelberg, a.o.: Springer-Verlag, 1991, pp. 47-63.

[Campbe 86] M.L. Campbell, “Static Allocation for a Data Flow Multiprocessor,” in: Proc. Int.
Conf. Parallel Proc., Aug. 1985, pp. 511-517.

[ChStRa 88] S.-C. Cheng, J.A. Stankovic and K. Ramamritham, “Scheduling Algorithms for Hard-
Real-Time Systems – A Brief Survey,” in: Hard Real-Time Systems (Tutorial), J.A.
Stankovic and K. Ramamritham (eds.). Washington D.C.: IEEE Computer Society
Press, 1988.

[ChHoLa 80] W.W. Chu, L.J. Holloway, M.-T. Lan, et al., “Task Allocation in Distributed Data
Processing,” Computer, vol. 13, no. 11, pp. 57-69, 1980.

[ChuLan 87] W.W. Chu and L.M.T. Lan, “Task Allocation and Precedence Relations for Distributed
Real-Time Systems,” IEEE Trans. Computers, vol. 36, no. 6, pp. 667-679, 1987.

[Coffma 76] E.G. Coffman, Computers and Job-Shop Scheduling Theory, New York: John Wiley &
Sons, Inc., 1976.

[CurMad 91] B.A. Curtis and V.K. Madisetti, “Task Scheduling Super-compilers for the Georgia
Tech Digital Signal Multiprocessor,” submitted to IEEE Trans. SP, 18 September,
1991.

[DHoDev 91] E.H. D’Hollander and Y. Devis, “Directed Taskgraph Scheduling Using Simulated
Annealing,” in: Proc. Int. Conf. Parallel Proc., Aug. 1991, pp. II-180–II-185.

[Efe 82] K. Efe, “Heuristic Models of Task Assignment Scheduling in Distributed Systems,”
Computer, vol. 15, no. 6, pp. 50-56, 1982.

[Fernand 89] D. Fernández-Baca, “Allocating Modules to Processors in a Distributed System,” IEEE
Trans. Softw. Engineering, vol. 15, no. 11, pp. 1427-1436, 1989.

[ForFul 56] L.R. Ford and D.R. Fulkerson, “Maximum Flow Through a Network,” Can. J. Math.,
vol. 8, pp. 399-404, 1956.

References 109

[GauLee 88] J.-L. Gaudiot and L.-T. Lee, “Occamflow: A Methodology for Programming
Multiprocessor Systems,” J. Parallel and Distr. Comput., vol. 7, no. 1, pp. 96-124,
1988.

[GeVeYa 90] A. Gerasoulis, S. Venugopal and T. Yang, “Clustering Task Graphs for Message
Passing Architectures,” in: Proc. 1990 Int. Conf. Supercomputing, 11-15 June 1990.
Amsterdam, New York: ACM Press, 1990, pp. 447-456.

[GerYan 91] A. Gerasoulis and T. Yang, “A Comparison of Clustering Heuristics for Scheduling
DAGS on Multiprocessors,” Report LCSR-TR-169, 20 September 1991, Department
of Computer Science, Rutgers University, New Brunswick, NJ.

[GylEdw 76] V.B. Gylys and J.A. Edwards, “Optimal Partitioning of Workload for Distributed
Systems,” in: Proc. IEEE COMPCON, Fall 1976, pp. 353-357.

[HaLee 91] S. Ha and E.A. Lee, “Compile-Time Scheduling and Assignment of Data-Flow
Program Graphs with Data-Dependent Iteration,” IEEE Trans. Computers, vol. 40,
no. 11, pp. 1225-1238, 1991.

[HoPaFe 86] Y.-C. Hong, T.H. Payne and L.B.O. Ferguson, “Graph Allocation in Static Dataflow
Systems,” Computer Architecture News, vol. 14, no. 2, pp. 55-64, 1986.

[Houstis 90] C.E. Houstis, “Module Allocation of Real-Time Applications to Distributed Systems,”
IEEE Trans. Softw. Engineering, vol. 16, no. 7, pp. 699-709, 1990.

[HwChAn 89] J.-J. Hwang, Y.-C. Chow, F.W. Anger, et al., “Scheduling Precedence Graphs in
Systems with Interprocessor Communication Times,” SIAM J. Comput., vol. 18, no.
2, pp. 244-257, 1989.

[KasNar 84] H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling Algorithms for
Efficient Parallel Processing,” IEEE Trans. Computers, vol. 33, no. 11, pp. 1023-
1029, 1984.

[KimBro 88] S.J. Kim and J.C. Browne, “A General Approach to Mapping of Parallel Computations
upon Multiprocessor Architectures,” in: Proc. Int. Conf. Parallel Proc., Aug. 1988, pp.
III-1–III-8.

[KiGeVe 82] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simulated Annealing,”
IBM Research Report RC 9355, 1982.

[KiGeVe 83] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, pp. 671-680, 1983.

[KoKaTa 90] K. Konstantinides, R.T. Kaneshiro and J.R. Tani, “Task Allocation and Scheduling
Models for Multiprocessor Digital Signal Processing,” IEEE Trans. ASSP, vol. 38,
no. 12, pp. 2151-2161, 1990.

[KräMüh 87] O. Krämer and H. Mühlenbein, “Mapping Strategies in Message Based Multiprocessor
Systems,” in Proc. PARLE 87, Parallel Architectures and Languages Europe,
Eindhoven, 1987, Vol. 2: Parallel Languages, Lecture Notes in Computer Science, vol.
259, Berlin, a.o.: Springer-Verlag, 1987, pp. 213-225.

[Lee 91] E.A. Lee, “Static Scheduling of Data-Flow Programs for DSP,” in: Advanced Topics in
Data-Flow Computing, J.-L. Gaudiot, L. Bic (eds.). Englewood Cliff, NJ: Prentice
Hall, Inc., 1991, pp. 501-526.

[LeeAgg 87] S.Y. Lee and J.K. Aggarwal, “A Mapping Strategy for Parallel Processing,” IEEE
Trans. Computers, vol. 36, no. 4, pp. 433-441, 1987.

[LeeMes 87] E.A. Lee and D.G. Messerschmitt, “Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing,” IEEE Trans. Computers, vol. 36, no. 1, pp.
24-35, 1987.

[LeLeKi 92] C.-H. Lee, D. Lee and M. Kim, “Optimal Task Assignment in Linear Array
Networks,” IEEE Trans. Computers, vol. 41, no. 7, pp. 877-880, 1992.

[LiLiSh 91] J.W.S. Liu, K.-J. Lin, W.-K. Shih, et al., “Algorithms for Scheduling Imprecise
Computations,” Computer, vol. 24, no. 5, pp. 58-68, 1991.

110 Static task allocation and code generation

[Lo 88] V.M. Lo, “Heuristic Algorithms for Task Assignment in Distributed Systems,” IEEE
Trans. Computers, vol. 37, no. 11, pp. 1384-1397, 1988.

[Löffle 90] C. Löffler, Contributions to Architectural Design in Digital Signal Processing, Series
in Microelectronics, vol. 6, Konstanz: Hartung-Gorre Verlag, 1990.

[LoGli 87] S.P. Lo and V.D. Gligor, “Properties of Multiprocessor Scheduling Algorithms,” in:
Proc. Int. Conf. Parallel Proc., August 1987, pp. 867-870.

[MaLeTs 81] P.Y. Ma, E.Y.S Lee and M. Tsuchiya, “On the Design of a Task Allocation Scheme
for Time-Critical Applications,” in: Proc. IEEE Real-Time Systems Symposium,
1981, pp. 121-125.

[MaLeTs 82] P.Y. Ma, E.Y.S. Lee and M. Tsuchiya, “A Task Allocation Model for Distributed
Computing Systems,” IEEE Trans. Computers, vol. 31, no. 1, pp. 41-47, 1982.

[MüGoKr 87] H. Mühlenbein, M. Gorges-Schleuter and O. Krämer, “New Solutions to the Mapping
Problem of Parallel Systems: The Evolution Approach,” Parallel Computing, vol. 4,
no. 3, pp. 269-279, 1987.

[ParMes 89] K.K. Parhi and D.G. Messerschmitt, “Fully-Static Rate-Optimal Scheduling of Iterative
Data-Flow Programs via Optimum Unfolding,” in: Proc. Int. Conf. Parallel Proc.,
August 1989, pp. I-209–I-216.

[ParMes 91] K.K. Parhi and D.G. Messerschmitt, “Static Rate-Optimal Scheduling of Iterative Data-
Flow Programs via Optimum Unfolding,” IEEE Trans. Computers, vol. 40, no. 2, pp.
178-195, 1991.

[RaChGo 72] C.V. Ramamoorthy, K.M. Chandy and M.J. Gonzalez, “Optimal Scheduling Strategies
in a Multiprocessor System,” IEEE Trans. Computers, vol. 21, no. 2, pp. 137-146,
1972.

[SarHen 86] V. Sarkar and J. Hennessy, “Compile-Time Partitioning and Scheduling of Parallel
Programs,” SIGPLAN Notices, vol. 21, no. 7, pp. 17-26, 1986.

[Sarkar 89] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, Research
Monographs in Parallel and Distributed Computing. London; Cambridge, MA: The
MIT Press, and London: Pitman Publishing, 1989.

[SchWüs 88] P. Schibli and U. Wüst, “Erzeugung von OCCAM aus IF1-Datenflussgraphen,” EE
Diploma Thesis, Computer Engineering and Networks Laboratory, Swiss Federal
Institute of Technology, Zurich, January 1988.

[ShWaGo 92] S. M. Shatz, J.-P. Wang and M. Goto, “Task Allocation for Maximizing Reliability of
Distributed Computer Systems,” IEEE Trans. Computers, vol. 41, no. 9, pp. 1156-
1168, 1992.

[SheGag 91] T. Shepard and J.A.M. Gagné, “A Pre-Run-Time Scheduling Algorithm for Hard Real-
Time Systems,” IEEE Trans. Softw. Engineering, vol. 17, no. 7, pp. 669-677, 1991.

[SheTsa 85] C.-C. Shen and W.-H. Tsai, “A Graph Matching Approach to Optimal Task
Assignment in Distributed Computing Systems Using a Minimax Criterion,” IEEE
Trans. Computers, vol. 34, no. 3, pp. 197-203, 1985.

[Shield 88] D.T. Shield, “Translating SISAL into OCCAM,” M.Sc. Thesis, Dept. of Computer
Science, University of Manchester, 1988.

[Sincla 87] J.B. Sinclair, “Efficient Computation of Optimal Assignments for Distributed Tasks,”
J. Parallel and Distr. Comput., vol. 4, pp. 342-362, 1987.

[Spaeth 85] H. Spaeth, Cluster Dissection and Analysis: Theory – FORTRAN Programs –
Examples, Computers and their Applications Series. Chichester: Ellis Horwood;
Chichester a.o.: Halsted Press, 1985.

[Steele 85] C.S. Steele, “Placement of Communicating Processes on Multiprocessor Networks,”
California Institute of Technology, Computer Science Dept., Technical Report
5184:TR:85, April 1985.

[Stone 77] H.S. Stone, “Multiprocessor Scheduling with the Aid of Network Flow Algorithms,”
IEEE Trans. Softw. Engineering, vol. 3, no. 1, pp. 85-93, 1977.

References 111

[Thaler 87] M. Thaler, Analyse und Synthese von parallelen Signalprozessor-Architekturen,
Dissertation ETH Nr. 8240. Zürich, 1987.

[ThaMos 90] M. Thaler and G.S. Moschytz, “A Data Flow Technique for the Efficient Design of a
Class of Parallel Non-Data Flow Signal Processors,” IEEE Trans. ASSP, vol. 38, no.
12, pp. 2162-2173, 1990.

[Thoeni 88] U.A. Thoeni, “Enhancing the Processing Power of Real-Time VMEbus Systems,” in:
Proc. Int. Conf. VMEbus in Research, Zurich, 11-13 October 1988, C. Eck and
C. Parkman (eds.), Amsterdam a.o.: North-Holland, 1988, pp. 477-486.

[Towsle 86] D. Towsley, “Allocating Programs Containing Branches and Loops Within a Multiple
Processor System,” IEEE Trans. Softw. Engineering, vol. 12, no. 10, pp. 1018-1024,
1986.

113

CHAPTER 7

Case Studies

For most of the types of algorithms described in Chapter 3, examples were formulated
in SISAL and run through the parallelization system. In this chapter, starting with a
small example of a scalar product the single processing steps are shown in Section 7.1.
In Section 7.2, digital filters (FIR and IIR type) of different sizes are investigated.
Section 7.3 shows examples of linear state space controllers with observer, whereas in
Section 7.4 the parallelization of a nonlinear controller is described. The distribution of a
Runge-Kutta numerical integration algorithm on several processors is shown in Section
7.5. The chapter concludes with examples of fast Fourier transforms and a discussion of
the results.

For all experiments, the configuration of the system was kept constant, i.e., eight
PEs at most could be used, with four bidirectional links each.

Rating an allocation is a difficult task since the optimum solution is unknown.
Therefore, for each example a series of runs with different values of the allocation
parameter was performed. For each run, the resulting estimated execution time was
compared to the algorithm’s serial execution time to determine the PSR (parallel-to-serial
execution time ratio.)

Since it is almost impossible to determine the exact parallel execution time if the PEs
host more than one process each, the maximum load of any PE was assumed to
represent the estimated total execution time for a particular distribution of an algorithm.

Depending on the load distribution, this time may be shorter than the real execution
time, but it is a minimum bound of the execution time. If this time is longer than the
required iteration time of the real-time application, another parallelization of the
algorithms must be sought by choosing another value of the allocation parameter.

7.1 A Small Example

In order to illustrate the single steps performed during the parallelization, the
computation of the scalar product of two vectors z and u with two elements each is
shown as an example, where z is computed from another vector, x.

114 Case studies

function lin(y: real returns real)

let
 a := 2.0;
 b := 4.0
in
 a*y + b
end let
end function

function controlalgorithm(x: array[real];
NumberOfInputs: integer returns real)

let
 u := array [1: 5.0, 6.0]
in
 for j in 1, 2
 R := u[j] * lin(x[j])
 returns
 value of tree sum R
 end for
end let

end function

function main(input: array[real] returns real)

 controlalgorithm(input, 2)

end function

Figure 7.1 SISAL Code of the Scalar Product

The equation for the scalar product was given in equation 3.63. In order to show the
effect of the parameter steering the function substitution, vector z is computed from
another vector, x. The elements of z are computed by the formula zi = a × xi + b. The
other vector is u = [5.0, 6.0]T. The call of the transform named lin is substituted by the
function itself if the parameter in question is greater than two, since the function’s graph
contains two nodes.

In the header of the function controlalgorithm, the additional parameter
NumberOfInputs appears which indicates the number of elements in vector x. Its value
is given in function main where controlalgorithm is called. This function main is only
used for the parallelization; it does not appear in the final OCCAM code as described in

A small example 115

#1

Plus

Times b=4.0

a=2.0
y

lin

#1

Forall

ABuild

1 5.0 6.0
x

controlalgorithm

j

RangeGenerate

1 2

r

Times

AElement Call

lin AElement

u j x

#1

ReduceTree

SUM 0.0
r

Figure 7.2 Data-Flow Graph of the Scalar Product

Chapter 4. Figure 7.1 shows the SISAL code describing the functions lin and
controlalgorithm.

In Figure 7.2 the data-flow graph generated from this program is presented. It
contains one Forall node in which the two multiplications of the scalar product are
performed independently. In the first subgraph (shown left) the set {1, 2} of indices is
generated. For each element of this set one element is selected from the vectors x and u,
and the two values are multiplied as shown in the subgraph placed in the middle.
Subsequently, the two partial results are summed using a tree reduction scheme
(subgraph on the right).

In the next step, the communication volume of each edge in the graph is analysed.
Since it is possible to determine the size of the input vector x with the auxiliary
parameter in the call of controlalgorithm, the dimensions of all other arrays are
determinable as well. In this example, however, all other data structures are of the
simple data type Real.

The graph is then expanded. Figure 7.3 shows the expanded graph where the calls to

116 Case studies

#1

Results

Plus

Times Times

AElement Call AElement Call

ABuild j=1 lin AElement ABuild j=2 lin AElement

1 5.0 6.0 j=1 1 5.0 6.0
x

j=2

Figure 7.3 Expanded Graph Without Function Replacement

function lin are not replaced by the function’s graph, while in Figure 7.4 all function
calls have been eliminated. Replacing calls by the function code saves overhead at run-
time, but can increase the number of nodes in a graph considerably, depending on the
program structure. Thus the computation time for the parallelization may rise
significantly.

Subsequently, the execution costs are determined. For all edges, external
communication is assumed, i.e., data are transferred over interprocessor links. The cost
of each node is determined from the processor-specific cost table according to the data
type of the operands. The expanded graph is then partitioned into tasks. The tasks are
marked in Figures 7.3 and 7.4 by dashed lines.

Table 7.1 shows the results of the partitioning and allocation steps. The acronym
PSR again stands for parallel-to-serial execution time ratio. Initially, the serial execution
time is determined by summing the computation time of all nodes. Each cycle lasts 50 ns
for a T800 Transputer with a 20 MHz clock rate. For this example the serial execution
time amounts to 587 instruction cycles if the function calls are not replaced, but only 293
cycles with the function body inserted. This large difference is due to the function call
overhead and to the fact that the function itself contains only little work.

The simulation of the execution with an unbounded number of PEs (10 and 12 PEs
actually used) yields execution times of around 700 cycles for both cases. In this phase
each node of the data flow graph is regarded as a task of its own. Since each PE hosts
only one process, the scheduler does not execute the processes in a time-sliced mode.
Thus the simulation yields the exact execution time.

A small example 117

#1

Results

Plus

Times Times

AElement Plus AElement Plus

ABuild j=1 Times b=4.0 ABuild j=2 Times b=4.0

1 5.0 6.0 a=2.0 AElement 1 5.0 6.0 a=2.0 AElement

j=1
x

j=2

Figure 7.4 Expanded Graph With Function Replacement

Table 7.1 Execution Times of the Partitioned Scalar Product

function expansion 0 (no) 10 (yes)
serial exec. time 587 293
parallel exec. time 751 679
nodes 10 12
partitioned exec. time 650 503
tasks (# PEs used) 4 4
mean PE utilization 64.0% 68.0%
PSR 1.11 1.72
mean PE load 175.75 102.25
min. PE load 80 80
max. PE load 281 134
allocated, # PEs used 4 4

After partitioning the data flow graph into tasks, in both cases four tasks are formed.
The simulated execution time is then 650 and 503 instruction cycles, respectively. For
this small example, these times are longer than those resulting from computing the
algorithm in a serial manner.

118 Case studies

VAL lar IS 1(INT) :
CHAN OF REAL32 lnk.0 :
CHAN OF REAL32 lnk.2 :
CHAN OF REAL32 lnk.3 :
CHAN OF [2]REAL32 lnk.1 :

PLACED PAR

 PROCESSOR 1 T8

 PLACE lnk.0 AT Link0.out :

 pe1 (lnk.0)

 PROCESSOR 2 T8

 PLACE lnk.1 AT Link0.out :
 PLACE lnk.0 AT Link1.in :
 PLACE lnk.2 AT Link2.in :

 pe2 (x, out.0, lnk.1, lnk.0, lnk.2)

 PROCESSOR 3 T8

 PLACE lnk.3 AT Link0.in :
 PLACE lnk.2 AT Link1.out :

 pe3 (lnk.3, lnk.2)

 PROCESSOR 4 T8

 PLACE lnk.1 AT Link0.in :
 PLACE lnk.3 AT Link1.out :

 pe4 (lnk.1, lnk.3)

Figure 7.5 Allocation File of the Parallel Scalar Product

It is interesting to note that for the cases in which the function call is replaced by the
function itself the mean PE load is lower and the load distribution more even among the
PEs. This again is caused by the elimination of the costly function calls. The mean PE
utilization (total execution time/PE load) of over 64% is very high for this kind of non-
pipelined periodic execution of a program. It lies above the values to be expected in most
cases.

In this special case, each PE is assigned only one process and therefore the simulated

A small example 119

execution time is exact. Generally, however, it is more difficult to determine the true
termination time for systems involving multiple PEs executing several processes each.
The shortest execution time possible is given by the maximum load of any PE in the
system. Assuming that the load is distributed evenly among the PEs, the maximum load
of any PE is a good indicator of the execution time found in reality.

Figure 7.5 shows the allocation file occam.all which is generated from the partitioned
and allocated graph. It contains the link definitions and the distribution of the processes
on the PEs. Each PE i contains one main process pei which in turn is composed of the
processes representing the tasks of the partitioned data flow graph.

In Figure 7.6 the OCCAM source code for each PE is shown where all function calls
have been replaced by the function’s code. The process k of PE i is named proci.k.
Since in this (atypical) case each PE hosts only one process, a SEQ statement (sequential
execution) is placed at the end of each main PE process. Normally, all the processes on
a PE are placed for parallel execution with a PAR statement.

PROC pe1(CHAN OF REAL32 lnk.0)

 PROC proc1.1(CHAN OF REAL32 lnk.0)

 REAL32 v.1 :

 SEQ
 VAL []REAL32 v.u.0 IS [5.0(REAL32), 6.0(REAL32)] :
 v.1 := v.u.0[1 MINUS lar]
 lnk.0 ! v.1
 : -- proc1.1

 SEQ
 proc1.1 (lnk.0)
: -- pe1

PROC pe2([2]REAL32 x, VAL REAL32 out.0,
 CHAN OF [2]REAL32 lnk.1,
 CHAN OF REAL32 lnk.0,
 CHAN OF REAL32 lnk.2)

 PROC proc2.1([2]REAL32 x, VAL REAL32 out.0,
 CHAN OF [2]REAL32 lnk.1,
 CHAN OF REAL32 lnk.2,
 CHAN OF REAL32 lnk.0)

 REAL32 v.0 :
 REAL32 v.1 :
 REAL32 v.2 :
 REAL32 v.y.3 :

120 Case studies

 REAL32 v.4 :
 REAL32 v.5 :

 SEQ
 lnk.1 ! x
 v.y.3 := x[1 MINUS lar]
 v.2 := 2.0(REAL32) * v.y.3
 v.1 := v.2 + 4.0(REAL32)
 lnk.0 ? v.4
 v.0 := v.4 * v.1
 lnk.2 ? v.5
 out.0 := v.0 + v.5
 : -- proc2.1

 SEQ
 proc2.1 (x, out.0, lnk.1, lnk.2, lnk.0)
: -- pe2

PROC pe3(CHAN OF REAL32 lnk.3,
 CHAN OF REAL32 lnk.2)

 PROC proc3.1(CHAN OF REAL32 lnk.3,
 CHAN OF REAL32 lnk.2)

 REAL32 v.0 :
 REAL32 v.r.2 :
 REAL32 v.3 :

 SEQ
 VAL []REAL32 v.u.1 IS [6.0(REAL32), 5.0(REAL32)] :
 v.0 := v.u.1[2 MINUS lar]
 lnk.3 ? v.3
 v.r.2 := v.0 * v.3
 lnk.0 ! v.r.2
 : -- proc3.1

 SEQ
 proc3.1 (lnk.3, lnk.2)
: -- pe3

PROC pe4(CHAN OF [2]REAL32 lnk.1,
 CHAN OF REAL32 lnk.3)

 PROC proc4.1(CHAN OF [2]REAL32 lnk.1,
 CHAN OF REAL32 lnk.3)

Digital filters 121

 [2]REAL32 x :
 REAL32 v.0 :
 REAL32 v.y.1 :
 REAL32 v.2 :

 SEQ
 lnk.1 ? x
 v.y.1 := x[2 MINUS lar]
 v.0 := 2.0(REAL32) * v.y.1
 v.2 := v.0 + 4.0(REAL32)
 lnk.3 ! v.2
 : -- proc4.1

 SEQ
 proc4.1 (lnk.1, lnk.3)
: -- pe4

Figure 7.6 Program Text of the Parallel Scalar Product

It is not useful to create this small algorithm with basically just four multiplications
and three additions in a parallel implementation, as the execution times shown in Table
7.1 prove. However, the example was not intended to demonstrate the acceleration (in
fact, none has been achieved), but to explain the single processing steps. Additionally, it
illustrates the importance of good and prudent parallelization in order not to spend more
time communicating data than can be saved by performing the computations in parallel.

7.2 Digital Filters

Discrete systems which receive input values at a fixed rate and compute output values
using the input values and past internal state values are said to belong to the class of
digital filters. Therefore, PID controllers (Section 3.3) fall within this category as well
as lowpass filters, as described in Section 3.6.

However, two types of filters can be identified: the Finite Impulse Response (FIR)
filter and the Infinite Impulse Response (IIR) filter. PID controllers belong to the group
of IIR filters since they use the last output value for the computation of the following
one, whereas in FIR filters only the past input values are utilized.

Since the computational structure of these two kinds of filters differs, examples of
each are treated in separate sections.

7.2.1 FIR Filters

The general form of a Finite Impulse Response filter is given in equation 3.30:

122 Case studies

uk =
i=0

q

bq-i ek-i

where the output uk only depends on the past inputs e which are multiplied by the
coefficients b.

For the order q of the filter five values were chosen: 10, 25, 50, 75, and 100. In the
following, these examples are called FIR10, FIR25, and so forth.

Table 7.2 contains all the characteristic data found when partitioning the algorithm.
The serial time is the pure computational load when executing the algorithm serially,
without any communication costs. Below, the number of nodes in the expanded graph is
given, followed by the simulated execution time of the partitioned graph. Here it is
assumed that an unlimited number of PEs is available and that each PE executes only
one task. The number of tasks formed is shown in the row beneath. Since no hardware
constraints are respected in the partitioning phase, the last row shows the maximum
number of links used on any PE.

Table 7.2 Partitioning Data of the FIR Filters

example FIR10 FIR25 FIR50 FIR75 FIR100
serial time 2'247 3'469 7'473 11'697 16'048
nodes 43 105 207 309 412
partitioned exec. time 6'405 33'585 130'764 283'529 503'802
tasks 22 54 106 158 210
max. # links used 12 27 52 77 102

The figures in Table 7.2 show that the granularity, i.e., the size of the tasks, is very
small because the number of tasks is quite close to half that of the nodes in the graph.

In Figure 7.7, the acronym PSR again stands for parallel-to-serial ratio, i.e., the ratio
of the serial execution time and the estimated parallel execution time.

While the serial execution time rises proportionally to the problem size, the
partitioned execution time increases almost proportional to the square of the problem
size. This is due to the fact that for the partitioned execution time, all communication is
accounted for. The communication itself is proportional to the number of edges in the
graph, and this number increases according to the square of the number of nodes.

For the allocation of the small FIR filter with just 10 taps shown in Figure 7.7, the
number of PEs decreases with increasing values of the allocation parameter. Therefore,
the mean PE load increases. However, the maximum PE load varies greatly. The
execution time found for values of the allocation parameter of 1.4...5.5 is low, with the
minimum at 2.8...3.1. For these values, the estimated execution time amounts to only
0.33 of the serial execution time, and four PEs are used. The load is distributed almost
evenly to the PEs with the minimum and the maximum PE load close to the mean load of
all PEs.

Digital filters 123

121086420
0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

10.08.06.04.02.00.00.0
0

1000

2000

3000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.7 Allocation of the FIR10 Filters

For the FIR filter with 25 taps the results of the allocation runs are shown in Figure
7.8. Again, the numbers of PEs used decrease with increasing allocation parameters.
The optimum solution is found in the range of the parameters of 9.5...10.5, with the
minimum value of the PSR of 0.65, using four PEs.

The results for the 50-tap FIR filter shown in Figure 7.9 display a somewhat atypical
behaviour. At first, for low parameter values, the number of PEs declines as the
parameter value rises, reaching a minimum PSR of 0.62 at values of 10...18, using five

124 Case studies

20100
1

2

3

4

5

6

7

0.6

0.7

0.8

0.9

PEs
PSR

Allocation Par.

PE

s

P
S

R

20100
0

1000

2000

3000

4000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.8 Allocation of the FIR25 Filters

or three PEs. Then, for parameter values of over 30, the number of PEs rises to four
again, yielding a PSR of 0.65. There, however, the difference in the load of the single
PEs is large. The difference is smallest for parameter values of 20...24, but with a PSR
of only 0.83. This illustrates once again the conflicting aims of good PE utilization and
low execution time.

Figure 7.10 displays the results of the allocation of the FIR75 example of an FIR
filter. The PSR is favourable for almost all parameter values, and reaches its minimum

Digital filters 125

50403020100
1

2

3

4

5

6

7

8

0.4

0.6

0.8

1.0

1.2

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

50403020100
0

2000

4000

6000

8000

10000

12000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.9 Allocation of the FIR50 Filters

of 0.61 for the parameters in the range of 20...26, where five PEs are utilized.
However, the value of 0.64 for the parameters of 32...38 are almost as good, but there
only three PEs are used.

For the large FIR filter FIR100, again only small values of the allocation parameter
were tested (Figure 7.11). The results show that the parallelism is preserved relatively
well with four to six PEs left active in the system, with the PSR close to 0.9.

The general observation emerging from these examples is that for the lowest values
of the allocation parameter the number of PEs used is highest (seven or six) but always

126 Case studies

50403020100
2

3

4

5

6

7

0.6

0.7

0.8

0.9

1.0

PEs
PSR

Allocation Par.

PE

s

P
S

R

50403020100
0

2000

4000

6000

8000

10000

12000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.10 Allocation of the FIR75 Filters

less than the number of PEs in the system (eight). Surprisingly, the PSR never falls
below 0.33.

7.2.2 IIR Filters

Since Infinite Impulse Response filters use the feedback of past output values, their
difference equation consists of two sums. The expression is (equation 3.33)

Digital filters 127

uk =
i=0

q

bq-i ek-i -
i=1

n

an-i uk-i = bT e0q - aT u1n

10864200
3

4

5

6

7

0.9

1.0

1.1

1.2

1.3

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

10864200
0

10000

20000

30000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.11 Allocation of the FIR100 Filters

Compared to the FIR filter, an additional coefficient vector a is used for the
multiplication of the past outputs u.

The most general case is given when q = n. The following values were chosen for the
respective examples IIR10, IIR25, and IIR50: 10, 25, 50.

128 Case studies

20100
0

1

2

3

4

5

6

0.6

0.8

1.0

1.2

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

20100
0

2000

4000

6000

8000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.12 Allocation of the IIR10 Filters

Table 7.3 displays data about the data-flow graphs of the example and the partitioning
of the graphs.

The results of the allocation of an IIR filter with 10 state variables are displayed in
Figure 7.12. The number of PEs used decreases steadily with increasing allocation
parameters until only one PE is used. The difference between the maximum and
minimum PE load gets smaller, but the PSR finally reaches 1.24. The best value of 0.6
results for a parameter value of 3. For parameter values from 20 to 40, the PSR remains
at 1.24 with one PE used (not shown in the diagram).

Digital filters 129

1008060402000
0

1

2

3

4

5

6

7

0.6

0.8

1.0

1.2

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

1008060402000
0

2000

4000

6000

8000

10000

12000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.13 Allocation of the IIR25 Filters

Table 7.3 Partitioning Data of the IIR Filters

example IIR10 IIR25 IIR50
serial time 5'240 8'674 18'332
nodes 90 214 418
partitioned exec. time 13'602 69'597 261'135
tasks 44 108 212
max. # links used 22 52 102

130 Case studies

100806040200
0

1

2

3

4

5

6

7

0.4

0.6

0.8

1.0

1.2

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

100806040200
0

10000

20000

30000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.14 Allocation of the IIR50 Filters

The graphs for the IIR25 filters shown in Figure 7.13 display a pattern not
previously observed. The PSR is almost one for low parameter values, reaches a
minimum for parameters of 18 and 20, and rises again for higher parameter values.
There some kind of oscillation starts, with either three or one PE involved in the
processing, but the PSR always lies above 1.2. At the PSR’s minimum of 0.62, four
PEs are used.

The simulation results for the IIR filter with 50 states shown in Figure 7.14
demonstrate clearly that the minimum values of the PSR are closely related to an even

Digital filters 131

distribution of the load to the PEs. For the parameter values of 10 and 15, 35...45, and
55...70, the PSR reaches respective values of 0.58, 0.53, and 0.82. However, six,
three, or two PEs are used for those results.

For these values of the allocation parameter, the number of tasks to be allocated is
about seven to ten times the parameter value. In the IIR10 and IIR25 examples, the
minimum estimated execution time was found for similar ratios.

7.3 State Space Controllers with Observers

A state space controller with an observer (equations 3.17and 3.18) consists of matrix-
vector products. Three examples of different sizes of the state vector, of the number of
inputs, and of the number of outputs were chosen (cf. Table 7.4). The corresponding
values for the task numbers and the execution times are listed in Table 7.5.

Table 7.4 Parameters of the State Space Controllers

example LQRE1 LQRE2 LQRE3
state variables 3 4 5
inputs 2 2 2
outputs 2 1 2

Table 7.5 Partitioning Data of the State Space Controllers

example LQRE1 LQRE2 LQRE3
serial time 4'636 6'047 11'360
nodes 136 168 262
partitioned exec. time 4'897 7'383 12'823
tasks 65 79 127
max. # links used 26 30 50

Compared to the IIR filter examples, the LQR controllers with estimator possess
potentially more exploitable parallelism since they contain the computation of the
estimated new state and the computation of the new actuating signals. These two blocks
consist of matrix-vector products which can be computed separately.

The test runs for the LQR controller with estimator LQRE1 shown in Figure 7.15
exhibit two ranges of the allocation parameters for optimum performance: one for the
value 6, yielding a PSR of 0.7; the other for 14...16, resulting in a PSR of 0.66. In
these areas, four and three PEs are used, respectively. From the point of view of PE
utilization, the second minimum is best, since the load is distributed more evenly among
the PEs than in the first minimum. The number of PEs declines with increasing
parameter values, but, as observed in the IIR25 example, it oscillates between one and
two for high parameter values.

Since the equations of the controller to be computed contain three state variables, the
distribution to three PEs is an obvious candidate for the best solution.

132 Case studies

50403020100
0

1

2

3

4

5

6

0.6

0.8

1.0

1.2

1.4

1.6

PEs
PSR

Allocation Par.

PE

s

P
S

R

50403020100
0

2000

4000

6000

8000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.15 Allocation of the LQRE1 Controller

For the LQRE2 example shown in Figure 7.16, the best PSR achieved is 0.81 for
three or two PEs. Load is distributed almost equally on the two PEs for the allocation
parameter values 20...26. The reason is that the number of scalar products to be
computed is a multiple of four. Therefore, these computations can easily be divided into
two parts.

As for the LQRE1 example, the minimum for the ratio of the number of processes to
the allocation parameter is found to be around 4.5. For parameter values over 26, the
PSR rises to values above 1. Due to increased communication costs between the tasks

State space controllers with observers 133

403020100
0

1

2

3

4

5

6

0.8

0.9

1.0

1.1

1.2

1.3

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

403020100
0

2000

4000

6000

8000

10000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.16 Allocation of the LQRE2 Controller

and the additional overhead for task administration, the parallel execution on one PE
then lasts longer than the serial computation.

The largest example LQRE3 exhibits the same behaviour as the other LQR
controllers. Its minimum PSR of 0.64 is found for a parameter value of 15, using four
PEs. For high parameter values, the estimated execution time rises above the serial
execution time.

134 Case studies

6050403020100
0

1

2

3

4

5

0.6

0.8

1.0

1.2

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

6050403020100
0

10000

20000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.17 Allocation of the LQRE3 Controller

7.4 Nonlinear Controllers

As an example of a controller algorithm which utilizes nonlinear functions, the control
law for stabilizing the speed of a DC motor was chosen. (The example is taken from
M.F. Weilenmann and H.P. Geering, “Fast Nonlinear Control of Servo Drives with
Current Saturations,” Proc. 13th World Congress on Computation and Applied

Nonlinear controllers 135

M
IN

M
A

X

+

+
-

-

-

+
w

x1x2

x 2min

x2max
AC

AC

MC • •

•

Figure 7.18 Structure of the Nonlinear Controller

Mathematics, 22-26 July 1991, Dublin, Ireland, pp. 1190-1191.) The basic controller is
a PID controller with an additional anti-reset-windup extension and a limiter for the
current. Its structure, together with the second-order plant, is shown in Figure 7.18.

The main controller (MC) is a conventional state feedback controller, and the
auxiliary controllers (AC) consist of PI controllers. The auxiliary controllers limit the
velocity x2 of the plant. The desired values x2min and x2max are computed using the DC
motor’s position x1 by the formulas

r × 2 × b × umin × x1 and -r × 2 × b × um a x × x1

respectively. The factors r and b are a shaping factor and a plant dependent value.
The special feature of algorithms of this kind is that they contain data dependent

branches. The decision node and the partial graphs of all alternatives are always mapped
to the same process. The reason is that only one of the parallel paths representing the
alternatives is executed. Therefore, it does not make sense to place the alternatives on
different processors.

Table 7.6 contains the data of the graph representing the algorithm.

Table 7.6 Partitioning Data of a Nonlinear Controller

serial time 1'227
nodes 44
partitioned exec. time 2'946
tasks 23
max. # links used 15

136 Case studies

20100
0

1

2

3

4

5

6

0.6

0.8

1.0

1.2

1.4

1.6

PEs
PSR

Allocation Par.

PE

s

P
S

R

20100
0

1000

2000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.19 Allocation of the Nonlinear Controller

The results shown in Figure 7.19 for the nonlinear controller indicate that this
application algorithm is unsuited for parallelization. Not only does it contain little work
(less than 3000 instruction cycles), but this work is also contained to a great extent in the
decision nodes which cannot be executed in parallel. For this reason, the load is
distributed unevenly, and for most of the values of the allocation parameter the PSR lies
above 1. Only for parameter values of 2 and 3 is the parallel execution time less than the
serial execution time, with a minimum SPR of 0.64, and six PEs used. For higher
parameter values, again an oscillation between one and two PEs can be observed.

Numerical integration 137

7.5 Numerical Integration

For numerical integration, the fourth-order Runge-Kutta method (equations 3.25a and b)
was chosen, applied to the second-order differential equation of a pendulum

..
 + 2

sin . The sine function itself is evaluated monolithically on the processor by a
combination of table lookup and interpolation, and is not subject to parallelization.

In the test runs RK4_1 and RK4_2, the nonlinear function of the system to be
integrated was accessed by calls and by inserted code, respectively. The characteristic
values of the graphs are shown in Table 7.7.

Again it becomes clear how much overhead is caused by the function calls compared
to the serial execution time of the graph where the function code has been inserted.

Table 7.7 Partitioning Data of the Runge-Kutta Integration

example RK4_1 RK4_2
serial time 7'204 5'048
nodes 117 130
partitioned exec. time 6'599 5'511
tasks 49 58
max. # links used 26 13

The RK4_1 example shown in Figure 7.20 displays behaviour similar to that of the
IIR filters insofar as there are two ranges (4.4...7.8, 9.6...11.6) of the allocation
parameters in which the PSR reaches a minimum of 0.42 and 0.57, respectively. The
main difference, though, is that for the parameter values investigated, no significant
increase in the PSR is observed for allocations with two PEs and rising allocation
parameters. In this upper range, the computations are partitioned evenly among the two
PEs. For parameter values from 15.8 to 20, the same solution with one PE resulted
every time.

However, the best solution with four PEs is found for a parameter value of around 6,
yielding a PSR of 0.42.

In the RK4_2 example depicted in Figure 7.21, parallelization is favoured by the fact
that the function calls have been replaced by the function body. The number of tasks is
increased, and the call and communication overheads are greatly reduced.

Here, the range of the allocation parameter for which the best parallel allocation is
found is broader. In the best solutions found, three to six PEs are utilized, giving PSRs
of 0.44, 0.5, and 0.58.

From the comparison of examples RK4_1 and RK4_2, the advantages of function
call elimination become apparent: elimination of call and communication overhead, finer
granularity (more processes of smaller size). An optimum solution is found for a
broader range of the allocation parameter.

138 Case studies

1000
0

1

2

3

4

5

6

0.2

0.4

0.6

0.8

1.0

1.2

PEs
PSR

Allocation Par.

PE

s

P
S

R

1000
0

2000

4000

6000

8000

10000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.20 Allocation of the RK4_1 Numerical Integration

7.6 Fast Fourier Transform

For the fast Fourier transform as given in equation 3.45, two different transform sizes
were chosen for the examples. FFT12 is a 12-point transform composed of radix-3 and
radix-4 transforms, while FFT24 additionally contains radix-2 transforms.

The case FFT12_1 denotes no function expansion at all, while in FFT12_2 the small

Fast Fourier transform 139

1000
1

2

3

4

5

6

7

0.4

0.6

0.8

1.0

1.2

1.4

PEs
PSR

Allocation Par.

PE

s

P
S

R

1000
0

2000

4000

6000

8000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.21 Allocation of the RK4_2 Numerical Integration

functions for the index computations were inserted. FFT12_3 is the full expansion of
the two stages of the transform.

FFT24_1 denotes no function expansion of the 24-point transform. In FFT24_2, all
three computational stages were expanded. Table 7.8 contains the data relating to the
graphs and their partitioning.

These examples of the FFTs show the limitations of the current parallelization
system. For those cases where no or only a small function expansion is performed, the
partitions represent the calls of the single stages of the transform. However, each stage

140 Case studies

20100
2

3

4

0.50

0.52

0.54

0.56

0.58

0.60

PEs
PSR

Allocation Par.

PE

s

P
S

R

20100
0

100000

200000

300000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.22 Allocation of the FFT12_1 FFT

is performed as a whole on a single PE. Therefore, no speed-up is achieved and only
three or four PEs are used.

As soon as the calls of the basic transforms are fully expanded, the number of nodes
rises very rapidly. Since during partitioning only small processes with typically only
two nodes are built, the number of processes to be allocated is still almost 1000 or even
higher. As the number of operations of partitioning the graph and of allocating the nodes
is proportional to the fourth power of the number of nodes, the computation time rises to
levels which are beyond realizable values (estimated values: order of tens of days on a

Fast Fourier transform 141

20100
2

3

4

0.50

0.52

0.54

0.56

0.58

0.60

PEs
PSR

Allocation Par.

PE

s

P
S

R

20100
0

100000

200000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.23 Allocation of the FFT12_2 FFT

Sun SPARCstation IPX). For this kind of algorithm, a different approach for
partitioning must be chosen, as will be discussed in Chapter 8.

142 Case studies

Table 7.8 Partitioning Data of the FFTs

example FFT12_1 FFT12_2 FFT12_3 FFT24_1 FFT24_2
serial time 382'362 322'974 321'798 1'412'228 n/a
nodes 3 3 1408 4 ~4'000
partitioned exec. time 384'256 324'868 n/a 1'425'290 n/a
tasks 3 3 n/a 4 n/a
max. # links used 4 4 n/a 4 n/a

20100
3

4

5

0.40

0.42

0.44

0.46

0.48

0.50

PEs
PSR

Allocation Par.

PE

s

P
S

R

20100
0

200000

400000

600000

800000

Mean Load
Min. Load
Max. Load

Allocation Par.

L
oa

d
[c

yc
le

s]

Figure 7.24 Allocation of the FFT24 FFT

Fast Fourier transform 143

For those examples for which usable results could be found, the corresponding
values are displayed in the following figures.

For the 12-point FFT with no function expansion (FFT12_1), the results shown in
Figure 7.22 illustrate the futile attempts to parallelize the computations. The main
computations consist only of the call statements of the two stages of the transform and
of the constant coefficients. Even if three PEs are utilized, no speed-up will result since
the two stages of the FFT have to be computed sequentially.

For the 12-point FFT with expansion of the small index computation functions
(FFT12_2) of Figure 7.23, the main deficiency remains the same as in Figure 7.22. The
two stages of the FFT keep their sequential order so that no speed-up is achievable.

For the 24-point FFT of Figure 7.24 the same conclusions have to be drawn as for
the preceding examples of the 12-point FFTs, that is, that the inherent sequential order
of the stages remains.

As long as it is not possible to expand fully the stages of the transform, no
satisfactory parallelization of FFTs can be expected.

7.7 Conclusions

The experiments conducted with the examples of all the kinds of algorithms targeted
show that it is possible to generate automatically a parallel implementation of the
computations. The only exception so far is the fast Fourier transform, where the high
computation times prohibit the full expansion of the computations. This expansion is a
prerequisite for finding a good parallel allocation of the algorithms.

As the examples with the LQR controller with estimator show, structural properties
of the algorithms are exploited. The application algorithm is divided into blocks of equal
size if the computations consist of connected blocks, e.g., of several scalar products. All
the same, computations without this regular kind of structure are well distributed if a
certain number of tasks is present, as the examples of the Runge-Kutta numerical
integration method indicate. In the example given, the favourable effect of function
expansion is also demonstrated. By replacing the call of a function by the function itself,
much overhead caused by the call and by communication is eliminated.

It is interesting to note that all eight PEs available in the system are used in none of
the examples. Five or six PEs are sufficient, and for all examples configurations of as
few as two PEs are found.

The best results with the smallest PSR (parallel-to-serial execution time ratio) as low
as 0.33 work with two to four PEs, whereas typical values of the PSR are around 0.64,
but always less than 0.9. It seems that the nature of the application algorithms and the
kind of execution (i.e., non-overlapping computations of the single iterations) impose
these bounds on the performance. Hence, it would be useless to build multiprocessor
systems with dozens of PEs for the purpose of real-time signal processing. However, if
multi-rate processing is used, or if some kind of hierarchical information processing
such as on-line system identification and adaptation is superimposed on the basic
algorithms, the utilisation of more PEs can be useful.

An additional basis for this conclusion is the fact that the tasks formed initially from

144 Case studies

the data flow graphs need so many interconnections that the solution which saves the
most communication cost is the one keeping the tasks as close to each other as possible,
i.e., on the same PE.

The fact that the interconnections for signal processing applications are so numerous
explains the need for using links among the PEs for several edges of the data flow graph
by link fusion or link multiplexing. However, the communication costs which are
already quite high would only increase if message routing through intermediate PEs
were introduced.

The allocation parameter signifies an average number of tasks per PE. Until there are
fewer tasks on the PEs, the optimization goal is strictly to preserve parallelism without
regard to constraints imposed by the target system.

The experiments show that the number of PEs used decreases with increasing values
of the allocation parameter. The higher the allocation parameter chosen, the later the
optimization switches to the goal of finding an allocation which is realizable on the
particular target system. Obviously, the longer the optimization runs without respect to
the limitations of the real system, the harder it becomes in the second phase of the
allocation to find a solution meeting the communication link constraint while utilizing
many PEs.

The optimum solution with the shortest estimated execution time and the best PE

utilization lies in the range of
Tasks

4 ...
Tasks

8 . For parameter values much above

this range, a solution with only one or two PEs is found in most cases, sometimes
running more slowly than the serial version of the algorithm.

The reference serial time for computing the PSR is somewhat optimistic, however,
since it is just the sum of all node execution costs, neglecting any communication
overhead. For critical applications, only test runs of the programs on the real hardware
can give the final answer to the question as to whether the real-time constraints are met.

As expected, the granularity of the task graph is small, with an average number of
nodes per task of little more than two.

145

CHAPTER 8

Conclusions

8.1 Assessment of the Data Flow Approach for Real-time
Systems

The results presented in Chapter 7 show that data flow graphs are a very suitable
representation of computations to be implemented in parallel. It would be much harder,
if not impossible, to gain the same insight into the properties of the application
algorithms from any other model.

From a data flow graph, the entire parallelism in an algorithm can be identified.
Through the two-phase static allocation algorithm described in Chapter 6, as much
parallelism as possible is preserved. Towards the end of the allocation process, though,
some parallelism has to be sacrificed to achieve a process configuration which is
realizable on the given hardware. The computing system is used optimally due to the fact
that the structure of the interconnections among the processors is fixed only during the
allocation. Therefore, the communication resources are used where they are needed
most.

Since it is possible to allocate the target algorithms statically, the high run-time
overhead of pure data flow systems for task administration can be avoided. The efficient
execution of the tasks synchronized by the availability of data is supported on the
Transputer by the autonomous link controllers and the fast micro-coded scheduler.

All these factors contribute to an efficient realization of the application algorithms on
multiple processors.

8.2 Future Work

As mentioned in Chapter 7, is it difficult to distribute fast Fourier transform algorithms
with the current system. This is due not to any fundamental weakness of the partitioning
and allocation process, but rather to the fact that these algorithms contain a large number
of nodes. As soon as the number of nodes becomes thousands, the computation time for
partitioning rises very rapidly and exceeds values feasible for practical purposes.

146 Conclusions

One possibility for building the tasks faster and reducing their number may be to
sacrifice some parallelism already in the initial graph partitioning phase and to form
some kind of super-clusters. Each of these super-clusters could contain several of the
linear clusters currently used, together with a common origin or destination of the
respective data paths. For example, a super-cluster could contain several branches of a
tree reduction graph.

Ideally, the computational load of such a super-cluster would be a fixed fraction of
the total load of the whole application, e.g., one hundredth of the load. A fixed
maximum number of tasks would then always be formed for any size of the application
algorithm.

This modification, however, would render it impossible to simulate the exact
execution of the data flow graph during the partitioning phase, as done until now. While
some approximation can be used for the determination of the execution time, special care
must be taken for determining the serial execution order of the inputs of the tasks. This
order is critical because of the threat of deadlocks.

A possibility for the reduction of communication and thus of the execution time is
given in the way state information is handled. In the current system, all internal
information about the state of a set of computations must be returned as output to the
data acquisition firmware at the end of one computation cycle if it is to be re-used in the
next cycle. It is then returned unchanged to the process in the next cycle. This
philosophy causes unnecessary communication, but was adopted in order to have only
“memoryless” processes. Keeping relevant information at the place where it is needed
again in the next computational cycle could save unnecessary data transfers.

Overhead could be reduced significantly if the tasks allocated to the processing
elements were re-serialized. Currently, all tasks are placed for parallel execution, and the
run-time scheduler deals with running them. Since only one task can be active at a time
on one processor, the quasi-parallel execution degenerates to some kind of serial
execution. Therefore, one could eliminate the task administration overhead and create a
predefined sequence of the tasks if the time of the availability of the input and output
data is known for each task. However, this will be the crucial point of the matter. If the
tasks are all connected and linearly dependent, it will be easy to find a serial order for
them. But if unconnected tasks are allocated on the same PE, it will be more difficult to
determine an order of the tasks which neither unnecessarily delays nor blocks the
execution altogether. Nonetheless, the potential benefits of such an extension are large.

Finally the introduction of a more flexible data type system is mentioned, which will
in fact eliminate some restrictions currently imposed on the use of SISAL. The use of
the data type “record” will then mainly be allowed. However, it is currently not known
when the draft of the revised OCCAM91 language will be released for use.

Of course, computing systems other than T800 Transputers can be programmed
using this method. Once the node execution cost tables and the communication cost
models have been established, T9000 Transputers or signal processors such as the
TMS320C40 can be used as well.

The T9000 Transputer is more powerful than its predecessor. However, since virtual
channels are used the communication cost model will be more difficult to determine.

Reference 147

There the communication cost becomes dependent on the topology of the communication
network, or communication once again has to be restricted to directly connected PEs.
However, the virtual channels allow a direct interconnection among all processors. It is
therefore no longer possible for some PEs to lie idle because they cannot be reached by
direct links even if there is enough parallelism in the application.

The TMS320C40 signal processor possesses six serial links to build a
communication network. This is a clear advantage over the T800 Transputer, since the
limited number of links leads to the greatest loss in exploitable parallelism in the
allocation step. Due to its highly pipelined internal structure it will be relatively difficult
to obtain reliable and reproducible figures for the node execution cost table for the
TMS320C40.

It is possible to use a variety of hardware platforms for this kind of parallel
processing. Most important is that communication is fast and deterministic in the sense
that a message of a given size always takes the same amount of time to transmit. If
communication cannot be modelled exactly, building tasks and allocating them to the
PEs in the way described in this book may lead to poor performance of the system.

An increased interest in exploiting fine-grain parallelism for general-purpose
computations now exists, as documented by the development of the Sparcle chip at MIT
([AgKuKr 93]). This chip is based on the Sparc chip by Sun Microsystems and includes
additional hardware to tolerate memory and communication latencies to support fine-
grain synchronization, and mechanisms to initiate communication actions to remote
processors and to respond rapidly to synchronization events and message arrivals.
While this chip has not been designed specifically for real-time applications, it clearly
aims at efficient message-passing multiprocessing on a large scale.

OCCAM need not necessarily be the language of the target system. While it offers
inherent constructs for communication, other features such as the clumsy and very
limited type system impose restrictions on the formulation of the algorithms to be
processed. Other languages such as C or even C++ offer far better features together with
highly optimized compilers adapted to the specific target system. The message-passing
mechanisms then have to be hidden in routines which are called instead of the send and
receive commands of OCCAM.

8.3 Reference

[AgKuKr 93] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung, G. D’Souza and M.
Parkin, “Sparcle: An Evolutionary Processor Design for Large-Scale Multiprocessors,”
IEEE Micro, vol. 13, no. 3, pp. 48-61, 1993.

149

APPENDIX A

Specification of the
Multicomputer

This appendix provides some additional data on the multiprocessor system built for this
project and its associated high-speed data acquisition system.

The multi-Transputer system consists of processor boards available off the shelf,
whereas the whole data acquisition hardware was designed and built in order to meet the
special requirements of fast real-time data processing.

A.1 Multi-Transputer System

The IMS T800 Transputer ([Whitby 85], [INMOS 89]) is a 32-bit CMOS
microcomputer with a 64-bit floating point unit. It has 4 kbytes on-chip RAM for high-
speed processing and four serial communication links. The instruction set supports the
efficient implementation of high-level languages and provides direct support for the
OCCAM model of concurrency when either a single Transputer or a network of such
chips are used. Procedure call, process switching, and typical interrupt latency times are
in the sub-microsecond range. This property makes the processor very well suited for
real-time systems.

The T800 consists of the following basic blocks, all interconnected by a 32-bit wide
internal bus:

• 32 bit processor
• floating point unit
• system services
• timers
• 4 kbytes of on-chip RAM
• external memory interface
• event logic
• four serial link interfaces

The processor speed is set to 20 MHz, achieving a peak instruction throughput of 20

150 Specification of the multicomputer

MIPS (Million Instructions Per Second) and of 10 MIPS sustained.
The IMS T800 provides high-performance arithmetic and floating point operations.

The 64-bit floating point unit provides single- and double-length operations according to
the ANSI-IEEE 754-1985 standard for floating point arithmetic. It is able to perform
floating point operations concurrently with the processor, sustaining a rate of 2.2
Mflops (Million Floating Point Operations Per Second) at a processor speed of 20 MHz.

The standard INMOS communication links allow networks of Transputer family
products to be constructed by direct point-to-point connections with no external logic.
The IMS T800 links are used at a speed of 20 MBit/sec, but can also operate at 5 or 10
MBit/sec. Each link can transfer data bidirectionally at up to 2.35 MByte/sec.

All boards of the MultiCluster-1 series computer are manufactured by Parsytec
Computer GmbH, Aachen, Germany (in the U.S.: Parsytec Inc., West Chicago).

The system consists of four MTM-2-11 boards with two Transputers each, running
at a speed of 20 MHz. Each processor is equipped with two Mbytes of local RAM. The
interconnection links are easily configurable by plug-in cables. An MTM-Mac board
with two IMS T800 processors in a Macintosh II computer is used for compiling the
programs and as a console for controlling the application programs.

An additional GDS (Graphic Display System) board allows the display of colour
graphics on a separate 19 inch monitor. One VTF (Versatile Transputer Frontend) board
with one T800 and two T222 (16-bit integer Transputer) processors provide the
connections to the data acquisition system through two 16-bit wide data and address
buses.

A.2 High-speed Data Acquisition System

The data acquisition system is designed for easy configuration to a variety of possible
settings. Its structure is shown in Figure A.1 (adapted from [SchZan 90]). During start-
up, the desired system configuration is read from a file and is set accordingly.

At most, 16 analog input signals can be captured. Each channel is equipped with a
programmable high-accuracy instrumentation amplifier (with gains 1, 10, 100, 200,
500) and a switched-capacitor (SC) anti-aliasing filter of order four or eight. The anti-
aliasing filter has a Bessel characteristic which makes it easy to model it as phase-
shifting device due to its linear phase response. Filters of the Chebyshev type show a
steeper descent in the amplitude response, but their nonlinear phase response makes it
impossible to model the filter as a simple time delay for the controller design.

Since the switched-capacitor filter is a discrete-time system, it requires an anti-
aliasing filter for itself, but with a cutoff frequency which lies far above the frequencies
of interest. Therefore, this pre-filter is realized as a tunable active filter of second order
which does not influence the input signals. The whole anti-aliasing filtering section may
be bypassed if sampling unfiltered signals is desired.

The sampling rate is selectable anywhere in the range of 100 samples/sec to 67
kSamples/sec. In the uppermost range above 33 kSamples/sec, only four analog signals
can be sampled. The settings for the anti-aliasing filters are computed automatically in

~ ~
~ ~

A
ct

iv
e

A
A

 F
ilt

er
 4

. o
r

8.
 O

rd
er

SC
 F

ilt
er

 (
B

es
se

l)

C
ut

of
f

Fr
eq

ue
nc

y
C

ut
of

f
Fr

eq
ue

nc
y

G
ai

n,
 O

ff
se

t
A

dj
us

tm
en

t

C
ha

nn
el

 0

C
ha

nn
el

 1

C
ha

nn
el

 2

C
ha

nn
el

 3

C
ha

n.
 0

C
ha

n.
 1

C
ha

n.
 2

C
ha

n.
 3

A
dd

re
ss

 -
 /

D
at

a
/ C

on
tr

ol
 B

us
 a

T
ra

ns
pu

te
r

T
80

0
T

ra
ns

pu
te

r
T

21
2

-
1

T
ra

ns
pu

te
r

T
21

2
-

2

A
na

lo
g

In
pu

t
0 1 2 3

A
dd

re
ss

 -
 /

D
at

a
/ C

on
tr

ol
 B

us
 b

A
na

lo
g

O
ut

pu
t

0 1 2 3 4 5 6 716 Channels

Ch. 0...3
 Ch. 4...7

Ch. 8...11
Ch. 12...15

C
ha

nn
el

 0

C
ha

nn
el

 1
C

ha
nn

el
 2

C
ha

nn
el

 3

C
ha

nn
el

 4
C

ha
nn

el
 5

C
ha

nn
el

 6

C
ha

nn
el

 7

D

A

A

D

B
uf

fe
rs

D
ig

ita
l O

ut
pu

t
(1

6
B

it)

C
on

tr
ol

B
us

D
at

a
B

us

D
ig

ita
l I

np
ut

(1

6
B

it)

L
in

ks

Figure A.1 Building Blocks of the Data Acquisition System

152 Specification of the multicomputer

accordance with the sampling rate.
The resolution of the analog-to-digital converters is 12 bits, as for the eight digital-to-

analog converters. Digital input and output is possible through a buffer of 16 bits width.
For the control of a six-cylinder internal combustion engine, a supplementary board

containing six custom chips for the individual control of the injection and ignition (see
[Geerin 89]) was developed (not shown in Figure A.1).

A.3 Firmware

The firmware belonging to the data acquisition system is used in two areas:

• setting up the system
• delivering data to and receiving data from the application program

As described in Section A.2, the desired configuration (number of channels sampled,
sampling rate, order of anti-aliasing filter) is read from a file. The single hardware
components are then programmed accordingly. This is done by a program running on a
Transputer located in the Macintosh II which is used as file server and terminal. From
this console, processing is started and stopped.

Once processing has started, the firmware reads the input values from the A/D
converters as soon as they are available. Since the converters are clocked from a
hardware timer, processing is event-driven. After adjusting the offset voltage by
software and scaling the values, data are transmitted through links to the application
program running on the eight T800 processors. The results computed by the application
program are returned to the digital-to-analog converters.

A sophisticated timing control is active during the processing. It checks the times
when input data are sampled and when the corresponding output values are returned to
the D/A converters. If the difference between these times is larger than the sampling
period, an error message is sent to the console and processing stops. Then either the
sampling period is too short or the processing time is too long and must be reduced,
e.g., by distributing the computations to the processors in a different way.

A.4 References

[Geerin 89] H.P. Geering, “ICX: A custom VLSI-chip for engine control,” Int. J. of Vehicle
Design, vol. 10, no. 5, pp. 592-597, 1989.

[INMOS 89] INMOS Ltd., The Transputer Databook, Second Edition 1989.
[SchZan 90] D. Schweizer and R. Zanetti, “Hochgeschwindigkeits-Datenerfassungssystem für

Multitransputer-Rechner,” Diploma Thesis in Electrical Engineering, Measurement and
Control Laboratory, Swiss Federal Institute of Technology (ETH), Zurich, February
1990.

[Whitby 85] C. Whitby-Strevens, “The Transputer,” in Proc. 12th Ann. Symposium Comp.
Architecture, 1985, pp. 292-300.

153

APPENDIX B

Detailed Specification of the
Processing Steps for Partitioning
and Allocating

In this appendix the processing steps for partitioning and allocating the data flow graphs
are outlined in more detail than is possible in the main text. Data used for some of the
processing stages, e.g., node execution costs, are presented in tables.

The algorithms are formulated in pseudo-code related to the syntax of the Pascal
programming language.

The actual programs for performing the operations described are written in Pascal and
consist of around 18 000 lines of code, not counting the SISAL compiler.

The relations between the sections of Appendix B and the text are as follows:
• Section B.1 Communication Analysis S e c t i o n 4 . 2

• Section B.2 Graph Expansion Section 4.3
• Section B.3 Execution Cost Analysis Section 4.4
• Section B.4 Graph Partitioning Chapter 5
• Section B.5 Task Allocation Chapter 6
• Section B.6 OCCAM Code Generation Section 6.6

B.1 Communication Analysis

The amount of data transferred over the edges of a graph gr is analysed by starting with
the graph’s output edges. For each edge inspected, the following procedure is applied.
If it carries a data item with a basic data type then the item’s size is read from Table B.1.
If the edge carries a data item with a compound data type, then the preceding node and
its input edges are inspected in order to determine the data type’s size. If this is not
possible, the graph is traversed recursively until all necessary information has been
found. Then all inputs of the edge’s source node are inspected in the same manner.

Processing continues until all edges of the graph have been inspected.
The structure of the procedure for the communication analysis is shown below.

154 Detailed specification of the processing steps

Table B.1 Size of the Data Types

SISAL Type Size (Bytes) Corresp. OCCAM Type

Boolean 1 BOOL

Character 1 BYTE

Integer 4 INT

Real 4 REAL32

Double_Real 8 REAL64

Array[Component Type] # elements ×
component size

[# elem.]Component Type

COMMUNICATION(fgr):
for all output edges edg of fgr do

determine_data_type(edg)
if edg is no input edge of fgr and

source node snd has not been visited yet then
inspect_node(snd, edg)

end if
end for all
end communication

determine_data_type(edge):
case data type of of

basic: read data size in size table
set label edge.comm

compound: find source node snd of edge
if this is not possible since edge is an input edge of

the function graph then
determine the value number_of_elements of the

constant input beside edge
set edge.comm := number_of_elements ×

size of basic type of edge
else

inspect_node(snd, edge)
set label edge.comm to size returned by

inspect_node
end if

end case
end determine_data_type

Graph expansion 155

inspect_node(nd, edge):
case nd of

simple node: determine the size of the data type carried by
edge according the function of nd

if necessary determine the size of
nd’s input edges

return the size of edge’s data type
compound node: inspect all subgraphs of nd

determine the size of the data type carried by
edge according the function of nd

if necessary determine the size of
nd’s input edges

return the size of edge’s data type
end case
for all input edges edg of nd do

determine_data_type(edg)
if edg is no input edge of the function graph and

source node snd has not been visited yet and
edg has not been visited yet then
inspect_node(snd, edg)

end if
end for all
end inspect_node

B.2 Graph Expansion

The graph graph and its associated function graphs are visited in a bottom-up, depth-
first way. Starting with the output edges’ source nodes, all preceding nodes are
inspected until the top of the graph is reached.

The following functions are performed:

• NoOp nodes are eliminated
• Two consecutive Not nodes are eliminated
• All compound nodes except Forall are left unchanged
• Forall nodes are replaced by the same number of copies of the body graph as there

are iterations in the loop. The generator subgraph is replaced by a node which
generates all indices for the body graphs or distributes the elements of a vector to
the body graphs. The returns subgraph is replaced by the appropriate reduction
graph connected to the body graphs.

• If the range generator node has only constant inputs, the node is removed and the
constant indices are fed directly to the body graphs.

156 Detailed specification of the processing steps

• The parameter “nodecount” sets a minimum threshold for the number of nodes of
functions called. The call node is replaced by the function graph only if the
function contains more nodes than nodecount. The aim of this threshold is to
prevent the graph from expanding too quickly by the insertion of large functions.

For replacing the “Reduce” nodes which collect the results of all loop iterations in
Forall nodes, a structure is built from nodes according to Table B.2.

Table B.2 Replacement of “Reduce” Nodes

Reduction Function Data Type Node

Sum + Int, Real, Double Plus

OR Boolean Plus

Product × Int, Real, Double Times

AND Boolean Times

Least minimum Int, Real, Double Min

AND Boolean Min

Greatest maximum Int, Real, Double Max

OR Boolean Max

Catenate catenation array(T) ACatenateExp

In addition to the nodes defined in the IF1 manual ([SkeGla 85], see Section 4.5), the
new nodes shown in Table B.3 are used. They are inserted during the expansion of a
Forall node when the generator subgraph is eliminated and for the substitution of the
returns subgraph. When the values to be collected are accompanied by Boolean values it
cannot be decided at compile-time which values are to be discarded. Hence it is
impossible to build a static reduction structure. The reduction nodes AGatherExp,
FirstValueExp, FinalValueExp, and RedLeftExp are therefore defined. These decide at
run-time which values of the loop bodies are to be utilized for computing the final result.

In the node cost Table B.4 additional nodes appear which have been introduced for
the distinction of calls to different intrinsic functions and for different reduction
functions. Their functions are explained by their names, e.g., Call_Sin for a call to the
sine function.

Array(T) means an array with elements of type “T”. For the description of the node
function, the same notation as in the IF1 manual is used.

Graph expansion 157

Table B.3 Additional Graph Nodes

Node Name No. Function Description

AGatherExp 200 integer × {T × Boolean} array(T)
Creates an array with the first element at the position
indicated by the integer input. The value of an input is
inserted in the array if its associated Boolean input
carries the value “True”.

AScatterExp 201 array(T) {T × integer}
Possesses for each element of the input array a pair of
output edges with the array element and its index.
Each pair leads to one body graph.

RangeGenerateExp 202 integer × integer {integer}
Same function as RangeGenerate except that the output
edge with multiple integer values is replaced by
multiple integer outputs.
Each output leads to one body graph.

FirstValueExp 203 {T × Boolean} T
Performs run-time check of the Boolean inputs. The
lowest input whose associated Boolean input is “True”
is forwarded to the output.

FinalValueExp 204 {T × Boolean} T
Performs run-time check of the Boolean inputs. The
highest input whose associated Boolean input is
“True” is forwarded to the output.

RedLeftExp 205 function × T × {T × Boolean) T
Every input for which the associated Boolean input is
“True” is reduced according the function specified.

GRAPHEXP(graph, nodecount):
insert all top level graphs of graph in the list “functiongraphs”
for all toplevel graphs gra do

for all output edges e of gra do
find predecessor node prednode
inspect_predecessor(prednode)

end for all
for all ABuild nodes anode

which have not yet been visited do
if anode has only literal inputs then

158 Detailed specification of the processing steps

expand_abuild(anode)
end if

end for all
end for all
end graphexp

inspect predecessor(pred)
case pred.type of

compound node : inspect compound(pred)
simple node : inspect simple(pred)

end case
for all input edges of pred do

find predecessor node pnode in pred’s graph
if found

inspect predecessor(pnode)
end if

end for all
end inspect predecessor

inspect simple(nd):
case nd of

Call : case function called of
sqr : replace nd by Times node,

duplicate input
controlalgorithm : do nothing
otherwise : find function graph fgr

if found and # of nodes<nodecount then
graphexp(fgr, nodecount)
connect input and outputs of nd

to fgr
remove graph boundary of fgr
eliminate nd
nd := source node of old input

edge to fgr
inspect_pred(nd)

end if
end case

NoOp : eliminate nd and rewire the edges
Not : find predecessor node pnd in the nd’s graph

if pnd is Not then
connect input edge of pnd to output edge of nd
eliminate nd and pnd

end if
otherwise: do nothing

Graph expansion 159

end case
end inspect simple

inspect compound(nd):
case nd of

Forall : expand Forall(nd)
Select : for all alternative graphs agr do

graphexp(agr, nodecount)
end for all

Iter : graphexp(graph of body, nodecount)
LoopA, LoopB : with the four subgraphs

initialization, test, body, returns do
graphexp(subgraph, nodecount)

end with
TagCase : error(illegal operation on (nd.srcline))

end case
end inspect compound

expand_Forall(fnode):
ggr := generator subgraph
bgr := body subgraph
rgr := results subgraph
for all nodes gnode of ggr do (* inspect GENERATOR *)

case gnode of
RangeGen : create new gnode_1 RangeGenExp
AScatter : create new gnode_1 AScatterExp

end case
connect the input edges of gnode_1 to the corresponding

edges leading to fnode
set communication and data type of the edges

end for all
remove graph boundary of ggr
graphexp(bgr, nodecount) (* inspect BODY *)
for i = 0 ..fnode.range do

duplicate_graph(bgr, bodylist[i])
connect the inputs of the nodes in bodylist[i] to the outputs

of the generator node gnode_1
or to the sources outside fnode of the direct inputs

set communication and data type of edges
remove graph boundary of bodylist[i]

end for
for all output edges oedge of rgr do (* inspect RESULTS *)

find the source node snode of oedge
visit reduce node(snode, bodylist)

160 Detailed specification of the processing steps

end for all
connect outputs of rgr to output edges of fnode
remove graph boundary of rgr
for all nodes gnode of expanded Forall node do

if gnode.name=RangeGenExp
and gnode has only literal inputs then
replace all the outputs by literal inputs with appropriate value
delete node gnode

end if
end for all
delete node fnode
end expand Forall

B.3 Execution Cost Analysis

All the graphs are traversed in a linear way. The edges are assigned an execution cost
according the cost model developed in Section 4.4, assuming that they are realized as
external links. The nodes’ cost is read from Table B.4 which contains their execution
time depending on the data type of the arguments. The cost of some nodes also depends
on the number of inputs.

For the unexpanded loop nodes (LoopA, LoopB, Iter), a default number of iterations
(the so-called range of the node) is assumed which is read from a parameter file first.
Thus, this default value can be changed by the user. In the Select node used to represent
if-statements, the graphs for the alternatives are inspected and their execution cost is
determined. The Select node itself is assigned the maximum cost of any of its alternative
graphs.

Table B.4 Node Execution Cost Table

Node No. Char Bool Integer Real Double
Forall 0 not av.
Select 1 9+4×A 9+4×A 9+4×A 9+4×A 9+4×A
TagCase 2 n/a
LoopA 3 9 9 9 9 9
LoopB 4 9 9 9 9 9
Iter 6 23 23 23 23 23
AAddH 100 5+14×Ie 5+15×Ie 9+11×Ie 9+11×Ie 7+18×Ie
AAddL 101 5+14×Ie 5+15×Ie 9+11×Ie 9+11×Ie 7+18×Ie
AExtract 102 5+14×Oe 5+15×Oe 9+11×Oe 9+11×Oe 7+18×Oe
ABuild 103 8+15×I 8+15×I 8+11×I 8+11×I 8+18×I
ACatenate 104 5+14×Oe 5+15×Oe 9+11×Oe 9+11×Oe 7+18×Oe

Execution cost analysis 161

Table B.4 (continued)

AElement 105 21 21 20 21 27
AFill 106 25×I 20×I 28×I 33×I 41×I
AGather 107 37 41 41 41 42
AIsEmpty 108 9 9 9 9 9
ALimH 109 3 3 3 3 3
ALimL 110 3 3 3 3 3
ARemH 111 5+14×Oe 5+15×Oe 9+11×Oe 9+11×O 7+18×Oe
ARemL 112 5+14×Oe 5+15×Oe 9+11×Oe 9+11×Oe 7+18×Oe
AReplace 113 5+14×Oe 5+15×Oe 9+11×Oe 9+11×Oe 7+18×Oe
AScatter 114 n/a
ASetL 115 5+14×Oe 5+15×Oe 9+11×Oe 9+11×Oe 7+18×Oe
ASize 116 3 3 3 3 3
Abs 117 0 0 18 35 48
BindArg. 118 n/a
Bool 119 0 0 6 0 0
Call 120
 sin 10 0 0 312 296 486
 cos 11 0 0 278 262 322
 tan 12 0 0 376 360 395
 asin 13 0 0 241 225 337
 acos 14 0 0 250 234 346
 atan 15 0 0 314 298 288
 sqrt 16 0 0 139 123 253
 sqr n/a 0 0 39 23 37
 log 17 0 0 517 501 905
 ln 18 0 0 106 90 482
 log10 19 0 0 142 126 820
 etothe 20 0 0 470 454 717
 rand 21 0 0 232 216 414
Char 121 0 0 32 0 0
Div 122 0 0 51 31 48
Double 123 0 0 0 11 0
Equal 124 12 12 12 21 24
Exp 125 0 0 0 417 1112
FirstValue 126 13 13 16 16 20
w Bool Inp 22 19 19 22 22 26
FinalValue 127 0 0 0 0 0
w Bool Inp 23 11 11 14 14 18
Floor 128 0 0 0 17 18

162 Detailed specification of the processing steps

Table B.4 (continued)

Int 129 4 4 0 17 18
IsError 130 n/a
Less 131 11 11 11 22 25
LessEqual 132 13 13 13 24 27
Max 133 0 14 19 33 37
Min 134 0 14 19 33 37
Minus 135 0 0 11 19 22
Mod 136 0 0 48 53 58
Neg 137 0 0 7 17 19
NoOp 138 n/a
Not 139 0 6 0 0 0
NotEqual 140 14 14 14 23 26
Plus 141 0 14 11 19 22
RangeGen. 142 n/a
RBuild 143 n/a
RElements 144 n/a
RReplace 145 n/a
RedLeft 146
 Sum 24 0 14 11 19 22
w Bool inp 25 0 19 15 23 29
 Product 26 0 14 29 29 47
w Bool inp 27 0 18 36 46 52
 Least 28 0 14 19 33 37
w Bool inp 29 0 16 17 30 36
 Greatest 30 0 14 19 33 37
w Bool inp 31 0 19 17 30 36
 Catenate 32 0 15+15×I 19+11×I 19+11×I 17+18×I
w Bool inp 33 0 20+15×I 24+11×I 24+11×I 21+18×I
RedRight 147 n/a
RedTree 148 n/a
Reduce 149 n/a
AllB.LastV 150 3 3 7 6 10
w Bool inp 34 9 9 13 12 16
Single 151 0 0 14 0 14
Times 152 0 11 23 23 37
Trunc 153 0 0 0 20 19
AGath.Ex 200 8+22×I 8+22×I 8+24×I 8+23×I 8+25×I
AScat.Exp 201 3×O 3×O 7×O 6×O 10×O
R.G.Exp 202 0 0 0 0 0

Execution cost analysis 163

Table B.4 (continued)

FirstV.Exp 203 90 90 93 93 97
Fin.V.Exp 204 8×E

+15×I

8×E

+15×I

9×E

+15×I

10×E

+15×I

12×E

+15×I
ARedL.E. 205

 Sum 35 0 3+32×I 4+29×I 5+34×I 7+38×I

 Product 36 0 3+26×I 4+31×I 5+38×I 7+51×I

 Least 37 0 3+26×I 4+29×I 5+32×I 7+35×I

 Greatest 38 0 3+32×I 4+29×I 5+32×I 7+35×I

 Catenate 39 18+29×I 18+30×I 18+26×I 18+26×I 18+33×I

The meaning of the letters used in Table B.4 is:

A number of alternative graphs in the Select node
E number of elements in an array
I number of input edges
Ie number of array elements of the input edge
O number of output edges
O number of array elements of the output edge
n/a not available

The nodes with the numbers 10-39 and 200-205 do not appertain to the original IF1
standard, but have been defined for this project.

All durations are expressed in terms of instruction cycles. One cycle of the T800
Transputer lasts 50 nanoseconds at a clock frequency of 20 MHz.

The structure of the cost assignment routine is shown below.

COSTASSIGN(G):
read parameterfile with default values for loop nodes
for all graphs gra included in G do

graphcost(gra)
end for all
end costassign

graphcost(gra):
sum := 0
for all nodes nd of gra do

nd.costs := nodecost(nd)
sum := sum + nd.costs
for all input edges e_in of nd do

164 Detailed specification of the processing steps

e_in.commkind := external
e_in.costs := edgecost(e_in)
sum := sum + e_in.costs

end for all
end for all
for all output edges e_out of gra do

e_out.commkind := external
e_out .costs := edgecost(e_out)
sum := sum + e_out .costs

end for all
gra.costs := sum
end graphcost

edgecost(edg):
words := (edg.comm + 3) div 4 (* number of words read *)
case edg.commkind of

external : edgecost := words × Tmeme + edg.comm × Ttrans
internal : edgecost := words × Tmemi
variable : edgecost := 0

end case
end edgecost

nodecost(nd):
case node type of

simple : if nd.name=Call then
case function called of

sin : nd.name := Callsin
cos : nd.name := Callcos
tan : nd.name := Calltan
asin : nd.name := Callasin
acos : nd.name := Callacos
atan : nd.name := Callatan
sqrt : nd.name := Callsqrt
log : nd.name := Calllog
ln : nd.name := Callln
log10 : nd.name := Calllog10
etothe : nd.name := Calletothe
rand : nd.name := Callrand

otherwise begin
find function graph cgr
graphcost(cgr)
nd.costs := cgr.costs
end

end case

Execution cost analysis 165

else
determine data type dt of output edge
determine node costnd.costs from cost table

end if

compound : case nd of
Forall : error(illegal opration on (nd.srcline))
Select : graphcost(selector graph)

for all alternative graphs agr of nd do
set for all edges of agr
communication kind := variable
graphcost(sgr)

end for all
sum := max(agr.costs)
sum := sum + overhead cost
determine number nalt of alternatives
sum := sum + nalt × cost per alternative
nd.costs := sum

TagCase : error(illegal operation on (nd.srcline))
LoopA : for all subgraphs sgr of nd do

set for all edges of sgr
communication kind := variable
graphcost(sgr)

end for all
sum := (body.costs + test.costs +

returns.costs) × nd.range
sum := sum + initialization.costs
if nd = LoopB then

sum := sum + test.costs
end if
nd.costs := sum + overhead cost in table

Iter : set for all edges of body graph
communication kind := variable
graphcost(body)
nd.costs := body.costs × nd.range +

overhead cost from table
end case

end case
nodecost := nd.cost
end nodecost

166 Detailed specification of the processing steps

B.4 Graph Partitioning

An annotated data flow graph fgr is partitioned into tasks as described in Chapter 5.
Initially, all nodes represent a task of their own with only external communication links
among them. Then, the tasks are temporarily merged pairwise and the pair yielding the
lowest execution time is joined definitively. This search is continued until the execution
time has reached its minimum. The execution time is determined by simulating the
execution of the dataflow graph with the routine “simulate”.

The result of the routine “partition” is a list of tasks with the appertaining nodes. For
each node, the order of the execution of the input and output statements is determined.
This order ensures freedom from deadlock (output statements) and minimum idle time
(input statements).

PARTITION (fgr):

prepare graph
sort_outputs(fgr)
mintime := simulate(fgr)
repeat

for all nodes nd in fgr with only one external output oed do
if sink node of oed has only external and constant inputs then

join sink node of oed and nd in one process
replace oed by variable
sort_outputs(fgr)
executiontime := simulate(fgr)
if executiontime<mintime then

minedge := oed
mintime := executiontime

end if
separate the two nodes again, restore original state

end if
end for all
join nodes connected by minedge in one process
replace minedge by variable

until execution time has reached the minimum
end partition

simulate(fgr):
insert input node and all nodes of fgr with only literal inputs in circular
list
while list not empty do

pick current node cnode from list
node_inwork := true
pick first output edge aout that has not yet been visited

Graph partitioning 167

if output not performed yet then
while not all output edges have been visited

and not node_inwork do
if external edge then

clock := clock + Tset-up
ticks := ticks + Tset-up

end if
aout.outtime := clock
if all inputs of successor node snode are ready then

process successor(snode)
if external edge then

clock := aout.rendezvous
ticks := ticks + Tset-up + commun. cost

end if
pick next outport aout

else
node_inwork := false

end if
end while

else (* output already performed *)
if aout.rendezvous > 0 then

(* rendezvous has taken place in the meantime *)
clock := aout.rendezvous
if external edge then

ticks := ticks + Tset-up + communication cost
end if
pick next outport aout

else (* successor node not yet executed *)
while not all outp. edg. have been visited

and not node_inwork do
if all inputs of succ. node snode are ready then

process successor(snode)
if external edge then

clock := aout.rendezvous
ticks := ticks + Tset-up + comm. cost

end if
pick next outport aout
if external edge then

clock := clock + Tset-up
ticks := ticks + Tset-up

end if
aout.outtime := clock

else
node_inwork := false

168 Detailed specification of the processing steps

end if
end while

end if
end if
if node_inwork and all edges visited then

remove cnode from list
end if
cnode := next node in list

end while
simulation time := time of clock of result node
end simulate

process successor(snode):
sort inports inp according times when input data available
pick first input ain
if there is a pred. node pnode of snode in the same process as snode
then

while there are inputs ain which have not yet been visited do
if pnode not executed yet then

if external edge then
freetime := clock+Tset-up-out time of corr. output

else
freetime := clock-out time of corr. output

end if
if freetime>pnode.cost then

(* enough time to execute pnode *)
clock := clock + pnode.cost
pnode.vistited := true
ticks := ticks + pnode.cost

else
ain.pre-emptive := true

end if
end if
if external edge then

ain.intime := clock + Tset-up
clock := max(ain.intime, out time of corr. outp.) +

communication cost
ticks:=ticks+Tset-up+ communication cost

else
ain.intime := clock
clock := max(ain.intime, out time of corr. outp.)

end if
rendezvous := clock
pick next input edge ain

Task allocation 169

end while
if not pnode visted then

(* execute pnode before beginning with snode *)
clock := clock+ pnode.cost
pnode.visited := true
ticks := ticks + pnode.cost

end if
else (* snode is the first node in process *)

for all inputs ain do
ain.intime := clock + Tset-up
rendezvous := max(ain.intime, out time of corr. outp.) +

communication cost
clock := rendezvous, ticks := ticks+Tset-up+ain.cost

end for all
end if
if snode last node in process then (* execute function of snode *)

clock := clock + snode.cost
ticks := ticks + snode.cost
snode.visited := true
pick first external output aout (* mark first output *)
clock := clock+ Tset-up
ticks := ticks + Tset-up
aout.outtime := clock
if all inputs of successor node snd are ready then

process successor(snd)
clock := rendezvous, ticks := ticks + Tset-up + aout.cost
pick next outport aout

end if
else (* defer execution of snode *)

snode.deferred := true
end if
insert snode in list
end process successor

B.5 Task Allocation

The partitioned data flow graph fgr is allocated on the target machine according to the
rules outlined in Chapter 6. The aims are to reach a minimum execution time while
respecting the limitations imposed by the real target machine. The target machine
consists of numberofpe processors with noflinks serial communication links each. It is
not specified how these links are interconnected. The structure of the interconnection
network results only from the allocation procedure.

170 Detailed specification of the processing steps

The allocation begins by placing each task on a processing element (PE) of its own.
Subsequently, in each iteration one PE is removed from the system by either moving all
its tasks to another PE (phase one) or distributing the tasks to adjacent PEs (phase two).
The iteration continues until there are not more PEs than are available in hardware
(excesspe 0) and until on any PE the number of links used is less than or equal to the
number of links available in hardware (excesslinks 0).

In phase one, all processes of a PE are moved to a connected PE and the PE is
removed from the system. The PE for which the total number of links in the system is
reduced most is selected for elimination. Switching from phase one to phase two is
based on the parameter alpha. As soon as av_tasknumber (the average number of tasks
per PE, initially one) reaches alpha, phase two is activated.

In phase two, that PE is chosen for elimination which minimizes the weighted sum of
the links in the system. In this sum, for each PE the unused links are counted once. The
links exceeding the number of the available links are counted fivefold. By this target
function the elimination of surplus links is enforced. In order to distribute the load more
evenly among the PEs, the task set of a PE is not moved as a whole to another PE as in
phase one. Instead, each task is placed on the PE to which it communicates most.

The number of links is further reduced by additional optimizations for link fusion and
link multiplexing. With link fusion, two links from the same source node to different
sink nodes located on the same PE are fused. Data are transferred over only one link to
the PE where the nodes are located and are then distributed to them. With link
multiplexing, ordinary time multiplexing of a link is introduced. The source and sink
nodes of the communication channels may belong to any task on the two PEs involved.

The result of the routine allocation is a list of the PEs and the tasks allocated to them.
For each PE, another list is created which contains its links and their destinations.

ALLOCATION (fgr, alpha):

prepare_allocation
links_in_system(maxlinks, totlinks)
excesspe := maxpe - numberofpe
excesslinks := maxlinks - numberoflinks_per_PE
while (excesspe>0) or (excesslinks>0) do

if av_tasknumber<alpha then
build list pairlist of all connected PE pairs sorted according

their total communication cost
maxdiff := 0
mergepair := nil
for all pairs PE1, PE2 of the first half of pairlist do

determine no. of links used by both PEs before
merging: links_before

determine number of links used after merging:
links_after
(* including link fusion and link multiplexing *)

Task allocation 171

linkdiff := links_before-links_after
if linkdiff>maxdiff then

maxdiff := linkdiff, mergepair := (PE1, PE2)
end if

end for all
join_processes(mergepair)
delete pairlist

else (* av_tasknumber alpha *)
minpe.totlinks := infinity
for all processors PEi do

distribute_processes(PEi, processlist)
(* place tasks to the PE they are most connected to

(lowest level first) *)
links_in_system(noflinks, total)
if total<minpe.total then (* keep PEi as minpe *)

minpe.pe1 := PEi
minpe.linksused := noflinks
minpe.totlinks := total

end if
collect_processes(PEi, processlist)

end for all
distribute_processes(minpe.pe1, processlist)

end if
links_in_system(maxlinks , total)
excesspe := excesspe - 1
av_tasknumber := numberoftasks / maxpe
excesslinks := maxlinks - numberoflinks_per_PE

end while
end allocation

prepare_allocation:

for all PEs ape do
compute the cost of the processes =

 cost of all nodes in the process
compute the load of ape = cost of all processes on ape

end for all
create_links(first PE, linkopt)
create adjaceny matrix tm of tasks
compute levels of task nodes = max. number of task nodes visited on all

paths from data entry point to the task node investigated
end prepare_allocation

join_processes(pe1, pe2):

172 Detailed specification of the processing steps

change all channels between processes of pe2 and processes of pe1 to
internal channels
append the list of processes of pe2 to the list of processes of pe1
delete links between pe1 and pe2
change all remaining links of pe2 to simple links
append them to the list of links of pe1
optimize_links(pe1, true)
remove pe2 from the system
end join_processes

distribute_processes(pe1, plist):

for all tasks pr on pe1 do in ascending level order
find processor pe2 pe1 pr is most connected to

(according communication costs)
remove pr from pe1 (including links)
insert pr on pe2 (including links)
increasepe2.load by the cost of pr
insert pr in plist

end for all
for all PEs pe2 where links have been modified do

optimize_links(pe2, true)
end for all
end distribute_processes

collect_processes(pe1, plist):

for all processes apr in plist do
remove apr from processor ope
insert apr on pe1
increasepe1.load by the cost of pr
decrease ope.load by the cost of pr
remove unnecessary links from ope
create links on pe1 and on then connected PEs
for all PEs pe2 where links have been modified do

optimize_links(pe2, true)
end for all

end for all
end collect_processes

links_in_system(maxlinks, totlinkno):

returns for the whole system
maxlinks : max. number of links used on any PE in the system

OCCAM code generation 173

totlinkno : total number of links used of all PEs in the system
for all PEs do

determine the number of links lno
if lno>noflinks then

totlinkno := totlinkno + 5 (lno-noflinks)
else

totlinkno := totlinkno + (noflinks-lno)
end if

end links_in_system

optimize_links(fpe, only_one_pe):

Reduces the number of links of fpe (only_one_pe=true) or of all PEs by
link fusion or link multiplexing, if possible.
Links between two PEs can be either fused or merged, but not both.

link fusion: two links emanating from the same source node are
fused in one.

Data are duplicated and distributed to the sink nodes on
the target PE.

link multiplexing: common time-multiplexing of one physical link.
Several logical channels from one PE to another are

placed on the same link.
First all links are inspected for link fusion. Then all links which are not
fused are inspected for link multiplexing.
Then for all links which are used only monodirectionally a matching
counterpart is searched. These two monodirectional links between PE A
and PE B are unified. Thus they are replaced by one bidirectional link.
end optimize_links

B.6 OCCAM Code Generation

Once the graph fgr has been partitioned and allocated, each node is positioned in a
process. Each process is placed on a PE, and for each edge it has been determined how
it is created (as variable, internal channel, or external channel).

Therefore, for each PE used in the system a declaration of the interprocessor channels
is generated. These channels are placed on the physical links of the Transputers.
Together with the headers of processes placed on each PE, this makes up the contents of
the allocation file “occam.all.”

The OCCAM source code of all the processes of the PEs is written to the file
“occam.src.” For each PE with number i one main process PEi is generated which
handles the communication with the other PEs over the external links. The multiplexing
and distributing processes for those links that carry several graph edges are placed there
for parallel execution, together with all the other processes allocated on the PE. For

174 Detailed specification of the processing steps

these links, the protocol definitions are included. The so-called fused edges are realized
by tagged communication, with tags labelled Tk where k is a consecutive number.

The names for variables and channels are derived from those of the graph’s edges, if
available. These names are constructed with the prefixes c. or v. for channels and
variables, respectively. They are followed by the edge’s name and the suffix .cnr, where
cnr is a unique consecutive number.

The internal channels (interprocess communication on one PE) are declared at the
beginning of the PE’s main process, whereas all variable declarations are placed at the
beginning of the process in which they are used.

Prior to translating a linear cluster of data flow graph nodes into a (sequential)
OCCAM process, an execution order must be determined. This serialization is achieved
by associating levels with each node. The nodes receiving only input data are labelled
level one, each direct successor node level two, and so forth. If a node is reachable from
the process inputs on several paths then its level is the maximum of the levels of all its
predecessors. The exact execution order is determined by sorting the nodes according to
their levels. If two nodes possess the same level, then their relative position in the linear
node list of the parent graph is used for the decision.

The file “target_language.txt” contains for each graph node the precise OCCAM
sequence for the translation. Instead of the variables there are dummy names. These
variables are replaced by the real names before writing the sequence to the source code
file.

For each process, the serialized graph nodes are translated into a sequence of
OCCAM statements. The input and output operations are performed sequentially in the
execution order that has been established during the simulation of the graph’s execution.
Therefore, no deadlocks are possible. All processes located on the same PE are placed
for quasi-parallel execution. The exact order of execution has not been previously
determined due to the high computational cost of simulating the exact execution of
several tasks on a PE.

Since not all the information is gathered from the data flow graph in the order in
which it is needed in the OCCAM source code, some sequences such as variable
declarations are buffered in temporary files. Only one pass through the data flow graph
is thus necessary to generate the corresponding OCCAM program.

OCCGEN(fgr, fpe):
(* translates the function graph fgr to an OCCAM program *)
(* fpe is the pointer to the first PE in the system *)

begin
protocol_nr := 0, link_nr := 0
define the protocols for the multiplexed and fused links in occam.all
define all channels between the PEs in occam.all
for all PEs do

create processor definition in occam.all
- number and type (T8) of processor

OCCAM code generation 175

- map the channels to the physical links
- head of all procedures placed on the PE

end for all
for all PEs ape do

indent := 0
create process header PE_(ape.no) in occam.src with indent
indent := indent + 1
if some links are fused or multiplexed then

create the additional processes for fusion, multiplexing
in the files source.txt, proccall.txt

end if
for all tasks tpr do

define the process name pname
create_process(tpr, pname, call.txt, chan.txt, src.txt)
append call.txt to proc_call.txt
append chan.txt to channels.txt
append src.txt to source.txt

end for all
copy channels.txt to occam.src with indentation indent
copy source.txt to occam.src with indentation indent
if there is more than one task or multiplexed/fused links then

create code for parallel processes in occam.src
indent := indent + 1

else
create code for sequence of processes in occam.src

end if
copy proc_call.txt to occam.src with indentation indent
create process ending PE_(ape.no) in occam.src, indent := 0

end for all
check occam.src for length of line <= 80 characters, otherwise
break up lines into smaller sections with correct indentation

end occgen

create_process(proc, pna, pe, calltxt, chantxt, srctxt):
(* creates a process of the nodes in proc, located on pe *)
(* calltext contains the process head for calling it *)
(* the external channel declarations are written to chantext *)
(* the source code including local variables is returned in srctxt *)

begin
indentation := 0
create process header with name pna
if the proc. receives data from or sends data to the main input then

define the input or output variables in the process header

176 Detailed specification of the processing steps

end if
write the process header to srctxt and calltxt
define the internal channels in chantxt
if library functions are called then

write ”#USE libraryname” to srctxt
end if
define all channels in srctxt and chantxt
declare all variables in var.txt
serialize_nodes(proc, slist)
for all nodes nd of slist do in ascending order

transform_node(nd, node.txt, variables.txt)
end for all
indentation := indentation + 1
copy variables.txt to srctxt with indentation
copy var.txt to srctxt with indentation
create code for sequence of instructions in srctxt with indentation
indentation := indentation + 1
copy node.txt to srctxt with indentation
create end of process in srctxt with indentation 0

end create_process

serialize_nodes(sproc, serlist):
(* imposes a serial execution order on the nodes of task sproc *)
(* serlist contains the nodes in the correct execution order *)

begin
find nodes with only external inputs, set level := 1
find nodes with only constant inputs, set level := 1
for all successor nodes nd do

determine the level of nd
end for all
sort the nodes in ascending order of the level, set node.execute

end serialize_nodes

transform_node(nd, ndtxt, vartxt):
(* ndtxt : source code text file representing the node *)
(* vartext : variable declaration text file used for the node *)

begin
if there are external inputs or outputs then

define the channels
write the definitions to channels.txt

end if
case nd.class of

OCCAM code generation 177

Simple: transform_simple(nd, ndtxt, vartxt)
Compound: transform_compound(nd, ndtxt, vartxt)
Graph: error(illegal node type)

end case
end transform_node

transform_simple(nod, nd.txt, var.txt):
begin

read the node’s code sequence from the file target_language.txt
write it to the buffer srcbuf
determine the names or the values of the input and output edges
write the variable declarations to the file var.txt
write the external input statements in the specified order to nd.txt
copy the buffer srcbuf tond.txt with inserted variable names
write the external output statements in the specified order to nd.txt

end transform_simple

transform_compound(nod, nd.txt, var.txt):
begin
write the variable declarations to the file var.txt
write the external input statements in the specified order to nd.txt
case nod of

Forall: error(node should have been eliminated)

Select:
begin

define the local input and output variables of the
alternative graphs in nd.txt

create code for a sequence of instructions in nd.txt
read the header sequence from target_language.txt
write it to the buffer srcbuf
copy srcbuf to nd.txt with inserted variable names

with indentation 1
for all alternative graphs agr do

read case sequence from target_language.txt
write it to the buffer srcbuf
insert the alternative number
write it to nd.txt with indentation 2
create code for a sequence in nd.txt

with indentation 3
create_process(agr, proc.txt)
copy proc.txt to nd.txt with indentation 4

end for all
end Select

178 Detailed specification of the processing steps

TagCase: error(illegal node)

LoopA:
begin

define local input and output variables of the
sub-graphs in nd.txt

create code for a sequence of instructions in nd.txt
create in nd.txt with indentation 1 the processes for the

- initialization subgraph
- body subgraph
- test subgraph

read code for while loop from target_language.txt
write it to the buffer srcbuf
copy the srcbuf to nd.txt with indentation 1 with

inserted test variable
create code for a sequence of instructions in nd.txt

with indentation 2
create in nd.txt with indentation 3 the processes for the

- body subgraph
- test subgraph

create in nd.txt with indentation 1 the processes for the
- returns subgraph

end LoopA

LoopB:
begin

define local input and output variables of the
sub-graphs in nd.txt

create code for a sequence of instructions in nd.txt
create in nd.txt with indentation 1 the processes for the

- initialization subgraph
- test subgraph

read code for while loop from target_language.txt
write it to the buffer srcbuf
copy srcbuf to the file nd.txt with indentation 1 with

inserted test variable
create code for a sequence of instructions in nd.txt

with indentation 2
create in nd.txt with indentation 3 the processes for the

- body subgraph
- test subgraph

create in nd.txt with indentation 1 the processes for the
- returns subgraph

end LoopB

OCCAM code generation 179

Iter:
begin

define local input and all output var. of the body graph
in nd.txt

create code for a sequence of instructions in nd.txt
write code for copying all input values to the output

variables to nd.txt with indentation 1
read code for while loop from target_language.txt
write it to the buffer srcbuf
copy srcbuf to the file nd.txt with indentation 1 with

inserted test variable (= output 1)
create code for a sequence of instructions in nd.txt

with indentation 2
create_process(initialization subgraph, proc.txt)
copy proc.txt to nd.txt with indentation 3
create code for copying the external outputs to the

corresp. channels in nd.txt with indentation 1
end Iter

end case
write the external output statements in the specified order to the file
nd.txt
end transform_compound

181

Index

Bold entries in the index indicate the main treatment of a subject or the definition of
the term.

Adam, T.L. 95
Adams, D.A. 12
adjacency matrix 72, 74
Aggarwal, J.K. 97, 99
aliasing 29
allocation 13, 81

computational complexity of 105
dynamic 82
parameter 13, 101, 113, 122, 125, 131, 132,
136, 137, 144, 170
static 82, 84, 85, 106

Arvind 13

backtracking 68
Baxter, J. 98
Bessel low-pass 31
bilinear transform 22, 31
bit reverse permutation 35
Blackman, R.B. 41
BLAS (Basic Linear Algebra Subroutines) 42,

43
block matrix computations 46
Bokhari, S.H. 94
Bollinger, S.W. 97
Borrmann, L. 85, 92, 94, 99
Breadth-First Search (BFS) 67, 71
Briggs, F.A. 7
Burrus, C.S. 36
Bütler, B. 97

C 147

C++ 147
Campbell, M.L. 66
CDFG (Compressed Data Flow Graph) 66
Chandy, K.M. 95
channel 11

external 59, 61, 72, 106, 173
internal 59, 61, 106, 173
virtual 10

Cholesky decomposition 47
cluster

analysis 97, 98
linear 146

clustering 99
linear 97, 99
nonlinear 97, 99

code generator 107
communication

analysis 153
blocking 69, 76
cost 2, 59, 66, 97, 103, 132

measurement 60
model 59, 60, 85, 92, 106

delay 8
external 116
interprocessor 13
minimization 63
network 85, 89, 96

topology 90, 97, 101
nonblocking 69
overhead 61, 63, 64, 85, 90, 137, 143, 144
resource utilization 91, 99, 103

182 Index

182

resources 145
time

predictable 10
volume analysis 54, 115
volume matrix 86

communication cost 64
computation time

upper limit 26
computational efforts

Adams-Basforth integration 29
Cholesky decomposition 47
fast Fourier transform 36, 40
FIR filter 31
GAXPY 44
IIR filter 31
inner product 43
Kalman filter 25
linear state feedback 24
linear state feedback with estimator 24
LR decomposition 48
LU decomposition 47
matrix inversion 47
matrix multiplication 46
matrix-vector multiplication 44
outer product 43
PID controller 23
Runge-Kutta integration 28
SAXPY 44
scalar-vector multiplication 43
SISO controller 23
vector addition 43
vector multiplication 43

control flow computer 6
controller

dynamic 19
LQG 24
LQG/LTR 24
LQR 131, 143
MIMO 23
nonlinear 113, 134
optimal 24
PID 19, 22, 121
robust 24
robustness 25
SISO 19, 21, 23, 43
state feedback 135
state space 19, 23, 113, 131

convolution 20, 40
discrete 40

Cooley, J.W. 32
correlation 20

discrete 41, 43
critical path 71, 72, 95, 96
cross-correlation

discrete 41
CSP (Communicating Sequential Processes) 12
Curtis, B.A. 96

D’Hollander, E.H. 97
data 10
data acquisition system 149, 150
data dependencies 12, 57
data flow

approach 2
computer 6, 69
graph 2, 10, 12, 13, 53, 63, 65, 69, 75, 76,
101, 106, 117, 144, 145, 153, 166, 169, 174

conversion to OCCAM 107
cycles in a 69
execution simulation 76
principle 7

data token 69
data type

basic 56
compound 56

data-driven computations 6
deadlock 71, 146, 174

avoidance 68, 76
implementational 68
structural 68

demultiplexer 103, 107, 174
Dennis, J. 12
dependencies

artificial 1
true 2

Depth-First Search (DFS) 67
Devis, Y. 97
Dickins, J.R. 95
difference equation 21, 25
differential equation

linear 26
nonlinear 26
nonstiff 27
ordinary 26, 27
ordinary nonlinear 27
stiff 26

discrete Fourier transform (DFT) 19, 32
distance matrix 86
distributed-memory computer 5
dot product 43
Duhamel, P. 32
dynamic controller 19

Index 183

183

dynamic process management 106
Dynamic Programming 94

eigenvalue/eigenvector decomposition 42
EPL (Experimental Programming Language)

11
Esser, R. 97
execution cost 64
execution cost measurements 62
execution time

minimum 169
expanded graph 57, 115, 116, 122

fast Fourier transform 4, 20, 30, 32, 113, 138,
143, 145

basic concept 36
butterfly diagram 33
Cooley-Tukey 35
mixed-radix 36
prime factor 32
recursive formulation 33
Tensor Product 38
twiddle factor 32, 36
two-dimensional 32

Feng, T.Y. 5
Fernández-Baca, D. 95
filter

analog 29
anti-aliasing 29, 150, 152
digital 113, 121
discrete 30
low-pass 29
mixed design 29
switched-capacitor 150

FIR filter 19, 30, 43, 113, 121, 122, 123, 124,
125

design 30
Flynn, M.J. 5
Ford, L.R. 94
Fortran 1, 10, 42
Fosseen, J. 12
frequency sampling 31
Fulkerson, D.R. 94
function

call overhead 58, 116, 137, 143
expansion 58, 139, 143

function controlalgorithm 11, 53, 54, 56, 114,
115

Gaudiot, J.-L. 67, 106
Gauss, C.F. 32

Gaussian elimination 47
GAXPY 44
Giloi, W.K. 5
Gligor, V.D. 96
Good, I.J. 32
graceful degradation 85, 88
graph

directed 12
edge 12
expansion 56, 68, 155
node 12

group scheduling 96

Händler, W. 5
hard real-time systems 7
hardware constraints 13, 66, 122
Harvard computer architecture 6
HDFL (Hughes Data Flow Language) 67
hierarchical graph structure 54
HLFET list scheduling 97
Hoare, C.A.R. 12
Hockney, R.W. 7
Hollman, H. 32
Houstis, C.E. 97
Huang, J.P. 66
Hughes Data Flow Machine (HDFM) 8
Hwang, K. 7
hypercube 85, 96, 97

IF1 53, 67, 70, 74, 106, 156, 163
IF1 (Intermediate Form 1) 13
IF1 Display 54
IIR filter 19, 31, 43, 113, 121, 127, 128, 130,

131, 137
design 31

image processing 30, 32
impulse response 30
initial value problem 26
inner product 43
integration

Adams-Bashforth 27, 28
Euler 27
Heun 27
multistep method 27, 28
one-step method 27
predictor-corrector 27
Runge-Kutta 27, 113, 137, 143

interconnection
interprocessor 4
network 9, 59

interference costs 94

184 Index

184

Intermediate Form 1 (IF1) 53
interprocessor communication 87, 93

cost 97
intertask communication 88, 90, 97

cost 88
intrinsic function 58

Jesshope, C.R. 7

Kalman filter 19, 24, 47, 90
Kalman, R.E. 24
Kasahara, H. 96
Kathail, V. 13
Kronecker product 38

LAPACK (Linear Algebra PACKage) 46
Lee, L.-T. 67, 106
Lee, S.Y. 97, 99
Length of Longest Output Path (LLOP) 71
Linderman, J. 12
linear equation system 20, 41, 46, 47
linear speed-up 9
linear state feedback 23
link 92, 97, 101, 107

bidirectional 60, 91, 113
external 166
fusion 9, 102, 103, 144, 170
matrix 90, 92
multiplexing 9, 64, 102, 103, 144, 170
serial 9, 59, 89, 99, 150, 169

LINPACK 43
list scheduling 93, 95, 96
Lo, S.P. 96
Lo, V.M. 94
load balancing 59, 87, 89, 104
Löffler, C. 96
longest path 96
LR decomposition 47
LU decomposition 47

Madisetti, V.K. 96
mapping

optimum 13
matrix

computations 20
exponential 42
inversion 20, 47
multiplication 46

matrix-vector multiplication 44
Mattmann, R. 97
May, M.D. 11

message passing 7, 69, 85, 99, 147
message-passing architecture 2, 99
message routing 9, 89, 144
Midkiff, S.F. 97
MIMD 5
MIMO controller 23
min-cut problem 65, 66
minimization problem 72
MISD 5
module graph 66
monitor 64
multicomputer 5, 13

architecture classification 5
general 85
heterogeneous 85
homogeneous 6, 85, 88, 90
inhomogeneous 6, 92
message-passing 6

multiplexer 103, 107, 174
multiprocessor system 46, 143
multi-rate signal processing 143

Narita, S. 96
node

bottleneck 68
clustering 59, 63
compound 53, 107
cost table 106, 156, 160
execution cost 13, 59, 61, 153
Forall 53, 54, 56, 57, 115, 155, 156
simple 53

numerical integration 19, 26
algorithms 26
error 27
explicit 26
implicit 26
stability 26

observer 23, 113
OCCAM 10, 11, 14, 106, 107, 114, 119, 147,

149, 174
code sequence for a graph node 107

OCCAM91 12, 146
optimum task assignment 91
outer product 43
oversampling 29

parallel computer architecture 7
parallelism

fine grain 64
inherent 11, 53

Index 185

185

main sources of 56
potential 20
preservation 63, 72, 73, 75, 144, 145
upper bound of 9

parallelizing computations 42
Partitioned Data Flow Graph (PDFG) 67
partitioning 13, 53, 63, 72, 74, 77, 117, 122,

140, 153, 166
aims of 63, 65
compile-time scheduling approach 67
computational complexity of 77
efficiency 66
heuristic approach 66
macro-data flow approach 67
optimum 65

Pascal 10, 153
Patel, J.H. 98
PE load 122
PE utilization 72, 118, 124, 131, 144
Pease, M.C. 37, 38
permutation matrix 37
Petri Net 69, 97
phase response

linear 30, 31
Pingali, K. 13
pipelining 13
pole placement 23, 31
POSC (Partitioning and Optimizing SISAL

Compiler) 68
prediction estimator 24
problem mapping

optimum 9
process 11, 14
processor

load 82
utilization 82

program execution time 9, 13, 72, 91, 92, 93,
113, 116

minimum 8
partitioned 122
serial 122

Program Structure Graph (PSG) 67
PSR 116, 122, 123, 124, 125, 128, 130, 131,

132, 136, 137, 143, 144
PSR (parallel-to-serial execution time ratio)

113

real-time
application 2, 113
computations 26
control 8

data processing 149
signal processing 106, 143

real-time system 7, 8, 82, 92
hard 82
soft 82

recursive function call 11
regular iterative algorithms (RIA) 20
Remez exchange method 30
rendezvous time 76
resource

capacity matrix 86
demand matrix 86
utilization 87

response time 81
Runge-Kutta-Fehlberg algorithm 26

sampling rate 150, 152
Sarkar, V. 65, 67, 68
SAXPY 44, 45
scalar product 43, 113
schedule

non-periodic 82, 89
optimum 94
periodic 82, 89, 96

scheduler 145
run-time 3, 7

scheduling 81
cost 8, 64, 65, 67
dynamic 81
dynamic pre-emptive 7
greedy 96
incremental 96
round-robin 83
static 7

Schibli, P. 106
semaphore 64
serialization of the computations 64
shared-memory computer 5
Shen, C.-C. 94
Shield, D.T. 106
signal 64
Signal Processor

TMS320C40 146
signal transform 30
SIMD 5
simulated annealing 94, 96
Sinclair, J.B. 95
Single Assignment principle 10
singular value decomposition 42
SISAL 10, 13, 53, 67, 68, 106, 113, 115, 146,

153

186 Index

186

SISD 5
SISO controller 19, 21, 23, 43
Skillicorn, D.B. 5
source code generation 106
spectrum estimation 20, 30, 41
speech processing 30, 32
Stasinski, R. 32
state

feedback 19
state space

controller 19
representation 20, 25

Steele, C.S. 96
Stone, H.S. 85, 94
Strassen, V. 47
substitution

backward 47, 48
forward 47, 48

super-cluster 146
synchronization 2

overhead 63
system

causal 20, 23
discrete 20
linear 19, 20, 25
nonlinear 19, 21, 25, 27
only time-invariant 21
resources 81
utilization 81, 89, 91

tagged token 13
target language 106, 107
task 13, 63, 106

administration cost 63
administration overhead 146
allocation 153, 169
allocation problem 93, 99
allocation procedure 99
assignment 81

matrix 85
problem 86, 92

average number per PE 101, 103
clustering 72, 94
coresidence 88, 91
execution cost 88, 93
execution time 8
granularity 144

graph 94, 95, 97
heuristic allocation 93
merging 67, 72
modified assignment problem 90
parallelism matrix 90
pipelined execution 89
re-serialization 146
scheduling 66
serially dependent 99
static allocation 92
synchronization 64
turnaround time 7

Taylor, R.J.B. 11
Temperton, C. 32, 38
Thaler, M. 96
time delay 30
transfer function 25

continuous 20, 22
discrete 20, 22

transitive closure 67, 68, 72, 75
Transputer 2, 8, 14, 106, 145

T222 150
T800 7, 9, 60, 76, 89, 116, 146, 149, 150,
152, 163
T9000 10, 12, 146

triangular matrix 47
Tsai, W.H. 94
Tukey, J.W. 32, 41
twiddle factor 36

VAL (Value-oriented Algorithmic Language)
10, 67

vector
addition 43
computer 41
multiplication 43

volume of communication
analysis 56

von Neumann computer architecture 6

Warshall’s algorithm, 75
wavefront analysis 96
Welch, P.D. 41
Whitby-Strevens, C. 11
Winograd, S. 32
Wüst, U. 106

Zverev, A.I. 31

