
Diss. ETH ax 3>
Diss. ETH No 12497

Atomistic Simulation of the

Elasticity of Polymers

DISSERTATION

submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

Doctor of Natural Sciences

presented by

Marcel Zehnder

Dipl. Werkstoff-lng. ETH

born June 16,1966

citizen of Willisau-Land, LU

accepted on the recommendation of

Prof. Dr. Ulrich W. Suter, examiner

Dr. Andrei A. Gusev, co-examiner

Prof. Dr. Wilfred F. van Gunsteren, co-examiner

Zurich, 1997



/ dedicate this work to the memory of my father

Hubert Zehnder (1938-1997)



Table of Contents

Table of Contents

Table of Contents i

Notation v

List of Acronyms vin

Abstract xi

Zusammenfassung xii

introduction 1

1 Theory I - Elasticity of Anisotropic Solids

1.1 Stress Tensor 4

1.1.1 Homogeneous Stress 4

1.1 2 Inhomogeneous Stress 5

1 1 3 Tensor Properties of the Stress Matrix 6

1.1 4 Eigenvalues of the Stress Tensor, Invariants 7

1.2 Strain Tensor 8

1.2.1 Small or Linear-Elastic Strain Tensor 8

1.2.2 Finite Strain Tensor 10

1 2.3 Finite Strain Tensor from Cell Shape Tensors 11

1 2.4 Finite Stress (Thermodynamic Tension) 12

1.3 Stiffness and Compliance Tensors 14

1 3 1 Definition of Stiffness and Compliance Tensor 14

1 3 2 General Symmetry Relations 15

1.3.3 Voigt Notation 15

1.3 4 Effect of Crystal Symmetry on the Matrix of the Elastic Constants 17

1 3.5 Mechanical Stability 20

1.3.6 Voigt and Reuss Averages for Fibres and Powders 21

1 3 7 Isotropic Materials Lame Constants, Elastic Constants 25

2 Theory II • Atomistic Modeling

2.1 Representation of Potential Energy by a Force Field 27

2.1.1 Introduction 27

2 1.2 The CFF93 Force Field 28

2.1.3 Nonbonded Interaction Potentials 31

2.2 Modeling of Extended Dense Systems 36

2.2 1 Periodic Continuation Conditions 37

2 2.2 Long-range Interactions 38

2.2.3 Introduction of Strain and Stress 44

2.3 Energy Minimization Methods 44

2.3 1 Introduction 44



Table of Contents

2.3.2 Zeroth-order Algorithms 46

2.3.3 First-order Algorithms 47

2.3.4 Second-order Algorithms 48

2.3.5 Simulated Annealing 50

2.4 Ensembles 51

2.4.1 Introduction 51

2.4.2 The Ergodic Hypothesis and the Liouville Theorem 52

2.4.3 Relevant Ensembles 52

2.4.4 The Partition Function 54

2.4.5 Equipartition of the Hamiltonian 56

2.5 Sampling Methods 56

2.5.1 Monte Carlo 57

2.5.2 Molecular Dynamics 62

2.5.3 Hybrid Monte Carlo (HMC) 69

3 Theory III: Correlations and Fluctuations

3.1 Correlation Functions in Space and Time 71

3.1.1 The Radial Distribution Function 71

3.1.2 The Time-Autocorrelation Function 73

3.1.3 The Time-Crosscorrelation Function 74

3.1.4 The Wiener-Khinchin Theorem 75

3.1.5 Kubo-Green Formula 76

3.2 The Fluctuation-Dissipation Theorem and the Elastic Constants 77

3.2.1 The Fluctuation-Dissipation Theorem 77

3.2.2 The Fluctuation Equations of the Elastic Constants 78

3.2.3 Size Dependence of the Elastic Thermal Fluctuations 80

4 Results

4.1 Lennard-Jones Solid - Nearest-Neighbours 83

4.1.1 Introduction 83

4.1.2 Description and Cell Generation 84

4.1.3 Simulation Procedure 85

4.1.4 Evaluation of the Elastic Constants 91

4.1.5 Results 95

4.1.6 Discussion 104

4.2 Polyethylene - Planar Zig-Zag Chains 111

4.2.1 Introduction 111

4.2.2 Description and Cell Generation 111

4.2.3 Simulation Procedure 113

4.2.4 Results 115

4.2.5 Interlude: Amorphous Polyethylene 119

4.2.6 Discussion 120



Table of Contents

4.3 Polypropylene - Helical Chains 123

4.3.1 Introduction 123

4.3.2 Crystal Modifications and Cell Generation 123

4.3.3 Simulation Procedure 125

4.3.4 Results 126

4.3.5 Discussion 130

4.4 Cellulose-lb - Chains with Hydrogen Bonds 134

4.4.1 Introduction 134

4.4.2 Crystal Modifications and Cell Generation 135

4.4.3 Simulation Procedure 138

4.4.4 Results 139

4.4.5 Discussion 147

4.5 Polyamide-6 - Monoclinic Crystals 149

4.5.1 Introduction 149

4.5.2 Crystal Modifications and Cell Generation 149

4.5.3 Simulation Procedure 152

4.5.4 Results 153

4.5.5 Discussion 153

4.6 Polyamide-6 - Amorphous Cells 156

4.6.1 Introduction 156

4.6.2 Cell Generation 158

4.6.3 Simulation Procedure 159

4.6.4 Results 160

4.6.5 Discussion 168

4.7 Polyamide-12 - Amorphous Cells 172

4.7.1 Introduction 172

4.7.2 Cell Generation 172

4.7.3 Simulation Procedure 174

4.7.4 Results 174

4.7.5 Discussion 178

4.8 Polycarbonate - Amorphous Cells 180

4.8.1 Introduction 180

4.8.2 Cell Generation 180

4.8.3 Simulation Procedure 183

4.8.4 Results 184

4.8.5 Discussion and Conclusions 190

5 Conclusions

5.1 Summary 192

5.2 Outlook 193



Table of Contents

6 Appendices

Appendix A: Coordinate Transformations 194

A-1: Direction Cosines 194

A-2: Transformation of the Matrix of the Elastic Constants 195

A-3: The Eigenvalues and Eigenvectors of a 4th rank tensor 196

A-4: General Transformation Matrix 196

A-5: Metric Tensor 197

A-6: Jacobian Matrix 197

A-7: Euler Angles 198

Appendix B: Finite Elasticity and Cell Shape Tensor 199

B-1: Finite Strain From Cell Shape Tensor 199

B-2: Finite Stress (Thermodynamic Tension) from Cell Shape Tensor 201

B-3: Symmetry of the Thermodynamic Stress Tensor 201

Appendix C: Random Number Generators 202

C-1: Multiplicative Congruential Algorithm 202

C-2: Lagged Fibonacci Algorithm 203

Appendix D: Phase Space Volume Preservation of Integrators 204

D-1: Introduction 204

D-2: The Velocity Verlet Algorithm 204

D-3: The ABM4 and Runge-Kutta Integrators 205

D-4: The Model System 206

D-5: The Results 207

Appendix E: Reduced Units 209

Appendix F: Elastic constants of 'ordered' it-PP 210

Appendix G: Cluster Dynamics and Elastic Constants of PA-6 211

G-1: Cluster Dynamics of Water in Amorphous PA-6 211

G-2: Elastic Constants of 'Dry' and 'Wet' PA-6 214

Appendix H: Elastic Constants of PA-12 216

7 References 218

Acknowledgement 232

Curriculum Vitae 233



Notation

Notation

a, acceleration vector a m/s2

a,] transformation matrix A

amn acceptance probability from m to n

A Helmholtz free energy J/mol

A general property

a, b, c cell edge lengths m

a„ £>„ c, cell edge vectors a, b, c m

aA polanzabihty of atom species A m"3

ay tensor of the thermal expansivity K1

amn attempt probability to go from m to n

a, B, y cell edge angles

Aap, 6ap Lennard-Jones parameters between a and B J/mol m6(12)

b bond length m

B isothermal compressibility (= K"1) GPa1

c0 5 components of the quintic spline

cab normalized correlation function

CAB correlation function between A and 6

cljkl small strain/stress elasticity tensor GPa

C/y elasticity tensor in Voigt notation GPa

Cljki finite strain/stress elasticity tensor GPa

Cv Cp isochoric, adiabatic heat capacity J/(mol K)

C6 i0 dispersion coefficients

d,j stretching tensor d

D diffusion constant cm2/s

8,y identity matrix I

e, unit vector e

e dielectric constant

e, principal values of e,;

e0 permittivity of vacuum As/Vm

£,j symmetric small strain tensor E, s

eap interaction energy between atom type a and B J/mol

E Young's modulus GPa

E energy J/mol

r,a force f on atom a N

<|> torsion angle
°

§ijk symmetrical tensor in the first pair of indices



Notation

g, gravitational force vector N

g(x) gradient of the potential energy with respect to x J/(mol-m)

g metric tensor m2

g/ap pair-distribution function of a and B

G shear modulus GPa

G" lattice function of atom a

h Planck's number Js

h(s) structure factor

h, line search direction m

hy cell shape tensor h m

HtJ reference cell shape tensor H m

H Hamiltonian J/mol

H Hessian of the potential energy with respect to x J/(mol-m2)

H displacement tensor

ri shear viscosity kg/(m-s)

r|, finite strain tensor in Voigt notation

r\ij finite strain tensor

I identity matrix

;,e thermal flux

\f electrical flux Cm/s

J determinant of J,,

J,j Jacobian matrix J

k Boltzmann factor J/K

K bulk (compression) modulus GPa

K kinetic energy J/mol

k parameter of the Ewald summation

/, invariants of the stress tensor N/m2

L Lagrangian J/mol

XT thermal conductivity W/(Km)

Xmn Eigenvalues of a run matrix

X, n Lame constants GPa

\i, dipole moment Cm

^ chemical potential of specie a J/mol

M, number of systems in state /

ma mass of atom a kg

mw molecular mass g/mol

m, n exponents of the Lennard-Jones m-n potential

m, n, possible states in MC move



Notation

n, unit vector n

n vector of integer numbers

N(a) number of atoms (of type a)

NA effective number of electrons of atom species A

WA Avogadro's number mol"1

v Poisson's ratio

p pressure N/m2 (bar)

p,a momentum of atom a kg m/s

p„ q, arbitrary vectors

p„ q, conjugate momenta, coordinates of atom /

P, origin of the coordinate system x

P,j symmetric microscopic stress tensor N/m2

nmn transition probability

q, molecular conformation /

q* selection probability of torsion angle;

q„ 4'K O partial charge on atom /, total charge electron charge, C

Q coupling mass between Tand 6

QThN canonical partition function

r^ distance (between atom / and j) m (A)

r, arbitrary vector r m

rc, rs cutoff/spline radius m (A)
R reduced minimum distance

R matrix or vector of random numbers

p density kg/m3
s scaled coordinate of temperature coupling

s, arbitrary scaled vector s

s, S length of vector x„ X, m

sl]ki small stress/strain compliance tensor GPa"1

S,j compliance tensor in Voigt notation GPa"1

Sljki finite stress/strain compliance tensor GPa"1

S Entropy J/(mol K)

S(r) quintic spline function with components Cq 5

SM spectral density function of A

a,e
electrical conductivity £2"1 m"1

a, finite stress tensor in Voigt notation N/m2

ov finite stress tensor a N/m2

aaa collision distance between atom type a and B m (A)

t time s
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f, thermodynamic tension tensor in Voigt notation N/m2

ty thermodynamic tension tensor t N/m2

T temperature K

7", torque N/m

T/j, Tijki general tensor

9 bending angle

9 conjugate scaled velocity s"1

©y quadrupole moment Cm2

u, vector connecting two points before deformation m

U interaction energy J/mol

v,a velocity v of atom a m/s

V volume m3

w, Boltzmann weight;

W coupling mass between stress and cell shape change kg

£2 scaled momentum of pressure coupling

(o rotation angle

Qy rotation tensor

xt, X, cartesian coordinate vectors, reference frame m

X(9) Rotation matrix (Euler angles)

X out-of-plane parameter (Wilson definition) °

Xijk antisymmetric tensor in the last pair of indices

% thermodynamic friction

Z configuration integral

Z($),Z(y) Rotation matrix (Euler angles)

List of Acronyms

bcc body-centered cubic

BMFT Bundesministenum fur Forschung und Technologie

BPA-PC Bisphenol-A-Polycarbonate

fee face-centered cubic

FDT Fluctuation Dissipation Theorem

GZS Gusev-Zehnder-Suter

hep hexagonally close packed

MC Monte Carlo

MD Molecular Dynamics

MRS Mechanical Relaxation Spectrum

MSI Molecular Simulations, Incorp.
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PA Polyamide

PBC Periodic Boundary Condition (= PCC)

PC Polycarbonate

PCC Periodic Continuation Condition (=PBC)

PE Polyethylene (CH3-(CH2)n-CH3)
PR Pamnello-Rahman
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Abstract

In this work, the elastic constants of solids, in particular crystalline and

amorphous polymers, are computed numerically.

The first part introduces in three chapters to the theory of elasticity, to ato¬

mistic modelling, and to the theory of fluctuations, laying the foundations for the

second part, which presents the results of various computer simulations.

Starting from the stress and strain tensor, the properties of stiffness and

compliance tensors are deployed in the first chapter. Special emphasis is put on

symmetry operations and on coordinate transformations. In the chapter about

atomistic modelling, the functional form and the computation of intra- and inter-

molecular forcefield terms are covered as well as algorithms for the canonical

sampling of the phase space. The focus of the third chapter is on methods that

compute the complete tensor of the elastic constants from fluctuations of global

parameters At the moment, there are two such formula: The first is from Par-

nnello and Rahman and uses the fluctuations of the cell shape (i e the strain

with respect to a reference shape) only, whereas the second was established in

the course of this work and takes into consideration both the fluctuations of the

strain and the correlation of stress and strain

The generation of atomistic models of argon, polyethylene, polypropylene,

cellulose, polyamide, and polycarbonate is described in the second part of this

work. These models were propagated by MC and MD algorithms through phase

space to compare the convergence behaviour of the two fluctuation approaches

and to test their applicability to real polymeric materials. Exact results are deliv¬

ered by fluctuation approaches only in the limit of an ergodic sampling of the

phase space, i e for infinitely long simulations. The convergence behaviour of

these algorithms is therefore of prime interest to get useful approximations in a

reasonable time. It could be shown, that the new fluctuation formula converges

at least as good as the well established Parnnello-Rahman formula. In some

cases - low temperatures and small oscillations - the new stress-strain correla¬

tion method is even much faster. Comparison between the results of the two

approaches allows for an estimation of the accuracy of the elastic constants

There is a good agreement between calculated and experimental elastic

constants both for amorphous and crystalline polymers. In contrast to other

methods like the static minimum energy method, it was even possible to predict

the influence of small guest molecules and of temperature changes on the elas¬

tic behaviour. Besides this, it is possible to use the huge amounts of data pro¬

duced in molecular dynamics simulations to compute dynamic properties like

relaxation spectra.



Zusammenfassung

Zusammenfassung
Diese Arbeit befasst sich mit der numerischen Berechnung von elastischen

Konstanten von Festkorpern, insbesondere von amorphen und kristallinen Poly-

meren. Im ersten Teil werden in drei Kapiteln die Elastizitatstheorie, die atomisti-

sche Modellierung und die Fluktuationsrechnung dargelegt, welche die

Grundlage des zweiten Teils bilden, in welchem die Resultate diverser Compu-

tersimulationen prasentiert werden.

Ausgehend vom Spannungs- und Dehnungstensor werden zuerst die

Eigenschaften des Elastizitats- bzw. Nachgiebigkeitstensors in Bezug auf Sym-

metrieoperationen und Koordinatentransformationen behandelt. Im Abschnitt

uber atomistische Modellierung wird, nebst der funktionalen Form und Berech¬

nung von intra- und intermolekularen Kraftfeldern, vor allem auf Algorithmen zur

kanonischen Erfassung des Phasenraums eingegangen. Bei Fluktuationsrech-

nungen bilden Methoden, welche den vollstandigen Elastizitatstensor aus den

zeitlichen Schwankungen globaler Grossen berechnen, den Schwerpunkt. Zur

Zeit existieren zwei solche Formalismen: der erste stammt von Parrinello und

Rahman und benutzt die Anderungen der Zelldehnung, wahrend der zweite im

Rahmen dieser Arbeit entwickelt wurde und sowohl Schwankungen der Deh-

nung als auch der aktuellen Spannung berucksichtigt.

Im zweiten Teil dieser Arbeit werden Festkorpermodelle von Argon,

Polyethylen, Polypropylen, Cellulose, Polyamid und Polycarbonat erstellt und

durch den Phasenraum propagiert, um einerseits das Konvergenzverhalten der

Fluktuationsformeln zu vergleichen und um andererseits die Anwendbarkeit die¬

ser Modelle auf reale Polymere zu testen. Fluktuationsformeln liefern exakte

Resultate nur fur den Grenzfall der ergodischen Abtastung des Phasenraums,

d.h. fur unendlich lange Simulationen. Es konnte gezeigt werden, dass die neu-

entwickelte Fluktuationsformel zumindest gleich gut und unter gewissen Bedin-

gungen - tiefe Temperaturen und kleine Dehnungen - viel besser konvergiert.

Der Vergleich der Resultate der beiden Fluktuationsmethoden erlaubt zudem

eine Abschatzung des Ungenauigkeit der erhaltenen Elastizitatstensoren.

Im Allgemeinen wurde eine sehr gute Ubereinstimmung zwischen berech-

neten und experimentellen elastischen Konstanten fur kristalline und amorphe

Polymere erzielt. Insbesondere sind die verwendeten Fluktuationsformeln in der

Lage, den Einfluss von gelosten Stoffen und von Temperaturanderungen auf die

elastischen Konstanten vorherzusagen. Bei diesen Simulationen fallen zudem

grosse Mengen an Daten an, welche - mit Einschrankungen - fur die Berech¬

nung dynamischer Informationen, wie z. B. Relaxationsspektren, genutzt werden

konnen.



Introduction

Only a few years after the establishment of the macromolecular character

of polymers by Staudinger (1920)Elias84, Meyer and LothmarMeyer36a calculated

the elastic modulus of isolated cellulose chains in 1936. They used spectro¬

scopic data of low molar mass compounds to establish a forcefield of the cellu¬

lose backbone and computed the elastic constants from the spring constants of

angles and valences. Basically the same forcefield approach was used twenty-

five years later by LyonsLyons58a and TreloarTreloar60a to estimate the elastic

moduli of nylon, polyethylene terephthalate, and polyethylene chains. In 1966,

Odajima and Maeda°da)ima66a used Bom's lattice dynamics theory to compute

the full matrix of the elastic constants of polyethylene crystals. They included the

intermolecular forces (at least the nearest neighbour interactions), which they

found to contribute only 0.2 % in the case of polyethylene crystals, and the influ¬

ence of temperature on the elastic constants in their model. Four years later,

Wobser and BlasenbreyWobser70a determined the elastic constants of PE single

crystals using the theory of the dynamics of non-primitive lattices of Leibfned tak¬

ing the first and second neighbour shell into consideration. In the following year,

1971, Shiro and MiyazawaShiro71a developed a general method to transform the

potential energy matrix (i.e. the forcefield) to the matrix of the elastic constants

Both intra- and intermolecular forces were included With the same general

matrix method, but reduced to the asymmetric unit cell, Tashiro et a/Tashiro78a

perfected this methodology.

Another approach is the sfaf/c minimum energy method, which uses the

second derivative of the potential energy hypersurface with respect to strain to

compute the elastic constants There is no analytical computation of the force-

field Hessian, but a series of deformation and minimization steps are performed

to discretize the energy surface. Two of the first applications for amorphous met¬

als are described in the works of Maeda and TakeuchiMaeda81a in 1981 and

Srolovitz et a/Srolovitz83a in 1983. Three years later, Theodorou and

SuterTheodorou86a applied this method to polymeric systems with extended statis¬

tical mechanical considerations Furthermore, they used a force approach -1 e

the first derivative of the stress with respect to the strain - to estimate the elastic

constants.

Brown and ClarkeBrown91a introduced in 1991 a phenomenological method,

that estimates the elastic constants from the elongation of a simulation cell dur¬

ing a molecular dynamics simulation with a constantly increasing stress compo¬

nent. This method was applied to various polymers by Qian and
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LudoviceLudovice93a.

All the methods presented above have certain disadvantages: The general

matrix methods only work for ordered systems, whereas the static minimum

energy approach completely neglects entropic effects, which makes its applica¬

bility to amorphous systems doubtful (see chapter 4.8.4.2). The molecular

dynamics approach suffers from very high deformation rates and yields elastic

constants which may considerably differ from experiment. It would therefore be

desirable to have a method, that would take into account both entropic effects

and the influence of small molecules on the elastic constants. Furthermore, the

method should work both on crystalline and amorphous systems of any size and

it should leave the microstructures close to their equilibrium conformations.

Already in 1969, Squire, Holt, and HooverSt'uire69a introduced a method to

compute the elastic constants from 'kinetic', 'Born', and 'fluctuation1 terms result¬

ing from a Monte Carlo simulation. Parrinello and RahmanParrinelloRahman81a/82a

published in 1981 and 1982 their pioneering works about constant stress molec¬

ular dynamics and the computation of the matrix of the elastic constants from

strain fluctuations. This laid the basis for a number of works, that compared the

efficiency of fluctuation algorithms in MC and various MD-ensembles. Of impor¬
tance are here the work of Sprik, Impey, and KleinsPnk84a, Ray, Moody, and

Rahman"3"8537863, and the papers of Ray"3*"383 and Fay and RayFav92a. Most

calculations in these papers dealt with nearest-neighbour Lennard-Jones solids

and with sodium.

In this work, the strain fluctuation method was applied for the first time to

various polymeric systems to compute the full matrix of the elastic constants of

crystals, glasses, and glasses with small diffusants. It turned out, that this fluctu¬

ation method was capable of reproducing the elastic constants of all these sys¬

tems remarkably well, with one problem remaining: the convergence of the

elastic constants with simulation time was slow, requiring long simulations. It is

therefore most valuable to find a convergence criterion to optimize the duration

of the long molecular dynamics runs. This criterion was found by establishing a

new fluctuation formula that uses both the stress and the strain fluctuations of a

model cell to compute its elastic constants. Comparison of the results of the

strain and the stress-strain fluctuation method allowed to estimate the degree of

convergence of a simulation.



The following work is organized in two major sections:

The first three chapters comprise the theory section, in which the relevant

concepts of elasticity, molecular modelling and fluctuations are outlined. Since

this section is quite detailed, it might serve as a tutorial introduction to the field

covered by this thesis.

The fourth chapter with eight subchapters presents the results of molecular

dynamics and Monte Carlo simulations of argon, polyethylene, polypropylene,

cellulose, polyamides and polycarbonate. Some introductory remarks at the

beginning explain the choice of the polymers by methodological and historical

arguments.

Comments, conclusions and an outlook finish the main body and some

appendices provide more detailed informations on certain topics.



Theory I - Elasticity of Anisotropic Solids

1 Theory I - Elasticity of Anisotropic Solids

1.1 Stress Tensor

Forces acting upon a solid elastic body may be categorized as body forces,

originating from gravitational or magnetic fields, or as contact forces, exerted by

the surrounding matter.Sands82'Wooster73'Malvern69 While body forces are effective

on individual particles of the system (atoms, dipoles, etc) and therefore are pro¬

portional to the size, the contact forces act on the surface of the body and are

dependent on its shape and the location of the contact points. Consider a vol¬

ume element within the stressed body (Fig. 1.1). From the contact points forces

are transmitted on the sides of the element by the material around it. These

forces are proportional to the area of the surface of the element, and the force

per actual unit area is called the stress.

Figure 1.1: The stresses on the faces of a unit cube in a homogeneously stressed body

1.1.1 Homogeneous Stress

A stress can be called homogeneous, if the forces acting on the surface of

an element of fixed shape and orientation are independent of the position of the

element in the bodyNye85'Shuvalov88. The volume element of Fig. 1.1 shows the

stress acting on the three faces oriented towards the positive ends of the coordi¬

nate axes x-i, x2 and x3, with positive values given by the orientation of the vec¬

tors (tensile stress acting on the body is positive while compressive stress is

negative). Since a homogeneous stress state is assumed, the stresses on the

three opposite faces must be equal and opposite to those shown in the figure.

This makes a total of nine different components of the stress.

If we further assume that the volume element is in static equilibrium, we



1.1 Stress Tensor

must have zero angular momentum around each coordinate axis. This is only

fulfilled if

'12
_

"21

or

°v = °p

(1-1)

We thus can write the six independent components of the stress in a symmetric

3x3-matrix:

°11 °12 °13

°12 °22 °23

G13 °23 °33

(1-2)

1.1.2 Inhomogeneous Stress

A stress-state is called inhomogeneous, if the stress varies from point to

point. The actual stress at a given point is arrived at by taking the forces per area

of a volume element and letting the size of the volume element tend to zero. The

inhomogeneity of the stress can be expressed by it's gradient -^-u.
k

The equations of motion of a small volume element in the presence of a

(gravitational) body force g, can be written as
Nye85

9o„

^ + pg, = px„ (1-3)

with p corresponding to the density of mass in the volume element. (Throughout

the rest of this chapter, the summation convention is applied to indices occurring

twice in a product).

Assuming statical equilibrium, all components of the acceleration x, must

be zero, which leads to the equations of equilibrium of the theory of elasticity

do,,

dx,
-y + P<7, = 0 (1-4)

In a small cube of size S, the moment of inertia around an axis parallel to

the edges through the center is i^. Since the torque exerted by the shear-

stresses on the surface of this cube and by an additional body-torque G is

=.3
(°,,-°H+G*)5 (k*i,j): (1-5)

the angular acceleration will be proportional to 5"2, becoming infinite as 5 tends

to zeroKe"yGroves7°, unless
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<V<V<3/c=0. d-6)

If body-torques are absent, the same relation as for homogeneous stresses

(Eq. (1 -1)) is obtained. With body-torques present, Hooke's law is still valid, if a,;

is not the stress itself, but its symmetrical part \ (otj + ojt) .Nye85,Maivern69

Actually, it is always possibleLandau86a to find a transformation of the form

where %,lk is any tensor antisymmetric in the last pair of indices. If the antisym¬

metric part of o,j has the form

then an asymmetrical otj can be made symmetrical by a transformation of this

type (Eq. (1-7)). The symmetrical tensor is

with

xIJk- V<+'*/"'/* (1"10)

1.1.3 Tensor Properties of the Stress Matrix

The nine components of a second-rank tensor T connect the components

of two vectors p and q in a linear relationship

Pi - T,fl, (1-11)

If the coordinate system is transformed, the elements of a tensor transform

according to

T„ - a**/*/. (1"12)

a,j denoting the components of the transformation matrix A (Appendix A-1).

Equation (1-12) thus represents a definition of a (second-rank) ten-

sor.Nye85,Goldstein80

It can be shownNye85 that the stress matrix ov indeed forms a second-rank

tensor that connects the normal n of a small surface element 8S with the force

vector p8S acting through this surface element (Fig. 1.2).

If the area of the surface element becomes infinitesimally small, the local

stress vector p is given by
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Figure 1 2 The force transmitted across a small surface element in a stressed body

P, V/ (1-13)

This equation still holds when the stress is not homogenous, when body forces

are acting, and when the body is not in statical equilibrium for these extra terms

become negligible as the surface is made vanishingly small

1.1.4 Eigenvalues of the Stress Tensor, Invariants

Since the stress tensor is symmetric (Eq (1-1)), all its eigenvalues are real

and the eigenvectors are orthogonal
Bronstein91 it is thus possible to diagonalize

the stress tensor by an appropriate transformation of the reference coordinate

system using a transformation matrix a/y

a,ka,Pl,

"1

0 o

0 0

0

0 0 a,

(1-14)

The unit vectors of the transformed coordinate system form an eigenspace, in

which a volume element similar to that of Fig 1 1 shows no shear stresses but

only normal components

Three invariants of the stress tensor are given by Bha9avantam66

/, o. + a0 + a, a,, + a22 + o
J33

l2 = a2o^ + o3a1 +0,02
°23 °33

11 "13

a., a.

/3 -

0,0303

°11 a

13 a33

°12 °13

J11 "12

°12 °22 °23

°13 °23 a33

(1-15)
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1.2 Strain Tensor

1.2.1 Small or Linear-Elastic Strain Tensor

1.2.1.1 Small Strain and Rotation Tensor

A material subject to a stress reacts by deforming until the internal stresses

generated by this deformation counterbalance the external stress. If the material

relaxes to its initial shape after removal of the external stress, the deformation is

called elastic, if a permanent change in shape remains, a plastic deformation

has occurred. In the present work, only the elastic, thermodynamically reversible

behavior of matter is being concerned.

The local small-scale deformation of a body can be described by looking at

an arbitrary infinitesimal line vector dX connecting two points P and Q in the

undeformed state (Fig. 1 3).

P

Figure 1 3 Relative displacement du of O relative to P

Upon deformation, the two points move by u to p and by u+du to q, respectively.

The unit relative displacement vector,

du. du.dX,
id -

^ <1-16)

can be written briefly as

g-J„n, d-17)
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where Ju is the 3x3 Jacobian matrix or displacement gradient matrix and n the

unit vector in the direction of dX. The Jacobian matrix - the deformation process

can be interpreted as a transformation from one coordinate system to another

(Appendix A-6) - can be written as the sum of a symmetric matrix E and a skew-

symmetric matrix Q.,

J=E + a, (1-18)

with

3i/,

dX]

3u, du2
uXn 3X, JV

3u3 3u,
"*

vax, dx3

fBu1 du2^
ax2 sx,

du0

dX0

(du.
_3 +
^

3X2 3X3

du,

ax3 ax,
^

-1 +
^1

ax3 dx2j

(du.

du3
ax

£v
=

2

du, du^
(1-19)

and

Q. =

'au, au2"

V3X2 ax,

'au3 au,"
ax, ax3

3u a^^i
ax2 ax,

o

'

3u, 3u,

fau,

ax2 ax3yl

3X3

fau.

au3l
3X

du.)

SXr. rjXp

o

£}„
fau, auy
ax/ax,,

(1-20)

E represents the (symmetric) small-strain tensor with its components e,;. It can

be shownMalvern69 that Q. is a rotation tensor describing the rotation of a rigid

body around an axis vector

(0 =

-a

-a

-a

23

13

12

(1-21)

by an angle |co|.

1.2.1.2 Diagonalization, Dilatation Strain Quadric and Ellipsoid

Since strain, as defined by (1-19), is a symmetrical tensor it may be

referred to its principal axes. The shear components then vanish,
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-11 c12 c13

E13 £23 E33

S, 0 0

0 e2 0

0 0 e.

(1-22)

leading to a simple definition of the dilatation A,

A = (1+e,)(1+e2)(1+e3)-1 e, +e2 + e3 = trE. (1-23)

The principal axes of strain only remain unchanged by deformation if the rotation

tensor £2 is zero, otherwise they define three mutually perpendicular axes, which

remain mutually perpendicular during the deformation.

It is possible to define a strain quadric

e,yx,xy = 1
, (1-24)

which is identical with the quadric Jtjxp(j = 1.

The strain ellipsoid

*1* x2< X3

(1+E1)2 (1+e2)2 (1+e3)2
= 1 (1-25)

describes the shape of a sphere (xi2+x22+x32=1) after the deformation.

The invariants of the strain matrix can be found analogous to Eq. (1-15).

1.2.2 Finite Strain Tensor

If a body is heavily (but still elastically) deformed, the linear relationship

between change in shape and strain is no longer valid, as will be shown in this

paragraph.Landau86a

Considering again the deformation shown in Fig. 1.3, the vector dx, con¬

necting the two points Pand Q, changes during the deformation to dx = dX + du.

The squared distance between the two points is dS2 = dXjdX, before and

ds2 = dx/dx, = (dX,+du,)2 after the deformation. Substituting du, = (du/dXjjdXj,
which is valid, if the strain is sufficiently homogeneous over the length scale

given by dX, the length of the deformed connecting vector is

p P du, du,du,
ds2 = dS2 + 2^dX.dX. + ~^-dX.dXk.

oX ' I
dXdXk

' K
(1-26)

The second term can be brought into an explicitly symmetrical form, because the

summation is taken over both suffixes /and/

du,
2^dX,dX^

(dU, dut)
dx,+ ax,

i ij
dX,dXs (1-27)
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In the third term, the indices /and /care interchanged and ds2 takes the final form

ds2 = d^ + 2r[,jdXldXj, (1 -28)

where the symmetric tensor \\tj is defined as

*1„
(^J_u, du^du^
dxl ax, dx,ax/y

(1-29)

Comparing Eqs (1-19) and (1-29), one can clearly see that the small strain

tensor is an approximation of the above equation neglecting the products of the

derivatives. Equation (1-29) provides a correctMalvern69 mathematical description

of the strain that is valid for small and large deformations.

Assuming that P in Fig. 1.3 is located at X and p at x, the displacement u is

given by

(1-30)o, - x,-Xr

Combining Eq. (1-29) and Eq. (1-30), we find

1

1,7-2{dX.dX-^J (1-31)

which, using the definition of the Jacobian (Eq. (A-17)), can be written as

%
~ 2(,Wx,*rV or ^ = §(JxTjx-'

The two tensors Jx and Ju are related by

du. 3(x,-X) 3x,
i

_ [ _

v ' i'
_ I

_

x
_ / _

x

"••i dXj 3Xy 3X; 'i "-'J V

(1-32)

(1-33)

1.2.3 Finite Strain Tensor from Cell Shape Tensors

1.2.3.1 Definition of the Cell Shape Tensor

The cell shape tensor h is simply constructed by taking the cell edge vec¬

tors a, b and c (Fig. 1.4) as columns of a 3x3 matrix

h - [a, b, c]

a, b, c,

2 2 2

a3 ^3 C3

(1-34)

The cell shape tensor h is a scaling matrix that transforms all points in the cell

into a cubic unit cell by

hs„ s - h r„. (1-35)
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1.2.3.2 Strain from Cell Shape Tensors

The strain (deformation) between a reference cell shape tensor H and an

actual shape tensor h (Fig. 1.4) can be expressed by

ri = J[HT_1hThH"1-l] , (1-36)

with I representing the identity matrix (lf=8,j, 8 Kronecker symbol).

(The derivation of this formula is given in Appendix B-1.)

reference deformed

^fff^
Figure 1 4 Scaling matrices linking unit cell with reference and deformed cell

1.2.4 Finite Stress (Thermodynamic Tension)

1.2.4.1 Relation Between Actual Stress and Thermodynamic Tension

As stated in chapter 1.1.1, stress is defined as force per unit surface of the

actual, deformed body. In contrast to this, strain is referred to the natural,

unstressed state. For this reason the stress power necessary to deform a body

with a certain deformation rate is not equal to the stress components times the

differentials of the corresponding strain components. Quantities f,y, called ther¬

modynamic tensions, are defined such that the power to stretch a medium non-

dissipatively equals the sum t,r\, (per unit volume of undeformed body) This

rate of change of the Helmholtz energy at constant temperature must equal the

sum of the actual stress a/; times the actual deformation rate c/v,Tnurs,on64
u-7s - v.** - *vV (1"37)

where Urepresents the internal energy, 7"the temperature, and Sthe entropy. V

and VQ denote the volume of the deformed and undeformed body, respectively

and the stretching tensor dtj is given by



12 Strain Tensor 13

(dv, 3vy)
,37/37,,

3^3Xf
(1-38)

The second equality can be rationalized by taking the time derivative of

Eq. (1-31),

T| St

'

3x,av,3x, 3x,3v, 3x,'
i"_j -y I I I

3xsaxyax( 3x,3x,axs;

3x, 3x,

d —-—'-

'idXsdXt
(1-39)

Plugging (1-38) into (1-37) and using the relation between \/and V0 given

by Eq. (A-20), the thermodynamic tensions and the actual stress are connected

by

3XS3X(
'<* =

Ja'idx~,dx~, or _

i 3*, 3*
°'i JdXsdXts'-

(1-40)

This equation can be written in terms of the cell shape tensors H and hRay84a

or o - -,nM tM n
, (1-41)

1 r-1 r
t = JHh oh H

1 -1 r-1 tIhH tH h

,

J

with the Jacobi determinant J= det(hH"1), and can also be found from compari¬

son of Eqs. (1-32) and (1-36). (The derivation of these formulae can be found in

Appendix B-2.) Since a is a symmetric tensor, t must be symmetric too, as is

shown in Appendix B-3.

1.2.4.2 Expressions for the Thermodynamic Tension

To find an expression for the tst, the first equality of Eq. (1-37) is written

down, considering that A = U- TS,Thurston64

p0 (A - TS) = gr,s(. (1-42)

Assuming that the Helmholtz energy is a function of r^and T, its total derivative

can be written as

dA} dA

37".
T.

Poa^-',rJiw+Po[s+5TJ7--o>

By substitution into (1-42), it is found that

dA
.

\ (c dA

whence

( dA

'"-p°(aiJr-

(1-43)

(1-44)

(1-45)
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Another formula for the thermodynamic tensions was presented by

RayRay84a.

t = JHh"1Phr'1Hr, (1-46)

where P is the symmetric microscopic stress tensor

nl

(1-47)p = ir1 'yPqPaj y rap/afjj dU~

T ffla a% ra» 9raP.

with pa denoting the momentum of atom a and rab representing the distance

between atoms a and b. U is a potential energy, which depends on the inter¬

atomic distances only but is not necessarily pairwise additive.

From the comparison of Eq. (1-41) and Eq. (1-46), it is found that

a = P, (1-48)

which is equivalent to the virial theorem in the £hA/-(constant energy, cell shape,

and number of particles) ensemble and a of
^ j approximation of it in the HtW-

(constant temperature, stress, and number of particles) ensembleRay84a.

1.3 Stiffness and Compliance Tensors

1.3.1 Definition of Stiffness and Compliance Tensor

As stated in chapter 1.2.1.1, a body subject to a stress deforms elastically

until the internal forces generated by the emerging strain counterbalance the

external stress. For sufficiently small stresses and strains, a linear (hookean)

relationship between the two tensors can be observed. This is expressed by the

following equations

a,,
= c,kr5w or e, = sljklokl, (1-49)

where the c/;W are called the stiffness and the s,yW the compliance of the material

(note that the symbols of these two quantities are the reverse of the correspond¬

ing initial letters). The above equation is an example of a constitutive equation,

describing the macroscopic behavior of the material under consideration.

It can be shownNye85 that, since o and e both are second-rank tensors, c

and s form fourth rank tensors, that transform like

^V/= aimainakoalpTmnop< (1-50)

with aap denoting the elements of the transformation matrix.

Dealing with relatively large stresses or strains, i.e. finite deformations, the

stiffness and compliance tensors can be written as
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f« - ^////l/s or "Hf/ - ^/yfr/'w (1-51)

The isothermal elastic constants (=stiffnesses Cljkjj can be written for infinitesi-

mally small stresses and strains in differential form asTheodorou863

CT
-

°/yW -

rao
3r, kij

Po
Ja_
*t\„^klj

(1-52)

with the second equality given by (1-45). The elastic constants defined by the

above equation are called second order because they involve the second deriva¬

tives of the energy. Third- and higher order elastic constants are defined in an

analogous way to Eq. (1-52), but they are not of practical interest, since no

experimental data is available.CaginRay88a

1.3.2 General Symmetry Relations

Since the stress (Eq. (1-1)) and the strain tensor (Eq. (1-29)) are symmet¬

ric, it follows from (1-51) that the indices in the first and the second pair of Cljki
and SiM can be exchanged

(1-53)Jijkl Jjikl J\itk J\\lk-

Furthermore, the order of differentiation in Eq. (1-52) is immaterial and thus the

first pair of indices can be interchanged with the second pair:

Cljkl = Cklr (1-54)

Eqs (1-53) and (1-54) provide a total of 60 independent equations, which reduce

the maximum number of independent elements of the elasticity (= stiffness) ten¬

sor to 21.

Similar considerations are also valid for the compliance tensor S/jW, which

has 21 independent elements, too.

1.3.3 Voigt Notation

The symmetry relations discussed in the previous chapter can be used to

represent the forth-rank stiffness and compliance tensors by two-dimensional

matrices.Nye85

The symmetric stress and strain tensors are converted into column vectors

by writing them with a single suffix running from 1 to 6:

°11 a12 °13

°12 °22 °23

a13 °23 °33

«-> e12 e22 e23

e

(1-55)



16 Theory I - Elasticity of Anisotropic Solids

using the following rule to transform the 3x3-matnces to 6-dimensional vectors

(compare Eq. (1-55)):

Table 1 -1: Transformation rule of Voigt notation

Two-suffix notation 11 22 33 23,32 31,13 12,21

One-suffix notation 1

The factors of 1 in the off-diagonal strains are introduced to allow direct

comparison of the elements of the matrix of the elastic constants with those of

the elasticity tensor. The same conversion also holds for the finite stress (f/y,
Eq. (1-40)) and strain tensor (n,,, Eq. (1-29)).

It is now possible to re-write the stiffness and compliance tensors, Cljk\ and

SljkiOl Eq. (1-51), as 6x6-matrices connecting the Voigt-stresses and -strains:

rfln or ^m^n- (1-56)

At the same time factors of 2 and 4 are introduced as follows:

2S,
4S,

Dijkl

ijkl

ijkl

Smn when m or n are 1, 2 or 3

Smn when either morn are 4, 5 or 6

Smn when both m and n are 4, 5 or 6

(1-57)

For the C„w no factors of 2 and 4 are necessary, providing the simple relation

'ijkl (1-58)

which explains the introduction of the factors of ± in (1-55).

Both Cmnand Smnare symmetric matrices as follows from Eq. (1-54), lead¬

ing to

Cm„ = C„ or (1-59)

We can now write the matrix of the elastic constants (and the compliance matrix)

as follows:

C11 C12 C13 C14 C15 ^16

C,2 C22 C23 C24 C25 C26

C13 ^23 ^33 ^34 C35 ^36

c,4 c24 c^ c44 c45 c46

C15 C25 C35 C45 C55 C56

^16 ^26 ^36 ^46 ^56 ^66

s,, s,2 s,3 s,4 s,5 s16

S,2 S22 S23 S24 s25 s26

^13 ^23 $33 ^34 ^35 ^36

s,4 s24 s34 s44 s45 s46

^15 ^25 $35 $45 $55 $56

^16 ^26 $36 $16 $56 $56

(1-60)

These matrices contain the complete information about the elasticity of a
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material and especially the matrix of the elastic constants is widely used in the

following sections of this work The two matrices are linked by the following rela¬

tion
Shuvalov88

s = c1
'm = Cmnr,n = CmnSnof0 =» CmnSno = 5mo =» (1-61)

c = s1

Although mathematical operations like inversion or multiplication with Voigt

stress or strain vectors are quite straightforward, it has to be kept in mind that

Cmn and Smn do not represent tensors and that therefore the usual transforma¬

tion law (Eq (1-12)) is not valid Instead of it, a more complicated transformation

matrix described in Appendix A-2 has to be used

1.3.4 Effect of Crystal Symmetry on the Matrix of the Elastic

Constants

The relation between the symmetry of the physical properties of a crystal

and its crystallography symmetry is expressed by Neumann's Principle Nye85

The symmetry elements of any physical property of a crystal must include

the symmetry elements of the point group of the crystal

Therefore, the elastic constants have the same or a higher symmetry than

the crystal they are measured on The elasticity and stiffness tensors are inher¬

ently centrosymmetric (i e invariant, if all three cartesian axes are inverted), as

can be easily seen from Eq (1-56),

where a simultaneous change of the signs of the tensions t and the strains r\ is of

no influence on the elastic constants

If the crystal symmetry is higher than tnclinic, the number of independent

elastic constants is reduced from 21 to 13, 9, 7, 3 and 2 as the symmetry

increases from monoclinic to cubic and isotropic

There are several methods to introduce the crystal symmetry to the matrix

of the elastic ConstantsNye85'Bhagavan,am66'Lovett89, among which the one out¬

lined next is the most systematic

Each of the symmetry elements of the point group of the crystal is

expressed as a transformation matrix A (Eq (A-3)), operating on the elasticity or

stiffness tensor,

Tykl = aimainakoalpTmnop (1-50)

Equating the old with the transformed moduli creates a set of equations describ-
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ing the influence of the particular symmetry element on the elastic moduli. The

combination of all the symmetry elements describes the point group and thus its

influence on the elastic constants. In Table 1-2, the symmetry of the stiffness and

compliance matrix as a function of the crystallographic crystal class is listed. A

key to the notation can be found at the end of the table.

Table 1-2 Form of the C,, and S, matrices

a) Trichnic

all classes

1,T

b) Monoclinic

a#b*c

a = 90°

(3*90°

7=90°

a*b* c

a = 90°

p=90°

7*90°

• •

• •

• • • •

• • •

all classes

2, m, 2/m

Diad || x2

all classes

2, m, 2/m

Diad || x3

c) Tetragonal

a = b*c

a = 90°

(3 = 90°

7=90°

Ni::
• • •
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d) Trigonal

a = b* c

c a = 90°

P = 90°

7=120°

e) Hexagonal

a = b*c

C
a = 90°

(3 = 90°

7=120°

Ik" b

7

Ni:::
• • • •

all classes

6, 6, 6/m,

622, 6mm

6m2,

6/mmm

f) Orthorhombic

a* b * c

a = 90°

P = 90°

7=90°
• •

all classes

222, mm2,

mmm

g) Cubic

a = b = c

a = 90°

f5 = 90°

7=90°

'^;;;'
\

all classes

23, m3,

432, 43m,

m3m
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Table 1-2 Form of the C,, and Slf matrices

h) Isotropic Key to notation

^;;;'
^

zero component

non-zero component

equal components

numerically equal, opposite in sign

S twice the numerical equal of •

O numerically equal to heavy dot

2(S,1-S12),1(C„-C,2)

1.3.5 Mechanical Stability

The elastic constants are only defined if the material under consideration is

in a state of equilibrium, i e if small changes in shape do not result in plastic

deformation. This imposes two restrictions to the structure of the energy hyper-

surface as a function of the applied strain At zero strain, the first derivative of

the strain energy is zero, i.e no stresses act on the material and the second

derivatives are positive The second statement is equivalent to a mechanically

stable system, where small deformations always increase the energy.BornHuang54
The elastic constants are proportional to the second derivative of the (free)

energy with respect to strain and therefore, the matrix of the elastic constants

must be positive definite, which is equivalent to the requirement that all eigenval¬

ues should be positive0"11"172 or that all principal minors (Fig. 1.5) are

positiveBornHuan954 (The computation of the eigenvalues and eigenvectors of a

4th rank tensor is described in Appendix A-3.) This requirement imposes further

restrictions to the elastic constants of the different crystal systems.

C,, C,2 C,3 C,4 C,5 C,6

'12

'13

'14

'15

'16

c22 c23 c24 c25 c26

$23| $33 $34_ $35_ $36

C24| $34| ^44 $15 $46

C25l $35l $151 $55 $56
I I I

r

$26! $36| $»6! $56! $56_

Figure 1 5 Principal minors of the matrix of the elastic constants

The analytic computation of the eigenvalues of the matrix of the elastic

constants is straightforward only for the cubic system, where the matrix
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C,, C,2 C12 0 0 0

C,2 C,, C,2 0 0 0

C,2 C,2 C,, 0 0 0

0 0 0 C44 0 0

0 0 0 o c44 0

0 0 0 0 0 c,
44

(1-62)

has the eigenvalues

C,, -C,2 C11 "C12 C,1+2C,2 ^44 ^44 '44 (1-63)

The requirement that all Eigenvalues should be positive, is equivalent to the fol¬

lowing conditions

Cn>\C,2\ C,,+2C,2>0 (1-64)C44>0

A similar treatment of the hexagonal and trigonal symmetry results in the

following restrictions

C44>0 C„>|C,2| (C„ + C12)C33>2C?3, (1-65)

to which

$56 >0 (1-66)

is added for crystals of tetragonal symmetry

For the tnclmic, monoclinic and orthorhombic crystal classes, the eigenval¬

ues are quite complicated, preventing the establishment of restrictions as com¬

pact as above But numerically, the eigenvalues can be computed very efficiently

from the matrix of the elastic constants, which allows a check of the mechanical

stability of the system under consideration

1.3.6 Voigt and Reuss Averages for Fibres and Powders

The elastic constants discussed so far are those of single crystals, but nor¬

mally, matter is a conglomerate of crystallites of various size and orientation,

embedded in a more or less amorphous matrix, which makes it very difficult to

calculate the overall elastic behavior of a macroscopic body from the elasticity of

its constituent domains Two extreme approximations of the stress or strain field

in a polycrystalline material are the Voigt and the Reuss limits

• In the Voigt limit, it is assumed that all crystal elements are subject to the

same strain and the elastic response of the material is obtained by taking the

spatial average of the stiffness matrix
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• Equal stress is supposed to act on the crystallites in the Reuss limit and the

overall compliance of the material is the spatial average of the individual com¬

pliances.

The spatial average of the stiffness or the compliance tensor equals the

normalized integral over the distribution of orientation of the transformed tensor

7> given by

71
ijkl

= aimajnakoalpTmnop C1"50)

with a,j describing the orientation of the crystalline element using the Euler angle

formalism (Appendix A-7).

There are two spatial orientations of practical interest

• The cylindrical symmetry, where one coordinate axis is oriented uniformly in

one direction and one of the other two axes (as the only degree of freedom),

is randomly distributed in the plane perpendicular to the direction of orienta¬

tion This corresponds ideally to the orientation distribution in a polymeric

fibre.

• The powder symmetry, where all orientations are equally probable, which is a

model for any unonented polycrystal.

1.3.6.1 Fibre symmetry

The transformation matrix a/y of a fiber oriented in the x3-direction is

A*
cos<|> sin<[> 0

-sin<|) cos<|> 0

0 0 1

(A-21)

with ty denoting the angular position of the crystal. Writing the 3x3x3x3-tensor of

the elastic constants in reading order (i e by row) as a column vector (denoted

by {}) of 81 elements and multiplying the transformation matrices with the direct

matrix product (®) Eq. (1-50) can be written asRutled9eSute,91a

{V - (A^® A<,® A^® A,) {T} = Af{T} (1-67)

Ax" being the self-direct product of degree n of the matrix A^. Then the cylindri¬

cal average over ty becomes

< {T*}> - ££oA*{J} *= <A*4> {T} (1_68)

The result of the integration of the 4-fold product of the transformation matrix and
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its subsequent multiplication with the stiffness tensor (T = C) is shown below:

«v-

ABC

B AC

CCD
Voigt average (1-69)

where

A - 1(3C,,+3C22 + 2C,2 + 4C66)

e=l(C,1 + C22 + 6C,2-4C66)

^ =

2 ^13 + $23)
D= C.

E .

F

33

5(Cm+C55)

(C,1 + C22-2C12 + 4C66)

(1-70)

As a result of similar operations, the cylindncally averaged compliance

matrix can be written as

<S*>

ABC

B AC

CCD
Reuss average (1-71)

where

~~

§ 11
+ 22+ "12+ 66'

6 = 8^S11 +S22 + 6S12"$56)

C _ p($3 +
$33)

D =
S,

-"23 >

33

E=2-(S44 + $55)

F = 8^$1 +$22"2$2 + $56)

(1-72)
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(A-24)

1.3.6.2 Powder symmetry

To have estimates of the lower and upper bounds of polycrystalline materi¬

als, the transformation matrix

A

cos\|;cos(|>-cos6sin<|)sin\|r cosvirsin<t>-cos9cos<|>sin\jr sin\|/sin9

-sin\|icos<|>-cosGsin<|>cos\|r -sin\|;sin<|>-cosGcos<|)Cos\|r cos\|rsin9

sin9sin<f) -sin9cos<)> cos6

needs to be integrated over all possible orientations by

«w> = sOXC{T}cV*^= <A^>{T} •

leading to an average matrix of the elastic constants (stiffnesses) of

<c*ey) =

ABB

BAB 0

BBA

C

0 C

Voigt average

(1-73)

(1-74)

with the following elements

A ' Tg(3C„+2C,2 + 2C13 + 4C66 + 4C55 + 3C22 + 2C23 + 4C44 + 3C33)

B- ^(Cu+4C,2 + 4C,3-2C6e-2C55 + C22 + 4C23-2C44 + C33)

C- \{A-B)
(1-75)

This corresponds exactly to the symmetry of an isotropic material (see

Table 1-2), which will be discussed in the following chapter

Averaging the stiffnesses, the Reuss average of the material is obtained as

(S^y)

ABB

BAB 0

BBA

C

0 C

Reuss average (1-76)

with the following elements
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A =
± (3S„ + 2S,2 + 2S13 + S66 + S55 + 3S22 + 2S23 + S44 + 3C33)15

e=i(Sn+4Si2 + 4Si3-^66-iC55 +
C„

+
4C.

C = 2(A-B)

j22 '23
-

2 44
+ $33

(1-77)

1.3.7 Isotropic Materials: Lam6 Constants, Elastic Constants

As shown in the previous chapter and in Table 1-2, the matrix of the elastic

constants of an isotropic material can be written asSnedd°n58

^11 C12 C12

^12 ^11 $2

C,2 C,2 C,,

^44

^44

'44

2u. + >i X

X

X

2u. + X X

X 2u. + X
(1-78)

with

0, 2

'44
-

2
iIi-

C44
=
^(C,,-C,2)

1st Lame constant

2n Lame constant

(1-79)

In order to be mechanically stable (chapter 1.3.5), u. and (3A.+2u) must be posi¬

tive.

Most engineering materials like metals, polymers, or ceramics behave

macroscopically as isotropic elastic solids. Since in many cases only the elonga¬

tion or the shear in relation to the acting normal or shear force is of interest, mac¬

roscopic elastic constants are often used for a more intuitive description of the

behavior of elastic materials. The four most frequently used constants

are
,Sneddon58

Young's modulus Edescnbes the elongation of a body in a direction in relation

to the stress acting in the same direction.

£,

(3?i + 2u,)n
X + n

(/= 1,2, or3) (1-80)

The shear modulus G is a measure of the shear deformation of a body in

depends of the acting shear stress:

_
o\

R (i - 4, 5, or ( (1-81)
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G =
-'

= u. (/=4,5,or6) (1-81)

• The bulk modulus /(indicates the volume change A Vof a material (with an ini¬

tial volume of V) under a hydrostatic pressure Ap:

K=-V%=X + \v (1-82)

• Finally, Poisson's ratio v is defined as the ratio of the lateral contraction to the

longitudinal extension of the cylinder:

V " ^ - 2(ht (U-1.2.0T3) (1-83)

Taking the criteria for the mechanical stability (u.> 0, 3X + 2u.> 0), it follows

that

-1<v<l, (1-84)

where v=± indicates a constant volume upon deformation and smaller values

stand for material dilatation (for most materials, v lies between 0.25 and 0.35).

Relations between these macroscopic constants and other physical quanti¬

ties can be found in Ref. [vanKrevelen80].
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2 Theory II - Atomistic Modeling

2.1 Representation of Potential Energy by a Force

Field

2.1.1 Introduction

In a many-particle system - e.g. an atomistic model of a solid polymer - a

considerable number of internal degrees of freedom exists, i.e. the system can

adopt a huge number of conformations q, with energies E(q,). To compute a

macroscopic property (A) of a system with a fixed number of particles, cell size

and temperature (an ThA/- or canonical ensemble, chapter 2.4.3), the individual

conformations must be weighted with their Boltzmann factors

-E(q,)
kT

w(q;) = e (2-1)

and averaged according t0McQuame76'Huan987

5>(q,) A(q,)

(A) =
J-— (2-2)

2>(q()

(A(q,) is the value of the property of interest obtained from an conformation with

energy E(q,) and Zeis the Boltzmann constant).

It is therefore of prime interest to find an expression of the energy of a sys¬

tem as a function of the conformation of its constituents. The basic and most

general way to find such an expression is an ab initio quantum mechanical com¬

putation of the energy of a molecular system. The calculation of the elastic con¬

stants of a polymer model typically involves hundreds and thousands of atoms

and spans over several tenthousand to several hundredthousand simulation

steps. This is just beyond the capabilities of present quantum mechanical meth¬

ods, although first principle molecular dynamics has recently become quite

powerfulCar95a.
In the Born-Oppenheimer approximation, the electronic degrees of freedom

can be separated from the nuclear degrees of freedom. In an ab-initio quantum

mechanical calculation, the electronic energy of a molecule is given first by the

kinetic and potential energy of the electrons moving in the field of the nuclei, sec¬

ond by the electrostatic repulsion between all pairs of electrons, and third by the

exchange interaction due to the correlation of parallel spins.Leach96 All these
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interactions together with the electrostatic interaction of the positive nuclei form a

complex energy hypersurface depending on the positions of the nuclei.

In modern class-ll force fields, this energy hypersurface and its derivatives

are approximated by more or less complicated functions of the positions of the

nuclei Ha9!er94a yhe functional form of the different terms of these force fields is

chosen such that the fit with the huge amount of quantum mechanically com¬

puted data is best with a reasonable number of parameters. This is in contrast to

class-l force fields, where functional forms derived from classical models of the

different molecular interactions are parametrized against a limited amount of

experimental data (like crystallographic structures obtained by X-ray diffraction,

IR-spectra, density measurements, etc.). Representatives of this class of force

fields are CHARMMNllsson86aand AMBERWeinerKollman86a, whereas

MM3Alhnger89a and CFFg3 be|ong tQ c|ass.||.

2.1.2 The CFF93 Force Field

A good example of a class-ll force field is the CFF93 force field, which is

well described in the llteratureHa9|erMaP|e94a' HaglerHwang94a, HaglerMaple94b_ The

MSI-Discover simulation packageMSIDlsc0Ver1 uses a close relative of this force

field - PCFF91 - that was extended to work with polycarbonates and that was

used for most of the simulations reported in the following chapters

2.1.2.1 Methodology

The methodology of obtaining a class-ll force field involves the following

s*eDSHaglerSun94a

• The minimal energy configurations of a representative group of small mole¬

cules belonging to a particular class of compounds (e.g. alkanes, amides,

etc.) are computed quantum mechanically using a HF/6-31G* basis set.

• After a normal mode analysis, the molecules are deformed by a random

amount in the direction of the normal modes and ab initio calculations are per¬

formed on these structures to find the total energy, the first and the second

derivatives of the energy, the dipole moments, and the derivatives of the

dipole moments for each structure.

• Since the Hartree-Fock approximation excludes dispersion energies

(chapter 2 13 2), the van-der-Waals parameters are determined empirically

by fitting to crystal structures and sublimation energies Because the charges

from ab initio calculations with moderate basis sets usually do not reproduce

the experimental electrostatic properties, the ab initio charges need to be

scaled by a scaling factor obtained from crystal structures, too.
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• The valence parameters (bond, angle, torsion, out-of-plane and cross terms)

are calculated by fitting to the ab initio energy surface with both the charges

and the van-der-Waals parameters held fixed. The resulting set of parameters

is called the QMFF (quantum mechanical force field).

• Due to systematic deviations between experiment and quantum mechanical

calculations, a small set of scaling factors (for bond, angle, torsion, out-of-

plane and cross terms) is needed. In addition it is necessary to make minor

adjustments to bond reference values, fan, since these are calculated system¬

atically too short in the HF approximation.

The functional form that allows a good fit to the quantum mechanical

energy hypersurface while using a reasonable number of parameters is given in

Fig. 2.1. The thirteen terms can be classified first into bonded (a - k) and non-

bonded (/, m) interactions. The bonded interactions further split into diagonal

(a-d) and cross terms (e - k).

2.1.2.2 Bonded Interactions

a) Bond stretching: The quartic polynomial approximates the morse potential

function (Di,[1-e"a('>fao)]) well near the reference distance bo*31^96 ancj pre.

vents bonds from breaking under large stress as can be observed for cubic

polynomials. The anharmonicity in the potential is crucial for a good fit to the

quantum mechanical energy hypersurfaceHa9lerMaple94a.

b) Angle bending: In contrast to the bond stretching potential, the anharmonic

third and forth order terms of the bond angle 9 seem to be of minor impor¬

tance for the total energy and its first and second derivativesHaglerMaple94a.

c) Torsion potential: The reference angle (0°) of the fourfold potential is given by

the trans state of the torsion angle <|>.

d) Out-of-plane: The Wilson definition of the out-of-plane angle is used to com¬

pute the energy of the deviation of the three bonds surrounding an sp^-hybrid-
ized atom from planarity. The %-value is the average of the angle between one

bond and a plane defined by the two other bonds.

The following cross terms are essential for a good fit of the QMFF to the ab-initio

energy surface and must not be omittedHagler94a

e) Bond-bond cross term: The interaction energy between two bonds sharing a

common atom (i.e. between the two bonds that form an angle). The number of

these interactions equals the number of angles found in a molecular system.

f) Angle-angle cross term: The interaction energy between two angles sharing a

common bond and a common central atom.

g) Bond-angle cross term: Two bond-angle interactions per angle contribute to
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the cross term energy.

h) End-bond-torsion cross term For each torsion angle, there are two end-bond-

torsion cross terms and one

i) Middle-bond-torsion cross term.

j) Angle-torsion cross term. As with the bond-torsion interactions, there are two

angle-torsion contributions and one

k) Angle-angle-torsion cross term per torsion angle.

2.1.2.3 Nonbonded Interactions

I) Coulomb interaction and

m)van-der-Waals interaction: These two interaction are computed between all

pairs of nonbonded atoms Two atoms are denoted nonbonded, if at least

three bonds lie between them, i e. there are nonbonded interactions between

the first and last atom of a torsion angle. Since the nonbonded interactions

are essential for the behavior of condensed systems, they will be discussed in

greater detail below.

2.1.3 Nonbonded Interaction Potentials

2.1.3.1 General Remarks

The interaction energy of an assembly of molecules /, j, k... can be written

in form of a series of the sum of pairwise interaction terms, the sum of three-

body terms, four-body terms and so on:

U(r,Sl) -ZUIJ+ £IV+ £<V/+ -. (2-3)
i>j i>j>k i>/>k>l

In the first instance, it is assumed that only the pairwise interaction term is of sig¬

nificance for the energy of the nonbonded interactions. Corrections to this pic¬

ture are however necessary and will be outlined later.

2.1.3.2 Quantum Mechanical Foundations

The functional form of the nonbonded interactions has been the subject of

intense research since Boscovich formulated the first potential more than 200

years agoKaplan86 In general, the interaction energy U{r,Q) between neighboring

molecules is a sum of the following termsstone96.

/j(^) = ^'+<»+c+^+^po/+/j(3r (2-4)

with Uei being the electrostatic interaction, which is composed of attractive terms

between the nuclei of one molecule and the electrons of the other molecule and

repulsive terms between the nuclei and between the electrons on the two mole-
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cules. Uex is the so-called exchange energy, which has its origins in the Pauli

principle limiting the electron density. These two contributions are first-order

approximations (as indicated by the superscript index) of the Rayleigh-

Schrodinger perturbation theory applied to the total Hamiltonian. This Hamilo-

nian, the zeroth-order approximation, is obtained by a simple overlap of the

molecular wave-functions W^and W
.
The induction, Ujnd, and the dispersion

term, Udjs, are second-order approximations of the perturbation caused by the

mutual influence of the electrons in one molecule on the electrons in the other

molecule. The induction can be explained classically as the formation of a dipole

in a non-polar molecule due to a charge or a permanent dipole on the other mol¬

ecule. The dispersion interaction has its origins in fluctuations of the electron

density with time, which lead to the formation of momentary multipoles. These

fluctuating multipoles induce charge separations in neighboring molecules and

therefore interact with them in a analogous way to the mechanism of induction.

Higher order approximations, symbolized by lP-n\ are not taken into consider¬

ation, and the second order approximation (polarization) of the exchange inter¬

action, Uex-pci, is regarded both as being marginal in effect and difficult to handle

theoreticallvKaplan86,Rata'czak80a,Murre"76

All these terms depend of course on the distance rand the mutual orienta¬

tion SI of the interacting molecules. The distance dependence of the various

energy terms is of special interest and forms the topic of the next section.

2.1.3.3 Lennard-Jones Potential

If the molecules are very close to each other, their wave-functions overlap

and the exchange interaction is the dominating term in the energy function. It is

possible to show that this exchange term is proportional to e~a( " ' ,stone96

where a is a constant - typically between 12 and 15 - and R = r/o*, with o*

being the minimum energy distance (see Fig. 2.2).

At larger distances, the dispersion energy is the dominant term in the van-

der-Waals energy, since the induction energy is much smaller in general. Using

the simple dipolar model of DrudeMaitlandRigby81, the most important contribution

in a power expansion of the interaction energy,

<W) - V'6 + V'8 + C,0/r10 + (2-5)

is the dispersion coefficient C6, i.e. the electrostatic interactions decay with r6

(Fig. 2.2). (The dispersion coefficients of higher order become more important, if

quadrupoles, octupoles etc. are included in the Drude model.Leach96) The disper¬

sion coefficient C6 can be approximated by the London formula,Kaplan86
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C6~-
WAUB aAaB

2(tVUs)(4jteo)2'
(2-6)

with a^ and aB standing for the average polarizabiiifies and UA and tig denoting

the average excitation energies, which in turn can be approximated in the Slater-

Kirkwood formula asstone96

Ut
NA

(2-7)

At very large distances above several hundred A, the dispersion interaction

is not proportional to r'6, but to r"7, because then the period of the charge fluctu¬

ations is comparable to the time required for the exchange of information by

electromagnetic waves between the molecules (relativistic retardation

effect)Kaplan86.

S

>.
O)

(5
c

LU

Distance r

Figure 2 2 Functional form of the exchange and dispersion energy as a function of the intermo¬

lecular distance r

The combination of repulsive exchange and attractive dispersion and

induction terms is denoted Utot in Fig. 2 2 and is approximated in many applica¬

tions by a Lennard-Jones m-n-potential function,AllenTlldesley89

"8 - kp
°apf

(2-8)

where the indices a and p refer to the interacting atom types. Besides the above

m-n form, exponential-6 potentials like the Hill and Buckingham
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UD —^—[6ea(J< 1)-ax ]]potential are also used

For the attractive second term of Eq (2-8), the exponential n is almost

always 6, according to the distance dependence of the dispersion and induction

interaction, whereas the exponential rise of the exchange interaction is approxi¬

mated with a large value of m, typically in the range of 9 -12 (compare Fig. 2.2

the curve denoted by Uu is a 12-6-potential function, that approximates the

quantum mechanical potential Uex+Udls quite well). The cff93 forcefield uses a

9-6 Lennard-Jones potential function to model the van-der-Waals interaction

If the well depth e and the radius of minimum energy a* (instead of the col¬

lision diameter a) is used, Eq. (2-8) takes the form

<j - ^
vp_

m-n^ r

.-HL\
m-n

JgB

r

-

^aB 5aB
(2-9)

which is also used in some force fields. A comparison between Eq. (2-8) and

(2-9) immediately reveals that

A
12

4eaB°aB e„ 4eaB°aB (2-10)

and

°<xB = (^aB/Sap)
1/6

V/4V (2-11)

The two adjustable parameters a and e are obtained from experimental

densities, molecular beam cross sections, etcMurre"76. For nonbonded interac¬

tions between two different types of atoms a and f3, so called mixing rules have

to be used. There are the commonly used Lorentz-Berthelot mixing rules,

2(°aa + °BB)

eaB _ VeaaeBB

and the more recent rules form Hagler et a/.HagierWaidman93a

(2-12)

EaB = 2(£aa£BB)

3 3
(2-13)

which seem to give consistently more accurate results
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2.1.3.4 Coulomb Interaction

Since electrons in molecules are not located at fixed points but distributed

according to their wavefunctions over a (theoretically infinite) region in space, it

is only possible to establish a probability density. However, the computation of

nonbonded coulombic interactions between molecules based on quantum

mechanical probability densities would be extremely time-consuming and diffi¬

cult to perform. A number of methods to map this electron densities to a set of

point charges or multipoles has been devised (Mulliken, Lowdin, Bader,

etc. \Leach96 Alternatively, the electrostatic potential in the vicinity of a molecule

can be determined and a set of charges can be calculated that fits this electro¬

static potential best. There also exist approaches based on the electronegativity

of the atoms.Leach96 In the cff93 force field, the charges are assigned incremen¬

tally bond per bond and located at the nuclear positions.MSIDlscover1
The result of such mapping is either a series of electronic moments -

charges (monopoles), dipoles, quadrupoles, octupoles, and so on -that describe

the molecule as a whole, the so-called central multipole expansion, or a set of

point charges or distributed multipoles at various locations. If the point charges

are placed at the positions of the nuclei, the calculation of the forces acting on

the nuclei becomes particularly simple. On the other hand, it is not always possi¬

ble to represent the complex electron density by a few point charges on the posi¬

tions of the atoms.

An arbitrary distribution of charges q, at positions x,y can be grouped into

the following quantities:

Table 2-1 Electronic moments of a distribution of charges q, at positions xn

Moment

Total charge Q

Dipole n

Quadrupole ®

higher moments

Tensor

rank

0

(scalar)

1

(vector)

Formula

Q-Eq,

S^w

e
jk

~ LQiXi,lXi,k

M,n = I>,(V-V
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The classical electrostatic interaction between two scalar monopoles a;, and

qJt given by Coulomb's well-known formula,

u--*y?'
depends as r"1 on the distance. The interaction energy between a monopole

and a dipole drops as r'2, whereas dipole-dipole interactions are proportional to

r3. In general, the interaction energy between two electronic moments of rank m

and n decreases as r-(m+n+i).i-each96 |n the case of t^e interaction between neu¬

tral molecules or neutral groups of atoms, where only dipoles and higher

moments exist, the energy is proportional to r~3, if the distance between the

groups is larger than the size of the groups themselves

2.1.3.5 Many-Body Effects

As mentioned in chapter 2.1.3.1, three-body and higher interaction terms

are neglected In most cases, the remarkable gain in computation time justifies

this simplification While the bonded interactions are proportional to N, the num¬

ber of atoms in the system, the pairwise interactions are proportional to W(W-1)/2

operations and three-body terms to W(A/-1)(/v-2)/6.

There are, however, some cases where the three-body terms contribute

significantly to the nonbonded energy or lead to completely different results.

Examples comprise the well-known Ar-crystals, where the contribution of the

Axilrod-Teller tnple-dipole correction amounts to 10-20% Leacn96. Beiizucker76,

Murre"76, and the modelling of ionic crystals of large halides and earth-alkaline

metals, that leads to wrong structures if the polarization of the large halides due

to Mg2+ or Cd2+ ions is neglected.s,one96

2.2 Modeling of Extended Dense Systems

With the force field derived in chapter 2.1, it is possible to model single mol¬

ecules or assemblies of molecules in vacuo, but not extended solid or liquid mat¬

ter. Even the smallest macroscopic bodies (grains or cells) contain O(1010-1020)

atoms, which makes it impossible to simulate them as a whole. If only 0(102-
103) atoms are used in a simulation - which is an appropriate number for current

computers - most of them would be at or near the surface of the tiny body. The

simulation of bulk properties would not be feasible this way. An elegant solution

to this problem are the so-called periodic continuation conditions (PCC), also

referred to as periodic boundary conditions (PBC).
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2.2.1 Periodic Continuation Conditions

Periodic continuation conditions enable the modeling of bulk properties of

solids or liquids with a relatively small number of atoms. Imagine a box with par¬

allel walls (a parallelepiped) being replicated in all directions to give a periodic

array. The walls of the box are pervious to the particles in it, so no physical

boundaries are present. Particles leaving one side of the box, enter it at the

opposite side immediately (compare Fig. 2.3), keeping the number of particles N

Figure 2.3: Periodic continuation conditions in two dimensions

constant. In principle, there exist 5 cell shapes, that fill space completely by

translation from a central cell: the parallelepiped (and its special form, the cube),

the hexagonal prism, the truncated octahedron, the rhombic dodecahedron and

the 'elongated' dodecahedron.Leach96 In this work, only the cube and the paral¬

lelepiped are used, because of the simple numeric implementation of these two

conditions.AllenTlldesley89

The use of PCCs invokes some problems: First, fluctuations with wave¬

lengths greater than the dimensions of the box are not possible, the phonon

spectrum is cut. Second, the radial distribution function ga$(r) is not exactly iso-

tropic.Frenkel96
The simulation cell is defined by n vectors, with n being the dimensionality

of the simulation space (typically 3-dimensional), which form a nxn cell shape

matrix h (chapter 1.2.3.1):

h = [a, b, c]

a, b, c,

3p Do Co

a3 b3 c3

(1-34)
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2.2.2 Long-range Interactions

The introduction of the PCC creates a virtually infinite, quasi-crystalline

simulation system without boundaries. Since this would imply an infinite number

of interactions between the atoms in the central cell and all their replicas, the

nonbonded interactions can not be evaluated explicitly. Several methods are

used to circumvent this problem for van-der-Waals interactions, a cutoff plus a

correction term is reasonable, while more sophisticated methods like Ewald

summation or cell multipole expansion are needed for the Coulomb interactions

2.2.2.1 Cutoffs

A cutoff truncates the computation of nonbonded interactions between a

central atom and the other atoms of a system at a certain distance. If the cutoff-

radius is larger than the smallest cell extension (ra in Fig 2.3), the central atom

interacts with its replicas, causing unphysical finite-size effects. It is therefore

useful to keep the radius of the interaction sphere smaller than half the smallest

dimension of the box (rc in Fig. 2 3). In this case, the minimum image convention

is applied, stating that each atom 'sees' at most just one image of every other

atom in the system.

Using a step function (like the Heavyside function) to define a cutoff causes

problems because of the discontinuities in the potential function and its deriva¬

tives (i e. the forces). So a switching function S{r) (Fig. 2.4) smoothly switches

o

J
"oj
o

V-

CD
c

UJ

0.0

9-6 Lennard-

Jones potential UiJ.r)
switching
function S(r)

Distance r [A]
10

1 0

0.5
c

g

c

LL

0.0 03
C

"5.
00

-0.5

12
-1.0

Figure 2 4 Cutoff applied to a 9-6 Lennard-Jones potential (Cutoff = 8A, Spline = 2A)
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the nonbonded interactions from their full values at r,= rc- rs to zero at rc. The

most common switching function is a quintic spline, defined by the conditions,

that the first and second derivatives at rf and rc are zero and S{rf) = 1 and

S(rc) = 0.

o, ^
2 3 4 5

..

S(r) = c0 + c^r+c2r +c3r +c4r +c5r with

c0 = r3c{6r2c^5rcrs+rl)/rl
Ci --30^-2^+^
c2 = 30rc(2^-3r/s+r^ (2-15)

c3 = -10(6^-6r/s+r^
c4 = -15(rs-2rc)/^

c5--6/£

Even this smooth splming function causes considerable changes in the first and

second derivatives of the interaction energy, which can lead to artifacts e.g. in

the simulation of Ar-Crystalsa.

The cutting of the long-range interactions can be atom-based or group-

based If a cutoff is atom-based, the nonbonded interaction between two atoms

is taken into account if the distance between the two atoms is smaller than the

cutoff-distance. This check is made for every pair of atoms Group-based algo¬

rithms perform the calculation of nonbonded interactions between two groups of

atoms only if the two switching atoms are closer than the cutoff distance. If the

groups of atoms are such, that the individual atomic charges sum up to zero, i.e

the group is neutral, the first term in the Coulombic energy potential is the dipole-

dipole interaction, which is proportional to r"3 (chapter 2 1 3.4). Furthermore, the

unphysical situation of having a net charge in the sphere of the cutoff is avoided

by this procedure

2.2.2.2 Tail Correction for Lennard-Jones Potentials

The attractive part of the Lennard-Jones interaction energy beyond a cutoff

rc is expressed byTheodorou85a

a S Santos, private communication (1996)
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U^/=5IW«EPB^
ci-1

l9ap(r)UfJ(r)r2dr-

\9a^r)^j{r)S(r)r2dr

(2-16)

where a and p run over all different forcefield-types of atoms, Na denotes the

number of atoms a and pp the density of 13 atoms in the simulation cell The vol¬

ume element of the integration is a shell with a volume of 4jtr2dr and ga$ is the

pair distribution function of a and (3 (chapter 3.1.1).

Using a m-n Lennard-Jones interaction potential,

<J - Kb
a<#]m '-Pi (2-8)

where r= \r$ - ra\, and the assumption, that gap = 1 if r> rf, the integration of the

shaded area in Fig. 2.4 leads to

n

Uta|-I".S8«
a=1

+

5-1
H°j-M°y-^<i

(2-17)

swifj+swtfy-swffl
The integration at r= «> is zero only if n,m > 3 (this makes it impossible to use

this method to estimate the long-range corrections for Coulombic interactions,

which decay as -). The function S\r,p) is defined by

co
,
V

,

.3 4 5

c4r c5r
+ =-— +

3-p 4-p 5-p 6-p 7-p 8-p
(2-18)

cj

,
with n = p - 3) replaced by c^lnr.

3(r,p) = r

with the singular term .a

n+3-p
This energy expresses itself in forces that are all attractive, because at r>

rcutofh tne repulsive term is neglectable. To include this long-range effect, an

external pressure is applied to the system, so that its energy contribution equals

the tail correction energy

PcorrV - UMi
U.

tail

V
(2-19)

The pressure pcorr is called the tail correction pressure. For dense polymeric

systems and cutoffs of 8-9 A, it is in the range of 500-2000 bar.
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2.2.2.3 Tail Corrections for Coulombic Interactions

The long-range Coulombic interactions are far more difficult to deal with

due to two reasons

First, the Coulombic energy terms are farther-reaching than the van-der-

Waals contributions, they decay as r"1 for monopole-monopole interactions and

still as r'3 in the case of dipolar interactions, whereas the van-der-Waals energy

drops as r"6. The error introduced by cutting of the interactions at a relatively

small distance of 8-10 A is considerable.

Second, there are negative and positive interaction energies (attractive and

repulsive forces) depending on the distribution of the monopoles or the mutual

orientation of the dipoles This prevents an integration of the neglected interac¬

tions as in Eq. (2-16) and leads to a quasi-random dependence of the coulombic

energy from the cutoff distance (Fig. 2.5). This behavior is less pronounced for

2000
1
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Figure 2 5 Dependence of the atom-based Lennard-Jones and Coulomb energies as a func¬

tion of the cutoff distance The Ewald sum as a function of the accuracy is plotted,

too (Cellulose-IR crystal, 16x16x21 A size)

the group-based calculations than for the atom-based, but still too large to obtain

reliable results for crystalline systems. Amorphous polymers with relatively small

partial charges are not as problematic as the highly charged, dense polymer

crystals of Cellulose, Nylon etc., which need special methods to deal with the

long-range Coulombic interactions. One of the first of these methods, the Ewald

summation, will be briefly discussed now

For a cubic lattice (extension to general cell shapes is straightforward), with
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N charges q, in the simulation cell, the energy of the charge-charge interaction

between all pairs of charges in the central cell and between the central cell and

all surrounding cells is

N N

U,
Coul ii ee

Wi
47tEEn|r„

+ n
(2-20)

olV|n|-0i-1y-1

the position of a remote cell is given by the vector n. For n=0, the summation

does not include terms, where /=y. The above sum is only conditionally conver¬

gent, i.e. the convergence rate is low and depends on the order of the summa¬

tion of its terms.Heyes81a

The idea behind the Ewald summation is, that the sum in Eq. (2-20) is

replaced by two sums with better convergence properties. One of the summa¬

tions is carried out in real space, namely the summation of the original point

charges plus a neutralizing charge distribution of equal magnitude and opposite

sign (Fig. 2.6) The added charge distribution is compensated by the second

V
v\ y\ ^V

real space

"

v reciprocal space

Figure 2 6 The point charges are surrounded by gaussian distributed charge clouds in real

space, which are cancelled by charge clouds of opposite sign in the reciprocal

space

summation, which adds up - in reciprocal space - a cancelling distribution of

opposite sign The distribution function is of minor importance, typically a Gauss¬

ian
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QiK
p,(r) = -^exp

71

2 2
-k r (2-21)

A third term is necessary subtracting the self-interaction of each Gaussian in real

space. The forth term finally takes into account that there is a medium with a per¬

mittivity e beyond the cells taken into the summation. The final form of the Ewald

summation looks as fO|lowsLeeuw80'Leach96'Heyes81a:

N N

u.
coul -111-

i-1y-1

"

a^erfcdclr^ + nl)
*- 4jte„

|n|-0 lr« + nl

v, 1 Qfl,An
+ X o, o exp
k7onL34o k2

N a2
_J1 V k

~J^r'i4neo

.
2

V4k )
cos(k-r,y)

(2-22)

lA-=1

2jc

3r
*-• 4iceen *i

The parameter k of the convergence function erfc(r.K) = 1 - erf(r,K) =

2/Viirexp^-rJdf and the Gaussian determines the number of terms in the

real and reciprocal space summation: The smaller k, the faster the reciprocal

space calculations converges, whereas a large k improves the convergence of

the real space calculations. Optimization of k is therefore necessary to minimize

computation timesKarasawa89a

For large systems, the Ewald summation is quite slow, since it scales as

N2. The cell multipole expansion exhibits a linear dependence on N and is there¬

fore well suited for large systems with considerable partial charges. The idea of

the method is to divide the central simulation cell into small cubic subcells of a

few atoms and to compute the monopole, dipole and higher electric moments

(Fig. 2.7). The interaction between the central cell and surrounding subcells is

taken pairwise, if the distance between the central cell and the subcells is larger

than the size of the subcells. For larger distances, the subcells are grouped into

larger entities and their moments are added. With increasing distance, the influ¬

ence of the larger cells becomes smaller and thus the error is kept at a more or

less constant level.

Another way of taking the far reaching Coulomb terms into account is given

by the reaction field method, where a sphere of the size of the cutoff radius is

constructed around a dipole p., containing N atoms with a total dipole moment of
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Figure 2.7' Definition of hierarchical cells and division of the central cell A into smaller subcells

The cell B is made up from A3, A2, /A, and A0

Plj. This dipole induces an charge distribution in a surrounding dielectric es, which

in turn generates a reaction field E,. The interaction energy is thus E^ji, with

2(£s-1)n
e„+1

E»v (2-23)

cJr<rc

2.2.3 Introduction of Strain and Stress

The concept of a cell with PCCs allows the implementation of strains and

stresses, which have already been discussed in chapter 1.

The finite strain of a cell h with respect to a reference cell H is given by

and the finite stress by

, = l[HT"hThH-1-.].

t = JHh"1PhT 1Hr.

(1-36)

(1-46)

2.3 Energy Minimization Methods

2.3.1 Introduction

Once an energy representation of an atomistic system with N atoms is

established, the total potential energy U, its gradient g, and its second derivative

H (the Hessian) as a function of the atomic coordinates x can be specified as
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U=U{x), g = VU =

dU
and H = V'tA,

dxfix
' (2-24)

U(x) forms a complicated hypersurface in 3/V - 5 dimensions, with maxima

(g(xM)=0, H(xM>cO), minima (g(xm)=0, H(xm)>0) and saddle-points (fif(xs)=0,

H,y(xs)>0, and Hk^xs)<0). The minima are of special interest, because the sys¬

tem is most probably located at low energy conformations (Eq. (2-1)). This sec¬

tion therefore deals with numerical methods that minimize a high-energy

structure. Except for the simulated annealing, all these methods just find the

nearest local minimum, regardless how high its energy might be.

Figure 2 8 Extrema of a function of an arbitrary coordinate in an interval [x, ,x2] The minima S,

D, and F consist of the local minima 6 and Fand the global minimum D

A, C, and Eare maxima with A being the global maximum and G is a saddle-point

If, for example, the starting point of the minimization of the simple function

in Fig. 2 8 lies between A and C, the high-energy, local minimum 6 will be the

result of the numerical evaluation. Since this local minimum contributes nearly

nothing to the average of Eq. (2-2), it would be of interest not only to find local

minima but to specify the global minimum. Except for the smallest systems of a

few atoms, the high dimensionality of the conformation space prohibits the nec¬

essary systematic search.

The minimization methods can be categorized by the order of the deriva¬

tives involved in the computation. There are simple methods that need only func¬

tion evaluations, so-called zeroth-order algorithms, whereas more efficient ones

require the computation of gradients (first-order) and the fastest, yet least robust

ones demand the matrix of the second derivatives, the Hessian. In the last para-
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graph (2.3.5) the method of simulated annealing is discussed, which tries to find

the global minimum instead of a local one.

In general, all the methods summarized below do not find an exact mini¬

mum, but approach it more or less. From a numerical point of view, convergence

is achieved, if the change in energy between successive steps is smaller than e

(the computer's floating point precision). This limits the exactness of the position

Of the atoms to about Jz .Pressetal92

2.3.2 Zeroth-order Algorithms

Zeroth-order algorithms rely only on direct function evaluations without the

use of gradients or derivatives of higher order. They are therefore quite simple to

program and efficient in memory usage. The most simple line search algorithm

finds a minimum in a one-dimensional curve by bracketing and is used by first-

order methods too. The more advanced simplex routine is able to find a local

minimum in an M-dimensional conformation space, but will not be discussed

here.

2.3.2.1 Line-search Algorithm

Consider a function of one variable and three initial points x,, x2 and x3

given by Fig. 2.9. This function might well be a one-dimensional cross-section

through a multidimensional hypersurface.

*- x

*1 x4 x6 x5 x2 x3

Figure 2.9: Bracketing the minimum of a one-dimensional function f(x)

Since the function value f(x2) is smaller than the neighboring f(x-\) and /(x3),

the minimum must be between x-\ and x3. The bracketing algorithm now chooses

a new point x4 in this interval on one or the other side of x2. If this new point is
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smaller than x2, the new interval lies between x-, and x2 (in the above figure)

The same procedure is repeated at x5 and x6. If the function value at the new

point is higher than the central value, the border of the interval is shifted to this

new position, otherwise the new point becomes the central point and the border

is moved to the former central point.Pressetal92
The optimal bracketing interval

X^l
.
filil

_
...

_ 3^/L 0 38197 (2-25)
Art Aj "O 1

is the golden section
Pressetai92 |n case of an approximately harmonic function,

the minimum can be found quite efficiently by fitting a parabola through the three

bracketing points and placing the new trial point at the minimum of the parabola

(Fig. 2.9). The exactness of the line search algorithm can be tuned by restric¬

tions on the width of the bracketing interval or by using the fact that at the mini¬

mum, the local gradient gl+^ is normal to the line search direction ft,. Thus,

*/+i h\<-og,h, (2-26)

allows to control the precision of finding the minimum by varying a a=0 enforces

an exact search for the algorithm, whereas o>0 produces a weak line

search Harlev86

2.3.3 First-order Algorithms

These algorithms are widely used in atomistic simulations, because they

combine robustness with efficiency and thus normally lead to well converged

structures. The most straightforward method is the

2.3.3.1 Steepest Descent Method,

where the local gradient VU(x) is taken as the direction, in which a line

search (section 2.3.2.1) is performed The minimum of this one-dimensional

cross-section is the new starting point x„ of the next iteration. At xn, the gradient

VL/(xn) is orthogonal to the initial gradient. This behavior can lead to slow con¬

vergence, if the potential energy surface forms a long narrow valley, in which the

algorithm performs a zig-zag (Fig. 2.lO).MSIDlscover1
At every step, part of the information obtained in the previous minimization is lost

again due to an overcorrection of errors This can be prevented by the

2.3.3.2 Conjugate Gradient Minimization

Here, the directions A, and ft/+1 of two successive line minimizations are not
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Figure 2 10 Undesirable behavior of the steepest descent algorithm

orthogonal but form a conjugate set, with mutually orthogonal local gradients g.

This is achieved by taking ft/+1 as

/i,+i = g^i+yfi,

with

or

y,
g/+i g/+i

9, 9,

9, 9,

(Polak-Ribiere)

(Fletcher-Reeves)

(2-27)

(2-28)

(2-29)

With the above set of line search directions ft,, the nearest local minimum of an

energy function in M dimensions is reached exactly in M steps, if the function

U(x) has a quadratic form like

U'x) = U(P)+g(P) x + lx H(P) x, (2-30)

with P being at the origin of the coordinate system x If the energy function is not

exactly quadratic, repeated cycles of M line minimizations are necessary, but the

convergence to the minimum is quadratic

2.3.4 Second-order Algorithms

2.3.4.1 The Newton-Raphson Method

Taking Eq (2-30), the gradient of U(x) at x can be expressed as

g(x) = H(P) x-gr(P) (2-31)

Using the fact, that at a local minimum the gradient g{xm) is zero, solving the

equation

H(P) xm = g(P) H" (P) ff(P) (2-32)

would lead immediately to the minimum of a quadratic energy function For
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anharmonic potentials, a number of iterations would be necessary, but conver¬

gence would be achieved quadratically.Harley86
However, this method has a number of drawbacks, which prevent a

unmodified implementation The second derivatives are sometimes difficult to

compute and the full Hessian requires 0(1$) memory, which can be prohibitive

for large (M~3N >1000) systems Furthermore, the minimization can become

unstable, if the forces (gradients) are large and the curvature (second derivative)

is small, as is the case on the steep repulsive wall of a van-der-Waals potential

In this situation, a large step is computed, that may overshoots the minimum,

leading to a divergent behavior.MSIDlscover1

However, if the gradients are already small and the system is of moderate

size, the above Newton-Raphson method leads to a rapid convergence to an

extremely precise minimum, as is needed for a vibrational normal mode analy¬

sis.

2.3.4.2 Quasi Newton-Raphson

The idea behind the quasi-Newton methods is it, to use an approximation A

of the Hessian H. This approximation is by construction positive definite and

symmetric, which is necessary if the solution of Eq. (2-32) should be descen¬

ded. Close to the minimum, A approaches the true Hessian H, and the fast con¬

vergence of the Newton-Raphson algorithm can be used.

Since the derivation of the matrix A is not straightforward, only the final

result will be given here, details can be found in [Harley86] With

Ax - x,+, - x, and Ag = gl+1 - g, (2-33)

as the changes in coordinates and gradients between successive steps, the

approximate matrix AH.1 is given in the DFP (Davidson, Fletcher, and Powell)-

method byActon90

Ax Axr A, Ag Ag A,
A,+ 1 =A,+ ^*_-

' * y
i, (2-34)

Ax Ag Ag A, Ag

and in the BFGS (Broyden, Fletcher, Goldfarb, and Shanno)-method by

Ax Axr A, Ag AgrA,
A,+i - V

Ag A, Ag
1+

f
Ax Ag /Axr Ag AgT A, Ag

(2-35)

In general, all minimization routines must be somehow terminated, because the
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exact minimum can only be approximated with machine precision at best. It is

either possible to monitor the energy decrease or the change in coordinates from

one iteration to the next or to calculate the root-mean-square gradient,

RMS - JO, (2-36)

and to stop the computation if either of these values drops below a certain limit

2.3.5 Simulated Annealing
All methods mentioned so far are only capable of finding the nearest local

minimum. Except for molecular crystals, that have a limited number of local min¬

ima and eventually one deep global minimum, the high dimensionality of the

conformation space especially of polymers makes it very improbable that the

nearest local minimum is a global minimum or even just a 'good' minimum

It is therefore necessary to search the conformation space for probable

structures, i.e. structures of reasonably low energy. As the Boltzmann weight of

a conformation depends exponentially on its energy E„

-£,

w, = ekT (2-1)

typically only a few of the many possible conformations are important for the

ensemble average. But the energy of a minimum alone does not tell the whole

truth Comparing minimum D and F of Fig. 2 8 on p. 45, it is not a priori clear,

which one has a larger weight, because the integral

-E'X)
site t kT

,
M

ir. „_,.

iv = e dx (2-37)

site

may be larger for the interval E to x2 (minimum F) than for the interval C to E

(minimum D). It is therefore of interest to find the most probable conformations,

not just the deepest minima. The necessary sampling of the conformation space

is the topic of chapter 2 5, and just the principle idea of the so-called simulated

annealing will be outlined here.otten89

Annealing in metallurgy consists in a slow cooling down of a material from

above melting temperature to low temperatures in order to equilibrate it. After

annealing, the material is in a state of low internal energy. This process is simu¬

lated on the computer by starting a sampling procedure (Monte Carlo, Molecular

Dynamics etc.) at a high temperature, where the conformation space is sampled
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efficiently because the saddle-points between local minima are lower than the

energy of the assembly. The temperature of the sampling procedure is gradually

lowered, restricting the available conformation space to smaller and smaller vol¬

ume. If the cooling process is sufficiently slow, the structure is able to reach a

well equilibrated (= minimized at 0 K) state. This procedure can be used in a

variety of problems, that are not tractable with other methods, the most famous

of them being the travelling salesman (connection of randomly placed cities by a

route Of minimal length) Harley86,Pressetal92

2.4 Ensembles

The following section provides a short introduction to statistical mechanics,

basically introducing the terminology and the concepts of relevance. More

detailed descriptions can be found in standard textbooks like [McQuarne76,

Fnedman85]

2.4.1 Introduction

In the computation of macroscopic properties from atomistic simulations -

the domain of statistical mechanics - the concept of phase space is of prime

importance For a molecule of N atoms with a Lagrangian L (Eq. (2-62)), the

classical phase space r(q,p) contains 6/V dimensions, 3A/for the coordinates q,

and 3/V for the conjugate momenta p, = a/ydq/AiienTiidesiey89 The state of a

molecule at a time t is completely described by these 6/V generalized coordi¬

nates, which define a point T(f) in the phase space. In the course of time, this

point moves through phase space on a trajectory r(f), governed by the equa¬

tions of motion. These equations are different for the different ensembles that

exist and link the macroscopic parameters of the system as a whole with the

regions of the phase space accessible to the molecule An ensemble is a set of

points in phase space that obey certain restrictions, e.g the volume of the unit

cell is the same or the kinetic energy follows a Boltzmann distribution. Relevant

ensembles will be shortly introduced in section 2 4.3.

The above description was based on classical mechanics, where the phase

space is continuous The atomistic systems described here obey, in principle,

the laws of quantum mechanics and thus the phase space is not continuous, but

is made up of a countably infinite set of quantum states. In the following discus¬

sion it is assumed that the classical and the quantum mechanical representation

can be both used interchangeably.



52 Theory II - Atomistic Modeling

2.4.2 The Ergodic Hypothesis and the Liouville Theorem

The ergodic hypothesis is of central importance for the molecular dynamics

and Monte Carlo sampling methods (chapter 2.5). It states that the set of ensem¬

ble points in phase space compliant with the restrictions posed by the different

ensembles can be obtained by following the trajectory of one initial point It is

now possible to replace the ensemble average of Eq (2-40) by a time average.

An exact average, however, is only obtained for infinitely long trajectories that

sample all relevant parts of the phase space. This is not a priori given and can

not be proved rigorously The phase space is maybe such that trajectories form

closed loops or remain trapped for a very long time in a region surrounded by

narrow saddle points.AllenTildesley89
The points in phase space belonging to an ensemble have a density

p(q,p,f) in the phase space volume dqop around q,p. The Liouville

equationMcQuarne76,

3N
_

3W

!*ig>*i(j?>-°. *«

which is equivalent to

5£ = 0, (2-39)
dt

conserves the density of these phase space points as they move along their tra¬

jectories This is equivalent to the statement, that the size (but not necessarily

the shape) of the volume element dqdp in phase space remains constant.

2.4.3 Relevant Ensembles

2.4.3.1 Microcanonical (EhAA)Ensemblea

This ensemble is equivalent to a container with solid, thermally insulating

walls (e.g. a dewar), because the number of particles N, the shape of the simula¬

tion cell h and the energy E are kept fixed during the simulation. The tempera¬

ture, on the other hand, is allowed to fluctuate during the simulation around a

constant mean value, because only the sum of the potential and the kinetic

energy remains constant. This ensemble is actually the microcanonical ensem¬

ble, which is commonly denoted as /WE-ensemble, neglecting the difference

between constant shape and constant volume Ray84a

a Throughout this work, the notation found in Ref [GrabenRay93] and [Ray88a] was
used
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2.4.3.2 Canonical (7riAA-)Ensemble

If an experiment is performed in a container with heat conducting walls and

the container is immersed in a bath of constant temperature T, the phase space

points are distributed according to the canonical ensemble Commonly, this

ensemble is denoted TV/V-ensemble (see the remark in the previous paragraph).

2.4.3.3 Constant Stress-Constant Temperature (TtW-)Ensemble

A solid body at a constant external thermodynamic tension t (quite often

text=0) and constant temperature Tbelongs to the TtA/-ensemble Since this is a

common state of solids, most of the simulations of this work were carried out in

this ensemble.

2.4.3.4 Other ensembles

In total, there exist eight commonly used ensembles, which are depicted in

Figure 2 11 Eight thermodynamic ensembles, that are in contact with a temperature pressure

and chemical potential reservoir Ensembles on the left are adiabatically insulated,

those on the right are in thermal contact with the reservoir

Fig 2.11 GrabenRay93^ For aN these ensemb|eSi sampling methods have been

devised The microcanonical, canonical, and constant temperature - constant

stress ensemble have already been introduced Of importance in simulations is

furthermore the grandcanonical ensemble, which allows changes in the number

of particles to keep the chemical potential constant PanagiatoPouios87
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2.4.4 The Partition Function

The relationship between an arbitrary microscopic property A, which can be

expressed as a function of the generalized coordinates A(F), and its macro¬

scopic observable Aobs is given simply by

A,bS = wn>ens, (2-40)

where ()ens denotes the ensemble average of A(T). This ensemble average as

well as the observable property are different for the different ensembles. Using

the principle of a priori equal probabilitiesMcQuarne76, the average for the canoni¬

cal ensemble is given by (Eqs (2-1) and (2-2))

V A(T)e
kT

<A>TnN=— H7f)-' (2"41)

Ir*"
with a denominator

H(H H(q,p)

0=^
kT

=4^Je
^

**<* (2"42)

called the (canonical) partition function. The second approximate equality is the

classical description of the partition function in the continuous phase space. The

leading quantum correction Qquantum mechanical
- ^classicalIS smal1 for h|gh tem¬

peratures and weak interactions
Fnedman85

Since, for a system obeying classical statistics, the Hamiltonian H(in carte¬

sian coordinates) can always be written as the sum of kinetic (p-dependent) and

potential (q-dependent) contributions, the partition function factonzes into a

product of kinetic (ideal gas) and potential (excess) partsAllenTlldesley89-

*(P) 0(g)

Qt*n - }Jf4j e
^

*Je
^
* " °° (2-43)

h

Instead of the excess partition function Q^w, often, the configuration integral

Z = lAj^ = Je
kT

dq (2-44)

is computed in a configuration-space MC simulation and the ideal gas properties

are added onto the results afterwards.
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In the microcanonical ensemble, the energy is constant and each point has

therefore equal weight. The partition function is simply the number of micro¬

scopic instances of the property A, provided the energy E(T) of the microstate is

exactly E:

QEhN = l^^(^-^"i-iN^(E(q,p)-E)dqdp. (2-45)
ft

The partition functions of the isothermal-isobaric enseal¬

ing AllenTildesley89

tr(tri) E(p tr(tip E(q,p)

Q = lYe
kT

e kT4-^Je
kT

dhje
kT

dqdp (2-46)

and the grand-canonical ensemble,

\iN _E(T) jxN E(q,p)

<V - IS^«
" "Iff^ "I-

"

**• (2-47)
r n N^h

can be obtained from the canonical partition function Q-^n directly with the aid of

Legendretransformations.GrabenRay93
The partition function and its temperature derivative are of interest,

because all macroscopic thermodynamic properties can be derived from it, as

the following equations show for the canonical ensemble: ReedGubbms73

S-WnQ f)

A = -ATlnQ g)

G--kT*Q+kTv{^)TNa h)

(2-48)

dNaJT,V,N,„
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Similar relations exist for the other ensembles. Except for the smallest systems,

it is, however, not possible to evaluate the partition function analytically or

numerically, because the high dimensionality (O(102-104)) of typical simulations

prevents a systematic sampling of the phase space It is therefore necessary to

use specialized sampling methods (chapter 2 5)

2.4.5 Equipartition of the Hamiltonian

For any two degrees of freedom x„ xy of a system with a Hamiltonian H, it

can be shown Patnria72
that

'^ " S/7"- (2-49)

If H (the sum of the kinetic and potential energy) is of a quadratic f0rmMcQuarrie76

m n

H(Pvp2,....,qs) = Xa/p?+£byqf + H(pm+1,...,ptf(gn+1, ,qs), (2-50)
/-1 y-1

each of the harmonic degrees of freedom contributes =/rT to the average energy

of the system. The theorem is also valid if the 'constants' a, and b, are functions

of the coordinates and momenta pm1, ,ps><7n+i>- .Qs not involved in the qua¬

dratic terms

2.5 Sampling Methods

The sampling procedure stands in the center of every atomistic simulation.

Specification of the force field, the simulation cell, and the ensemble (i.e. the

macroscopic variables that are constant) allows the computation of the energy

and, if necessary, of the forces acting on the atoms in the simulation. Using one

of the subsequently described methods, the phase space of the system can be

explored and thermodynamical and mechanical properties can be calculated

afterwards from microscopic configurations.

Basically, there are two different methods to sample the phase space The

more intuitive way is maybe molecular dynamics (MD), which solves the equa¬

tions of motion compliant with the ensemble being used and tries thus to mimic

nature. A more abstract, but equivalent, way is to generate conformations in a

more or less random fashion and to select those that fit into the chosen ensem¬

ble. Due to the randomness in the generation process, this method is termed

Monte Carlo.Metr°P°"s49
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2.5.1 Monte Carlo

As pointed out in chapter 2 4 4, the classical partition function in cartesian

coordinates can be split into a term depending on the momenta, which is known

from kinetic gas theory, and a term that depends solely on the coordinates q -

the configurational integral - the approximate computation of which is the task of

the MC algorithm

2.5.1.1 Simple sampling

The most straightforward way to integrate (2-44) would be the use of a

equispaced grid spanning the whole configuration space Since the total number

of points equals p3^ p giving the number of grid points in one dimension and N

the number of atoms, this method is impractical except for the smallest mole¬

cules Furthermore, virtually all grid points would lay in areas of the phase space

where the interaction energy is so high that the Boltzmann factor almost van¬

ishes

The same inefficiency can be observed, if the points in phase space are

chosen at random rather than on a grid In dense atomic systems, a fraction of

only about 10260 of all points makes significant contributions to the conforma¬

tional integral
Frenke|96

It would be much better to chose the phase space points with a probability

corresponding to their Boltzmann factor and to weight them evenly instead of

selecting them with equal probability and to weight them afterwards This is the

fundamental concept of importance sampling

2.5.1.2 Importance sampling

Given a distribution p of N states (Fig 2 12) with a set of transitions k

n3 *

Figure 2 12 Transition probabilities between W (= 5) different states

between all possible states In particular, nmn denotes the transition probability
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to go from state mto state n,and nnm the probability of going from n,to m. The

transition probabilities form a NxN matrix whose rows add to one. The number

density of state / is given by

M,
P/-M- (2"51)

where M, is the number of systems that are in state (configuration) / out of an

ensemble of M »N configurations. In thermodynamic equilibrium, the number

densities are distributed according to their Boltzmann factors:

kT

p,~e . (2-52)

Starting with a given density pold, the new number densities pnew can be evalu¬

ated by matrix multiplication as

Pnew-Paid* (2-53)

It is required that the limiting distribution resulting from repetition of (2-53) equals

the one given by (2-52). This is fulfilled, if the sum of all transitions from, say,

state m to the other states n,- (solid lines in Fig. 2.12) equals the transitions from

these states to m (dashed lines in Fig. 2.12),

^Pm^mn, = I>n/V (2'54)
i i

In normal simulations, this sufficient condition is replaced by the unnecessarily

strong requirement of detailed balance of all possible transitions,

Pm*, =

P„,V,- (2"55)

The transition probability nmn is the product of a probability amn to attempt

to change the configuration from m to n and a probability amn to accept this

move,

*mn = amn-amn- (2"56)

Assuming a symmetric underlying matrix a, the acceptance probabilityMe,ropolls53

amn " 1 Pn^Pm

Pn - (2-57)
amn =

7T Pn<Pm

is able to generate with a Markov3 chain a set of canonically distributed configu-
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rations
Binder92b

Although there are other solutions to Eq. (2-55),AllenTlldesley89

Eq. (2-57) - known as the asymmetrical Metropolis solution - is the most com¬

mon one. Averages obtained from transition matrices such as (2-57) differ from
-1 /2

the true canonical average by a term 0(nst ).

The asymmetrical Metropolis solution shown above is equivalent to accept¬

ing a trial move with a probability of expf ~- j. In a practical simulation, a ran¬

dom number r| is drawn from the interval (0,1) and the move is accepted if

AHmn
ItT

r\<e . (2-58)

It is of great importance to use reliable random number generators not only for

the acceptance step, but also for all different kinds of moves presented in the

next section. A short discussion of the random number generators used in this

work is therefore given in Appendix C.

For ensembles other than the canonical, the same acceptance probability

can be used as above, but the Hamiltonian in the evaluation of the number den¬

sities is different. In the Tt/V ensemble, for example, the configurational Hamilto¬

nian |SAllenTildesley89

HnN = U(q) + l/0tr (tii) + /cT/VIn V, (2-59)

the last term correcting for the fact that different volumes are sampled and thus

the kinetic configurational part is different for each point contributing to the

ensemble. Alternatively, the momenta can be included explicitly.Llll92a

2.5.1.3 Umbrella Sampling

Figure 2.13 shows the distribution of the cell edge length in the c-direction

during the last 500 ps of a 1 ns To/V-simulation of a PP crystal (chapter 4.3) The

quantity of interest is the width of the cell edge length distribution, since it is pro¬

portional to the compliance in this direction. In contrast to the mean value, the

width converges rather slowly, because it is more dependent on the tails of the

distribution The tails of the distribution, however, are only rarely sampled by the

MD algorithm, which weights the individual conformations according to their

Boltzmann weights. Normally, MC samples the phase space in the same man¬

ner, but it needn't necessarily do so. A number of schemes have been devised to

a (A Markov chain is a sequence of trial moves that satisfies two conditions

-The outcome of each trial belongs to a finite set of outcomes {m.n,, ,%.•)}, called the

state space
- The outcome of each trial depends only on the outcome of the trial that immediately pre¬

cedes it)
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Figure 2 13a) Distribution of the cell edge vector c during the last 500 ps of a 1 ns ToN-MD run

of a PP crystal at 300 K (black line) and fitted gaussian distribution (gray), b) relative

error of the mean (grey line) and the standard deviation (black) as a function of time

introduce a bias - that needs to be removed in the averaging process - which

enhances the probability of accepting configurations at the tails AI|enTiidesiey89

The one-half umbrella sampling algorithm used in this work originates from Lee

and ScottLee80a and accepts a new MC conformation if

tl < W(AUmn) e

*Umn

where h is a random number in the interval [0,1] and W(AUmn) = e

correct averages are computed from the weighted ones by

'2kT

(2-60)

The

<*>o
(A/W)w

(2-61)

2.5.1.4 Monte Carlo Moves

Up to now the structure of the underlying matrix a, the probability of

attempting a move, has not been specified, except that it should be symmetric. It

is the great advantage (and difficulty) of the Monte Carlo method that this matrix

can be chosen with great freedom, allowing all kinds of moves in a variety of

ensembles

In principle, the moves performed by a should be ergodic, i e. any state n

should be reachable from any state m by an (infinite) number of steps. In prac¬

tice, the choice of a is a compromise between the necessity to sample a repre¬

sentative part of the configurational space with a finite number of steps and the

desire to obtain a statistically sufficient number of configurations The first argu-
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ment requires large moves, that quickly decorrelate the structure and the second

one demands a certain fraction of accepted moves. Typically, the stepwidth is

chosen such that an acceptance ratio of about 50% is obtained. There is evi¬

dence, however, that lower acceptance ratios often lead to better perfor¬

mance Frenkel96'Le°rrtKlis94a,AllenTildesley89

It is beyond the scope of this work to discuss the nearly numberless types

of moves that have been created for all kinds of problems A good overview can

be found in [Widmann96a,Leontidis94a,Bmder92a] and references therein. In

the simulation of dense polymeric systems, the simple scheme of randomly

changing any degree of freedom leads only to a slow sampling of the phase

space. A number of other techniques have therefore been developedLeontldls94a,
some of which are mentioned now, neglecting coarse-grained lattice models,

which operate on other time- and length-scales.

As already mentioned, the simple random change of one (local move) or all

degrees of freedom simultaneously (global move) exhibits poor efficiency in

equilibrating dense polymer structures. For systems of individual atoms or small

molecules, local moves make better use of computational effort than global

updates of the coordinates In the case of dense polymers, the situation is

reversed. Due to the dense packing and entanglement of the chains, global

changes of the configuration seem to be more efficient in finding a way through

bottlenecks in phase space.Forrest94a
The reptation of chain molecules by one or several repeat units yields a

good equilibration for chains of relatively short length If the molecules are longer

or contain bulky side groups, cage effects reduce the acceptance ratio unaccept-

ably or lead to a stationary vibration of the chain due to forth and back moves.

A similar algorithm is Contmuum-Configurational-Bias Monte Carlo

(CBMC), in which a polymer chain is cut at a randomly chosen segment and

rebuilt in a step-wise fashion. At each step, the Boltzmann weight of a number of

torsion angles is computed and one of the angles chosen proportional to its

weight. This bias has to be removed at the end of the regrowth process by com¬

paring the statistical weight of the old and the new changed part of the chain

The Concerted-Rotation method tries to move four segments in the middle

part of the chain by changing a torsion angle while holding all other segments

constant. This requires to solve a set of constraint equations numerically and to

compute the Jacobian of the transition from the torsion angle space to the space

of the constraint equations in order to achieve detailed balance.

A similar algorithm is used by the Variable-Connectivity method to create

bridges between different molecules Therefore, a distribution of chain lengths is
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generated and the simulation samples the semigrand (NnPT\i*) ensem-

uig
Pant95a

A new, yet unpublished idea is the Parallel-Rotation, in which a driver angle

and three dependent torsion angles are used to shift the remaining part of the

polymer chain parallel to itself.3

All the above methods, however, change the polymer matrix only locally. As

already stated, it would be advantageous to update the degrees of freedom glo¬

bally. Hybrid Monte Carlo methods use short MD runs to create new configura¬

tions and apply a Metropolis criterion to accept or reject them. Before presenting

shortly this approach, the MD method will be introduced.

2.5.2 Molecular Dynamics

2.5.2.1 Equations of Motion

The Lagrangian L of a system of N particles is its kinetic minus its potential

energyLandau86b

L- K(q)-U(q), (2-62)

where q and q are the n = 3W generalized coordinates and n generalized veloc¬

ities.

Applying the principle of least action, the equations of motion are obtained

as

Ki)-%-° '-1'2 "• (2-63»

Integration of these equations allows to propagate the system through the phase

space

Depending on the ensemble (i.e. fixed macroscopic variables) the

Lagrangian has a different form. Two examples, the microcanonical (Eh/V) and

the isothermal-isotension (7t/V)-ensemble, are given. The microcanonical

ensemble is the natural ensemble of MD (as the canonical is for MC), while the

7t/V-ensemble is the one, in which most of the simulations presented in this work

were carried out.

The Lagrangian of the microcanonical ensemble is just

N P2
LNhE-iZtricWWk-UW - I^-U(r)- (2-64)

i,k „
<x

a S Santos, private communication (1996)
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The first equality is valid for arbitrary generalized coordinates and velocities, the

second only for cartesian coordinates, alk is a function of the coordinates q only

and ma and pa are the mass and the momentum of atom a, respectively. Deriv¬

ing the equations of motion from the second equality, one obtains

J_*S
_
_|U « mf _ F (2-65)

madt 3ra
" "

exactly Newton's equations of motion.

In case of the TtW-ensemble, the Lagrangian in cartesian coordinates is

much more complicated:1-1"933

LnN = Z- Vh U(r) +

' Vj 2l I- l/0Tr(tn) + «nkT\ns,(2-66)

a
2m(a)s 2Ws

2Q

where the first term expresses the kinetic energy of the particles as a function of

their scaled, virtual momenta jc'(a) = h7p(a)/s and the metric tensor g

(Eq. (A-14)). U(r) is the potential energy, that depends only on the interparticle

distances. The kinetic energy of the simulation cell is given by the third term. Q.'

is the virtual momentum (Q/s) and the parameter W has the dimension of mass

and governs the coupling between the net pressure and the rate, with which the

cell changes its shape. The fourth term is the potential energy of the elastically

deformed cell, with the thermodynamic tension t given by Eq. (1-41) and the

strain t| by Eq. (1-36). The volume V0 is given by V0 = |H|, the determinant of the

reference cell shape H. The third and fourth term together form an additional

degree of freedom, originally introduced by Parrinello and Rah-

man_ParnnelloRahman81a The fjfth and sixth term &rQ the kinetic and potentia|

energy of a similar additional degree of freedom with coordinate s and mass Q

and a conjugate momentum 9 originating from the Nose-Hoover thermo-

stat Nose84a,Nose84b,Nose9ia (Note the djfference between the coordinate s of the

Nose-Hoover thermostat and the scaled coordinates sa.)The quantity n denotes

the number of degrees of freedom (3/V+3). The Lagrangian is tilded, because a

term m hs<ct), which is considered to be small, was neglected in the expres¬

sion of the particle momentum in a fluctuating cell.Ray84a

The equations of motion are obtained as described above; transforming

them to physical time introduces a thermodynamic friction |Hoover85a int0 ^g

atomic and lattice dynamics:1-1"933
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l»

«-o rr/„

.(a) 9,j Jty

N,a*B
(a)

L V'PaJ ;

a)

b)

c)

d)
(2-67)

0.
j

_

V
'ii

to,- (P-n)jh|j;;-?Q(/ f)

n/y = -|j|[tyW +JtoVJ = -fX(cW) + Jfo JjJ°«] n)

The internal virial pressure P is defined by Eq. (1-47), n is the effective external

pressure, and o the stress imposed on the system. The strain u. is defined as

V-ij
~ 2\8ij-JkiJkjj-
Bulgac and KosnezovBu'9ac90a found that it is sufficient to control the ratio

of two quantities to achieve a constant temperature condition and the canonical

distribution. Since any pair of quantities, the ratio of whose canonical ensemble

averages is kT, could be chosen, the Lagrangian of Eq. (2-66) is only one of

many possible representations of a Tt/V-ensemble.

2.5.2.2 Manostats

Equation (2-67-f) describes the relation between the change in the cell

momentum and the difference between the internal stress P and the external

stress n, which is defined by Eq. (2-67-h). To prevent an unphysical rotation of

the cell, its momentum tensor is symmetrized by Eq. (2-67-g).

The Parrinello-Rahman algorithm produces a canonical distribution if the

step-width of the integration is infinitely small. However, at finite step-sizes the

average of the actual stress during a simulation is always lower than the target

stress, as can be seen in Table 2-2. This deviations become very large with

increasing time-step, making simulations of fully flexible polymeric systems with

a stepwidth larger than about 0.5 fs questionable.

The above equations of motion let the cell change its volume and shape

without restrictions. For structures far from mechanical equilibrium, this can lead
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Table 2-2 Average stress components of a simulation using a Parnnello-Rahman manos-

tat at T = 300 K (PA-12 structure of 1038 atoms with a tail correction pressure of

1110 bars, equilibrated by 1 ns of Tt/v-MD, averages from 50 ps of TtN-MD with

new velocities) At a stepsize of 2 fs, the simulation became unstable and

crashed

Af[fs]
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to large distortions in the cell shape, which prevent further use in simulations. In

the initial stage of simulation, it is therefore often desirable to use a constant-

pressure algonthmAndersen80a that changes only the size of a model box, while

leaving the shape orthogonal. Constant pressure algorithms using uniform cell

dilation and flexible cells with isotropic external tension are discussed in

Ref. [Martyna94a]

A more direct coupling between the internal stress P and the particle coor¬

dinates r, and the cell shape tensor h was suggested by Berendsen Berendsen84a

In his weak-coupling scheme, r, and h are scaled according to

7 = V,

h' = u.h'
(2-68)

where the scaling tensor u. is proportional to the difference between the internal

stress tensor and the externally imposed stress P0

M- -£'".-» (2-69)

(P is the isothermal compressibility, Afthe time-step, and xp a parameter).

2.5.2.3 Thermostats

Omitting the kinetic energy of the cell in Eq. (2-67-b), the change of the

thermodynamic friction coefficient is proportional to the difference between the

actual and the target kinetic energy,
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N(a)_-1 (a)
K. 9,; t;
I- n/cT ^[/C-n/rT]. (2-70)

If the temperature is too high, the thermodynamic friction | increases and the

momenta of the particles are reduced by the last term of Eq. (2-67-d).

As observed with the Parrinello-Rahman algorithm, the average tempera¬

ture of a Nose-Hoover thermostat depends heavily on the time step used for the

MD integration. As Fig. 2.14 shows, the actual temperature approaches the tar-

300

2 250

E

200

0.5

Time step [fs]
Figure 2.14: Average temperature of a simulation using a Nose-Hoover thermostat at 7= 300 K

(PA-12 structure of 1038 atoms, equilibrated by 1 ns of TtN-MD, averages from

50 ps of TtW-MD with new velocities; the bar indicates the correct mean and stan¬

dard deviation). At a stepsize of 2 fs, the simulation became unstable and crashed.

get temperature as the integration step gets smaller and the width of the fluctua¬

tions becomesNose91a

<sr2>
3AT

; ' (2-71)

which is, for the above example, about 7.6 K. As a compromise between speed

and accurate temperature and pressure control, a stepsize of 0.5 fs was used in

all simulations that used one of the two extended control mechanisms. The cou¬

pling parameter Qis suggested to be proportional to 3NkT(T0)2, where T0 repre¬

sents a characteristic time of the system. The proportionality factor has been set

empirically to 1.41-10"7/(T0)2, with To set to 1 .MSIDiscover1
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In Berendsen's fnermos/afBerendsen84a, an expression quite similar to

Eq (2-70) is used, but instead of |, it is | directly, which is controlled:Nose91a

r N_(a) -1 (a)

Y*' g«n< -nkT
*-• m ^[K-nkT] (2-72)

In contrast to the Nose-Hoover thermostat, the above equation is not capable of

generating a canonical ensemble.Hoover85a'Evans85a

The first and most straightforward temperature control method is the veloc¬

ity scaling algorithm of WoodcockWooclcocl<71a, where the velocities are simply

scaled after each integration step by a factor X, which is given by

X = HP- (2-73)
V act

(T is the target simulation temperature and Tact is the actual temperature,

obtained from the kinetic energy)

A further possibility to control the temperature consists in stochastic colli¬

sions of imaginary particles with individual atoms, that redistribute the kinetic

energies
Andersen80a Both the velocity scaling and the stochastic collision method

do not fulfil the requirement stated at the end of chapter 2.5.2.1 and are there¬

fore not canonical

2.5.2.4 Integrators

The above equations of motion (Eqs (2-65) or (2-67)) define a trajectory of

the system in phase space. Except for the simplest cases (e.g. two interacting

bodies), the trajectory can not be computed analytically but must be obtained

numerically using a finite difference method.

All methods of this kind start at a given time t, at which the locations r(f), the

velocities v(f) and - via the evaluation of the forces f(f) - the accelerations a(f) of

all particles are known. The integrator propagates the system by a small

timestep Af of O(10"15s) to a new time t + At and so on.

For an integrator to be useful in MD, it should be-

• fast (only one force evaluation per timestep)
• small (minimal consumption of computer memory)
• robust (good energy conservation even at large At)

• time reversible and canonical.

A necessary condition to achieve canonicity is the conservation of the phase

space volume in the course of the MD simulation according to the Liouville theo-
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rem (chapter 2.4.2). A more detailed discussion about this topic can be found in

Appendix D, where it becomes manifest that - for MD simulations - the velocity

Verlet algorithm is a better choice than the complicated and slow predictor-cor¬

rector algorithms, especially the ABM4 method. Since the velocity Verlet algo¬

rithm was used for all MD simulations in this work, it will be briefly derived from

its ancestor, the Verlet integrator.Frenkel96
A Taylor expansion of the coordinates at t + At and f- At yields

r(f+Af) = r(0+v(OAr+la(OAf2 +
l^Af3

+ c(Af'
3V

r(r-Af) = r(0-v(0Af+la(f)Af2-l^rAf3 + o(Af4
(2-74)

which sum up as

r(f+Af) = 2r(f)-r(f-Af)+a(r)Af2 + c(Af4J (2-75)

Neglecting the last term in Eq. (2-75), one obtains the Verlet integrator. Remark¬

ably, the new positions can be estimated with an accuracy of Af4, without knowl¬

edge of the velocities. But in many cases, the velocities are needed to define an

actual temperature. A first variant of the Verlet algorithm that includes the veloci¬

ties is the so-called Leapfrog scheme,Berk70a which got its name from the fact

that the velocities and positions are leaping over each other, separated by -=-:

r(f+Af) = r(0+vff+A/]Af
(2-76)

v(f+|')-v(f-|') + a<QAf

This asynchronicity prevents direct modifications of the velocities, as

required by a thermostat. Therefore, an algorithm of the Verlet type was devel¬

oped, which evaluates the positions and velocities at the same time - the velocity

Ve/7efalgonthm,Sw°Pe82a

r(f+Af) = r(0+v(f)Af+la(OAf2
(2-77)

v(f+Af) = v(f) +i[a(f) +a(f+Af)]Af

As a last remark about integrators, it should be noted that it is not important

that an algorithm is able to follow the 'true' trajectory extremely well. This is due

to the fact that even an extremely small difference in the initial conditions of two



2.5 Sampling Methods 69

otherwise identical simulations will lead to completely uncorrelated trajectories

after a few hundred or thousand steps. This effect is called the Lyapunov insta¬

bility and can be quantified as

|Ar(f)| = e-exp(Xr) (2-78)

with X being the largest Lyapunov exponent.

Figure 2.15 shows the effects of this 'chaotic' behaviour on a 'real' exam¬

ple. A DISCOVER simulation was performed and in the course of the simulation,

a '.xdyn' file was created. A second simulation was now started, using the data

of the '.xdyn' file and the potential and the kinetic energy of the continued and

the restarted run were compared. The only difference between the two simula¬

tions was the precision of the initial data: The continued run was using the 64 bit

o
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< -2

'0

Kinetic energy

potential energy

5'000 15'000 20'00010'000

MD steps

Figure 2.15 Difference between the kinetic and potential energies of a restarted and a continued

DISCOVER run (Ar-nearest-neighbour crystal, 108 atoms, 7*=0.3, At = 6.024 fs)

data format, with which numbers are stored in the memory, while the '.xdyn' file

was written with a smaller (although unknown) precision to the disk. The effects

of this small difference are well visible: After approximately 10'OOO MD steps, the

small initial difference has increased so much that the trajectories became com¬

pletely uncorrelated. The fluctuation of the difference becomes twice as large as

the fluctuations of the individual values.

2.5.3 Hybrid Monte Carlo (HMC)

One of the main disadvantages of Molecular Dynamics simulations is that

the stepsize of the integration has to be quite small in order to achieve a reason-
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able conservation of quantities of interest such as energy and temperature Fur¬

thermore, constant-temperature MD methods are only canonical in the limit of

infinitely small time steps.

In contrast to this, Monte Carlo methods are numerically stable and canon¬

ical, but suffer from the fact that it would be often necessary to use collective

instead of isolated moves to pass certain barriers in the equilibration of struc¬

tures. Random global moves, however, normally lead to very low acceptance

ratios.Mehll987a

A solution to this dilemma is the use of Hybrid Monte Carlo (HMC)Duane87a,
which combines the advantages of both MD and MC. The framework of this

method is a standard Monte Carlo algorithm (chapter 2.5.1), in which the change

of the coordinates is performed by a relatively short MD simulation In contrast to

'normal' MC, the Hamiltonians (potential plus kinetic energy) and not the poten¬

tial energies of the initial and final structure are compared and the new configu¬

ration is accepted according to the criterion stated in Eq. (2-57). Detailed

balance can only be maintained, if the integration algorithm is both time revers¬

ible and area preserwna/.Forrest94a Since the numerical instability of longer time

steps always leads to an increase AH in the energy, the acceptance ratio, which

is proportional to

AH

kT

(2-79)

always drops. These two tendencies - better decorrelation and lower acceptance

ratio with larger time steps - must be balanced for optimum performance.

Among the technical details of interest is the fact that the velocities are ran¬

domized at the beginning of each MD run, whether or not its precessor has been

accepted (otherwise detailed balance cannot be satisfied)Forrest94a
In contrast to this, another Hybrid-MC scheme, the stochastic dynamics -

Monte Carlo (SD-MC) algorithmGuamien94a leaves the velocities unaffected by

the acceptance or rejection of the MC step. The algorithm seems to be capable

of sampling the phase space efficiently, but without proof of canonicity.
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3 Theory III: Correlations and Fluctuations

3.1 Correlation Functions in Space and Time

Correlation functions are of outstanding importance in atomistic modeling

since they provide the necessary link between quantities computed by the simu¬

lation (e g velocity and location of the atoms) and experimentally observable

properties (diffusion coefficient, electrical conductivity, etc) In this subchapter,

the correlation functions in space and time will be introduced, some of their prop¬

erties investigated, and a few applications mentioned

3.1.1 The Radial Distribution Function

A 'lattice' function Ga(r) is introduced, which describes the probability of

finding an atom of kind a at the position r The analytical form of G depends on

the atomistic system being investigated A structure at very low temperature or

an individual frame of an MC or MD simulation produces a sum of delta func¬

tions

G>') = £o\r'-r(/)J, (3-1)

1-1

with N* being the number and r(,) the position of the atoms of kind a If struc¬

tures at higher temperatures or a large number of simulation frames are consid¬

ered, the distribution of the individual atomic positions is gaussian - provided, the

underlying interaction potential is harmonic

G>') = £^=Ue 2o?
(3-2)

/=1
V2rca

Other 'lattice' functions than (3-1) and (3-2) are possible, but their normalization

constant is always

|Ga(r')dr' = W (3-3)

R3

Using the 'lattice' functions, the pair distribution function gap(r) can be

defined as

9«p (r) - -J-p J Ga (r= - r) GP (r') *, (3-4)

R
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which, integrated over all r of equal length, results in the radial distribution func¬

tion

9*$(0 = 4^Jsintfc*paap(r) _ (3-5)

with r=/(r,iD,(p).

Using the convolution theoremPressetal92, (3-4) can be expressed by the

Fourier transforms (Eq. (3-15)) of G01 and Gp as

gop(co) = Ga(u)Gf5(w). (3-6)

An example of calculated radial distribution functions is given in Fig. 3.1, where

10

<

en 4

0
0 12 3

/[red. units]
Figure 3 1 Radial distribution function of an nearest-neighbour Lennard-Jones crystal at three

different reduced temperatures (2048 atoms with variable-shape MC after 3 106 glo¬
bal updates)

the distributions in a nearest-neighbour Lennard-Jones crystal (which is quite
similar to an argon crystal) at a reduced temperature 7* of 0, 0.125, and 0.31 are

compared (the melting point of the crystal is at about V = 0.5). The broadening
and shift of the peaks to higher values with increasing temperature can be well

observed.

The radial distribution function is of central importance in the theory of dis¬

ordered systems for two reasons:Hansen86'McQuame76

First, the radial distribution function can be measured experimentally both

by X-ray diffraction and by neutron scattering methods The structure factor
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h(s) =PJ (g{r)-^]eIS^rdr, (3-7)

the Fourier transform of g(r) -1, can be evaluated directly with radiation-scatter¬

ing experiments.

Second, thermodynamical quantities such as the potential energy U, the

pressure p, and the chemical potential u can be calculated, once the radial distri¬

bution function is known.

3.1.2 The Time-Autocorrelation Function

In Molecular Dynamics as well as in Monte Carlo simulations, successive

conformations are normally highly correlated (i.e. differ only little). A convenient

measure of the fading of the correlation of a dynamical variable A(t) (e.g. the

velocity \ij(f) or the position r,{/) of a particle) is the time-autocorrelation

function"1*"86

"» "max

CMW~y- J A(t+v)A(t)dt ~J_£/(/+t/aA -(A(x)A). (3-8)
max

Q max,= 1

The first equality is valid for continuous values of A(f) whereas the second equal¬

ity defines the autocorrelation function of A at discrete values of f, assuming con¬

stant time intervals At between successive samples; Ak is defined as A(k-Af).

The third equality is only valid, if the process that governs the time evolution of

A(f) is ergodicMcQuarne76, because the angular brackets denote an ensemble

average. In the subsequent derivations, however, this notation will be used both

for time and ensemble averages.

If /4(f) fluctuates around a non-zero mean value (A), only its deviations from

this mean value are of interest, giving

a(t)=A(t)-(A). (3-9)

The correlation function of this quantity can be normalized by dividing it by

Caa(0),

c m -

<aWa>
_

<aWa> /3.1 rw

C-(T)
-

<a(0)a>
"

{a2y
(310)

The normalized correlation function caa has the following important proper-

(|es.Leach96,McQuarrie76
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caa(0) -

(a(O)a)

<a(0)a>
= 1

caM) e[(-c)aa(0),caa(0)]> (3-11)

caa(~) (a)(a)

with the second equation following from Schwarz's inequality and the third from

the definition of a(t) (Eq. (3-9)). The time-autocorrelation function is thus a mea¬

sure how long it lasts until the system has lost its 'memory' of the previous con¬

formations or states. A value of 1 indicates complete correlation with the state of

reference, whereas 0 indicates complete loss of all information about the initial

state.

A typical autocorrelation function looks similar to the one given in Fig. 3.2.

1 00

10'OOQ^00
Time t [fs]

Figure 3 2 Autocorrelation function of the y-angle of Cellulose at 325 K (TtW-MD simulation

with Ewald summation of the coulombic interactions, data from 0 to 132 ps)

At short times (< 10 fs), there is hardly any change in the quantity of interest (the

7 angle of the cell shape), whereas, at about 100 fs, a quick decorrelation starts,

corresponding to a fluctuation of the cell with a period of about 350 fs. This

period is reflected too in the oscillations at long times and is linked to the cell

mass W of the constant-pressure MD algorithm (Eq (2-66)). At very long times,

these oscillations become smaller and smaller because the fluctuations of the

cell are not monochromatic. The relaxation time tR, i e the time where (^(t) has

dropped to -, is about 70 fs in the above example.

3.1.3 The Time-Crosscorrelation Function

The temporal dependence between two different variables A(t) and B(f) is

expressed by the crosscorrelation function
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max . max,_ ^

which can be normalized by subtracting the mean values from the variables A(t)

and B(f) and dividing the correlation function by (a(0)£>)

C^s(T) "

<a(0)6>'
(313)

with a(t) = A(t) - (A) and b(t) = 6(f) - (B) Again cA^i) is proportional to the prob¬

ability of a(t+t) evolving parallel with b(t)

According to Eqs (3-8) and (3-12), the correlation functions are functions

of the time difference x only and are thus said to be stationary Therefore, the

relations

(A{i)B) ~-(Afx)B,,

(AA) = 0 (3-14)

(A(i)B) --</l(T)fl>

are valid Hansen86

3.1.4 The Wiener-Khinchin Theorem

If A((i>) denotes the Fourier-transform of the familiar dynamic variable /4(f),

7

A (a) = hm \A(t)emtdt, (3-15)
/rof

t(r;r

T

the spectral density function of A(t) is defined as

SAA(a) = hm =La(co)/»"(to), (3-16)

where /4*(co) stands for the complex conjugate of A(a)

The Wiener-Khinchin theorem now connects the spectral density and the

time-correlation function of A(t) by stating thatReichl80a

S„„(co) = Je"ot(^(T)/l>OT= \elu"CAA(x)ck (3-17)

This is equivalent to the more general 'Correlation Theorem'Presse,al92

C„e(x) = /4(co)B*(w), (3-18)
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which allows to compute the correlation function by multiplication of the Fourier

transform of the fluctuating vanable(s).

3.1.5 Kubo-Green Formula

The well-known Einstein formula for the self-diffusion coefficient

AllenTildesley89

D- liml<[r(0(0-r(0(0)]2> (3-19)
t^,Jot

can be generalized to the following f0rnrHansen86

K = (AA(t)) = ^limj-f< [Art) -A(0)]2). (3-20)

This equation is equivalent to

K- (AA(t)) =X\%AB(x)di (3-21)

t

with X being the constant external perturbation and %AB the 'after effect' function

W0- TrT<S<°>*<'» for<>°. (3-22)

0 for f < 0

(3-22) is the so-called Green-Kubo relation between a transport coefficient and

an integral over a time-correlation function. There exists a number of such rela¬

tions, some of which are given in the next equations
Frenkel98a

D- J(v(0(x) v(/)(0)>ox
0

ii - j^J<o/k(T)o(k(0)><ft o/k- £ U%X + l£r;\{'af5}
0 0-1L B*a

Xt - ^J^(t)^(o)>* *< - iti ^k^+ z "{'aP>
*' V„ a-1

L P*a

N

0 a-1

As stated in the remarks of Eq. (3-8), the angular brackets actually denote
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ensemble averages The notation of the variables is given at the beginning of

this work Assuming ergodicity to hold, the ensemble averages can be replaced

by time averages (chapter 2.4.2). For Eqs. (3-23) to be exactly valid, it would

actually be necessary to simulate for an infinite amount of time Since this is not

possible in practical computer simulations, all quantities calculated from the

above equations are just finite-time approximations of the 'real' values It is

therefore necessary to check whether or not the simulation has been long

enough for the results to converge.

3.2 The Fluctuation-Dissipation Theorem and the

Elastic Constants

3.2.1 The Fluctuation-Dissipation Theorem

The famous fluctuation-dissipation f/?eoremLandau86c,

(x2) =

—2 Ja" (co) coth^Ldco, (3-24)
2jc

o

connects the imaginary part of the generalized susceptibility a(co) to the mean

square of the fluctuations of a general physical quantity x. The generalized sus¬

ceptibility is the Fourier-transform of the proportionality a of the linear response

x (f) of a physical quantity x(t) to an external perturbation force f(f)

x(t) = &f(t) . (3-25)

The perturbation force f\t) and the physical property x(f) can be any pair of

conjugate quantities (e g. electrical field and dipole moment), in the case of the

elastic properties, f\f) is a mechanical force (or stress) acting on a solid body that

invokes a deformation (or strain) response x(f) The proportionality factor d

between these two quantities is the familiar elastic compliance (Eq (1 -56))

In the limit of high temperatures kT» /xo/2n - the classical case - the fluc¬

tuation-dissipation theorem (FDT) can be simplified toLandau86c

(x2) = /cTd(O) (3-26)

The first formulation (3-24) of the FDT allows to obtain informations about

the underlying atomistic processes from macroscopic measurement of the imag¬

inary part of the general susceptibility. By reformulating the FDT, it is also possi¬

ble to compute a general susceptibility from the fluctuations of the corresponding

physical quantity. The following equation for the generalized susceptibility is due
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to KuboKubo66a

a(co) = '^\e"*\x(t) (*(0) -*(0) (*(f)))>dr, (3-27)

o

In the classical limit, this formula is equivalent to Eqs (3-23) (and of course

Eq. (3-26)).

3.2.2 The Fluctuation Equations of the Elastic Constants

The strain-strain fluctuation formula of the elastic constants,

kT

<W,n> " JftSiklm 0-28)

can be directly derived from (3-26) Using the stiffnesses instead of the compli¬

ances leads to the familiar form of the equationParrinelloRahman82a

^^W1' (3-29)

The stress-strain fluctuation formula of the elastic constants is obtained in the

following wayGusev96a:
In the absence of external stresses, the Hamiltonian H of a W-particle sys¬

tem can be written as

2

H-I^-+U<rap>- (3-30)
a a

where pa and ma are the momentum and mass of particle a and U(ra^) is the

potential energy, which depends only on the distances rap between the particles.

Considering six independent components of the strain tensor r\lk (Eq. (1-36)) as

'generalized coordinates' (degrees of freedom) the follwing identity holds:

T1*^) = kT5'^ (3_31)

Equations (3-31) and (2-49) are examples of the general form (AdH/dq) =

kT(dA/dq) that holdsMunster69'Pathna72 for any generalized coordinate q and

function A in the canonical ensemble and is valid to 0(N~:) in any other ensem¬

ble.

To calculate the derivatives of the Hamiltonian with respect to the strain

components, Eq. (1 -28) takes the form
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2
= R2 + 2r]lkXlXk, (3-32)

which is acutally the definition of the strain tensor for homogeneous deforma¬

tions. Differentiating both sides of (3-32) with respect to tj^ and noting that

X, = H,jhjkxk (Eq. (B-1)), we obtain from (3-30) - (3-32)

/« v
auVpXp^/^Vs. 1

+s
Wik L Tr r

> = j*r(Vto + Vk (3-33)

The kinetic term of the Hamiltonian was left out in the above equation, because it

does not contribute, since (r\lk) = 0. From Eqs (3-29) and (3-33) a new fluctuation

formula for the elastic constants follows.

r
1

/ V
auVw'Vg^'V^

.-1
,.,..

CMm
=

7^*1 §7" FT ><WJ 0-34)

x
a>p ccp ap

According to Eqs (1-46) and (1-47), the summation term is equivalent to the

thermodynamic tension t. This results in the following notation of the fluctuation

formula for finite stress and strain.

c,Wm-<vn;<vi/^"1- (3-35>

If the difference between the instantaneous scaling matrix h and the average

scaling matrix H is small (e.g. at low temperatures), the linear stress tensor a

can be used instead

Crt/m-^fcOnjXTl^W1. (3-36)

In the limit of thermodynamic equilibrium, both fluctuation approaches yield

the same result, leading to the following convergence criterion

1 kT
(ViSm) =

27y)<SAm + 5,rA/>' (3-37)

which is equivalent to (3-33).If linear stresses are assumed, the convergence cri¬

terion can be written as

1 kT

(Wj-2ffi*Am + &M- 0-38)

Equation (3-37) shows, that formally the constant term kTI(V) of Eq.(3-29) is

replaced by the fluctuating components of the stress-strain correlation. Unless

the instantaneous stresses and strains are correlated, this would not improve the
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convergence of the elastic constants calculation. But they indeed are correlated,

as is most obvious in the limit of low temperature, where the entropic contribu¬

tions are negligible and the instantaneous stresses are unambigously deter¬

mined by the instantaneous strains via Hooke's law

ciikrzkl- (1-49)

As discussed in Ref. [Gusev96a], this correlation between the instantaneous

stresses and strains allows for an evaluation of the elastic constants by using

(3-35) or (3-36) without fully converged second moments (r\nfr\irr^ of the strain

fluctuations, as explicitly required by (3-29).

3.2.3 Size Dependence of the Elastic Thermal Fluctuations

The amplitude of the thermal fluctuations of a body with Young's modulus E

is increasing with decreasing sample dimension /approximately like

M-M (3-39)

This can be rationalized by considering / as a degree of freedom of the system

as a whole and assigning an average energy of ?kT to it The average elastic

energy of a cubic cell due to the fluctuation of the cell size /matches this value in

thermodynamic equilibrium, as is expressed by

\lEo(S kT. (3-40)

Figure 3 3 gives an example of the absolute value of the thermal fluctuations of a

1

0 0001

Sample size / [A]
Figure 3 3 Root mean squared fluctuations of a body with a Young modulus of 3 GPa as a

function of its size /
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cubic body with a Young modulus of E = 3 GPa It is clearly visible that, at mac¬

roscopic dimensions of centimeters (108A), the fluctuations are vanishingly

small. At very small dimensions of 10 - 30 A typically present in simulations, the

fluctuations are in the range of a few percent of the cell dimension / This consid¬

erable absolute value guarantees an accurate numerical registration of the

effect, i.e. a good signal/noise ratio. On the other hand, dynamical instabilities

occur if the cell size is very small or Young's modulus very low. It furthermore

often requires the use of finite instead of linear stresses and strains.
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4 Results

This section contains the description of the various atomistic model sys¬

tems that were simulated in the course of this Ph. D. thesis and of the results

obtained from these simulations.

Chronologically, the first polymer that was investigated was polycarbonate

(BPA-PC) in its glassy state. In order to have a more simple system and to avoid

the imponderabilities of generating amorphous structures, a monocrystal of poly¬

ethylene was the next system of interest. Polypropylene followed, because it

allowed to get insights into the elasticity of helical chains. The final step in the

direction of more simple and computationally well tractable systems was

reached by simulating a crystal of nearest-neighbour Lennard-Jones particles.

This system allowed to compare the different fluctuation formulae and to have a

close look at the influence of the temperature on the elastic constants. Due to

the experience gained in this system, it became possible to aim for more compli¬

cated structures: crystalline polyamide-6 and Cellulose-ip were modeled at vari¬

ous temperatures. The whole work ended with an extensive simulation of

amorphous polyamide-6 and -12 in dry and water-saturated state at different

temperatures to quantify the influence of these parameters on the mechanical

behaviour.

The model systems, however, will be presented starting from the most sim¬

ple and best understood going to more and more complicated problems:

• Lennard-Jones solid - nearest neighbours
• Polyethylene - planar zig-zag chains

• Polypropylene - helical chains

• Cellulose-lf3 - chains with hydrogen bonds

• Polyamide-6 - chains with hydrogen bonds

• Polyamide-6 - amorphous, with and without water

• Polyamide-12 - amorphous, with and without water

• Polycarbonate - amorphous

For each system, a short description about the structure and its generation pro¬

cess is given, followed by details about the simulation procedure. Problems

encountered during the simulation and the results obtained from the trajectories

are discussed. Finally a comparison with other numerical approaches and with

experimental values (if available) is made and conclusions are drawn.



4 1 11ntroduction 83

4.1 Lennard-Jones Solid - Nearest-Neighbours

4.1.1 Introduction

Crystals of the rare gases Ne, Ar, Kr, and Xe have been studied particularly

wei|Horton76 due to their extremely simple structure, they consist of individual

atoms which form an fee (face-centered cubic) lattice. This lattice is held

together only by van-der-Waals forces (dispersion and exchange terms), Cou¬

lombic or bonded interactions as well as induction terms are completely missing.

Nevertheless, theoretical and experimental determination of the precise form of

the interaction potential is by no means trivial One of the best approximations is

the so-called Barker-Fisher-Watts (BFW) potentialBarker76

U(r) = e

5

a(1-R) r,,D ,.i ^6 °8 u10

ea(l-H)X/\,(R-1)'

Cr

Co Ch

1-1 [ff6 + 8] [fl\s] [R10 + S]
(4-1)

As already mentioned in chapter 2.1 3 5, many-body interactions contribute

substantially to the total energy, making it necessary to include at least the triple-

dipole contribution to obtain reliable results.Bari<er76 It is also worth noting that all

calculations predict an extremely small energy difference between the hexago-

nally close packed (hep) and the fee lattice. This difference is a fraction of a per¬

cent of the crystal potential energy and by far not enough to explain the fact that

the above mentioned rare gases crystallize in the fee structure.BellZucker76

Since the above potential is quite complicated, the more simple 12-6 Len¬

nard-Jones function of Eq. (2-8) is used for model calculations. This so-called

Lennard-Jones solid (which - by reasons stated above - is not identical to a solid

rare gas) is a widely used model system. In many simulations, the simplicity of

this model is further increased by neglecting all but the nearest-neighbour inter¬

actions The result is the Nearest-neighbour Lennard-Jones solid, a well-investi¬

gated reference system against which new sampling methods can be

tested Rahman64a.Verlet67a,Spnk84a,Rutledge94b

The intention of the following work was to study the convergence behaviour

of different fluctuation approaches, in particular the Parnnello-Rahman strain-

strain correlation formula (Eq. (3-36)) and the new stress-strain correlation for¬

mula (Eq. (3-34)) Another objective was it to establish the influence of the simu¬

lation box size and the temperature on the convergence rate and the 'final'

a R = rlo- (chapter 2 1 3 3), o* = 3 7612 A, dk = 142 095 K, R0 = 3 3605 A,

A0 = 027783, At = -4 50431, Az = -8 331215, A3 = -25 2696, A4 = -102 0195, A5 = -

113 25, Cr = 1 10727, C8 = 0 16971325, C10 = 0 013611, a = 12 5, and 8 = 0 01
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results. Therefore, Monte Carlo and molecular dynamics simulations of a variety

of systems from 32 to 2048 and even 23328 atoms were performed at different

temperatures. This was possible because the extreme simplicity of the interac¬

tion function (Eq. (E-2)) allowed to write highly efficient code (an example one

global-update MC step of a 108-atom system took 1 3 milliseconds on a work¬

station).

The results of these simulations will be examined in detail in order to intro¬

duce the methodology for the subsequent polymeric systems.

4.1.2 Description and Cell Generation

With an fee unit cell of 4 atoms (Fig 4.1 a)) and a cubic overall shape the

Figure 4 1 a) Unit cell of the fee Nearest-neighbour Lennard-Jones solid, b) simulation assem¬

bly of 108 atoms (n = 3) subject to PCC

simulation system contains n3*4 atoms (n being integer). In the literature, all pos¬

sible systems from 32 (n = 2)Sciulre69a to 864 (n = 6)Leb0WI,z67a particles have

been described and used. Due to the cubic symmetry, there are only three inde¬

pendent elastic constants, Cn, C-\2, and C44, as indicated in Table 1-2 on

page 18. Many of the results in the following sections are thus given as an aver¬

age over the symmetry-equivalent components of the matrix of the elastic con¬

stants The standard deviation serves as an indication of the precision of the

calculation, as do the elements that should be zero.

The generation of cubic simulation boxes of arbitrary size was done by a

small program (makecar.f), which calculated the size of the box, the positions of

the individual atoms, and the list of nearest-neighbour interactions from the num¬

ber of unit cells per dimension, n. It was not necessary to specify the Lennard-

Jones parameter a because reduced units were used (Appendix E). To convert
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from reduced to SI units, o = 3.805 A and e = 119.8 /(Sp1*843 have been used.

To speed up equilibration, it is favourable to multiply the h matrix describing

the box shape with an empirical, temperature-dependent constant which

accounts for the thermal expansion of the simulation box. Typical values of this

constant lie between 1 1 and 1.2Cowley83a. The file created by the above pro¬

gram, and used as the input of the subsequent MC simulation, had a structure

that is given in Table 4-1.

Table 4-1 The data file of the nearest-neighbour Lennard-Jones solid

31 °1 Ci

a2 °2 °2

33 t>3 C3

s11 s12 S13

s21 s22 s23

at, atk

h-matrix [a,b,c]

scaled coordinates of the 4rP atoms

list of 6 4/r3 pairs of nearest neighbours

4.1.3 Simulation Procedure

4.1.3.1 Monte Carlo Simulations

A simple global-update Monte Carlo move was used to simulate a TtN-

ensemble: In one move both the cell shape matrix h and the coordinates x(a) of

all atoms were changed randomly. The cell shape matrix was altered symmetri¬

cally by

*new ~ n0,d+A>W2R-1) R,k - *ki (4-2)

to prevent rotations of the cell as a whole The positions of all atoms were

changed by

^l=x<«j+Axmax(2R-1) (4-3)

with R denoting a symmetnc 3x3 matrix (Eq (4-2)) or a vector (Eq (4-3)) of ran¬

dom numbers between 0 and 1 and 1 being a matrix or a vector full of 1's. All

random numbers were generated by the Lagged Fibonacci algorithm described

in Appendix C-2.

The maximum possible change of the cell parameters and of the coordi¬

nates, Ahmax and Axmax, were set to the same proportion by
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Ax =

Ahmax
(4-4)

"'max 1/3
' y*^>

with N being the number of atoms. Ahmax was not a true degree of freedom since

it was adapted during the simulation to yield a certain acceptance ratio. An auto-

adjustment procedure was introduced that modified these values to keep the

acceptance ratio pacc between pacc_mm and pacc_max Iftne actual acceptance

ratio - computed over at least 100 steps - was smaller than pacc_mm, A/)max was

reduced by 10% (multiplied with 0 9). If it exceeded pacc_max, Anmax was multi¬

plied with 1.1 instead. Stationary values of Ahmax were reached after 2 104-

4 105 MC steps. Typically, this initial period with varying Ahmax comprised less

than a percent of the total simulation and its influence on the final result should

therefore be negligible However, in some cases a faster convergence would

have been achieved by starting with a better guess of Ahmax

After a random change of the cell shape and atom coordinates, Enew the

sum of the interaction energies between the nearest neighbours was calculated.

A move was accepted if

mm 1, ^)W exo(-^-)) (4-5)

was larger than a random number between 0 and 1. In this case, the new config¬

uration replaced the old one and was added to the ensemble average Other¬

wise, the old configuration contributed again to the ensemble average. The

ensemble sampled in this way was the TtW-ensemble and the elastic constants

are the isothermal ones.

Tables 4-2 and 4-3 show the simulations that were performed using the

Tt/V-MC algorithm. The linear form of the stress-strain correlation function

(Eq. (4-16)) was used to compute the elastic constants in Table 4-2. In Table 4-3,

the finite-stress-strain correlations were computed by Eq. (4-20). In each cell,

the number of equilibration steps is indicated in the upper left and the number of

sampling steps in the lower right half.The last row in the first table lists the CPU

time per MC step on a workstation (SGI Crimson). Since only nearest-neighbour

interactions were considered, the computation time scales linearly with N. There

is no significant difference in the computation time if finite stresses were

assumed.

Besides these simulations, the influence of the acceptance probability on

the convergence of the elastic constants was investigated by a series of three

runs with 32 atoms at 7* = 0.3, each of 106 steps. The maximum possible
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Table 4-2 71W-MC simulations of nearest-neighbour Lennard-Jones solid of various size

at a range of temperatures, linear stresses were assumed in all calculations

Table 4-3 TtN-MC simulations of nearest-neighbour Lennard-Jones solid of various size

at a range of temperatures, in a\\ calculations, finite stresses were taken into

account

N

0.01

0.02

0.05

0.125

0.225

03

0.5

32

10B

10B

10B

108

10'
10'

1.5 10L-
1.510'

1.510'
1.5 10'

2 10B
10*

2 108
10°

2 10°
10B

10B

256

10'

10'

2048

2 10°
2 10fc

change of the cell parameters, Ahmax, was set such, that the acceptance proba¬

bilities were 5 -10%, 45 - 50%, and 90 - 95%, respectively.

4.1.3.2 Molecular Dynamics Simulations

To check the results of the MC algorithm and to get an idea of its efficiency,

some MD simulations were performed For this purpose, argon structures of 108

atoms were built with Insightll and minimized with Discover94 The forcefield

used for the minimization and the subsequent MD simulations contained only a

12-6 Lennard-Jones interaction term with a = 3.805 A and dk= 119.8 K (the
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value of a was taken from ref. [Sprik84a] and is somewhat too large). Runs in the

ToW-ensemble were made with a stepsize of Af = 0.0025 (6.024 fs), approxi¬
mately half the typical value found in the literature, which ranges from

8.6 fssPnk84a to 12.05 fsRay85a,Ray88a Tnis sma|| va|ue was ch0sen because the

Nose-Hoover thermostat used for the temperature control requires relatively
small timesteps (chapter 2.5.2.3).

Consecutive simulations of several 104 steps wrote the cell size and the

stresses to a table file from where these values were read by essentially the

same program which computed the elastic constants of the MC runs. A descrip¬

tion of this program will be given in chapter 4.1.4. Because it would have been

too complicated to access the forces acting on the individual atoms, the stress-

strain correlation term in the Gusev-Zehnder-Suter formula was only calculated

assuming linear (Eq. (3-36)) and not finite (3-35) stresses. So the results were

just compared with MC calculations using linear stresses, too.

All MD and the MC simulations mentioned in this chapter were performed

on a 108-atom Lennard-Jones crystal at a reduced temperature T* = 0.3 and

consisted of 107 steps. To circumvent the inability of the Discover MD-software

to compute just nearest-neighbour interactions (as described in chapter 4.1.3.3),
a set of runs with cutoffs of 5.35 A without splines and 5.2 A with various spline
widths was used for both the MD and the MC simulations. The following table

gives an overview of all simulations performed:

Table 4-4: Simulations with N= 108 and V = 0.3 (36 K), MC and MD runs (for compari¬
son)

MC

MD

cutoff [A]

5.35

5.4

5.4

5.8

spline [A]

0.4

0.4

1.2

runs

1

4.1.3.3 Hybrid Monte Carlo

As a third independent sampling method, Hybrid Monte Carlo runs were

done with Discover 94 for the structures of 108 and 500 atoms. Two different

ensembles were sampled hereby: the canonical ThN- and the isothermal-isos-

tress foAAensemble. In both cases, an input-script for Discover 94 generated
the necessary random numbers (Appendix C-1), extracted the energies from

output files, and controlled the writing of conformations and cell stresses. How-
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ever, various technical problems and limitations of Discover 94 prevented the

use of this method for calculating elastic constants

One of the first problems arouse with the cutoffs1 For MD and HMC simula¬

tions, the interactions between nearest-neighbour interactions were replaced by

those within a cutoff of 5.35 A. This value was found by plotting a histogram of

the interparticle distances at the desired simulation temperature of 7* = 0.3. As

Fig 3.1 reveals and as was confirmed by subsequent simulations, the first and

second neighbour shells are so close that atoms from one or the other shell

occasionally cross the sharp cutoff and change the energy by -0 1232 kcal/mole

abruptly (Fig. 4.2 a)) No way was found to influence the update rate of the

neighbour list in order to alter this unphysical behaviour. Hybrid-MC simulations

of the nearest-neighbour Lennard-Jones solid were therefore not possible

because a jump of 0.12 kcal/mole is equal to a reduction of the acceptance down

to 18%.

0.004

0.002

-0.002

0.8 1.2 1.6 2.0 2.4"00040
Time [ps]

0.4 0^8 1.2 1.6 2.0 2.4

Time [ps]

Figure 4 2 Potential energy during an £hW-MD simulation of a Lennard-Jones solid

(500 atoms, 7* = 0 3, At* = 0 005) with a) a sharp cutoff at 5 35 A and b) a splined

cutoff between 5 0 and 5 4 A

The above jumps in the potential energy could be made much smaller by

the introduction of a spline between 5.0 and 5.4 A As can be seen in Fig 4 2 b),

the fluctuations in the potential energy become approximately two orders of

magnitude smaller and are less abrupt. These small fluctuations are hardly influ¬

encing the HMC algorithm anymore (influence on the acceptance rate is less

than 3 %). But by introducing this spline of 0.4 A width, one is no longer able to

simulate a nearest-neighbour Lennard-Jones solid which has a strong impact on

the elastic constants (chapter 4.1.5.5).

To sample conformations in the TtA/-ensemble, a hybrid scheme was
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devised that consists of two parts: In one part, the cell is deformed by a random

amount according to Eq. (4-2) without change of the atom coordinates; in the

other part, a short EhN-MD run is performed. In order to achieve detailed bal¬

ance (microreversibility), the sequence of the two parts must not always be the

same. It is possible to use a 50-50 mixture of moves that perform first a deforma¬

tion and afterwards a MD simulation and moves that do the opposite. The other -

equal - solution consists of a mixture of pure deformation and pure Hybrid-MC

processes:

a)

HMC-dynamics/deformation

1/2 -- {J
deformation/HMC-dynamics

b)
HMC-dynamics

oso

deformation

Figure 4.3: Tt/v-HMC schemes: a) equal probability of dynamics/deformation and deformation/

dynamics moves; b) adjustable proportion of deformation and dynamics

In Discover 94, however, the velocities can not be scaled simultaneously with the

change of the cell shape matrix, so that the dynamics/deformation move can not

be programmed straightforwardly.

To avoid these problems, variable shape (Eo7V)-MD simulation runs with

relatively large timesteps (90.36 fs with a Nose-Hoover thermostat) were used to

sample the phase space on the limit of stability of MD. The acceptance criterion

was modified by an 'umbrella' sampling technique described in chapter 2.5.1.3.

The test system was again a 108-atom nearest-neighbour Lennard-Jones solid

at r = 0.3.

Again for comparison, the same system was used in a self-made MC code,

Table 4-5: Simulations with N= 108 and T* = 0.3, nearest-neighbour interactions only

Deformation only

Deformation + MD

MD + Deformation

MD steps

100

100

global steps

8-10'

10'

10'

runs

1

which was extended to follow a short BnN-MD trajectory with a velocity-Verlet

integrator (Appendix E). Using this code, the calculations listed in Table 4-5 were
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carried out, and the different number of steps in the runs with and without MD

reflects the different timings to do one global step.

4.1.4 Evaluation of the Elastic Constants

In order to calculate the elastic constants with the Parrinello-Rahman for¬

mula,

kT _1

C,Wm - ffiwJ . (3-29)

or with the Gusev-Zehnder-Suter approach,

it is necessary to evaluate the averages of the strain-strain and of the stress-

strain correlation matrices, (r\lkr],m) and (r\lktnj). But both the definition of the finite

strain,

tl-l[HT_1hThH-1-l], (1-36)

and the finite stress,

t = JHh"1ohr"1Hr, (1-46)

contain the reference cell shape H, which is not known a priori, but can be set

equal to the average cell shape (h)PamnelloRahman81a. For the average cell shape

in a 7t/V-simulation is the cell shape formed by the average stress, and the net

stress in all simulations was set to zero bar, this average cell shape should rep¬

resent an equilibrium (i.e. strain-free) cell.

If the cell shape h(f) and the actual stress a(t) are known as a function of

time - MD simulation time or sequence of MC frames - the elastic constants can

be expressed as a function of t, too. The easiest and most straightforward way to

do this is to store the cell parameters and the stress of all relevant frames and to

obtain first the average cell shape and the average stress and to use these val¬

ues in Eqs. (1-36) and (1-46) to compute the actual strain and stress, which

themselves are needed to obtain the strain-strain and the stress-strain correla¬

tion matrices.

Although the correlation between successive frames makes it necessary to

save, say, only every 10th frame, long simulations easily produce 107 (MD) or

108(MC) frames. Even if the 64-bit binary representation is used, the storage of

the 6 cell parameters and the 6 stress values consumes 100 to 1000 MBytes of
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allow to obtain the average of Eq. (4-9) as

3 3 3

<"„>= n<«rk>>;,1 icwj- (4-12)

/r-1/-1 /n-1

The right side of Eq. (4-12) contains 3-9=27 elements over which the averages

have to be summed. The last term of Eq. (4-7), (H^H^, is much more compli¬

cated: no less than 738 terms have to be watched:

3 3 3 3

<«U-Hk>- XXX X <*>m,<<<*>;!<*£,
m-1n-1o-1p-1

(4-13)

X X ('VvAoV
q- 1 r— 1

Inserting the above terms into Eq. (4-7), the average of the product of the

strains is expressed in quite a lengthy expression:

1 1
3 3

-

-1
3

(•V^V/ - 48 A/"
4V X X <h>mk</,>n/< X homhon>

m- 1n = 1 o-1

3 3
-1

3

-X- X X<h>m>>n/<X"o,An> +

(4-14)

4
m- 1n=1 o=1

Jx x x x<">">>;;<<<<,
m- 1 n-10-1p-1

3 3

< X X hqmhqnhrohrf>
q- 1r-1

The corresponding expression for the stress-strain correlation term in the

limit of linear elasticity,

f 3 3 3

\°k, - l[ X <<X <<"1 X "om"on-S,
^m=1 n-1 o=1

•ow, (4-15)

can be found in an analogous way,

333

<^W - \ X X X <<</0«1<"om''onV-l8,/<^- (4"16)
m-1n-1o-1

The above equation is correct in the limit of linear elasticity. To account for

non-linear behaviour, the theory of finite elasticity needs to be applied. This is
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done in the following steps.

Equation (3-34),

-1
, . ,, ,.-1

Ciklm = JTK^ikY
Tr

f-1 ><VW • (3"34)
{V>

<x>pC"aP rap

is slightly rewritten by using the fact that hlkAxk = s, and that H can be replaced

by<h):

1

,„ v
ai/^Wp^W^.. _

,-1

ki-i7\r r

a>pc,'aP raP

Without summation convention, the first term on the right side is

„
1

, v^ dU V'np^ap-'p \"/;f^aP'(. .

,-1

..

HV.

c,«m =

(TJ)<T>*_I g^; ^ XriyW • (4"17)

<TU^A r: >
a>p ap ap

3 3

H*I X X «">np<VaPpSaPf)|^r>
a>Pp_if_i a'ap'aP

(4-18)

Using Eq. (4-10) and writing Eq. (4-6) with explicit summations,

3 3 3

^ik ~

§ X X X (h)^hlvhvw(h)~wk-2biK' (4"19)
u-1»-1w= 1

the average stress-strain fluctuation term can be written (after reordering the

indices) as

(4-20)

{\%<? '<*p
} -

= ^X X X l(h)km(h)ln<hy0](h)-p]
m- 1 n-1o-1p-1

(2< 1 fyio'7qpsaPmsapna7—7") ~

(/.1o<p oraPrap

3 3

-?5'/ XXX </'>/rm(rt>/n<SapmSapn37-7->

m-1„-ia>P dr«Pr«P

All terms in Eq. (4-14) and (4-20) together need less than 1.5 kBytes of

memory when stored as 64-bit numbers, independent of the number of frames

processed. This allows the accurate calculation of the strain-strain and the

stress-strain fluctuation term and thus the precise determination of the matrix of
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the elastic constants.

4.1.5 Results

4.1.5.1 Influcence of the Acceptance Ratio

As mentioned at the end of chapter 4.1 3 1, the influence of the acceptance

probability, which is a function of the maximum allowed change in the cell shape,

on the convergence of the elastic constants was investigated. A cell of 32 atoms

at 7* = 0.31 was used for this purpose. The upper and the lower limit of the

acceptance probabilities were set to 5 -10%, 45 - 50%, and 90 - 95%, respec¬

tively. Figure 4.4 shows the relative error of (Cn + C22 + C33)/3 The relative

error of this figure is defined as

,(n)
C(n)

-"rel*-"' 7

C(f7=10 )
(4-21)

with C(n) being (C-\-\(n) + C22(n) + C33{n))/3 and n the number of Monte Carlo

steps.

<

o

CD

rr

MC steps (n)

Figure 4 4 Relative difference between actual (C11+C22+C33)/3 and the same value after 107

MC steps Solid lines delimiting shaded areas were calculated with Eq (3-34)

(stresses and strains), the other lines with Eq (3-29) (strains alone), T* = 031,

32 atoms
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After an initial run of 106 steps to equilibrate the structure and to find a

good starting value for Ahmax, the elastic constants were calculated from runs of

107 steps assuming finite stresses. It can be clearly seen that there is hardly any

difference between simulations with an acceptance rate of 5-10% and 45-

50%, whereas higher acceptance rates clearly deteriorate the speed of conver¬

gence. This is mainly due to the smaller and smaller Ahmax values (Table 4-6),

which reduce the speed with which the system explores its phase space.

Table 4-6: Stationary values of hhmax as a function of the acceptance interval

Pacc_

0.05

0.45

0.90

Pacc_

0.10

0.50

0.95

Mmax [red. units]

0.0245

0.0096

0.0012

For all subsequent simulations, acceptance rates of 12.5-17.5% or

45 - 50% were chosen. No influence of the acceptance rates on converged val¬

ues of the elastic constants could be observed.

4.1.5.2 Elastic Constants at Very Low Temperatures

As shown in Table 4-3, MC simulations of a 108-atom cell were done at

T* = 0.01, 0.02, and 0.05. These results are of interest, because at such low

100

MC steps

Figure 4.5. Relative error of the averages of the three symmetry equivalent elastic constants at

7* = 0.01,107 sampling steps after 107 equilibration steps

temperatures, the anharmonic effects are small and the stress-strain correlation

should converge very fast. At T* = 0.01, this is indeed the case, as the above fig¬

ure shows:
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After a few steps, the elastic constants computed with the finite stress-

strain fluctuation formula are to within a few percent of the final values, which

themselves differ by less than a tenth of a percent from the static values Gusev96a

The roughly 19 (6 accepted) steps the stress-strain correlation needs to reduce

its relative error down to about 10% are necessary to find an average cell shape,
from which the strain can be calculated. The same level of accuracy is reached

with the strain fluctuation method only after more than 105 steps

The complete matrix of the elastic constants at T* = 0.01 and a table corn-

Table 4-7 Elastic constants at 7* = 0 01, please note that the values are quite large, since

Clk* « 1/7* (1 reduced unit equals 0 300 MPa), the values in the right column

are very well converged (the level of accuracy can be estimated from the off-

diagonal elements that should be zero)

1
<i^/m>~1 (PR)

N Mj^ik^^nj^J' (GZS)

7104 3546 3551 -27 0 -7

3546 7174 3594 61 19 18

3551 3594 7289 -25 16 25

-27 60 -25 3535 -3 -101

19 16 -3 3623 31

18 25 -101 31 3612

7178 3578 3577

3581 7180 3579

3579 3575 7182

-10 2

-1 -1 2

0 1 0

0

4

4

3594

0

2

-4

-2

1

0

3595

2

2

0

2

-1

2

3592

paring the symmetry equivalent elastic constants at T* = 0.01,0.02, and 0.05 are

given in Tables 4-7 and 4-8

Table 4-8 Reduced symmetry-equivalent elastic constants at T* = 0 01, 0 02, and 0 05,
strain (PR) and stress-strain fluctuation (GZS) formula The reduced units have

to be multiplied by 0 300 (T* = 0 01), 0 598 (T* = 0 02), and 1 487 MPa to

obtain SI units

Method s(Cii+C22+C33) (C12+C13+C23) g(C44+C55+C66)

0.01
(PR) 7189.5 ±44.1 3563.7 ±12.5 3589.9 ± 22.5

(GZS) 7179.8 ±1.0 3593.8 ± 0.7 3578.0 ±04

0.02
(PR) 3540.4 ±10.5 1749.8 ±4.5 1773.3 ±11 7

(GZS) 3545.0 ± 2.3 1764.8 ±0.6 1776.5 ±0.7

0.05
(PR) 1360.3 ±2.9 675.7 ± 2.3 688 8 ± 3 2

(GZS) 1367 1 ±0 4 675.9 ±0.1 686.1 ±0.3

As is obvious from Table 4-8, there is a relation between the elastic con¬

stants of a crystal, if its lattice particles occupy centers of symmetry and interact
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with central forces. This so-called Cauchy relationBomHuan954' Q"esnei93a
can be

expressed asGusev96a

2C,
44

c12 = c44. (4-22)
(Cn-C12)

In Fig. 4.6, the ratio 2C44/(C11-Ci2) is plotted as a function of the tempera-

2.1

1.E

5. - (n*W1
5- <Tl//tV<Tlr7/n/m>~1

).0 0.1 0.2
r

0.3 0.4

Figure 4.6 Cauchy relation of a 108-atom nearest-neighbour Lennard-Jones solid as a function

of the reduced temperature

ture for the strain and the stress-strain fluctuation method. For both methods,

this ratio approaches 2.0 at infinitely small temperature, with larger and larger

deviations as the temperature rises and anharmonic effects come into play.

These effects can be thought of as deflections of the individual atoms from the

center of symmetry by thermal fluctuations. It can be further observed that the

stress-strain fluctuation approach leads to a smoother form of the temperature

dependence of the anisotropy ratio. Its error bars3 are - especially at low temper-

a. The standard deviations dC^, dC12 and dC44 of the elastic constants Cn,Ci2 and C44

were calculated from the scattering of the corresponding symmetry-equivalent elastic

constants {Cn, O^, C33}, {C12, C13, C23}, and {C44, C55, Cg6} The total derivative

_/
J 44 I 3a

._ da
wo

3a ._

2C.

'44
2C.

-2dCu +
44

-,dC10 + -

2"~12 r -.

(Cl1-C12)2 C11 -12(Cu-C,2)

of a was used to calculate the error propagation

CT,dC44
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atures, but even at T = 0 225 and 0.3 - smaller, which is a further indication that

the stress-strain fluctuation approach takes advantage of the quasi-harmonic

form of the effective potential.

4.1.5.3 Elastic Constants at Intermediate Temperatures

In Tables 4-2 and 4-3 on page 87, it can be seen that a particularly large

number of simulations with various cell sizes have been performed at

T* = 0 125. Before the influence of the cell size on the resulting elastic constants

is examined, the difference between working with linear and with finite stress in

the stress-strain fluctuation method will be quantified by looking at the 108-atom

cell at T = 0 125, 0.225, and 0 3. After sufficient equilibration (0(108 steps)),

variable-shape MC simulations of 108 steps were done. The elastic constants

calculated from these runs are listed in Table 4-9.

Table 4-9 Averages of the symmetry equivalent elastic constants calculated with linear

and finite stresses, 108-atom nearest-neighbour Lennard-Jones solid The con¬

version factors to SI units are given in the first column

0.125

(3 658 MPa)

0.225

(6 431 MPa)

0.3

(8 405 MPa)

'12

-44

2C44/(C11-Ci2)

'12

'44

2C44/(Cii-Ci2)

'12

'44

2C44/(Ci1-C12)

Ol/OniXriniW

495.46 + 0.14

237 57 ±0 12

251.41 ±0.06

1 950 ± 0.002

237 65 ±0.18

109 27±0.15

122 46 ±0.10

1.907 ±0.006

157.27 ±0 06

69.62 ± 0.08

8210±006

1.873 ± 0.004

<niktnjYf\rf\lm)

496.92 ±0.17

241.03 ± 0.09

250.35 ±0.12

1 957 + 0 003

239.00 ± 0.20

112.58 ±0.04

121.3210.12

1 919 + 0.006

158.3010.35

72.48 ±0 12

81.09 ± 0.07

1.890 ±0.011

The following tendencies can be observed The C^ and C12 values are

consistently higher if finite stresses were included, whereas the C44 component

is somewhat smaller. Thus the ratio 2C44/(C11-C12) is always closer to the theo¬

retical value of 2. In general, the scattering of the finite stress data is a bit larger,

especially at higher temperature Obviously the switching from linear to finite
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stresses brings a measurable although not dramatic effect.

The influence of the size of the simulation cell on the elastic constants (i e

finite size effect) was investigated by a series of simulations at T* = 0.3 Cells of

32, 108, 256, and 2048 atoms were run for 106 to 108 steps, depending on the

size, i e. the computing time was roughly the same for all systems. Since the

very small 32-atom cell was used as well, all calculations were done with the

finite-stress formalism. In Table 4-10, the results of elastic constant calculations

Table 4-10 Comparison of the elastic constants of different cell sizes at 7* = 0 3 finite

stresses

N [atoms] MC steps (C11.C22.C33)* (C12.C23.C13)* (C44,C55,C66)*

32 10d 155.46±0 16 72 05 ± 0.02 80.03 ±0.12

108 10B 158 38 ±0.22 72.57 ±0.10 81.14 ±0.07

256 10' 158.0910 55 72 4810.17 80 7410 05

2048 210° 159 4211.98 73.4411.32 80.81 10 67

using stress-strain correlations are given. There is no clear size dependence,

except for the very small 32 atom system, which has somewhat lower values

than the rest. A correction proposed by CowleyCowley83a was used for all results

presented in this chapter, which normalizes the vibrational contributions by A/-1

instead of W. At 7* = 0.5, the same conclusions can be drawn, as Table 4-12

shows.

Similar calculations with linear stress-strain correlations have been made

at T = 0.31. Table 4-11 gives the values of the various simulations Again, the

Table 4-11 Comparison of different cell sizes at T = 0 31, linear stresses

N [atoms] MC steps (Cn.C22.C33)* (C12.C23.C13)* (C44,C55,C66)*

32 10a 146.7410.19 65 3910.19 77.0210.14

256 10' 148.4510.49 63.8710.27 78.5310.51

2048 210° 148 3811 46 65 1610.69 77.8310.46

averages do not differ substantially, but the standard deviations clearly indicate

that the smaller the simulation cell is the more precise the elastic constants can

be determined The average values of the finite stress calculations of Table 4-10,

however, do suggest that the optimum system size seems to be the 108 atom

system, offering the best trade-off between rate of convergence and self stabili-
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zation.

Table 4-12 Symmetry equivalent elastic constants at 7* = 0 5 for samples of 32,108, 256,

and 2048 atoms, finite stresses, stress-strain fluctuations

N [atoms] MC steps (Cn.C22.C33)* (C12.C23.C13)* (C44.C55.C66>*

32 10B 54.6710.18 22.3510.02 29.6510.10

108 10B 60.2010.22 24.4510.13 32.0410.05

256 10' 62 0210 22 25.7310.12 32.3610.09

2048 2 10° 60.1311 72 23.8611.03 31.3610.92

It is therefore advisable to use as small a system as possible while taking

into account that a minimum cell size is required to provide mechanical stability

against the thermal vibrations If collective motions contribute significantly to the

mechanical spectrum, it must be avoided to have cells or cutoffs that are too

small to include these effects The first limitation (mechanical stability) is of par¬

ticular importance for crystalline systems, whereas the second one applies

mainly to amorphous cells.

4.1.5.4 Elastic Constants at High Temperatures

As listed in Table 4-3, the elastic constants of cells of 32, 108, 256, and

2048 atoms have been determined by simulations carried out at V = 0.5. This

temperature is the upper limit of the existence of literature data and most proba¬

bly the upper limit for stable Lennard-Jones crystals. The melting temperature of

argon is -189.3 °C (= 83 9 K, T* = 0.7). Due to the absence of the long-range

attractive force, the melting temperature of the nearest-neighbour Lennard-

Jones solid is closer to T* = 0 5Cowley83a Ru*iedge94b At thls temperature, anhar¬

monic effects become important and reduce the efficiency of the stress-strain

fluctuation method At the same time, the crystal is able to sample its phase

space more efficiently. This improves the convergence of the strain-strain fluctu¬

ation method. As a consequence, the behaviour of the two methods should

become more and more equal as the temperature raises. To quantify this state¬

ment, the convergence behaviour of the 32-atom system is shown in Fig. 4.7

and a list of the elastic constants of all simulations is given in Table 4-12

Two conclusions can be drawn from the above table- First, the average val¬

ues of the elastic constants increase with increasing cell size from 32 to 256

atoms, indicating that especially the 32- and to some extent the 108-atom cell is

too small for the large thermal fluctuations close to the melting point of the struc¬

ture. Second, the standard deviations are smaller for the smaller cell sizes, con-
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101 102 103 104 105 106 107
MC steps

Figure 4 7 Relative error of the averages of the three symmetry equivalent elastic constants at

7* = 0 5, 108 sampling after 106 equilibration steps

firming Cowley's statementCowley83a, that 'the modulus, which depends on

averages of fluctuations, seems to require a fixed number of configurations per

atom for a given uncertainty' The 2048-atom cell in particular has not reason¬

ably converged in roughly the same amount of CPU time

4.1.5.5 Molecular Dynamics Calculations

Table 4-13 presents the results of various MD and MC calculations, which

can be grouped in the following way
In the first two lines, elastic constants from MC calculations with cutoffs, but

without splines are listed As described in Table 4-4, the cutoff was fixed to a

value of 5.35 A (1 4 in reduced units), a distance just between the first and the

second nearest-neighbour shell The difference between these values and the

reference computations is quite small (2 - 4%) but nevertheless significant. The

introduction of a cutoff (even at a position where the probability of finding an

atom is minimal) already has an effect on the elastic constants, which can not be

neglected

As the following lines in the table show, the use of a spline does not

improve the situation - on the contrary, the elastic constants are getting less and

less accurate with increasing spline width But it is of minor importance, whether

MC or MD algorithms are used, as long as both are canonical And with MD,

there is neither a clear advantage of the stress-strain fluctuation approach over

the Strain fluctuations. It is not possible to make more comments on that, since

the evaluation of the stresses was done by Discover 94 entirely and there is no

exact information how this is done
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Table 4-13: ToN-MD and variable-shape MC results with nearest neighbors (nn) or with

cutoffs with and without splines; symmetry equivalent elastic constants com¬

puted with the strain and the (linear) stress-strain fluctuation method; the shad¬

ing of the cells is proportional to the difference between the actual value and

the reference values listed at the bottom.

Method Spline Fluctuations (C11.C22.C33)* (C12.C33.C13)* (C44,C55,C66)*

MC no

Win)' 160.6311.60 73.0210.58 84.1010.39

TUV^n/W" 159.4910.38 71.45 1 0.27 83.30 + 0.23

MC
yes

(0.4A)
tuW 173.8010.97 84.8010.61 90.50 ± 0.83

tU<V<iln/r|,m>" 167.1210.52 78.23 1 0.28 86.32 1 0.23

yes

(0.4A)
ViMlnf 164.8611.10 76.20 + 0.42 89.14 + 0.15

MD
TVV^"/1'"^ 176.4010.62

yes

(1.2A)
TUW

87.87 + 0.51 ««^w««

88.7110.23 102.1810.3

^V^nyw 200.17 + 0.09 104.7810.02 104.1610.04

MC(108
steps)

no

(nn)

TUW

r\,kcln)<-'r\n^lrr>~

157.3610.13 69.8710.24

157.2710.06 69.62 + 0.08

81.9710.16

82.1010.06

Reference Cowley 157.1 11.0 69.31 0.9 82.2 1 0.2

4.1.5.6 Hybrid Monte Carlo Simulations

The results of a variable shape (EIN)-MD simulation run with relatively

large time-steps at V = 0.3 are reported and compared with the 'standard' MC

simulation in the following table:

Table 4-14: Symmetry equivalent elastic constants resulting from a 25'000 steps HMC run

with 50 aN-MD steps each, 108 atoms

Method

^Ik^lJ'

H/cV^n/l/mr

MC(10B steps)

(Ci1,C22,C33>*

150.48 + 2.55

182.8012.49

157.31 ±0.11

(C12.C23.C13)*

63.30+1.42

94.961 1.18

69.7410.22

(C44.C55.C66)*

82.23 1 3.03

90.47 1 0.85

82.0310.13

The above numbers are averages over 25'000 steps, with each step con¬

sisting of a short MD simulation of 50 steps (90.36 fs step width, 5.4 A cutoff,

0.4 A spline). With this combination of number of steps and stepwidth, the

acceptance ratio was 0.564. At the end of each MD trajectory, a modified Boltz¬

mann weight decided whether a step was accepted or not. If yes, the new config¬

uration served - with new velocities - as the starting point of the next simulation.
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Otherwise, the old configuration initiated the next MD run. The accuracy is - con¬

sidering the effort - not spectacularly good, as indicated by the difference

between the strain and the stress-strain fluctuations and the scattering between

symmetry equivalent elastic constants.

The HMC using a self-written code, which is mentioned at the end of

chapter 4.1.3.3 yielded the following results (Table 4-15)

Table 4-15 Symmetry equivalent elastic constants from the finite stress-strain fluctuations,

nearest-neighbours, T* = 0 3, hybrid Monte Carlo moves with varying order of

deformation and HiAZ-MD

Deformation

Deformation-MD

MD-Deformation

(Cii,C22,C33>*

156 51 10.19

166.3010.07

166.6310.11

(C12.C23.C13)*

68.69 1 0.24

74 9910.05

75.4910 08

(C44.C55.C66>*

82 2510.31

86.431 0.04

86.7010.10

The pure deformation, which was performed to test the code, agreed quite

well with the standard values from variable-shape MC The results of the moves

that combined random deformation and EhN-MD are obviously independent on

the sequence of MD and deformation, but both deviate considerably from the

pure deformation MC The reasons for this are not exactly known, since there is

a large number of error sources ranging from simple programming errors to

methodological deficiencies.

4.1.6 Discussion

4.1.6.1 Estimation of the Precision of the Elastic Constants

The convergence criterion (Eq. (3-37) or (3-38)) provides a useful check of

whether a simulation has reached at least a stationary state or whether some

relaxations still occur. In this section, the accuracy of selected calculations will

be examined more closely in order to quantify the possible uncertainties. In the

next section, these values will be compared with those obtained from the litera¬

ture.

The selected calculations are those with the firmest theoretical basis and

the longest trajectories The canonical variable-shape MC algorithm described in

chapter 4.1.3.1 is a simple and well established algorithm and the use of finite

stresses allows to rigorously calculate the necessary fluctuation terms. The 108-

atom cell is a balanced compromise between computational efficiency and sta¬

bility, permitting to perform about 108 steps. This is enough to completely equili¬

brate the structure, since the possible relaxations of the simple fee crystal are
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quite limited

The following figure (Fig 4 8) shows the convergence of the elastic con¬

stants at T* = 0 125 Both the strain and the finite stress-strain fluctuations

10a 104 105 106 10' 10B

MC steps

Figure 4 8 The convergence of the nonzero elastic constants of a 108-atom system at

T* = 0 125 108MC steps

deliver elastic constants which have converged very well after 10° steps as the

figure and Table 4-16 show The finite stress-strain fluctuations, however, lead to

Table 4 16 Elastic constants at 7* = 0 125

1
/ \"1

N jf^7<T1*V<T1ny11/m)
1

496 5 238 3 237 2 -11 -0 2 0 7

238 3 495 3 238 1 -0 2 0 7 -0 8

237 2 238 1 494 7 0 2 0 3 11

-11 -0 2 0 2 252 4 0 8 -10

02 07 03 -0 8 252 6 03

-0! 11 10 0 3 250 7

497 1 240 9 241 2 0 1 0 2-03

241 3 496 5 240 5 -0 1 -0 1 -0 2

241 6 240 6 496 3 0 1 0 0-01

0 2 0 0 -0 1 250 4 0 1 -0 2

05 04 03 00 250 5 02

-0 5-0 3 0 0 0 1 0 0 250 2

a significantly faster convergence, as already pointed out

Several methods can be used now to estimate the precision of the elastic

constants

The first, and maybe most important check is the difference between the
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strain and the finite stress-strain results, as expressed in Eq. (3-37). The rele¬

vant stress-strain correlation matrix is given below and indicates that the differ-

Table 4-17 The stress-strain correlation matrix at 7* = 0 125

FT-H/tV

0 996 0 003 0 008 0 004 0 001 -0 003

0 006 0 998 0 003 0 000 -0 005 0 002

-0 009 0 001 0 998 -0 001 -0 003 -0 005

0 004 0 000 -0 002 -0 992 0 003 0 003

0 002 -0 001 -0 002 0 003 0 992 0 000

-0 003 0 004 -0 003 0 004 -0 001 0 998

ence between the two methods is in the order of 0.2 - 0.4%. It is therefore not

necessary to continue the simulation, since the thermodynamical equilibrium has

been approached quite well.

The second, quite obvious way to estimate the reliability of the calculation

offer those elements in the matrix of the elastic constants that should be zero

due to the symmetry of the problem. In the above example, these elements are

-0.07 1 0.73 reduced units for the strain fluctuations and -0.01 1 0 23 for the

stress-strain fluctuations

The third indicator, which is related to the above one, is the deviation

between symmetry equivalent elastic constants. In the case of the cubic symme¬

try of the fee crystal, {Cn,C22,C33}, {Ci2,Ci3,C23}, and {C44,C55,C66} form such

groups of equivalent elastic constants The deviation within such a group is in

the range of 0.3 - 0.5 reduced units for the strain fluctuations and 0 1 - 0.2 for the

stress-strain fluctuations.

The forth possibility to estimate the convergence offer the symmetry of the

matrix of the elastic constants or the stress-strain correlation matrix. Using the

stress-strain fluctuations, the matrix of the elastic constants is not symmetric,

although - as described in chapter 1.3.2 - it should be so. In the above example,

the symmetric elements - zero and nonzero - differ by about 0.210.15 reduced

units.

Putting everything together, a reasonable estimate of the precision of a

simulation would be the strain fluctuation formula to yield an error of 10 6 and

the stress-strain fluctuation formula one of 10.2 reduced units. Since this does

not contradict the precision indicated by the scattering between the symmetry

equivalent elastic constants, these values are presented in the next tables.

The final - and in case of amorphous structures most important - method is

the simulation of more than one structure and the comparison of the final results.
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This has been done in the case of the 108-atom structures, for which two simula¬

tion runs of 108 steps have been executed.

Table 4-18 Average elastic constants obtained from two runs of 108 MC steps at the tem¬

peratures indicated, finite stress-strain fluctuation formula

0.125

0.225

0.3

Run (C11.C22.C33>*

496.9210 17

496.6310.21

239.0010.20

238.4610 17

158.3010.35

158.3810.22

(C12.C23.C13)*

241.0310.09

240.8910.18

112 5810.04

112.1310.07

72.4810.12

72.5710.10

(C44.C55.Ce6)*

250.3510.12

250.3510.06

121.3210.12

121.3610.05

81.091 0.07

81.1410.07

4.1.6.2 Static Minimum Energy Calculations

In principle, it is possible to use Eq. (1-52),

'ijkl

dt„

dn
klj

Prj
d2A

^ij^kU
(1-52)

to get the elastic constants of a material by performing a series of deformations

and minimizations. In practice, however, it is not possible to determine the free

energy A directly. Instead of that, it is often assumed that the entropic contribu¬

tions can be neglected and therefore the potential energy U can be used

instead. The validity of this approximation is discussed in Refs fTheodorou86a]

and [RutledgeSuter91a]

The 108-atom cell was minimized with a Newton-Raphson algorithm down

to a maximum gradient of 10"4 kcal-mol"1 A"1. The cell shape was included into

this minimization and then deformed by a specific strain.

Since a general minimization scheme, which was used for crystalline and

amorphous polymers, was applied, a detailed description is now given: In order

to compute all elements of the matrix of the elastic constants, 25 deformations

were carried out for each off-diagonal element (Clk, i>k). These finite deforma¬

tions consisted of all possible combinations of r|, and r]k e {-2ri0,-T|0,0,T|o,2ri0}
with r|0 being typically 0.001. After each deformation, the cell's potential energy

Upot was again minimized down to 10"4 kcal mol"1-A"1 with the cell parameters

held fixed. A function

Upot^h^k) a0 + a^, + a2r\k+ a3x\^k + a4i\2 + a5r\2k (4-23)
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was fitted to these 25 minimum values using a singular value decomposition

algonthmPressetal92 obtained from Netlib3.

The a3 value of the above function is directly proportional to Clk, whereas

2a4 is proportional to C„ and 2a5 to Ckk It was therefore not necessary to com¬

pute the diagonal terms of the elasticity matrix explicitly The goodness of fit was

estimated via a x2 and a gamma formalism.Pressetal92 In all cases, the fit was

excellent (i.e. no anharmonic effects at such small deformations).

The results of these calculations are given in the next table.

Table 4-19 Elastic constants of a 108 atom Lennard-Jones solid

(d2U.

Po
pot

MltMuj
[red. units] /y/^f<Tli/rrf7/> <Tl/VTl/m>"

7205 3602 3603 0 0 0 0 0 0

3602 7205 3603 0 0 0 0 0 0

3603 3603 7205 0 0 0 0 0 0

0 0 0 0 0 0 3603 0 0 0 0

00 00 00 00 3603 0 0

00 00 00 00 00 3603

7178 3578 3577 0-4 2

3581 7180 3579 4-2 0

3579 3575 7182 4 1 2

-10 2 3594 0 -1

-1-1 2 0 3595 2

1 2 3592

These zero-temperature elastic constants have been converted to reduced

units, assuming a low temperature of 1.198 K, and compared with MC values

reproduced from Table 4-8 At this low temperature, the fluctuation approach and

the static minimum energy results agree perfectly

4.1.6.3 Comparison with Literature Values

It is not sensible to compare the isothermal elastic constants of the nearest-

neighbour Lennard-Jones solid with the experimental (adiabatic) ones of a rare

gas solid like argon (Cn - 4.1 GPa, Ci2 « 2.4 GPa, C44 » 2.3 GPa, extrapolated

to T = o)KorP|un77, because - as pointed out in chapter 4.1.1 - they differ consider¬

ably in their interactions. So only model calculations using the same nearest-

neighbour Lennard-Jones solid will be taken as reference. The first calculation of

isothermal elastic constants was performed by Squire et al Sciuire69a m 1968. The

authors simulated a 108-atom system with corrections for the finite cutoff

applied, which leads to somewhat higher elastic constants than nearest-neigh¬

bour interactions alone- Cn = 2 84 GPa, Ci2 = 1.61 GPa and C44 = 1 69 GPa at

T= 40 K. The elastic constants were calculated by using a combination of fluctu¬

ation, Born, and kinetic terms obtained from a derivation of the partition function

CowleyCowley83a used the same approach to make very accurate MC simula-

a http //tonic physics sunysb edu/docs/num_meth html or ftp //ftp zib-berlin de/netlib
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tions of 106 -107 steps at various temperatures Sprik et a/Sprlk84a did some

Ht/V-MD of 4 104 -105 steps at T = 0 31, but the accuracy of their results is suf¬

fering from the shortness of the simulation runs In 1988, Ray published an com¬

prehensive overview including fluctuation formula for the £h/V, Th/V, HIN, and

7t/V ensemble Rav88a Computations of isothermal elastic constants computed in

the EhN and Th/V ensemble were published previously Rav85a The adiabatic and

isothermal elastic constants obtained from theses publications are given in the

next table (4-20)

Table 4-20 Overview over elastic constants calculations Cowley MC, 2 16 106,r = 0 3

108 atoms, Sprik et al Ht/V-MD, 105 steps, 108 atoms, 7* = 0 307, 8 6 fs time

step, Ray ef al ThW-MD, 2 104 steps, 500 atoms, T = 0 3, 10 fs time step

C,L CowleyCowley83a Sprik efa/.sPrlk84a Raye/a/*3*883

CO

CO

T3
CO

Ch 182.010.5 17019 185 1 1 1.9

C12 94 1 1 0 5 8418 95.7 1 1 4

'44 82 2 1 0 2 81.7 10 3 81.611.6

157.1 11.0 165.614.9

'12 69.3 1 0.9 76.314.5

82.2 1 0.2 81.611.6

Since Cowley's values are most accurate and serve as a reference in

Spnk's and Ray's publications, we use the values in the shaded cells for compar¬

ison with our own results Cowley did not only give the elastic constants at

T* = 0.3, but also at T* = 0.125 and T* = 0.225 and at higher temperatures

Comparing these numbers with those from chapter 4.1.6.1,the final

Table 4-21 can be established

4.1.6.4 Conclusions

In the limit of thermodynamic equilibrium, the new stress-strain fluctuation

formula (Eq. (3-35)) is equivalent to the well-established strain fluctuation for¬

mula of Parnnello and Rahman (Eq. (3-29)). Simple systems like the 108-atom

nearest-neighbour Lennard-Jones solid allow very long simulations of up to 108

MC steps. The absence of complicated intra- and intermolecular interactions

leads to a fast equilibration of the structures. It is therefore possible to approach

the thermodynamic equilibrium very closely and to check for the validity of the

above statement the theoretical equivalence could be proved practically
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Table 4-21 Comparison of elastic constants results from strain and stress-strain fluctua¬

tions at T* = 0 125,0 225, and 0 3 with results from Ref [Cowley83a]

0.125

0 225

0.3

C12

'44

'12

-44

'12

-44

Eq. (3-29)

496.1210 70

238.0010.35

251.3610.75

237.731 0.72

109.6810.58

122 2710.21

157.0310.36

69.51 10.19

81.841 0.29

Eq. (3-35)

496 77 10.24

240.9610.16

250.3510 09

238.7310.33

112.3510.23

121.3410.09

158.3410.28

72.5210.11

81.11 10.07

Cowley

494.011.1

237.811.1

250.010.2

237.010.8

108.210.8

121.910.2

157.1 11.0

69.310.9

82 21 0.2

In the case of finite simulation runs, the convergence of the elastic con¬

stants is markedly improved by the new algorithm, especially at very low temper¬

atures, where sampling of the phase space is slow. Here the elastic constants

obtained by the new formula converge orders of magnitude faster. In the limit of

zero temperature the results match those from the static minimum energy

approach. Even at intermediate or high temperatures close to the melting point,

the stress-strain fluctuation method is converging at least as fast as the strain

fluctuation formula.

It is possible to use MC, MD, or Hybrid-MC methods to sample the configu¬

rational phase space of a structure. It is extremely important to do this canoni-

cally. For MC, a slight dependence of the rate of convergence, but not of the final

results, on the acceptance ratio could be observed. If cutoffs and splines are

used, e.g. in the MD simulations, the elastic constants depend strongly on the

choice of these parameters.

The precision of the elastic constants is extremely high. It is possible to

determine them with an accuracy of a few tenths of a percent. In order to

achieve this, 106 to 108 steps are necessary even for a quite small 108-atom

system. It seems that a certain number of configurations per atoms is necessary

to obtain a given precision. Since it was not possible to observe significant size

effects, the smallest stable crystal cell should be used. Delocahzed thermal

motions are obviously not significantly contributing to the elastic constants, as

can also be deduced from Ref. [Cowley83a].
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4.2 Polyethylene - Planar Zig-Zag Chains

4.2.1 Introduction

Polyethylene (PE) is a partially crystalline thermoplasticFranck88, which is

used in huge quantities. The mechanical properties - especially the elastic con¬

stants - are those of a typical amorphous material (i.e. 1 - 3 GPaWard83). In the

last decade, however, a methodology was developed to produce polyethylene

with highly oriented chains.Sl71lth86a. Commercially available are now filaments

with a modulus of more than 100 GPa. Thus the formerly theoretical question of

the ultimate modulus of a perfectly oriented PE crystal has become more and

more of practical interest. It is very difficult to determine this number by experi¬

ment, because the stress that is transferred by the amorphous matrix to the crys¬

tallites is not known exactly, but depends on the morphology and the phase

boundary. Therefore, the experimental values at room temperature - furthermore

depending on the methodology - are scattering widely between 196 and

329 GpaNakamae91a'Rutled9e94a

It is not surprising that there were many trials to obtain estimates through
theoretical calculations. Some examples will be briefly discussed while compar¬

ing the results of the present work with literature values (chapter 4.2.6.1), but it

can already be stated that the theoretical results differ even more from each

other than the experimental ones, spanning a range from 160 to more than

400 GPa (mostly at T= 0 K)Nakamae91a.
In the following chapter a model of monocrystalline PE will be generated

and its elastic constants will be computed using the strain and the linear stress-

strain fluctuation approaches.

4.2.2 Description and Cell Generation

Linear polyethylene crystallizes in an orthorhombic unit cell (space group

62: pnma)XrayTable83 with lattice constants of a=7.417A, b = 4.945 A, and

c = 2.547 A.Bunn39a The two 'all-trans' chains in this cell, which is shown in

Fig. 4.9, lead to a density of 0.997 gem"3, being in agreement with the experi¬

mental density of PE crystals, which is 1.007 l 0.008 g.Cm-3Tadokoro90. Two dif¬

ferent cells were generated with the 'Crystal Cell' packageMSIPo|ymer1 of

'Insightll':

The small simulation box consisted of 3 x 4 x 8 unit cells which totaled a

minimized cell size of 21.651 x 19.608 x 20.569 A with 1152 atoms. In order to

prevent modelling just Ci6H34-chains, so-called bonds-across-boundaries were

used, which connect one end of the chain in one periodic box with the other end
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Figure 4.9: Schematic representation of the unit cell of orthorhombic Polyethylene

of its own image in a neighboring box. The chains created by this procedure do

not have any ends or special points, but they are not infinite with respect to their

vibrational behavior. Due to the periodic continuations conditions, collective

motions along the chains will be amplified rather than damped.

As will be seen later, the stability of the relatively small cell was rather poor,

so a large, thermally more stable cell was generated. This cell comprised

4x6x12 unit cells and had a minimized size of 28.869 x 29.412 x 30.854 A. It

contained 3456 atoms in 48 chains of 24 CH2-groups.

The setup of these cells involved the following steps:

• Generation of a helical repeat unit and a crystal asymmetric unit (CAU)

according to the 'Crystal Cell User Guide'MSIPo|ymer1

• Conversion of the CAU into a Cartesian coordinate (.car) and molecular data

file (.mdf) by the 'hlx2pbc' macro provided by MSI. The number of repeat units

in the chain direction was also set by this program. Manual check of the bonds

across boundaries in the '.mdf file.

• Assembly of several such cells in the other two dimensions in order to form an

approximately cubic shape.

For the subsequent molecular mechanics and dynamics simulations, the

pcff91 and the scaled_pcff forcefields were used. They differ by about 3 % in the

a values of the Lennard-Jones interaction parameters of carbon and hydrogen

atoms. This reduction was made, because the densities of hydrocarbon com¬

pounds are generally somewhat too low (a more detailed discussion of this prob¬

lem is given in chapter 4.5.2.2).
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4.2.3 Simulation Procedure

4.2.3.1 Small Cell Equilibration

The small crystal cell was equilibrated at 300 K using To/V-MD for 230 ps

The pcff97-forcefield and a cutoff of 8 5 A (spline 0 5 A) made it necessary to

use a tail-correction pressure of 1417 bar A Parnnello-Rahman pressure control

with a cell mass of 20 a m u was used to keep the average pressure at this

level The timestep was set to 0 5 fs, because of the Nose-Hoover thermostat

The final density (averaged over the last 10 ps) was 0 958 g cm
3

In dynamics, it turned out that the size of this cell was too small, as

Fig 4 10 shows

100 150

Time [ps]

Figure 4 10 The cell angles of the small PE crystal as a function of the MD-time the cell after

230 ps

The cell angles, especially a and p undergo sudden, sometimes simulta¬

neous, jumps of 6 to 7 degrees This phenomenon becomes more clear when

the final structure is examined The thermal fluctuations, which are very large for

such a small structure (about 5 %), led to a rearrangement of some chains in the

structure These chains were simultaneously shifted by one crystal repeat unit

This process occurred several times during the simulation A second, closely

related process is the diffusion of individual chains along their axes, as a result

of the low friction along the chain direction.

There are several possibilities to circumvent the above problem One is to

use the Th/V-ensemble where the cell shape is fixed, another - similar - solution
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seems to be the increase of the cell mass W (Eq. (2-67)). But this last change

does actually not reduce the amplitude but the frequency of the thermal fluctua¬

tions. The method chosen in this work is the enlargement of the simulation cell,

since this reduces the absolute (and therefore even more the relative) fluctua¬

tions of the cell, as described in chapter 3.2.3. The diffusion of the chains along

their axes is also hindered, which could not be achieved by switching to the ThN-

ensemble.

4.2.3.2 Large Cell Equilibration

Generating a large cell, performance and stability have to be balanced to

achieve a reasonable compromise. The cell parameters of the large simulation

box have been given in chapter 4.2.2. After the generation and an initial minimi¬

zation, a To/V-simulation over 150 ps in 0.5 fs steps was started. The standard

cutoff and spline of 8.5 and 0.5 A and Parrinello-Rahman and Nose-Hoover con¬

trol algorithms were applied to keep the temperature at 300 K and the pressure

at a net value of 1 bar. The scaled_pcff forcefield demanded a somewhat

reduced correction pressure of 1281 bars. The cell remained stable during the

simulation, as Fig. 4.11 reveals:

115

50 100

MD time [ps]

Figure 4.11: The cell angles of the large PE cell as a function of the MD time (with same scale as

in Fig. 4.10 for better comparison); the large PE cell after 150 ps

No collective transformations and hardly any chain diffusion could be

observed. The average density during this simulation was 0.9951 0.008 g-cm"3,
which is much closer to the experimental value of 1.007 g-cm"3, justifying the use

of the scaled_pcff forcefield.
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4.2.4 Results

4.2.4.1 Effect of the Cell Mass on the Mechanical Relaxation Spectrum

Despite its deficiencies, the small cell was used for a short investigation of

the influence of the cell mass on the spectrum of the mechanical relaxation. The

mechanical relaxation spectrum (MRS) is the Fourier transform of the time-auto¬

correlation function of a mechanically relevant quantity. In the case of PE, the

length of the cell vector parallel to the chain direction was used as the relevant

degree of freedom.

There are two ways of weighting the amplitudes of the frequencies to

obtain the contributions to the total fluctuation (the compliance) of the

polymerLandau86c. They both use the fluctuation-dissipation theorem:

The first one is a classical approximation that holds, if /cT»/Tco/2n, which is

the case if co/2ji « 6.25-1012 Hz:

{x > = — —T-^cfe) 4-24)
It J GJ

0

a" (u) is the imaginary part of the Fourier transform of the fluctuating quantity

x(t). So this approximation is obviously not valid for most of the frequencies

appearing in our calculations.

According to the above considerations, it would be more appropriate to use

the quantum mechanical formula.

(x2) = Aja" (w) coth( A^dh, (3-24)
27t

0

The problem with this approach is that the system that produces the fluctuations

is a completely classical one.

Besides these transformations, both the classical and the quantum

mechanically weighted spectra were numerical integrated in order to estimate

the contribution of individual processes to the total compliance.

A set of simulations was performed at 300 K with the familiar ToN-MD algo¬

rithm and the scaled_pcff forcefield. A small box was used to perform 200 ps,

with each 0.5 fs step being recorded to the disk for later evaluation. From these

4-105 steps, the last 262'144 (218) were taken for the computation of the time-

autocorrelation function of the cell edge length c. The first half of this autocorre¬

lation function was transformed using a fast Fourier (Cooley-Tukey FFT) algo¬

rithm and weighted according to Eqs (4-24) and (3-24). The cell masses Wwere
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set to 1, 10, 100 and 1000 a.m.u., respectively.

Figure 4.12 makes the comparison between the classical and the quantum

mechanical weighting of the fluctuations of a cell with a pressure control mass

W= 1. There are relatively large contributions at the low-frequency end of the

weic ited spectrum

integral of the

'weighted spectrum

ong -sal PD-Jotr mi

10TO 10

jSJl
w- 10ld 10rt

Frequency [Hz] Frequency [Hz]

Figure 4 12- Classical and quantum mechanical weighting of the mechanical relaxation spec¬

trum, small PE crystal with W= 1

spectrum, where the statistical uncertainty is largest. So this part is not very

meaningful. The peaks at 3-1013 and 1014 Hz, however, are significant and their

contribution to the mechanical relaxation spectrum depends on whether a classi¬

cal or a quantum mechanical approach is made. The peak at 1014 Hz can be

attributed to bond length and the one at 3-1013 Hz to bond angle fluctuations.

With heavier cell masses, the peaks shift to lower frequencies and their rel¬

ative contributions change such that the peak at originally at 1014 Hz becomes

more and more dominant, as Fig. 4.12 shows. The shift in the frequencies is pro¬

portional to the square root of the cell mass. The classical and the quantum

mechanical approach yield almost identical curves.

4.2.4.2 Elastic Constants of Orthorhombic PE

As the small crystal cell could not be used for the calculation of the elastic

constants, the MD simulation of the large PE cell was taken for this purpose. The

elastic constants were determined from the last 100 ps from information stored

in 'table' files. In these table files, the cell parameters (a, b, c, a, B, and 7) and the

v °zz' avz> axz> ar|d oxv) have beensix components of the stress tensor (oxx, oyy
recorded during the simulation at an interval of 1 fs.
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Figure 4 13 Classical and quantum mechanical weighting of the mechanical relaxation spec¬

trum, small PE crystal with W = 100

The program 'ElastFluct f reads these table files and computes the elastic

constants using both the strain and the linear stress-strain fluctuation formula.

Besides this, the stress-strain correlation and the eigenvalues of the matrices of

the elastic constants are printed. Figure 4 14 displays the convergence of the

40 60

time [ps]

Figure 4 14 Convergence of the elastic constants of PE during the last 200 ps of TaN-MD

100

elastic constants. The final value of the C33-component is almost the same,

whereas the convergence of the stress-strain fluctuations is much smoother than
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that of the strain fluctuations. In contrast to that, the Ci2 and C13 components

computed from the stress-strain fluctuations exhibit a strange peak at about 8 ps

which seems to be related to instabilities of the C33-values The precise nature of

these spikes is not known.

The temporal evolution of the elements of the stress-strain correlation

matrix is plotted in Fig 4 15. This matrix should converge towards an identity

matrix in the limit of thermodynamic equilibrium.

TO 60"
time [ps]

Figure 4 15 Stress-strain correlations as function of the correlation length The diagonal ele¬

ments (thick lines) converge slowly towards one, whereas the off-diagonal elements

(thin lines) tend to zero

Finally, the matrices of the elastic constants are listed below

Table 4-22 Elastic constants averaged over the last 100 ps of a 150 ps ToN-MD simula¬

tion Components that should be non-zero according to the symmetry of the

crystal (chapter 1 3 4) are bold faced

!7T/)(TUTW [GPa] (WniHWln)' fGPal

5.25 3.11 4.29 0 06 0 02 0 6

3.11 5.36 5.83-0 03-0 06 0 37

4.29 5.83 223.29 012 0 03-0 60

0 06-0 03 0 12 2.31 017 0 02

0 02-0 06 0 03 0 17 1.81 0 06

0 6 0 37 -0 60 0 02 0 06 2.14

5.81 3.67 3.70-0 09 0 02 0 65

3.94 6.41 5.98 0 04-0 05 0 49

4.20 5.73 221.72 013 0 03 -0 62

-0 05-0 02 0 36 2.11 010 0 03

0 04-0 03 -0 02 0 08 1.67 0 05

0 64 0 38 -1 51 0 06 0 06 2.32

All Eigenvalues of the above matrices are positive, guaranteeing the

mechanical stability of the structure



42 5Interlude Amorphous Polyethylene 119

4.2.4.3 Static Minimum Energy Calculation

The same minimization procedure as in chapter 4.1.6.2 was used to com¬

pute the matrix of the elastic constants at 0 K. Using a unit cell and the

sca/ecLpcffforcefield, the numbers in Table 4-22 were obtained

Table 4-23 Elastic constants of PE static minimum energy (left) and stress-strain fluctua¬

tion approach at 300 K (right)

Vr

fu.
pot

\dn,pn
[GPa]

kU

10.89 5.02 1.81 0 0 0 0 0 0

5.02 8.19 3.03 0 0 0 0 0 0

1.81 3 03 251.49 0 0 0 0 0 0

0 0 0 0 0 0 3.52 0 0 0 0

00 00 00 00 2.03 0 0

00 00 00 00 00 4.07

(TVV^n/W tGPal

5.81 3.67 3.70

3.94 6.41 5.98

4.20 5.73 221.72

-0 05 -0 02 0 36

0 04 -0 03 -0 02

0 64 0 38 -151

0 09 0 02 0 65

0 04 -0 05 0 49

0 13 0 03-0 62

2.11 0 10 0 03

0 08 1 67 0 05

0 06 0 06 2 32

A comparison with the fluctuation results at 300 K shows that the influence

of temperature can not be neglected, especially for the off-diagonal elements

The only exception is C33 this value is not very much affected by temperature

and does not change by more than 1%, if the strains were chosen to be ten

times smaller or the maximum gradient for the minimization was allowed to be

ten times larger).

4.2.5 Interlude: Amorphous Polyethylene

4.2.5.1 Structure Generation

PE, as mentioned in the introduction, is a semi-crystalline material and its

elastic behaviour depends on both the elastic properties of the crystalline and

the amorphous part To determine the latter, the standard simulation routine for

amorphous structures was used.

• To obtain a cubic structure of approx. 25 A size, a chain of 600 CH2 groups

was generated and terminated with hydrogens at both ends. To avoid prob¬

lems in the subsequent packing, the chain was randomized (without cutoffs)

by 5 ps at 500 K and 3 ps at 300 K.

• Using this chain, 5 simulation cells were generated with 'Amorphous Cell' at

300 K and a density of 0.95 g cm"3 After minimization (5000 steps down to

0.001 kcal mol"1 A 1), the three structures with the lowest energies were used

in the following dynamics runs.

• Each of the three structures was first held for 50 ps in a Th/V-ensemble and

then for 25 ps in an Ta/V-ensemble. For the second ensemble, an automatic
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van-der-Waals tail correction was used, which yielded an average correction

pressure of 1005, 1007, and 998 bars and an reduction of the average density

down to 0 83 g cm
3

This reduction is partly explainable by the use of the

pcff97-forcefield, which is known to overestimate the van-der-Waals radii and/

or the C-H bondlength

• The production run for each structure consisted in 1 ns of ToN-MD at 300 K

with a correction pressure of 1005 bars

4.2.5.2 Simulation Results

These production runs, however, have been stopped after a few hundred

picoseconds, because of cell instabilities

105

200 300

MD time [ps]
Figure 4 16 Cell angle fluctuations of the first structure of amorphous PE at 300 K

All simulation cells made large fluctuations in the cell angles, such as those

of the first structure shown in Fig 4 16 The state of the cells could be described

as 'melt-like' and the shear moduli would tend to zero for infinitely long trajecto¬

ries It was therefore not possible to compute the elastic constants To do so,

larger cells are required and it might be necessary to sample the stress-fluctua¬

tions in a Th/V-ensemble

4.2.6 Discussion

4.2.6.1 Comparison with Literature Values

It is quite difficult to compare the C33 value of about 220 GPa obtained by

the fluctuation formula with data from the literature The first uncertainty is the
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convergence of the calculation, which can roughly be estimated by the using the

same techniques as in chapter 4.1.6.1. Based on the stress-strain correlations,

for example, the uncertainty is found to be in the range of 10 -15% (Fig. 4.15).

The other possible checks (crystal symmetry restrictions, and symmetry of the

matrix of the elastic constants) lead to more conservative estimates. It would

therefore be desirable to perform a more extended sampling of the phase space

by either a longer MD trajectory or a specialized MC algorithm. With the large

cell necessary for thermal stability, however, 1 fs of MD takes about 6 CPU sec¬

onds on a workstation.

The second - and in this case even larger - uncertainty is the scattering of

the experimental and theoretical values. They range from 160 to more than

400 GPa, with the 'observed' values concentrating between 220 and

230 GPaNakamae91aand quantum mechanical and semi-empirical results ranging

from 276 to 420 GPaHerena96a. It might be interesting to comment on some

experimental and theoretical work:

Matrices of the elastic constants have been calculated by Odajima and

Maeda0da'ima66a, AnandAnand67a, Sorensen et a/60^883 and many others. Not

only the C33 element varies from 242 to 341 GPa but also Cn is between 4.8

and 14.3 GPa and C22 between 2.9 and 12.2 GPa.

Often, it is not clearly indicated at which temperature these values were

measured or calculated. Experiments from Barham et a/.Barham79a show a strong

dependence of the modulus of PE fibres ranging from 262 GPa (288 GPa, if cor¬

rected) at 77 K down to about 140 GPa at room temperature. Part of this reduc¬

tion seems to originate from morphological changes so only a small part can be

attributed to a reduction of the crystal modulus.

A more recent theoretical analysis by Lacks and RutledgeRutledge94a esti¬

mates that the zero temperature C33 value is 316 GPa and the one at room tem¬

perature 290 GPa (Cn and C22 are both 8.8 GPa). This fits quite well into the

extrapolations made by Irvine and SmithSmith86a, where experimental results are

well fitted by assuming an axial modulus of 300 GPa. The value of 349 GPa

obtained by MeierMeier93a was corrected by himself to 333 GPa for the single

chain and 299 GPa for the crystal as a whole (at 0 K)Meier96a. The same

299 GPa are also supported in a discussion of quantum mechanical and

semiempirical calculations made by Crist and Herena.Herena96a A most recent ab

initio MD calculation from Hageman ef a/.Ha9eman97a yields an ultimate Young

modulus of 334 GPa.
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4.2.6.2 Conclusions

It is not the purpose of this work to defend the 220 GPa obtained from the

fluctuation approach heavily, because the fluctuations have not fully converged

Furthermore, this number depends largely on the forcefield (in particular on the

C-C bond stretching and angle bending parameters). The static minimum energy

result of about 250 GPa yields a temperature dependence consistent with other

results but seems to be too low by about 50 GPa with respect to the zero-tem¬

perature values obtained from quantum-mechanical and semi-empirical calcula¬

tions and extrapolations of experimental results. These (and the necessity to

scale van-der-Waals parameters to compensate for long C-H bonds3) are strong

indications that the scaled_pcffforce field is not perfectly adequate for the simu¬

lation of hydrocarbons

Irrespective of the force field used, the intermolecular interactions between

individual PE chains are very weak, both in crystals and in the amorphous

phase. This makes it necessary to use relatively large simulation cells, which in

turn reduce the effectiveness of the fluctuation formula, demanding long simula¬

tion runs.

Despite this restriction, the fluctuation approaches seem to be capable of

reproducing the temperature dependence of the elastic constants The C33 value

obtained from the new stress-strain fluctuation method converges considerably

faster than the one from the strain fluctuation approach The combination of the

two methods - the stress-strain correlation matrix - allows for a quantitative esti¬

mation of the degree of convergence.

a E Leontidis, private communication (1997)
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4.3 Polypropylene - Helical Chains

4.3.1 Introduction

Similar to polyethylene, polypropylene (PP) is also a technologically impor¬

tant thermoplastic with poorly understood mechanical properties. The experi-

CH,H CH,H CHoM CH3H CH3 H H CH.,HCH-£H3H HCH-,
\3, \3. V V \ \ - \

,
\ - \

CCCC CCCCC

VVVV x VVyVV
x

rf \\ ri H rf H ri H H H H H H H rf H rf H

Figure 4.17: Isotactic (left) and atactic (right) polypropylene

mental values of the crystal modulus of isotactic PP (it-PP), for example, range

from 18 to 80 GPa.Hong90a This quite low value - less than a third of that of PE -

has its origin in the lower density of chains (2.9 chains-nm"2 vs. 5.5 chains-nm"2)
and in the helical structure of the chains in the crystal. Elongations of the crystal

do result not only in bond and angle but also in torsion deformations, which tend

to 'unwind' the helix.

4.3.2 Crystal Modifications and Cell Generation

4.3.2.1 Crystal Modifications

There are several crystal modifications of it-PPTadokoro90-Corradini83a. the

monoclinic a-form, the most stable one, which was simulated in this work, the

hexagonal p- and the trigonal y-form. Another monoclinic •y-form is reported,

t00
Ferro92a

jhe a-modification was first described by Natta and

CorradiniNatta60a: they reported a monoclinic structure with a = 6.65 ±0.05 A,
b = 20.96 ± 0.15 A, c = 6.5 ± 0.05 A, and p = 99 20' ± 1

.

The detailed structure of the it-PP crystal is quite complicated, since the

individual chains form 3/1 helices, which can be either left(L)- or right(R)-

handed. In addition to that, the methyl groups, which are directed outwards of

the helix, can point up (|) or down ()), resulting in four different possible confor¬

mations. The most regular structure is the one shown schematically in

Fig. 4.18 c) with the four possible helix conformations distributed on a regular

grid. However, it was f0undTadokoro92a that this 'ordered' crystal lattice only

appears after annealing at higher temperature. In 'native' PP crystals, the distri¬

bution of left- and right-handed chains is the same, but the methyl groups point

up or down randomly (Fig. 4.18 b)). The disordered structure shown in

Fig. 4.18 a) and d) and used for most of the following calculations, is therefore
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Figure 4.18: The PP crystal cell: a) schematic setup of the PP cell used for the simulations, b)

randomly distributed up or down helices appearing in 'native' a-it-PP. c) ordered a-

it-PP structure, d) atomistically detailed unit cell according to a).

stable as well. For comparison, an ordered structure according to Fig. 4.18 c)

was built and simulated as well.

4.3.2.2 Structure Generation

A simulation cell containing 3x1x3 unit cells and 9-108 = 972 atoms was

built, using the 'Crystal Cell' moduleMSIPolymer1 in the 'Insight' modelling environ¬

ment. In order to do this, helical repeat units of the four different helix conforma¬

tions had to be generated and placed into the crystal asymmetric unit (CAU).

The values of the fractional positions, the setting angle, and the vertical offset

are given in Table 4-24:

Table 4-24: Parameters for setting of the helices for the ordered it-PP a-crystal

Helix

Fractional

coordinates

Vertical offset [A]

Setting angle

Rl

0.0

0.125

-2.0

-135.0

LI

0.0

0.875

-3.2

15

Lt

0.5

0.375

1.25

-72.0

Rt

0.5

0.625

-2.0

72.0

Using periodic continuation conditions, the fractional coordinates and the vertical

offset are only meaningful relative to each other. In the structure used for almost

all simulations, the last helix in the above table was an Rl instead of a Rl helix.
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This CAU was converted into a cartesian coordinate file and surrounded by

the appropriate number of unit cells, which were merged into one simulation box

of approximately cubic shape with a edge length of about 20 A As in the case of

PE, 'bonds across boundaries' were applied to connect the chain ends of neigh¬

bouring cells The pcff91 forcefield was able to reproduce the experimental cell

shape sufficiently well, as is shown in the next table

Table 4-25 Cell shape at 300 K (average taken from 530 to 930 ps (20'000 frames) of a

ToN-MD run Comparison with corresponding experimental values (from ref

Natta60a)

Simulation

Experiment

i [A]

19 70

19 95

b[k]

21 06

20 96

:[A]

19 95

19 50

an

89 5

90 0

PH

98 5

99 3

YH

89 3

90 0

4.3.3 Simulation Procedure

4.3.3.1 MD Simulations

The cell generated with the above methodology and setting parameters

was first minimized in order to remove the largest energy terms A short minimi¬

zation of a few hundred steepest-descent or conjugate gradient steps should

always be done after the generation of a structure, because the geometry of the

repeat units and groups used to build it is only adapted for a particular force field

(cvff in the case of the MSI/Discover software) and needs to be changed if

another force field is applied

The elastic constants of it-PP were calculated at three different tempera¬

tures, 300 K (25°C), 335 K (60°C), and 375 K (100°C) In the TaW-ensemble, the

strain-strain and the stress-strain fluctuation formula were used In addition to

these calculations, simulations in the 7h/V-ensemble were started to compute

the Born and the stress-fluctuation terms (details are given in the next chapter)

Table 4-26 Overview of the MD simulations performed with it PP crystals

Temperature

300 K (25°C)

335 K (60°C)

375K(100°C)

ToN

1000 ps

580 ps

1000ps

Born-ThA/

50 config

50 config

50 config

Fluct-7ri/V

250 ps

250 ps

250 ps

Table 4-26 lists the MD simulations performed in the two ensembles The config¬

urations necessary for the Born term were taken at intervals of 20 fs from a 1 ps
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Th/V simulation The cell shape used in the 7h/V-ensemble was the average cell

shape of the To/V-simulation

The temperature was kept constant in all simulations by a Nose-Hoover

thermostat, which in turn limited the stepsize to 0 5 fs The default coupling con¬

stant Q (see chapter 2 5 2 3) and a cell mass W= 20 were applied Regardless

of the density, all constant-stress calculations were performed by using a tailcor-

rection pressure of 1417 bar

4.3.3.2 Elasticity from Stress Fluctuations in the ThW-Ensemble

Elastic constants can not only be computed from strain fluctuations in the

To/V-ensemble but also from stress-fluctuations in the ThN-ensemble Ray88a

There are three terms that add up to the elastic constants

The Born term, which is represents the elastic constants at 0 K, is com¬

puted similar to the static minimum energy elasticity by deforming an instanta¬

neous frame and measuring the change of the internal stresses at 0 K

<S" - £;> (««>

The kinetic energy term, which is the bulk modulus (compressibility) of an

ideal gas at the simulation temperature, compensates the neglect of temperature

in the Born term

cK,ne„c _
JJkT (4.26)

The last term - the stress fluctuation term - takes into account that the

atoms in the crystal do not form a monoatomic Bravais lattice and that there are

other deviations from the ideal behaviour

^Fluctuation V
. .

,.
__.

Cik =

kf^Pk> (4"27)

The stress o is the actual stress minus the average stress, since it is assumed

that the cell is in a stress-free state (should be checked1)

4.3.4 Results

4.3.4.1 Static Minimum Energy Calculations

The procedure described in chapter 4 16 2 was applied to compute the

elastic constants using the pcff91 forcefield The results of the static minimum

energy approach are listed in Table 4-28
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Table 4-27 Static minimum energy elastic constants (left) compared with results from

stress-strain fluctuations at 300 K (right)

d U,
pot

v^Hi/^nkUT
[GPa] (Wn) (%*!*>' [QPal

12.11 5.80 8.43 0 0-0.41 0 0

5.80 10.82 4.84 0 0 -0.20 0 0

8.43 4.84 62.58 0 0 -5.45 0 0

0 0 0 0 0 0 3.12 0 0 0.20

-0.41 -0.20 -5.45 0 0 6.24 0 0

0 0 0 0 0 0 0.20 0 0 4.53

8.79 3.96 7.33

4.00 7.24 3.83

7.78 4.02 58.84

0 19 0 26 0 84

-0.40 -0.70 -2.98

-011 0 03 001

0 12 0.43-0 35

0 24-0.62 0 04

0 87 -7.56 -0 26

2.57 0 18-0.63

013 5.26-0 48

0.27-0 49 2.02

4.3.4.2 MD Simulations

The results of the MD simulations are given in the next few tables. The first

table (Table 4-28) shows the average of the cell shape taken from the last

Table 4-28 Average it-PP cell parameters, obtained from the last 500 ps of Ta/V-MD

T[K] (a) [A] (b) [A] <c> [A] (a) H <P> [°] <Y> [°]

300 19.700 21.053 19.954 89.52 98.51 89.32

335 19.755 21.173 19.958 89.56 98.52 89.37

375 19811 21.313 19.962 89.59 98.58 89.38

106 MD steps (500 ps). From this information, it is possible to estimate the ther¬

mal expansion coefficient in the a-, b-, and c-direction. The corresponding table

(4-29) compares the expansion coefficients obtained from the above simulation

at 300 K with experimental values and with simulation results from Lacks and

Rutledge.Ru,ledge95a The thermal expansion in the a- and b- directions is quite

Table 4-29 Thermal expansion coefficients from Table 4-28, from experiment and from

Lacks and RutledgeRutled9e95a

[10"5K"1]

<*b

this work

8.0

16.2

0.57

experiment

6.2

15

-1 0, -0.45

Lacks and Rutledge

8.2

8.7

-0.84

7.3

72

-0.48

well reproduced, but in the c-direction a small expansion is predicted instead of

the observed contraction The difference between experimental and simulated

values is small, allowing minor effects to come into play.
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The average normal stresses lower with temperature from -1300 bars to

-1270 bars, whereas the shear stresses are hardly affected by temperature and

remain in the range of 2-4 bars. The average normal stresses differ from the

applied correction pressure of 1417 bars by more than 100 bars, due to the finite

step size (0.5 fs) of the simulation.

The next three tables, Table 4-30 to 4-33, list the matrices of the elastic

Table 4-30 Elastic constants averaged over the last 500 ps of a 1000 ps Ta/V-MD simula¬

tion at 300 K Non-zero components are bold faced

<Ty)<'n//clW~1 tGPa] (tuV^/W" fGPa]

8.33 3.73 7.22-0 02 0.28-0 22

3.73 6.95 3.63 0 22 -0.73 0 05

7.22 3.63 54.76 0 86 -6.26 -0 32

-0 02 0 22 0 86 2.47 0 05-0.46

0.28 -0.73 -6.26 0 05 5.82 -0 53

-0 22 0 05 -0 32 -0.46 -0 53 2.11

8.79 3.96 7.33 0 12 0.43-0 35

4.00 7.24 3.83 0 24-0.62 0 04

7.78 4.02 58.84 0 87 -7.56 -0 26

0 19 0 26 0 84 2.57 0 18-0.63

-0.40-0.70-2.98 0 13 5.26-0 48

-0 11 0 03 0 01 -0.27-0 49 2.02

constants obtained from strain and stress-strain fluctuations. The convergence

of the individual matrix elements (from stress-strain fluctuations) at 300 K is

shown in Fig. 4.19. A detailed discussion of these values will follow in

100 200 300

MD Time [ps]
400 500

Figure 4 19 Convergence of the elastic constants of it-PP (stress-strain fluctuations, diagonal

elements as heavy lines, C12, C-|3, and 623 in heavy grey lines), simulation at

7= 300 K

chapter 4.3.5. Despite the large negative number found for the C35 component,

all eigenvalues of all matrices are positive, guaranteeing mechanical stability.
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Table 4-31 Elastic constants averaged over the last 500 ps of a 580 ps ToN-MD simula¬

tion at 335 K Non-zero components are bold faced

7^<Tl»*Tl//n>"1 [QPal <Tl/fc°n,><1ln,1W~ [QPal

7.93 3.62 7.12 010-0.54-0 13

3.62 6.61 3.53 0 14-0.65 0 04

7.12 3.53 55.96 0 76 -6.50 -0 28

010 014 0 76 2.51 0 01 -0.49

-0.54 -0.65 -6.50 0 01 5.44 -0 41

-0 13 0 43 -0 28 -0.49 -0 41 1.90

8.23 3.75 7.68 0 09 0.27-0 21

3.91 7.02 4.05 0 14-0.92 0 12

7.31 3.72 58.16 0 77 -7.57 -0 22

0 18 0 25 0 89 2.55 0 16-0.67

-0.58 -0.70 -2.68 0 11 5.02 -0 41

-0 13 0 03 -0 22 -0.27 -0 39 1.87

Table 4-32 Elastic constants averaged over the last 500 ps of a 1000 ps ToN-MD simula¬

tion at 375 K Non-zero components are bold faced

kT -1

m(nlknlm> [GPa] <Tl*°ii;><tln,TW [GPal

7.67 3.24 7.18 0 05-0.42-0 17

3.24 6.30 3.84 0 14-0.71 0 09

7.18 3.84 56.29 0 57-6.74-0 21

0 05 0 14 0 57 2.23-0 04-0.48

-0.42 -0.71 -6.74 -0 04 5.39 -0 33

-0 17 0 09 -0 21 -0.48 -0 33 1.79

8.12 3 53 7.68 0 11 0.18-0 30

3.70 6.62 4.21 0 17-0.74 0 11

7.17 3.85 56.61 0 58-7.34-0 17

0 11 0 16 0 30 2.33 0 19-0.64

-0.43 -0.67 -2.59 0 04 4.99 -0 33

-0 19 0 14-0 19-0.31 -0 35 1.71

The matrix of the elastic constants of the ordered structure of Fig. 4 18 c) is

given in Appendix F

4.3.4.3 Elastic Constants from Constant-Shape MD simulations

Table 4-33 lists selected elements of the matrix of the elastic constants,

that were computed in the Th/V-ensemble. At 300 K, the Born, the kinetic energy,

and the stress fluctuation term as well as the sum of these three contributions

were given. At 335 and 375 K, only the sums, i.e. the effective elastic constants,

were listed. In general, the results obtained in this ensemble do not seem to be

very consistent. The C^ and C66 values agree quite well with other calculations,

but especially C44 and C55 are much too high, whereas the Cn and C22 compo¬

nents at 375 K are even negative1 The convergence of the stress fluctuations

seems to be so slow that an equilibration could not be achieved in the 250 ps of

the simulation. It was therefore not possible to verify Ray's statement that the

elastic constants converge much faster in the ThW-ensemble than in the TiN-

ensemble.Rav88a
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Table 4-33 Elastic constants from Th/v-simulations of it-PP at 300 K, 335 K, and 375 K, all

values in GPa

Born Kinetic Fluct 300 K 335 K 375 K

221.27 -0.48 -209.63 11.16 13.89 -0.34

C22 230.48 -0 48 -222.14 7.86 9.78 -3.61

Q53 248.32 -0 48 -191 43 56 41 57.97 51.09

'44 103.00 -79.19 23.81 25.41 19.62

--55 112.55 -84.47 28.08 25.89 23.62

'66 97.21 -94.27 2 94 1.44 0.92

'12 45.78 -40.78 5.00 5.12 1 40

'13 32.70 -21.43 11.27 10.91 3.82

C23 23.51 -20.04 3.47 4.36 2.81

Q35 -3.87 1.55 -2.32 2.09 5.91

4.3.5 Discussion

4.3.5.1 Rotation of the Matrix of the Elastic Constants

In contrast to PE, the chains in the it-PP simulation box are not parallel to

the x3-axis of the external frame of reference In order to be able to estimate the

modulus in the fiber direction, it is first necessary to rotate this external coordi¬

nate frame until its x3-axis is aligned with the PP-chains. A procedure was writ¬

ten that performs such a rotation (using Eq. 1-50) by minimizing a penalty

function This function was proportional to the sum of the squares of those ele¬

ments that should be zero by summetry minus the square of the C33 value (i.e.

C33 was maximized and a monoclinic symmetry was favoured). The resulting

matrices are given in the next table (Table 4-35). The experimentally accessible

Table 4-34 Matnces of table 4-30, rotated successively by 1 ° around the x1-axis, 8° around

the x2-axis and 3 3° around the x3-axis

^(^lk^y [GPa] ^ifcOfi/X1!^/^"1 tGPal

8.91 3.47 5.97 0 14 1.46-0 31

3.47 6.96 3.83 0 09-0.78 0 13

5.97 3.83 56.79 -0 02 -0.76 0 06

0 14 0 09 -0 02 2.61 0 34 -0.42

1.46 -0.78 -0.76 0 34 4.52 -0 40

-0 31 0 13 0 06-0.42-0 40 1.96

9.18 3.70 7.03 0 28 1.52-0 39

3.78 7.25 4.03 0 14-0.68 0 12

6.46 4.21 60.15 -0 12 -1.50 0 10

0 33 0 11 0 04 2.71 0 42 -0.56

0.68 -0.73 3.07 0 31 4.41 -0 35

-0 13 0 10 0 35-0.20-0 33 1.88
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modulus, and the linear compressibility along the chain axis, E3 and f33, were

calculated from the compliance matrix S/fc(=C/fc"1) usjngTadokoro92a

E3 =
± and p3 = S31 + S23 + S33. (4-28)
°33

For the strain fluctuations E3 = 51.9 GPa and p3 = 0.31-10"2 GPa"1, whereas the

stress-strain fluctuations yield E3 = 56.3 GPa and p3 = 0.26-10"2 GPa"1.

4.3.5.2 Comparison with Literature Values

One of the earliest values of Young's modulus in the chain direction is

28 GPa from Miyazawa which was opposed to an observed 32 GPa from

Sakurada ef a/.Tadokoro9° In the more recent work of Tashiro ef a/Tadokoro92a,

experimental E3 values of 35 to 43 GPa - depending on the methodology - and a

P3 of 0.4-10"2GPa"1 are reported. As mentioned in the introduction, Hong ef

a|Hong90a quote Young's moduli between 18 and 80 GPa.

Theoretical three-dimensional matrices were computed by Tashiro ef

a/Tadokoro92a an(j by Lacks and Rut|edgeRutiedge95a |n jadokoro's work, the ref¬

erence axes are as follows: x(1)-axis = a-sinp, y(2)-axis = b, and z(3)-axis = c.

This is identical with the rotated matrices of Table 4-30. Lacks and Rutledge do

not specify the relation between external cartesian and crystal coordinate sys¬

tem explicitly, but it is assumed that it is the same. A comparison with these liter¬

ature values and the numbers obtained in this work is given in Table 4-35.

Almost all values fit perfectly in the range spanned by the previous calculations,

except for the C44 value, which is a bit lower, and the C35 value from the stress-

strain fluctuations. As was seen in the process of rotating the elasticity matrix,

this component is extremely dependent on the orientation (only 1 or 2° would

suffice to change the sign without involving considerable changes in the other

components).

4.3.5.3 Conclusions

At 300 K, the elastic constants obtained from the strain and the stress-

strain fluctuations agree very well with experimental and other theoretical

results. Young's modulus in the chain direction (51.9 GPa from the strain and

56.3 GPa from the stress-strain fluctuations) is higher than the experimental val¬

ues of 35 - 43 GPa. Looking at Fig. 4.19, it can be seen that at least the stress-

strain calculation has not yet converged and that a further drop by a few GPa

can be anticipated. This would bring the stress-strain value closer to the one

obtained from strain fluctuations and reasonably close to the experimental val-
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Table 4-35 Comparison between the elastic constants [in GPa] and the linear compress¬

ibility in the chain direction [in 10 2 GPa"1] obtained in theoretical calculations at

300 K from Tashiro et alradokoro92a, Lacks and RutledgeRutled9e95a and the

strain and the stress-strain fluctuation formula of this work Off-diagonal ele¬

ments in the last column are averages of the two symmetry-equivalent num¬

bers SLKB* and KDG* denote modifications of force fields by Sorensen, Liau,

Kesner, and Boyd and Karasawa, Dasgupta, and Goddard, which are used in

Ref [Rutledge95a]

Tashiro et

al

Lacks & Rutledge

SLKB* KDG*

this work

T1//C **> T\ln

7.78 9.9 9.1 8.91 9.18

C22 11.55 10.8 8.6 6.96 7.25

'33 42.44 55.1 64.5 56.79 60.15

C44 4.02 4.0 4.3 2.61 2.71

C55 3.10 4.9 4.7 4.52 4.41

C66 2.99 1.7 3.5 1.96 1.88

C12 3.91 3.4 3.6 3 47 3.74

'13 3.72 7.1 7.2 5.97 6.75

C23 3.99 4.4 4.3 3.83 4.12

'15 0.90 <1 <1 1.46 1.10

'25 -0.36 <1 <1 -0 78 -0.71

C35 -0.57 <1 <1 -0.76 0.79

C46 -0.12 <1 <1 -0.42 -0.38

40.1 51.9 56.3

h 0.97 0.31 0.26

ues. The influence of the temperature on the convergence of the C^ -compo¬

nent (the modulus along the chain axis, which has been rotated to be parallel to

the external x3-axis) is given in the next figure. The opposing trends (raise with

temperature for the values from the strain fluctuations, drop of those from the

stress-strain fluctuations) are an effect of the relatively bad convergence at

300 K, which becomes much better at 375 K. It is therefore not appropriate to

quantify the decrease of C33 with temperature. However, it can be stated that it

must be relatively small and in the order of the 2.5 - 3.5 GPa/100 K found by

Lacks and RutledgeRutled9e95a.
The thermal expansivity of it-PP is quite well reproduced, with the excep¬

tion of the small contraction in the chain direction, which must be attributed to
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Figure 4.20: Convergence of the C33-component of the elasticity matrix at 300, 335, and 375 K;

the table gives the temperature dependence of the C-component [in GPa] calcu¬

lated with strain and stress-strain fluctuations

deficiencies in the pc/797-forcefield.
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4.4 Cellulose-lp - Chains with Hydrogen Bonds

4.4.1 Introduction

Cellulose is the most abundant natural polymer on earth, there exist about

800 109 tWoodwe"78a primarily in the cell walls of higher plants but also in some

algae, fungi, protistans, bacteria, and tunicata The annual production rate of

approx. 70 109 t exceeds that of synthetic, man-made polymers by a factor of

103. In nature, highly crystalline cellulose fibers act as reinforcements in com¬

posite materials, like the lignin/cellulose complex in the reticulum of trees These

cellulose composites are responsible for the mechanical stability of the higher

plants Kraess'992

In industrial applications, cellulose is mainly used in the form of its deri-

vates in the production of paper and of textile yarns like cotton and viscose Fur¬

ther applications are wood-like materials made up from wooden filler particles

and polymer matrices. Examples are plywoods, resinbonded boards or extrud-

able panels. In total, cellulose in its various forms constitutes about 50% of the

polymer utilized in the industry worldwide
Maldas93a

The reinforcing abilities of individual cellulose fibers are becoming of inter¬

est in order to increase the elastic moduli of synthetic polymers and rubbers The

experimental results reveal substantial effects even of comparatively small

amounts of cellulose whiskers in rubbery materials Chanzy95a To make full use of

the capabilities of such systems, it is important to establish a connection

between the morphology of a reinforced two-phase matrix-whisker polymer, the

elastic behaviour of its constituents, and the overall elastic properties.

With the knowledge of the complete matrix of the elastic constants of the

polymer matrix and the reinforcing particles, it is possible to compute the elastic

behaviour of the composite system. Assuming isotropy of the rubberous part, its

elastic constants can readily be determined by tensile and shear experiments.

The elastic constants of the anisotropic, crystalline cellulose whiskers are not

accessible through experimental methods as stated in chapter 4.2 1.

It is therefore of theoretical and practical interest to compute the full matrix

of the elastic constants of cellulose. The results of the structure generation and

the simulation runs will be presented after a short discussion about the various

modifications of crystalline cellulose.
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4.4.2 Crystal Modifications and Cell Generation

4.4.2.1 Crystal Modifications

Despite repeated efforts in the last 70 years, the crystalline structures of

native and of chemically modified cellulose still are disputed At present, there is

evidence for at least four major modifications of crystalline celluloseKraessig92,

cellulose-l is the form in which native cellulose appears; after its treatment with

strong alkaline solutions or after precipitation from solution in suitable solvents,

the cellulose-ll modification is observed. Cellulose-Ill is formed by the decompo¬

sition of the reaction product of native cellulose and liquid ammonia, whereas

cellulose-IV is obtained by treating regenerated cellulose-ll fibers in hot baths

under stretch. Although the existence of cellulose-l and cellulose-ll is well estab¬

lished - in contrast to the latter two modificationsAtalla74a - not only the actual

arrangement of the chains in the unit cell but also the size and shape of the unit

cells still are subject to ongoing research.

Recent studiesAtalla84a' Sugiyama90a,Chanzy91a
g|ve indicatl0n that crystals of

native cellulose-l are composed of two crystalline phases, a monoclinic, two

chain IR-phase which is dominant in ramie, cotton and tunicin and a tnchnic

la-phase occurring in Valonia ventricosa and bacterial cellulose. The fraction of

the la-phase depends on the origin of the cellulose and amounts to 65% in Valo¬

nia samples. This phase, however, is only metastable and can be converted by

hydrothermal annealing into the thermodynamically stable l|3-phase.

While the cell parameters of cellulose-la are still under discussion, it is gen¬

erally accepted that the ip-phase is monoclinic and contains two cellulose chains

at the twofold screw axes, one at the corner and another one in the center of the

unit cell. Unresolved is the question, whether the two chains are parallel or anti-

parallel. In one of the first proposals, still widely in use, from Meyer, Mark and

MischMeyer37a, the two chains were in antiparallel position Later, Gardner and

BlackwellGardner74a and Woodcock and SarkoWoodcock80a suggested models in

which there was a parallel arrangement of the chains In the present work, the

model structure of Woodcock and Sarko was used for the calculation of the elas¬

tic constants. The latest reports, however, support an antiparallel alignment of

the chains in cellulose-ll,Chanzy95b which in turn makes an antiparallel setup of

the chains in cellulose-ipmore likely. MD calculations made by Kroon-Batenburg

ef a/.Kroon96a favour, on the other hand, parallel chains according to the Wood-

cock/Sarko structure.

The cellulose-l structure suggested by Woodcock and Sarko is monoclinic,

with unit cell parameters given in Table 4-36. The arrangement of the cellulose
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Table 4-36 Unit cell dimensions and helical setting parameters of Cellulose-ip and Cellu¬

lose-ll

Property

[A]

b[A]

•[A]

Yl

Cham 1

Chain 2

Position/Orientation

Setting angle [°;

Vert offset [A]

Position/Orientation

Setting angle |

Vert offset [A]

Cellulose-ip

7 78

8.20

10.34

96.5

[0,0] / 'up'

-42.0

0.0

|/'up'

-42.0

-2.6

Cellulose-ll

I.00

9.05

10.38

116.8

[0,0]/'up'

28.0

0.0

L2'2
/ 'down'

18.0

1.0

chains in the cell is shown in Figure 4 21 The various intra- and intermolecular

b

Figure 4 21 Unit cell projections of the parallel-chain structure of cellulose-ip The center chain

is drawn gray-shaded, the corner chains are solid black

hydrogen bonds are not shown in order not to cluster the picture too much. The

intramolecular hydrogen bonds are depicted in Fig 4.24, the intermolecular

hydrogen bonds act mainly between neighbouring sheets in the indirection

Based on experimental data and the comparison with chemically similar

molecules, Chanzy et al.Cnanzy95b suggested a crystal structure of cellulose-ll

whose unit cell parameters are listed in Table 4-36, too.
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4.4.2.2 Structure Generation

The commercial lnsight/DiscoverMSIDlscover1 program package was used

for the setup and minimization of the crystalline simulation cell and for the com¬

putation of the molecular dynamics (MD) trajectory. Note: In the Discover simula¬

tions, the cartesian coordinate frame was set such that the a-edge of the

simulation cell was parallel to the xrdirection and the to-edge was in the xrx2-

plane This is in contrast to the orientation of the coordinate frame used in the lit¬

erature and in this work, in which the chains and thus the c-direction are parallel

to the x3-axis and the r>axis is in the x2-x3-plane (in the case of monoclinic sym¬

metry parallel to the x2-axis).

After the building and minimization of a chemical repeat unit of cellulose, a

short oligomer with a degree of polymerization (DP) = 3 was generated in order

to extract the helical repeat unit Two such helical repeat units were placed in a

box of the size of the Woodcock and Sarko crystal cell, one at a corner (0,0) and

one in the center (1,1) with an offset in the c-direction of -2.6 A. The setting

angle for both chains was -42° (cf. Table 4-36) In the refinement process, differ¬

ent force-fields were used to find the most suitable one for cellulose. This refine¬

ment procedure consisted in a systematic change of the cell parameters, the

setting locations, and the setting angles of the chains followed by an energy min¬

imization to find the most stable crystal conformation MSiPoiymen j^e am£>e/- cvff

and pcff force-fields were tested, and it turned out that the most sensitive cell

parameter was the y angle The amber force-field gave a correct estimate of

96 5°, but lacked some parameters necessary for dynamic simulations Of the

remaining two force-fields, cvff seemed to be more suitable than pcff (as

Table 4-37 shows) and was thus used for the further computations. In subse-

Table4-37 Minimum energy cell parameters of cellulose lp with pcff and cvff force field

compared with experimental values

i [A] b[k] ![A] PI y[°]

pcff 7.89 8.38 10.63 93.25 89.05 99.05

cvff 7.77 8.14 10.68 90.73 89.79 97.34

exp. 7.78 8.20 10 34 90 90 96 5

quent dynamics, as the results will show, the y angle was quite close to the

experimental value. The cvff is an all-atom force field with flexible bond lengths,

bond angles and torsional degrees of freedom.MSIDlscover1 No Morse bond

potentials, no out-of-plane and no cross terms were used. There are no explicit
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terms for the hydrogen bonds, but large partial charges invoke similar effects.

To reduce the effects of the small unit cells, a super cell of 2x2x2 unit

cells with periodic boundary conditions was generated The images of the cellu¬

lose chains were connected to their parent chains by 'bonds across boundaries'

in order to mimic infinitely long molecules This super cell contained 672 atoms

in 8 chains

4.4.3 Simulation Procedure

The MD simulation was carried out in the familiar Ta/V-ensemble, where

the pressure was controlled by a Parnnello-Rahman manostat and the tempera¬

ture by a Nose-Hoover algorithm. The coupling constant Wbetween the internal

stress fluctuations and the velocity of the cell shape changes was again set to 20

a.m u. The fictitious mass Q of the Nose-Hoover thermostat was chosen as

7 33 106 kcal mol"1 fs"2 at 325 K. Again, the dynamic properties, i e the temper¬

ature fluctuations, depend on Q, whereas static quantities, such as the average

temperature, are not influenced by the choice of this variable, but rather by the

stepwidth of the simulation
Nose91a

The smaller the timestep, the closer the aver¬

age temperature approaches the target temperature. A canonical ensemble of

the correct temperature will only be created by using infinitely small timesteps

Having, e.g., 325 K as the target temperature, a timestep of 0 5 fs leads to an

average temperature of 318.3 K (cf chapter 2.5.2.3)

The long-range Lennard-Jones interactions were taken into account by

applying an external pressure of 180 MPa (1800 bar). The Coulombic interac¬

tions were treated with a conventional splined cutoff (switching from full interac¬

tions at 7.5 A down to no interactions at 8.5 A) and with Ewald terms that were

summed up to an accuracy of 0 0025 kcal mol"1

Calculations were performed at 325 K (for the sake of comparison with Ref.

[Chanzy95a]), 150, and 400 K, which allows the calculation of the temperature

dependence of the density (thermal expansion coefficients) and of the elastic

constants of cellulose. Splined cutoffs made it possible to perform 2 106 MD

steps of 0.5 fs, totalling 1 ns, whereas the computationally more expensive

Ewald summation reduced the simulation length to 0.5 106 steps or 250 ps.

These values correspond to roughly 1 month of CPU time on a workstation per

simulation run and are the limit of feasibility

In addition to the simulation of cellulose-ip, the cellulose-ll structure of Ref.

[Chanzy95b] was generated with the same methodology as described above

using the parameters of Table 4-36, chain 2 being antiparallel to chain 1. Just

like for cellulose-ip, the application of the cvff force-field led to the best agree-
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ment of the simulation structure with the experimental values. For this structure,

a ToN-MD simulation was made for 0.5-106 steps of 0.5 fs (250 ps). Again,

Ewald summation of the coulombic interaction terms was used.

4.4.4 Results

4.4.4.1 Ceil Shape and Thermal Expansion

In this subchapter, only results from calculations with Ewald summation of

the charged interactions are presented.

An example of the thermal fluctuations of the lengths of the vectors span¬

ning up the cellulose-ip simulation cell is given in Figure 4.22. The averages of
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Figure 4.22: Fluctuations of the vector lengths a, b, and c of the cellulose-IP simulation cell at

325 K (Ewald summation)

the cell parameters {a,b,c,a,$,y} taken at any subtrajectory are not significantly

different from those of the whole trajectory, indicating that the cell is fluctuating

around a quasi-equilibrium point at 150 and at 325 K. At 400 K, however, a tran¬

sition occurred after approx. 130 ps, in which b increased by about 0.4 A

(Fig. 4.26) and the a and y values by about 2°. The reason for this transition is

most probably the small cell size in combination with the elevated temperature,

which creates considerable fluctuations. In order to have some indication of the

material's behaviour at 400 K, relatively stable parts of the trajectory were taken

for further investigation.

In Figure 4.22, visual inspection already allows to estimate the elastic con¬

stants in the c-direction (along the chains) being higher and in the a-direction

being lower than in the r>direction, because the fluctuations are smaller in the
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c-direction and larger in the a-direction. This is supported by the apparently

higher frequency of the oscillations of the c-value than of the a-value So the

c-direction, which is parallel to the chains, is a 'hard' direction, whereas the

a-direction, where only weak Lennard-Jones forces act perpendicular to the

hydrogen-bonded sheets, is a 'soft' one These rough estimates will be con¬

firmed by the following standard deviations of the cell parameters and by numer¬

ical analysis in chapter 4.4.4.2.

Table 4-38 Summary of simulation cell parameters of minimized cellulose-ip, at 150, 325,
and 400 K Averages were taken from 2 5 105 frames at 150 and 325 K and

from 1 2 105 frames at 400 K The time interval between the frames was 1 fs

(2 MD steps)

71K]

150

325

400

i [A]

15 53

15.70

±0.08

15.85

±0.13

15.96

±0.14

b[A]

16 27

16.29

±0.07

16.40

±0.10

16.46

±010

;[A]

21.37

21 38

±0.03

21.39

±0.05

21.40

±0.05

<x[°]

90.2

90.0

±0.4

90.0

±0.7

90.0

±0.9

P[°]

89.9

90.0

±0.6

90.0

±1 1

89.9

±1.3

y[°]

97.5

97.5

±0.4

97 5

±08

97.8

±1.0

The average values and the standard deviations of the cell parameters at

150, 300 and 400 K are given in Table 4-38. Linear regressions of these param¬

eters show that there is virtually no drift of the cell shape with time, i.e. that there

are no significant relaxations in the timescale of the simulation. Only at 400 K,

the reduced stability of the cell becomes manifest in higher values of the slope of

the regression line (cf. Fig. 4.26).

From Table 4-38, it is possible to compute the matrix of the thermal expan¬

sion coefficients. Assuming no change in the cell symmetry (i.e. shape), the ther¬

mal expansion coefficients at 325 K can be estimated as ai = 7±210"5,

a2 = 5 + 1 10"5, and a3 = 5 ± 1 10"6 K"1. As with PP, these values are in accord

with experimental measurements of the ai and a2 coefficients, but are not able

to reproduce the contraction effect along the chains of -4.510"5 K"1Godovsky92.

The cellulose II structure was not completely stable, as the next figure
shows. Especially the b and y values exhibit drifts, that are of the same or a

larger magnitude than the thermal fluctuations, making it impossible to evaluate

the elastic constants properly.
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Figure 4 23 cell sizes and angles of Cellulose-ll at 325 K (Ewald sum)

4.4.4.2 Elastic Constants

The strain and the stress-strain fluctuation formalisms of Eqs. (3-29) and

(3-36) were used to compute the elastic constants of cellulose-ip at 150, 325,

and 400 K. At first, the results using a splined cutoff and an Ewald summation for

the coulombic interactions at 325 K are compared:

The matrices of the elastic constants (in the Discover coordinate system)

obtained from interactions with a splined cutoff, given in Table 4-39, differ dra-

Table 4-39. Elastic constants averaged over the last 500 ps of a 1000 ps ToN-MD simula¬

tion at 325 K, cutoff = 8 5 A, spline = 1 A for all non-bonded interactions Non¬

zero components are bold faced, gray number signify large deviations from

the 'typical' values of hydrogen-bonded sheets (see chapter 4 5.4)

kT 1

^<TUTl/m> [GPa] <Tl,*°nj><T1nyT1"n>" [GPa]

39.1 16.5 19.5 -0.1 -0.1 3.0

16.5 53.4 19.2 -0.1 0.0 -0.7

19.5 19.2 193.2 0.1 0.3 4.3

-0.1 -0.1 0.1 9.8 0.4 0.1

-0.1 0.0 0.3 0.4 9.1 0.0

3.0 -0.9 4.3 0.1 0.0 6.0

44.6 18.8 22.3 -0.1 -0.1 3.4

14.5 51.4 16.9 -0.1 0.0 -0.6

18.8 18.2 183.9 0.1 0.3 4.1

-0.1 -0.1 0.1 9.6 0.3 0.1

-0.1 0.0 0.3 0.4 9.1 0.0

3.1 -0.7 4.4 0.1 0.0 8.1

matically from those that used an Ewald summation for the charged interactions

(Table 4-41).

The comparison with literature values (chapter 4.4.5.1) shows that the sim¬

ulations which involve an Ewald summation of the far-reaching coulombic inter-
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Table 4-40: Elastic constants averaged over a 250 ps ToW-MD simulation at 325 K,

cutoff = 8.5 A, spline = 1 A, Ewald summation for the coulombic interactions.

Non-zero components are bold faced.

kT
. .-1

m^n?\in> [GPa] ^,kan)<S\„.r\J~ [GPa]

17.2 12.9 6.8-0.1

12.9 34.3 14.7 0.1

6.8 14.7 162.0 0.1

-0.1 0.1 0.1 5.0

0.1

-0.5

0.0

0.5

0.0

0.9

0.2

-0.1

0.1

0.0

0.0

0.2

2.1

0.0

0.5

0.5

0.9

-0.1

0.0

3.8

17.3 13.2 6.9

11.9 31.6 10.7

6.4 13.5 160.8

0.0 0.2 0.6

0.1 0.2 0.0

-0.7-1.5 1.5

-0.1

0.1

0.1

4.9

0.0

-0.1

0.0

0.0

0.0

0.2

2.1

0.0

0.3

0.6

0.9

-0.1

0.0

3.8

actions are much more reliable than those from calculations with splined cutoffs.

The reason for this can be seen in Figs. 4.24 and 2.5. Figure 4.24 shows a struc-

-0.38 0.35 **

^*35
-0.38

rf.38

35

Figure 4.24: Partial charges of a structural repeat unit of cellulose I

tural repeat unit of a cellulose sheet with the corresponding partial charges from

the cvff forcefield. There is a number of relatively highly charged atoms forming

hydrogen bonds, which are indicated by thick broken lines. Figure 2.5 on

page 41 plots the Coulombic interactions computed with atom- and group-based

cutoffs and with Ewald summation as a function of the cutoff radius or the Ewald

summation accuracy. It can be easily seen that the Coulombic interaction energy

takes almost arbitrary numbers depending on the cutoff radius. This problem
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was less pronounced for the PE and it-PP crystals because the partial charges

were much smaller (0(0.05-0.15)) and the neutral groups less extended.

In order to obtain reliable results for the elastic constants of cellulose, the

charged interactions must be treated using an Ewald summation or an equiva¬

lent technique.

The elastic constants at 150 K, computed with Ewald summation, are given

in Table 4-42, and the convergence of the Cn, C22, and C33 component is

Table 4-41: Elastic constants averaged over a 250 ps ToN-MD simulation at 150 K,

cutoff = 8.5 A, spline = 1 A, Ewald summation for the coulombic interactions.

Non-zero components are bold faced.

kT. .-1

TtfWiWln) [GPa] ('W^nyW [QPa]

19.4 15.2 6.8 0.2 -0.1 -1.2

15.2 37.0 14.3 -0.4 0.2 -0.3

6.8 14.3 158.3 0.0 0.1 0.9

0.2 -0.4 0.0 7.2 -0.4 0.0

-0.1 0.2 0.1 -0.4 2.1 -0.2

-1.2 -0.3 0.9 0.0 -0.2 4.4

21.7 17.0 7.6 0.2-0.1 -1.4

12.4 30.1 11.7-0.3 0.1 -0.3

6.7 14.1 156.0 0.0 0.1 0.9

0.1 -0.4 0.0 6.8 -0.4 0.0

-0.1

-1.3

0.2

0.3

0.1

0.9

0.4 2.2 -0.2

0.0 -0.2 4.6

shown in Fig. 4.25.
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Figure 4.25: Convergence of the C^, C22, and C33 component of the matrices of the elastic con¬

stants of cellulose-ip at 150 K

At a temperature of 400 K, the cellulose cell became slightly unstable, as is

manifest from Fig. 4.26. Actually, it is not possible to evaluate the elastic con¬

stants from this trajectory at all, since the system is not in equilibrium. In order to

have an approximate idea of the elasticity matrix, the first and the last 100 ps

(from 0 to 100 and from 150 to 250 ps) were used to compute the matrix of the
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Figure 4.26 Cell edge vectors of cellulose lp at 400 K (Ewald summation, 1800 bar correction

pressure

elastic constants. The elastic constants of the last 100 ps are also listed in

200

150

co

CS 100

50

0-100 ps 150-250 ps fluctuations

strain

stress-strain

20 40 60

Time [ps]

80 100

Figure 4 27 Convergence of the Cn, C22, and C33 components of the matrix of the elastic con¬

stants of cellulose-ip at 400 K. Averages obtained from two intervals between

0-100 and 150-250 ps.

Table 4-43. The difference between the two matrices is relatively large, because

of the short trajectory used for their evaluation. The diagonal elements of the

stress-strain correlation matrix range from 0.94 to 1.02 kT, whereas the off-diag¬

onal elements vary between -0.2 and 0.2 kT.

A short simulation run was started at 450 K to check the thermal stability of

the cellulose-ip cell. After approximately 70 ps, the structure started 'melting', i.e.
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Table 4-42 Elastic constants averaged over the last 100 ps of a 250 ps ToN-MD simula¬

tion at 400 K, cutoff = 8 5 A, spline = 1 A, Ewald summation for the coulombic

interactions Non-zero components are bold faced

kT. .-1

7^r/y\Tl//crW [GPa]

13.6 8.8 6.4 0.1 0.3 0.3

8.8 30.1 9.2 -0.7 0.4 -2.6

6.4 9.2 155.6-4.1 -1.5-1.9

0.1 -0.7 -4.1 1.2-0.5 0.2

0.3 0.4 -1.5-0.5 2.8-0.1

0.3-2.6 -1.9 0.2-0.1 2.8

<TW<1lnyTW [QPal

14.8 9.6 7.0 0.1 0.3 0.3

7.2 24.9 7.6 -0.6 0 4 -2.1

6.1 8.7 148.2-3.9-1.5-1.8

0.1 -0.6 -3.7 1.1 -0.5 0.2

0.3 0 5 -1.7-0.6 2.9-0.1

0.3 -2.6 -1.9 0.2 -0.1 2.9

the cell angles preformed large jumps of several degrees. It is therefore quite

probable that the instabilities observed at 400 K are due to the large thermal

fluctuations of the small cellulose ip cell. There is of course no melting of cellulo-

sic materials at this temperature, this is only an effect of the finite-size of the sim¬

ulation box. 'Infinite' cellulose crystals do not melt, but start decomposing at

480 - 550 KBrandruP89

4.4.4.3 Mechanical Relaxation Spectra

To obtain the relaxation spectra of the three cell edges, their time-autocor¬

relation functions were computed and then Fourier transformed. The resulting

spectra are plotted in Fig. 4.28. The contributions to the mechanical loss spec-

10

Figure 4

10 10 10
13 10'1012

Frequency [Hz]
28 Fast-Fourier-transform of the time-autocorrelation function of a(f), b(f), and c(f) of

cellulose-lp at 325 K The classical and the quantum mechanical integral of the

relaxation spectrum in the odirection have also been plotted (almost on top of each

other)
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trum along the chains (c-direction) have been calculated for the classical and the

quantum mechanical case using the formulae of chapter 4.2.4 1 There is hardly

any difference between the quantum mechanical and the classical integral. In

contrast to the corresponding Fourier transforms of polyethylene and polypropy¬

lene crystals, there exists a variety of peaks belonging to different processes

being responsible for the fluctuations The long range interactions between the

charged groups (hydrogen bonds) couple different fluctuation modes in neigh¬

bouring chains. These undirected forces are responsible for the broadening of

the peaks.

4.4.4.4 Static Minimum Energy Calculation of the Elastic Constants

According to the methodology presented in chapter 4 1 6.2, the elastic con¬

stants at 0 K were evaluated for cellulose-ip using the cvff-forcefield and an

Ewald summation of the Coulombic interactions.

Table 4-43 Elastic constants of cellulose-ip static minimum energy (left) and stress-strain

fluctuation approach at 150 K (right, table 4-39)

(d2U,
pot

.dtl,/d%y
[GPa] <*l,A<V<V/'n>~ [GPa]

21.5 15.1 7.2 0.2-0 5-0.8

15.1 38.6 14.0 -0.3 -0.2 0.1

7.2 14.0 168.6-1.3 0 1 1.6

0.2 -0 3 -1.3 7.1 -0.5 -0.7

-0.5 -0 2 0.1 -0.5 1.8 0 1

-0.8 0.1 1.6-0.7 01 4.5

21.7 17.0 7.6-0 2-0.1 -1.4

12.4 30.1 11.7-0.3 0.1 -0.3

6.7 14.1 156.0 0.0 0 1 0.9

0.1 -0 4 0.0 6.8 -0.4 0.0

-0 1 0 2 0.1 -0.4 2.2 -0.2

-1.3-0.3 0.9 0.0 0 2 4.6

In contrast to the previous calculations (PE and PP), the static minimum

energy results of cellulose are subject to a considerable uncertainty. Since sev¬

eral calculations for the diagonal elements are made, their standard deviation

can be estimated to be in the range of 0 5 GPa. A similar conclusion can be

drawn from those elements that should be zero due to the symmetry of the crys¬

tal. The origin of this behaviour is the use of the Ewald summation technique.

Although relatively small deformations (± 0.2%, as for PE and PP) were used,

the coulombic interactions with their 'infinite' range had a substantial influence in

the subsequent minimizations. Application of deformations, that were 10 times

smaller (max 0.02%) did not improve the situation, but led to larger errors due to

problems with the precision of the minimization.
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4.4.5 Discussion

4.4.5.1 Comparison with Literature Values

There is a number of reports on the elastic constants of cellulose I in the lit¬

erature, most of them dealing with Young's modulus in the chain direc-

tion.Nlsnino95a Most experimental and theoretical E3 values are between 78 and

180 GPa. Experimental X-ray studies from Nishino et a/.Nlsnino95b and from Mat-

suo ef a/.Matsuo90a yielded E3 values of 138 and 120-135 GPa. There are theo¬

retical calculations of parts of the matrix of the elastic constants from

GilhsGlllls69a and of the full matrix from Tashiro and KobayashiTashiro88a which are

given in Table 4-44. Of these two, only Tashiro and Kobayashi's values seem to

Table 4-44 Theoretical matrices of the elastic constants from Gillis and from Tashiro and

Kobayashi, all values in GPa

Gillis

16.4 0.0 0.7

0.0 25.2 0.8

0.7 0.8 319.2

0.2

0.2

2.5

Tashiro and Kobayashi

15.1 1.6 1.2 0 0 4.3

1.6 54.5 -2.5 0 0-3.2

1.2 -2.5 167.7 0 0 0.5

0 0 0 3.5 1.4 0

0 0 0 1.4 8.1 0

4.3-3.2 0.5 0 0 4.5

be reasonably close to the experimental findings and the theoretical E3 estima¬

tions.

Comparing Young's moduli in the chain direction of this work (Table 4-45)

Table 4-45 Young's modulus in the chain direction E3 = I/S33 computed at 150, 325, and

400 K using stress (t)) and stress-strain (o-ti) fluctuations

T[K]

150

325

400

Tj-Fluct. [GPa]

151.4

155.2

133.1

o-ri-Fluct. [GPa]

150.2

150.4

126.1

with the literature values, it can be stated that they are more or less between the

experimental and the theoretical results. It is difficult to compare the matrix from

Tashiro ef al. with the present calculations, but considering the fact that there

were no temperature effects taken into account, the agreement between the



148 4.4 Cellulose-ip - Chains with Hydrogen Bonds

Young's moduli is quite good. Larger discrepancies occur for the Ci2, Ci3, and

Ca3 values, where the far reaching undirected Coulombic interactions might

enhance the coupling between the orthogonal stress and strain states.

4.4.5.2 Conclusions

The elastic moduli of cellulose along the chain direction - determined by the

strain and the stress-strain fluctuations - are in the range of 150 -155 GPa. This

is in reasonable agreement with both experimental and theoretical results.

It is, however, extremely important to treat the Coulombic interactions prop¬

erly by using e.g. an Ewald summation technique, because the regular structure

of the crystal and highly charged atoms deny the use of a cutoff.

These strong Coulombic interactions are also responsible for the excellent

elastic properties of cellulose-ip. The elastic modulus in the chain direction is not

as high as for PE, but in the directions perpendicular to the chains, the elastic

moduli are several times higher, due to the intermolecular hydrogen bonds

(which are modeled by large partial charges in the cvff forcefield). This explains

why nature is using such huge quantities of this material in all kinds of structural

elements.
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4.5 Polyamide-6 - Monoclinic Crystals

4.5.1 Introduction

Excellent mechanical, dynamical and chemical properties like high tensile

and impact strength, low coefficient of friction, good hardness and high resis¬

tance against organic solvents are the main features of polyamides that make

them technologically so important. They are used as engineering materials in

bearings, gears, cams etc, for tubes, jackets of electrical wires, casings and for

the production of fibers and yarns
Bmmeyer84,Franck88

Polyamide(PA)-6 (Ri-CO[-NH-(CH2)5-CO]n-NH-R2) is produced within min¬

utes by fast anionic polymerization from waterfree e-caprolactam The resulting

material is composed of spherulites of crystalline lamellae embedded in an

amorphous matnx.Puffr91 The crystalline parts are not always perfectly ordered -

mesomorphousPuffr67a - for the degree of crystallinity not only depends on the

processing history but also on the method of measurement and varies between

20% and 60%.Puffr91-Bhat89a In order to understand the behaviour and the prop¬

erties of Polyamide-6 and related matenals, the semicrystalline morphology of

these materials needs to be considered in detail, as performed in a recent

investigationHsia95a. In this work, the elastic constants of both amorphous and

crystalline domains were determined by fitting the behaviour of a finite-element

representation of the morphology to experimental data.

In the present work, the inverse approach is made Starting from a force

field, the elastic properties of amorphous and crystalline PA-6 will be computed,

which may serve as an input for a finite-element calculation. This chapter reports

the fine-tuning of the pcff91 force field and the subsequent calculation of the

elastic constants of the a-crystal of PA-6

4.5.2 Crystal Modifications and Cell Generation

4.5.2.1 Crystal Modifications

Polyamide-6 crystals can exist in two major forms a monoclinic a- and a

monoclinic y-form, although the existence of other structures has also been

reported The two forms usually coexist in the bulk material The a-phase can be

converted to the 7-phase by iodine treatment, and the y-phase can be converted

to the a-phase by phenol treatment and by stretching The a-phase has been

found to be the most stable structure of PA-6 crystals
Lin92a A schematic repre¬

sentation of the unit cell is given in Fig. 4.29 and the cell parameters are listed in

Table 4-46.
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a) a - Form of monoclinic PA-6 b) y- Form

Figure 4.29: Front and top view of: a) a - Form of monoclinic PA-6, b) y- Form of monoclinic PA-6

(hydrogen atoms are omitted for clarity)

Table 4-46: Experimental cell parameters of a - and y - pA-6Tadokoro90; average of the

last 2-105 ToN-MD steps at 300 K in the middle column (scaled force field)

Parameter

i [A]

b[k]

•[A]

a[°]

PH

Y[°]

a - PA-6

9.56

8.01

17.24

90

90

67.5

a - PA-6 (MD)

9.64

8.03

17.38

90.0

90.0

69.0

Y - PA-6

9.33

9.56

16.88

90

90

121

4.5.2.2 Structure Generation and Forcefield Modification

At first, it was necessary to redefine the PA-6 repeat unit. The default

repeat unit, provided with the 'Insight' package and the redefined unit are shown

in Fig. 4.30. The grouping of the default repeat unit was adjusted to the cvff

forcefield, while the changes inferred by the scaled_pcff forcefield made it nee-
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a)
-

b)

Figure 4.30: Polyamide-6: a) default repeat unit, b) modified repeat unit with neutral groups

essary to extend the amine group to the next CH2-group.

A macrocell of 3x3x2 units cells of a-monoclinic PA-6, containing 36 chains

of 4 repeat units (2736 atoms in total) was built using the 'Crystal Cell' tools of

the 'Insight' modeling packageMSIPolymer1. As for all polymer crystals, bonds

across boundaries were applied in order to mimic infinite chains. While simulat¬

ing the cell, it was realized that the density of the crystal was about 2-3 % too

low. In order to correct for this, two of the nonbonded parameters of the pcff

forcefield were reduced by 3 %.The table below shows the difference between

Table 4-47: Changes in the s-parameter of the Lennard-Jones potential of carbon (c) and

hydrogen (h) atoms

pcff

scaled_pcff

ac[A]

4.0100

3.8897

ah[A]

2.9950

2.9052

the pcff and the new forcefield, named scaled_pcff. After this change, the aver¬

age density of the crystal cell (1.22 ± 0.01 g-cm"3 from the last 100 ps of an ToN-

MD run) was in perfect agreement with literature values shown in Table 4-48.

Table 4-48: Literature value for the density of crystalline and amorphous PA-6

F3T

Mean ValueLewls80a

Pc [g-cm-

1.22 ±0.01

Pa [9-cm-

1.10 ±0.01

The scaled_pcff forcefield was therefore used for all subsequent simulations of

Polyamides (PA-6 and PA-12).

Although there are considerable charges in the PA-6 repeat unit, the Cou¬

lombic interactions were computed using a cutoff, because the Ewald summa¬

tion would have slowed down the whole process too much. (A short test run

required 47 seconds/step on an Indigo II workstation, i.e. approx. ^day/ps.) The
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results of the simulations of the crystal should be interpreted with this limitation in

mind But since all charged groups are neutral and small - most of them consist

of CH2-groups, and the largest group, HN-CH2, is less than 3 A in diameter - the

effect should be much smaller than for cellulose The amorphous cell computa¬

tions are even less sensitive to the problem of large partial charges because

they lack long-range order

4.5.3 Simulation Procedure

After the setting up of the crystal structure, the cell was minimized down to

an energy of -2 902 kcal/(mol atom), followed by a ToN-MD simulation of

3 105 steps (150 ps), conducted at 300 K The long-range Lennard-Jones inter¬

actions were taken into account by a correction pressure of 1630 bar As usual,

a Pamnello-Rahman pressure control and a Nose-Hoover thermostat algorithm

were used to keep stress and temperature approximately constant (the effective

pressure was 1514 bar and the effective temperature 293 K).

After some initial fluctuations, the simulation cell was stable in dynamics,
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Figure 4 31 Cell parameters of crystalline PA 6 (TaN-MD at 300 K)

150
bC

as can be verified from Fig 4 31 In the last 100 ps, the cell parameters and the

components of the actual stress were stored every fs, totalling 105 samples

From these samples, the elastic constants were calculated using Eqs. (3-29) and

(3-36). The results of this procedure are reported in the next chapter.
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4.5.4 Results

4.5.4.1 Elastic Constants from Fluctuation Approaches

Table 4-49 lists the values of the elastic constants averaged over the last

Table 4-49 Elastic constants of PA-6 averaged over the last 100 ps of a 150 ps ToN-MD

simulation at 300 K Non-zero components are bold faced

kT 1

(Vlkon)(r)nir)J [GPa]

26.67 2.75 0.36 0 06-0 06-1.08

2.75 8.13 9.79 0 00-0 04 0.33

0.36 9.79 191.0 -0 07 0 61 0.84

0 06 0 00 -0 07 1.21 -0.32 -0 01

-0 06 -0 04 0 61 -0.32 3.31 0 09

-1.08 0.33 0.84-0 01 0 09 1.31

21.15 2.18 0.29 0 04-0 05-0.85

4.30 12.73 15.34 0 00 -0 07 0.51

0.36 9.58 186.8 -0 07 0 60 0.82

0 06 0 00-0 08 1.37-0.36-0 01

-0 04 -0 03 0 45 -0.24 2.43 0 07

-0.92 0.28 0.72-0 01 0 08 1.12

100 ps of the MD-trajectory and Fig 4.32 shows the convergence of the diago¬

nal elements of the elasticity matrix with averaging time.

250

40 60 80 100

Averaging Time [ps]

Figure 4 32 Convergence behaviour of the diagonal elements (and C12, C13, and C23) of the

elasticity matrix form the strain (dotted lines) and the stress-strain fluctuations (solid

lines)

4.5.5 Discussion

4.5.5.1 Relationship Between Structure and Elastic Constants

The calculation of the Eigenvalues of the strain fluctuation matrix of

Table 4-49, as shown below, gives three orthogonal directions with largely differ-
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Table 4-50 Eigenvalues and Eigenvectors of the elasticity matrix (strain fluctuations)

Eigenvalue [GPa] Components of the Eigenvector (Voigt notation)

191.52 0.003 0.053 0.999 0.000 0.003 0.004

27.10 0.990 0.137 -0.010 0.002 -0.003 -0.040

7.25 -0.135 0.987 -0.053 0.001 -0.016 0.071

3.36 0.003 0.013 -0.004 -0.148 0.988 0.043

1.23 0.049 -0.065 -0.001 0.101 -0.027 0.991

1.17 -0.007 0.008 0.000 0.984 0.151 -0.095

ent elastic constants. The highest value is of course along the x3-(c)-direction,

parallel to the chains. Still a relatively high value of 27 GPa can be found along

the Xi-(a)-direction. Comparison with Fig. 4.29 shows that this is more or less

parallel to the hydrogen bridges between carbonyl and amine groups. The value

of 7.25 GPa in the x2-(o)-direction is typical of Lennard-Jones interactions.

Almost identical results can be obtained using the stress-strain fluctuations.

4.5.5.2 Comparison With Literature Values

Again, the available experimental and theoretical data are so widely scat¬

tered that hardly any precise conclusions are possible. Experimental results

range from 165 to 175 GPa, whereas computational results span a range from

190 to 312 GPa, as the next table summarizes.

Table 4-51 Experimental and theoretical estimations of the ultimate Young's modulus in

the chain direction of PA-6

CO
o

o
<D

Reference

Manleyefa/.Manley73a

Tashiro efa/.Tashiro81a

E3 [GPa]

244 - 263

312

Method

energy balance

general matrix

Sakurada et a/.Sakurada70a 165 X-ray diffraction

c

CD

E
i_

CD
Q.
X
CD

Kaji et al.Ka'l78a 183 X-ray diffraction

Lewis efa/.Lewis80a 164.8
macroscopic &

Takayangi model

Matsuo efa/.Ma,suo93a 173-175 X-ray diffraction

The results of this work (179 GPa from the strain-, and 174 GPa from the

stress-strain-fluctuations) compare very well with the most recent experimental

data from Matsuo ef a/.Matsuo93a They are, however, lower than Young's modulus



4 5 5 Discussion 155

obtained from theoretical calculations. No comparison is made here for the

whole matrix of the elastic constants, since the only one published in the litera¬

ture from Tashiro ef al has quite an unrealistic C33-value of more than 300 GPa.

Concerning the transverse moduli Ei and E2, experimental results of

11 4 -12 GPa and 7 7 - 9 GPa can be foundMatsuo94a, which - for the E, modu¬

lus - are considerably lower than the values of this work (19.5 - 23.6 GPa and

7.2 -11.3 GPa, respectively). The difference of almost a factor 2 can be rational¬

ized by the sensitivity of this value to the partial charges used to model the

hydrogen bonds and by the difficulties to properly sum up these coulombic inter¬

actions

4.5.5.3 Conclusions

A reduction of the atom radii of carbon and hydrogen atoms in the

pcff forcefield was made by 3 % to match the experimental and calculated den¬

sity of a - PA-6. The crystal cell was large enough to remain stable in dynamics

at 300 K, so the elastic constants could be calculated from the strain and the

stress-strain fluctuations Young's modulus in the chain direction was found to be

174 and 179 GPa, which compares well with recent experimental data, but which

is lower than most other theoretical calculations. The transverse modulus along

the direction of the hydrogen bonds is considerably higher than experimental

data This fact can be explained by the difficulties arising from the modeling of

hydrogen bonds with partial charges The favourable Ewald summation could

not be performed on these large cells without slowing down the calculations too

much The transverse modulus perpendicular to the hydrogen bonds is in com¬

plete agreement with experimental numbers
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4.6 Polyamide-6 - Amorphous Cells

4.6.1 Introduction

As already pointed out in chapter 4.5.1, polyamide-6 is a semicrystalline

material composed of mesomorphous crystalline (30 - 40 o/0Kawasaki64a,inoue76a)
and amorphous parts. The very good mechanical properties do not depend on

the morphology only, but also on the amount of water absorbed from the mois¬

ture of the air. The equilibrium content of water in the polymer depends on the

activity of water in the air (relative humidity)PlJ,fr67a'Asada63b'lnoue76a, the concen¬

tration of NH-CO-groupsSon990a, and the degree of crystallinity. The crystalline

phase exhibits insignificant solubility for water molecules, so that the amorphous

phase is responsible for the observed effectsPuffr67a'Son990a'Starkweather59a'
Kawasaki64a,Prevorsek7ib These compnse the mechanical relaxations, called y, p

and a, which take place in PA-6 at approx. -120°C, -40°C and +50 to

+90oCPrevorsek7ib,Kettie77a Khanna95a
reSpectively. The y relaxation is attributed

to the motion of methyl groups and is hardly affected by the presence of water,

while the p relaxation, which is caused by water molecules bonded to amide

groups via hydrogen bonds, naturally is highly sensitive to the water content and

disappears in thoroughly dried nylon The a relaxation - the glass transition - is

assigned to the motion of large chain segments in the range of 15 repeat

units.Prevorsek71b' B°yd59a There exists a variety of experimental curves for the

dependence of the glass transition temperature 7"g on the water content. In one

measurement, Tg decreases with increasing water content in several stages A

fast drop of Tg is found between 0 and 2 wt% of water, while between 2 and 4

wt% the dependence is less pronounced, followed again by a further reduction at

water concentrations higher than 4 wt%.Kettle77a In other experiments, however,

Tg declines fast with increasing water content up to 3 wt% and then reduces

more Slowly beyond this level.Prevorsek71b- Khanna95a,Reimschuessel78a

From these and other effects like anisotropic swelling of oriented

samplesKaimin73a, sorption isothermsHernandez94a and changes in Raman

spectras,uart94a, a 3-stage model has been proposedPuffr67a (Figure 4 33)- At

first, water forms a double hydrogen bond between two adjacent carbonyl

groups (Site 1 in Figure 4 33). In this step a large amount of energy is released

and the molecules are referred to as firmly bound. The second stage is the

extension of the already existing hydrogen bonds between carbonyl and amide

groups by bridging water molecules, which are classified as loosely bound water

(Site 2). These first 2-3% of absorbed water strongly affect the glass transition

due to the change in the interchain distance and the creation of voids in the
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Figure 4.33: Model of adsorption of water in nylon. Site 1: firmly bound water, 2. loosely bound

water, 3: sites for capillary condensed water

structure. In the third stage, further water is attached to the already absorbed

water molecules and forms clusters in capillary sites (Site 3).

The effect of relatively large water concentrations (10 wt%, corresponding

to 100% relative humidity) on the storage modulus of PA-6 is depicted in

Figure 4.34:Prevorsek7ib The g|ass transition temperature is reduced by the pres-

Temperature [°C]
200

Figure 4.34: Storage Modulus of (semicrystalline) Nylon-6 as a function of temperature. Dotted

line: dry PA-6 (0 wt% water), solid line: wet PA-6 (10 wt% water)

ence of water from approx. 80° C close to 0° C. This is a consequence of the

increased mobility of the chain segments by the widening of the hydrogen bonds

by the bridging water molecules. At temperatures below the transition point, the



158 4 6 Polyamide-6 - Amorphous Cells

plasticizing effect of water is reversed into an antiplasticizing one, which is

expressed by the higher modulus of wet PA-6.

In the following work it was investigated whether or not the above

described influence of water on the elastic constants could be reproduced by

using fluctuation approaches. To do this, several atomistically detailed micro-

structures of amorphous PA-6 with and without water molecules were generated

and minimized. ToN-MD simulations of 1000 ps at 150, 300, and 450 K were

performed to gather information about the temperature dependence of the

mechanical behavior

4.6.2 Cell Generation

4.6.2.1 Introduction

In contrast to polymer crystals, the conformation of a chain in an amor¬

phous material is not specified and can vary to a large extent. The long relax¬

ation times of dense polymeric systems forbid the generation of an amorphous

cell from an ordered system by melting and subsequent equilibration. It is there¬

fore necessary to build a representative chain conformation from the very begin¬

ning of the construction process

This was done by using the 'Amorphous Cell' module in the 'Insight' model¬

ling package.MSIPolymer1 The method used therein can be briefly described as

the stepwise RIS method of Theodorou and suterTneodorou85a
,
which is loosely

based on the the scanning method of MeirovitchMeirovrtcn83a'Meirovltoh85a After

placing the first two backbone bonds in a random orientation in the center of an

empty cell with periodic continuation conditions, the chain is built up in a bond-

by-bond fashion. For each step, a number of random configurations is built with

a couple of so-called lookahead bonds in order to estimate the partition function

of this short segment and to avoid deadlocks. In the building process, either the

RIS states and their corresponding weights are used or the minima of the back¬

bone torsion potential define the possible states. If adjacent minima are sepa¬

rated by high barriers (e.g. double bonds), a bond is allowed only the state it was

in in the initially - in vacuo - constructed molecule. To increase the flexibility of

the chain, a number of substates around each state and a corresponding sub-

state width can be specified From these lookahead conformations, a dihedral

angle <}>, is selected with the probabilityFlory89
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f-nu;
exPl-RT

tf -

-—r^m (4-29)

L exp^-^J

The term A/J, stands for the change in the nonbond energy if the entire looka¬

head were added

The density of the final structure is determined by the size of the periodic

box For linear polymers without cyclic groups, it is possible to take the experi¬

mental density If polymers with ring structures are used, it is necessary to spec¬

ify a target density that is 20 to 30 % below the experimental density Otherwise,

almost all structures will be rejected during the building process because of

spearing or catenation

4.6.2.2 Dry and Wet Samples

A single chain of 50 modified (chapter 4 5 2 2) repeat units with 952 atoms

- including the two terminating hydrogen atoms - was generated by using the fol¬

lowing parameters for the construction

• Temperature 300 K

• Density 1 10g/cm3
• Lookahead bonds 5

• Number of substates 1

• Substate width 10

• Max lookahead configurations 50

If a water-saturated structure was to be generated, there were at first 35 water

molecules (corresponding to 10 wt% in the amorphous phase and about 6 wt%

in the semicrystalline material) being placed in the empty simulation cell before

the chain was grown around them

There were 3 'dry' and 'wet' structures each built

4.6.3 Simulation Procedure

4.6.3.1 Equilibration

To remove the largest overlaps, all structures were first minimized by 500

steps of steepest descent routines The cutoff was set to 8 5 A with a spline

width of 1 A

After minimization, 250 ps of TpN-MD - i e the cell size was allowed to

vary, but the cell shape was kept cubic - were conducted at 300 K Since a Ber-

endsen thermostat was used, it was possible to make steps of 1 fs The pressure
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was set to 1630 bar in order to compensate for the neglect of long-range Len¬

nard-Jones interactions

This was done because cells that were allowed to fluctuate in shape imme

diately after minimization were sometimes heavily distorted in the initial period of

an MD run The Tp/V-simulation allowed for the relaxation of the largest internal

strains and for the setting of the density

4.6.3.2 Sampling

The sampling runs of both wet and dry amorphous PA 6 were conducted

according to the following scheme

i e after sampling the structure for 1 ns (2 106 steps) at approx 300 K, the tem¬

perature was raised to 450 or lowered to 150 K and another 2 106 steps were

performed at the new temperature Again, an MD algorithm sampling the ToN-

ensemble with a Nose-Hoover thermostat and a Parrinello-Rahman manostat

was used A correction pressure of 1630 bar was applied irrespective of the

exact density

4.6.4 Results

4.6.4.1 Densities and Thermal Expansion

A good overview over the fluctuations in density and the stability of the sim¬

ulations is given in Fig 4 35 At all three temperatures, the density shows no

substantial drifts Furthermore, the increase in the fluctuation width with raising

temperature can be well observed Going from 300 K to higher or lower temper¬

ature the equilibration period of the density seems to be rather short and in the

range of 100 ps If all six (3 dry' and 3 'wet structures) were plotted together, the

following picture (Fig 4 36) results The antiplasticizing effect of water at low

temperatures is manifest in an increase of the density, whereas at room temper¬

ature, water has no significant influence At 450 K, the lower density of the 'wet

structures indicates a weakening of the nonbonded interactions by the presence

of water molecules - a plastification takes place Table 4-52 lists the average
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Figure 4 35 Density of structure 1 of wet PA-6 as a function of time and temperature
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Figure 4 36 Densities of all six structures during the second 500 ps of dynamics black lines

refer to wet' structures, whereas £,'&, lines signify 'dry' structures

Table 4-52 Average densities of dry and wet amorphous PA-6 cells

T[K]

150

300

450

(Pdry) [g/cm

1 1297 ±0 0052

1 0950 ± 0 0051

1 0416 ±0 0040

(Pwet) [g/cm3

1.1455 ±0 0007

1.0997 ±0.0027

1.0201 ±0.0030

densities of dry and wet PA-6 as a function of the temperature From these val-
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ues, the thermal expansion coefficient a (for isotropic materials, the tensor of the

thermal expansivity,r|/A = alkAT, reduces to a,k = a§//t, where 5lk denotes the

familiar Kronecker symbol) can be computed as

a =

2

J/-]3
"a.

"

AT

Po

LP.

AT (4-30)

The resulting thermal expansion coefficients are summarized below

Table 4-53 Thermal expansion coefficients of dry' and 'wet' PA-6 at two temperature inter¬

vals

Dry

Wet

Temperature

150->300K

300 -> 450 K

150->300K

300 -> 450 K

Thermal expansion

7.010"5rC1

11.3 10"5 K"1

9 310~5K-

17.1 10"5K-1

The values of Table 4-53 agree well with experimental dataBrandrup89 of

a = 7-10 10-5 K"1 at 20° and 10-14 10"5 K'1 at 100°C The experimental density

at 20°C is 1.10 g/cm3 (compare Tables 4-48 and 4-52).

4.6.4.2 Diffusion of Water

From coordinate files, which were saved every 10 ps, the mean square dis¬

placement r2 of the water molecules of the wet structures could be calculated

The displacement of the center of mass of the water molecules was replaced by

the displacement of the oxygen atoms without noticeable loss of precision.

Assuming an Einstein diffusion (i.e random walk mechanism), the diffusion con¬

stant D is defined by

(r2) 6Dt. (4-31)

Taking the logarithm on both sides yields

log<r> = log (6Df) = log (6D) + log (f) (4-32)

In a log{/2) vs log(f) plot, there should be a straight line with a slope of one and

an intercept of log(60) If the slope is different from one, there is no random

walk, but another mechanism (e.g. constraint motion along specific pathes, hop¬

ping between two neighbouring sites). In Fig. 4.37, the average mean square
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Figure 4 37 Mean square displacement of the water molecules at 150, 300, and 450 K, average

over three microstructures, over all water molecules, and over all independent sub-

trajectones

displacement of the water molecules in PA-6 has been plotted as a function of

time and temperature. The three straight lines with slopes of 1, \, and 0 are only

guidelines for the eyes and do not represent any regression analysis. Only at

450 K, a random walk mechanism can be observed, whereas an anomalous dif¬

fusion is manifest at 300 K. At 150 K, the mobility of the water atoms is so low

that no diffusion at all can be observed within the simulation time.

It is therefore only meaningful to compute the diffusion constant at 450 K,

where the intercept of the straight line at 1000ps yields a value of

D~ 1.8 10"5 cm2/s There is no experimental data at this temperature available,

but an extrapolation from 20°, 60°, and 1 oo°CBrandrup89 to 177°C results in

D =* 4.6 10"5 cm2/s Since experimental diffusion constants are known to be sub¬

ject to substantial uncertainties and the extrapolation spans more than 70 K, the

calculated value is still plausible.

4.6.4.3 Clustering of Water Molecules

An attempt was made to quantify the distribution of the water molecules in

the polyamide microstructures. In a first step, the microstructures were tessel¬

lated into Voronoi polyhedra, using a code of Peter MottMott92a.

According to Figure 4 38, two water molecules were considered to belong

to the same cluster, if any two of their atoms shared a common surface. In a sec¬

ond step, the number and size of the different water clusters in a polyamide

structure were determined. Doing this for each coordinate frame, a 'dynamics' of

the formation and disintegration of the water clusters could be established. A
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B

no common surface c-< nimo' -i 'Ui'.(•

Figure 4.38: Definition of the Voronoi polyhedron, where A and B have no common surface (left),

situation, where A and B possess a common surface (right)

short example of this process is given in Table 4-54. At the low temperature of

Table 4-54: Dynamics of the water clusters in structure 2 at 150 K, arrows with numbers

indicate the exchange of individual water molecules or the merge of two neigh¬

bouring clusters.

Time [ps]

0-200

300-400

500-1000

water molecules in cluster

#1 #2

20 \ 11

21 iC 10

31

#3

TMjJ^^

#4 #5

150 K, the cluster dynamics is rather slow, which allows to track the motion of

individual water molecules quite well. At higher temperatures, the temporal reso¬

lution of 10 ps is sometimes too long to follow all changes. More detailed analy¬

ses at 300 and 450 K can be found in Appendix G-1.

From these tables and from more detailed examinations, the following con¬

clusions can be drawn: It is not possible to observe a significant change in the

average size of the clusters with time or with temperature. There seems to be

nothing like Ostwald ripening, i.e. a growth of the large clusters at the expense of

the small ones. Instead of this, there is a dynamic process of clustering and

breaking apart of the water molecules. Some water molecules are quite fixed in

the local structure - i.e. they remain isolated for the whole observation period or

stay together for quite a while - whereas more mobile water molecules can form

large clusters from time to time. These large clusters, however, only have a short

lifetime (<10 ps) before they separate into two or more smaller units. This is an

indication that the bridges connecting the different parts of the larger clusters are
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quite thin, whereas cores of more closely connected water molecules must also

exist.(see Fig. 4.39).

Figure 4 39 Model of the cluster dynamics of water molecules in PA-6

The distribution of the different cluster sizes and the probability of finding a

water molecule in a cluster of a given size are plotted in Fig. 4.40. Although the

10 15 20 25

n [Number of water molecules]

30 35

Figure 4 40 Distribution of the cluster sizes in PA-6 at 150, 300, and 450 K (large plot), probabil¬

ity of finding a water molecule in cluster of a given size (small plot)

statistics is not excellent, it can be clearly seen that the increased mobility of the

water molecules at elevated temperatures leads to a more or less uniform distri¬

bution of the cluster sizes, i.e. there is no preferred cluster size anymore. If the

temperature is only 150 K, there are just a few clusters, which hardly change

their size. The initial water distribution (from the previous run at 300 K) remains

almost frozen for the rest of the simulation.
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The exact orientation of the water molecules within the clusters was not

studied in detail, but the following picture (Fig 4 41) might provide an idea

Cluster statistics

Cluster Molecules

16

10

Figure 4 41 Distribution of water in PA-6 (300 K after 700 ps of ToN MD)

There is no 'ice-like' structure, but there are complexes being formed of

partly oriented water molecules which was also observed in a recent study of

Terzise/a/Terzis97a

4.6.4.4 Elastic Constants

There were in total 18 trajectories of 1000 ps from which the elastic con¬

stants were calculated 3 microstructures of 'dry' and 'wet' PA-6 at 150, 300, and

450 K From each trajectory, the first 500 ps were discharged for relaxation pro¬

cesses and only the last 500 ps contributed to the fluctuations from which the

elastic constants were calculated Since the cell parameters a, b, c, a, p, and y

and the stress tensor o were recorded with an interval of 10 fs, 5 104 frames

were used for the computation of the elastic constants each Both the strain fluc¬

tuation approach from Parnnello and Rahman, and the Gusev-Zehnder-Suter

stress-strain fluctuation approach were applied Appendix G-2 lists the results of

the stress-strain fluctuation approach for all trajectories From these trajectories,

the two Lame constants X and u. were fitted to the matrices of the elastic con¬

stants such, that the difference to a theoretical matrix of an isotropic material,
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(1-78)

was minimal.

Averaged over the three microstructures, these Lame constants are sum¬

marized in Table 4-55. As could be recognized immediately from the data and

Table 4-55 Lame constants of amorphous PA-6 as a function of the temperature and the

water content

T[K]

150

300

450

'Dry' [GPa]

X = 5.60 ± 0.41

H = 2.07 ±0.21

k = 4.26 ±0.19

H=1.05±0.15

^ = 2.21 +0.10

|x= 0.25 ±0.04

'Wet' [GPa]

X = 6.40 ± 0.30

H = 2.22 ±0.19

X = 4.63 ± 0.29

H= 0.81 ±0.11

X = 0.94 ±0.10

u = 0.08 ±0.03

also from Fig. 4.42, there is an stiffening effect of water at low temperatures,

300 400 500

Temperature [K]

Figure 4.42: The temperature dependence of the Lame constants of dry and wet PA-6 (average

values and standard deviations)
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whereas at high temperatures, water acts as a plasticizer. At room temperature,

the two effects almost balance, and the influence of water is only small. A com¬

parison with experimental data will be given in the next chapter, where the

results obtained from the simulations will be discussed.

4.6.5 Discussion

4.6.5.1 Comparison with Literature Values

For the density, the thermal expansion coefficient, and the water diffusion,

experimental values from the 'Polymer Handbook'Brandrup89 have already been

given. The computations all seem to be in reasonable agreement with experi¬

mental findings. This is a good validation of the model being used, although the

simulation time at 300, and even more at 150 K, is too short to see a regular dif¬

fusion of the water molecules. The anomalous diffusion at 300 K is a well-known

phenomenon, which occurs also in other systems (rare gases in BPA-PC), as

the next plot (Fig. 4.43) shows: At relatively short times, the MD simulation is not

MD

TSA

anomalous

diffusion

10-14 10-12 10-io 10-8 10-o
Time [s]

Figure 4.43: Diffusion of He in BPA-PC with MD and a transition state approach (TSA) at 300 K

able to propagate the diffusants far enough in order to establish a normal diffu¬

sion behaviour. Since water is considerably larger than helium, the curves in the

above plot would be shifted to the right, so that no normal diffusion can be

observed within the simulation period. The clustering behaviour of water in PA-6

was examined by Frank et a/.Frank96a They found that clustering of water mole¬

cules starts at 6 wt% and that at 10 wt% on the average 2 - 3 water molecules

are present in a cluster. In our simulations, the average number of molecules in a

cluster is more than 5. The difference between the two numbers might originate

from a different definition of a cluster. Hernandez and GavaraHernandez94a esti¬

mated that nearly 90 % of the water molecules in PA-6 are moving freely. Ana-
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lyzing the individual trajectories of water molecules (Fig. 4.44), it was not

'10 1000100

Time [ps]

Figure 4 44 Squared displacement of all 105 water molecules of the 3 PA-microstructures at

300 K

possible to make this distinction between 'adsorbed' or 'free' water. The 3-stage

adsorption model presented in the introduction could therefore not be confirmed

in this way.

One of the most important problems is it, to decide, whether the simulation

was long enough for the relevant mechanical relaxations to take place. Strictly

speaking, it was not, since a complete relaxation of the chain would involve a

self-diffusion in the order of the radius of gyration and the water molecules were

not able to move sufficiently.

On the other hand, the finite size of the simulation box reduces the relax¬

ation times considerably (This argument is explained in more detail in

chapter 4 8 2) An indication of this mechanism being active is the fast adapta¬

tion of the density after the sudden change in temperature after 1 ns. The den¬

sity relaxed within 100ps and remained fairly constant afterwards (Fig 4.35)

This in turn allows to determine the thermal expansion coefficient quite well

The elastic constants - the main concern of this work - compare with exper¬

imental dataPrevorsek71b as follows-

As already mentioned, the general trend is reproduced, i e a stiffening

effect of water below the glass transition and a plasticizing effect above the glass

transition can be observed

At 150 and also at 300 K, the computed values are consistently higher than

the measured ones. This discrepancy (which is much smaller, if other sources of

experimental values like Table 4-56 are considered) can be rationalized by the

insufficient mobility of the water molecules, as became manifest in the diffusion
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Figure 4 45 Experimental (solid lines) and computed (circles and error bars) storage moduli of

dry and 'wet' (10 wt% water) PA-6

behaviour. They are more or less trapped in the locations they occupied at the

end of the structure generation and are not able to diffuse to 'better' places.

Therefore, the influence of water on the elastic constants is not as marked as in

the experiment Parallel to that, the polymer chain mobility is not sufficient to

sample the whole phase space within the simulation time. The width of the fluc¬

tuations is therefore smaller and the elastic constants higher than in the case of

a fully relaxed polymer. Another reason for the difference is the fact that in a

semicrystalline material with 30 - 40% crystallinity and 10 wt% of water, the

effective water content in the amorphous part is approx. 15 wt%. In our simula¬

tion, however, there were only 10 wt% water in the amorphous part

At the high temperature of 450 K, the mobility of both the water molecules

and the polymer chain is sufficient to explore most of the available phase space.

The elastic constants are therefore quite close to the experimental curves. The

convergence of the two curves at temperatures above 120° C is due to the fact

that, above the boiling point, the water molecules diffuse out of the polyamide It

can thus be assumed that the calculated elastic constants reflect the plasticizing

effect of water better.

Finally, Table 4-56 compares the values of the Young's and shear moduli of

PA-6 found in the 'Polymer Handbook'Brandrup89 with computed values. The

experimental results at 100° C are compared with computed values at 450 K,

because - as mentioned in the introduction - there is an a-relaxation at 50 to

90° C, which would make a straight interpolation of the computed data question-



4 65 Discussion 171

Table 4-56 Young's and shear moduli of semicrystalline experimental
anp^ and

amorphous computed PA-6

Modulus T, state

23° C, dry

23° C, moist

100° C, dry

23° C, dry

100° C, dry

exp. [MPa]

3000

1500

500

1100

200

calc [MPa]

2940 + 400

2310±310

720+110

1050 ±150

250 ± 40

able. A further problem, which makes a comparison difficult, is that the experi¬

mental morphology is semicrystalline, whereas the simulation was performed on

a purely amorphous microstructure. Besides these limitations, the simulated

data seem to be in better agreement with experiment than Figure 4.45 suggests.

The missing details about the experimental setup prevent a straightforward deci¬

sion about their reliability.

4.6.5.2 Conclusions/Summary

At low temperatures (150 K) there is virtually no diffusion, a limited amount

of clustering/unclustenng happens At room temperature, only anomalous diffu¬

sion of water could be observed The clusters rearrange quite quickly (approx

every 30 ps) The classical 3-stage model could not be reproduced Instead of

this, a dynamical model of clusters with mobile peripheral atoms and relatively

lasting cores was presented. At 450 K, the diffusion obeys a normal, random

walk law and the cluster dynamics is very fast The calculated diffusion coeffi¬

cient does not contradict experimental results.

At low temperatures, the antiplasticizing effect of water expresses itself in

an increase of the density due to some attractive interactions between water

molecules and the polymer matrix (hydrogen bonds) At room temperature, the

thermal motion of water more and more balances these attractive forces. Hardly

any effect on the density could therefore be seen. At higher temperatures, the

mobilization of the water molecules reduces the density of the polyamide matrix.

The dependence of the elastic constants on the temperature and the water

content could be reproduced qualitatively, which is somewhat astonishing, since

the limited size and the short trajectory prevent the water from taking its equilib¬

rium positions at low and medium temperatures. A large part of the quantitative

discrepancy between simulated and experimental elastic modulus might be

attributed to this fact.
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4.7 Polyamide-12 - Amorphous Cells

4.7.1 Introduction

The physical properties of polyamides, especially the elastic constants,

depend on the amount of absorbed water, as pointed out in the previous chapter.

In many applications, it would be desirable to reduce this dependency since the

relative humidity of the air and therefore the water content and finally the proper¬

ties of the polymer are subject to climatic changes. A reduction of the concentra¬

tion of the functional, water absorbing carbonyl and amide groups automatically

reduces the number of possible absorption sites and limits thus the equilibrium

water content. On the other hand, the hydrogen bridges between carbonyl and

amide groups are essential for the outstanding mechanical properties of polya¬

mides. With their concentration reducing, the material approaches the behavior

of polyolefines. Polyamide-12 (PA-12) is a compromise between reduced water

absorption and enhanced polyolefinic character.

The results of MD runs at various temperatures with 'dry' and 'wet' micro-

structures are reported and the relation between the concentration of carbonyl

and amide groups and the sensitivity of - mainly elastic - properties towards the

water content is discussed.

4.7.2 Cell Generation

4.7.2.1 Dry and Wet Samples

A repeat unit of PA-12 was generated according to Figure 4.46. Analogous

to PA-6, there were charged groups in the original setup. Simulations with

a)

b)

Figure 4.46: Repeat unit of PA-12 with (a) and without (b) charged groups
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charged groups according to Fig. 4.46 a) and with neutral groups were carried

out. Except where explicitly noted, only the results obtained from neutral charge

groups will be presented.

The above repeat units were subject to a short run of 1000 ThW-MD steps

to modify the torsion angles a bit. This modification away from an all-trans con¬

formation eases the task of the 'Amorphous Cell' construction run.a

The degree of polymerization nru as a function of the cell size / is given by

p[g/cm3]-/[A]3-1Q-30-/VA
n,u

mw[g/mol]
( 4)

which can be shortened to

nru = (/[A])3-0.00308247, (15)

assuming an experimental density p of 1.01 g/cm3 (for amorphous moul-

dingsBrandrup89) and setting the mass of the repeat unit W= 197.32 g/mol.

Together with the number of atoms per repeat unit (37 atoms), it can be esti¬

mated that 28 repeat units with 980 atoms yield a cell of approx. 21 A size.

A single chain of the above size was polymerized with random angles

between the repeat units. Again, a short ThN-MD run was started in order to fur¬

ther randomize the torsional degrees of freedom. Afterwards, an 'Amorphous

Cell' construction run was started using the following parameters:

• Temperature: 300 K

• Density: 1.01 g/cm3
• Number of Substates: 1

• Substate Width 5.0

• Lookahead 5

• Number of Lookahead Configurations: 50

• Bonds per Step: 5

If 'wet' cells were generated, 12 water molecules were placed in the simula¬

tion cell before the polyamide chain was grown around them. This number was

estimated from water concentrations of 16Patnmanatnan95a and 25 mol%Varlet90a

at saturation and a degree of crystallinity of about 30 o/0Variet90a gjven jn the mer.

ature. From these informations, a concentration of 40 mol%, corresponding to

3.7 wt% water in the amorphous phase was chosen, balancing between a statis¬

tically sufficient number of water molecules and a realistic water content that

allows comparison with experimental findings. The nylon cell contains 28 poly-

a. Andrew Tiller, MSI, private communciation
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mer repeat units to which 0 4 28 = 11 2 water molecules - which were rounded

up to 12 -were added

Of the 5 configurations that were each built, the 3 with the lowest energy

after the initial minimization were chosen

4.7.3 Simulation Procedure

To remove the largest overlaps, all structures were first minimized by 5000

steps of steepest descent and conjugate gradient routines The cutoff was set to

8 5 A with a spline width of 0 5 A

After minimization, 50 ps of TpN-MD were conducted at 300 K with a Nose-

Hoover thermostat and a stepsize of 0 5 fs The pressure was set to 1110 bar to

compensate for the neglect of long-range Lennard-Jones interactions

The sampling runs of PA-12 were conducted according to the same

scheme as for amorphous PA-6, i e after sampling the structure for 1 ns (2 106

steps) at approx 300 K, the temperature was raised to 450 or lowered to 150 K

and another 2 106 steps were performed at the new temperature An MD algo¬

rithm sampling the TaA/-ensemble with a Nose-Hoover thermostat and a Par¬

rinello-Rahman manostat was used A constant correction pressure of 1110 bar

was applied again The cell parameters and the stresses were saved to table

files every 10 fs and the coordinates and velocities of all atoms were stored

every 10 ps for further analysis

4.7.4 Results

4.7.4.1 Densities and Thermal Expansion

The mechanical relaxation at the three different temperatures (150, 300,

and 450 K) of the 'wet' structure no 2 is given as an overview in Figure 4 47

1 05

1 00

-y 095i|
m <

„

0 90

CD

Q

0 85

0.80
15001000

MD-time [ps]
Figure 4 47 Density of structure 2 of wet PA 12 as a function of time and temperature

2000
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After an initial densification period of a few hundred picoseconds, the structure

reaches a 'quasi-equilibrium'. At 150 K, there is a slight drift to lower densities

after an initial raise, whereas at 450 K, the average values of the fluctuations

seem to be stable. Taking the second half of each trajectory and averaging over

the three microstructures, the densities of Table 4-57 result. The density of

Table 4-57: Average densities of dry and wet amorphous PA-12 cells

T[K]

150

300

450

(Pdry) [g/cm3

1.005510.0112

0.954910.0162

0.890410.0164

(pwet) [g/cm3i

1.0052 ± 0.0068

0.957410.0128

0.8897 + 0.0166

0.956 g/cm3 at 300 K is a bit lower than the experimental values of 0.99 g/

cm3Asada76a and 1 01 g/cm3variet90aj but sti|| acceptabie. In general, the influ¬

ence of water on the density is much smaller than it is for PA-6. The thermal

expansion coefficient at 300 K is the same for both dry and wet microstructures

and has a value of about 14-10"5 K"1, which is in accord with the value of 11-10"

5 IC1 found in the 'Polymer Handbook'BrandruP89.

4.7.4.2 Diffusion of Water

The diffusion of the water molecules in the wet microstructures was

assessed by the same analysis as in chapter 4.6.4.2. Figure 4.48 shows the

100 1000

Time [ps]

Figure 4.48: Average of the mean square displacement of the water molecules in PA-6 and

PA-12, the dashed lines have slopes of exactly 0, i, and 1 and are not the result of

a regression analysis
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results of this analysis and makes a comparison with the corresponding values

of PA-6. The absence of any diffusion at 150 K and the anomalous diffusion at

room temperature found with PA-6 are confirmed with PA-12. In both polymers,

the water molecules seem to behave very similarly; the differences can be attrib¬

uted to the different statistics (a total of 105 water molecules in PA-6 vs. 36 in

PA-12). This finding is supported by the very similar diffusion constants cited in

the 'Polymer Handbook'BrandruP89 (55 vs. 85-10"8 cm2/s at 100° C).

In the next chapter, the influence of water on the elastic constants of PA-12

will be examined.

4.7.4.3 Elastic Constants

The elastic constants of the 18 PA-12 trajectories (3 'dry' and 3 'wet' micro-

structures at 3 different temperatures) were computed analogous to those of

PA-6. I.e. the cell parameters and stresses recorded during the last 500 ps of

each trajectory were used to compute the strain and the stress-strain fluctua¬

tions. The detailed results of the stress-strain fluctuations are given in

Appendix H, whereas the following tables refer to the results obtained from the

Table 4-58: Lam6 constants of the three dry and three wet PA-12 microstructures, strain

fluctuations only

T[K]

150

300

450

Dry PA-12

X = 3.781 0.20

|x= 1.4410.13

X = 4.48 ± 0.22

u= 1.6810.14

X--

P-

4.4010.13

1.72 ±0.08

X = 2.4710.09

(i = 0.4410.06

2.6810.09

0.431 0.06

X = 2.85 ±0.10

|i=0.69±0.06

X--

n =

1.0910.03

0.0910.02

A. = 1.21 10.02

|i= 0.0910.01

X = 0.50 ± 0.03

|i=0.07±0.02

Wet PA-12

:4.51 10.15

= 1.3810.10

X--

P:

4.1610.20

1.31 10.12

X = 4.01 ±0.16

H=1.25±0.10

X = 2.8810.10

(1=0.5310.06

: 2.7810.10

: 0.49 10.06

= 2.6410.08

= 0.44 ± 0.05

= 0.3510.03

: 0.1010.02

1.01 10.05

: 0.11 ±0.03

0.7210.04

: 0.07 10.02
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strain fluctuations. Table 4-58 compares the Lame constants of the individual dry

and wet microstructures, whereas Table 4-59 illustrates the substantial influence

of the charged groups of atoms on the elastic constants. Similar to cellulose-ip,

Table 4-59 Influence of the charged groups on the elastic constants of PA-12, strain fluctu¬

ations only, all values in GPa

Dry

Wet

T[K]

150

300

450

150

300

450

Neutral groups

X = 4.2210.36

u=1.6110.17

X = 2.67 ±0.18

(1=0.52 ±013

0.93 ±0.31

0.0810.02

X = 4.2310.27

(1=1.3110.12

2.7710.14

: 0.4910.07

X = 0.6910.27

|i = 0.0910.03

Charged groups

X = 6.4210.92

(1 = 3.11 10.67

X-.

P-

3.7310.48

1.16 + 0.25

X--

P =

2.591 0.47

0.6510.15

X = 6.0610.70

|i = 3.2510.34

X = 4.05 ± 0.39

(1=1.6310.37

X = 2.061 0.23

(1=0.31 ±0.08

where the charged interactions were summed without and with Ewald summa¬

tion, a mistake in the summation of the Coulombic interaction leads to an overes-

timation of the elastic constants. The artificial, additional interactions obviously

make the simulation cell stiffer

300 400 500

Temperature [K]
Figure 4 49 Temperature dependence of PA-12 (black) and PA-6 (gray), the dashed lines signify

averages over the 'dry' and the solid lines averages over the 'wet' microstructures
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In Figure 4.49, the Lame constants X and (i of PA-12 are compared with

those of PA-6 In contrast to the marked dependence particularly of the first

Lame constant X of PA-6 on the water content, X of PA-12 exhibits the antiplasti-

fication/plastification transition only in much weaker form The second Lame

constant u changes with temperature almost independently of the water content.

4.7.5 Discussion

4.7.5.1 Comparison with Literature Values

Experimental Young's and shear moduli found in the 'Polymer Hand-

book'Brandmp89 are compared to calculated ones in Table 4-60. Note that the

Table 4-60 Young's and shear moduli of semicrystalline experimental and amorphous

computed PA-12

Modulus T, state

23° C, dry

23° C, moist

100° C, dry

23° C, dry

100°C, dry

exp [MPa]

1400

1200

200

500

100

calc [MPa]

14701360

14001190

230 160

5201130

80 + 20

computed values that are compared to the dry PA-12 at 100° C are those at

450 K. There was no interpolation of the data between 300 and 450 K, because

the cc-relaxation is located at about 340 KPathmana,nan92a. Keeping the limitations

(no direct comparison of experimental data at 100° C, semicrystalline morphol¬

ogy for the experiments versus purely amorphous simulation cell) in mind, the

agreement is very good and the effect of the presence of water at 23° C is well

reproduced.

4.7.5.2 Conclusions/Summary

The elastic constants of amorphous PA-12 are reproduced by atomistic

simulations within the given error bars These error bars originate from three dif¬

ferent sources.

First, the simulation has not yet converged fully and the values are thus

subject to a certain scatter This scatter can be estimated by looking at the

stress-strain correlation function (Eq. (3-38)) At 150 and 300 K, the deviation

from the identity matrix is in the range of 1 to 3 %, but reaches 4 to 10 % at

450 K This is also reflected by the temporal behaviour of the elastic constants.
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At lower temperatures, they reach much faster more or less stable values than at

450 K.

Second, the individual microstructures exhibit, due to their smallness, a

certain degree of anisotropy. This effect is - together with the first one - manifest

in Table 4-58, where the uncertainties in the individual Lame constants originate
from a imperfect mapping to the actual matrices of the elastic constants.

The third effect, which is related to the second one, is the question of the

representative volume element. Materials, which are on a global scale com¬

pletely amorphous and isotropic, exhibit strong variations of their properties on a

local scale. If small boxes are taken out of an amorphous material, they are

anisotropic and differ in their average properties. With increasing box size, the

anisotropy and the difference in the average properties diminish and disappear,

if the representative volume size has been reached. Since the microstructures,

that have been used for the simulations, are very small, it was necessary to use

several of them to estimate the size of the representative volume element. As

could be seen again from Table 4-58, the Lame constants differ considerably (by

about 20 %) between the three simulation boxes. The boxes are therefore

smaller than the representative volume element and it was necessary to have a

rudimentary statistics by running three of them.

Within the framework of the scaled_pcff force field and the MD sampling

algorithm, the elastic constants in Table 4-60 reflect in their error bars all three

sources of uncertainty mentioned above. The error bars are reasonably small,

allowing to make useful statements about the elastic constants of PA-12 at differ¬

ent temperatures and water contents.

As expected, the Lame constants of dry PA-6 are at all temperatures 30 %

higher than those of PA-12. Since this difference vanishes completely for wet

PA-6 at 450 K, it can be entirely attributed to the increased density of hydrogen

bonds of PA-6 with respect to PA-12. The equilibrium water sorption, which is

approximately three times smaller, supports the model of water molecules bridg¬

ing between two neighbouring amide groups. Geometrical considerations would

lead to a fourfold reduction of 'hydrogen bonds', if the density of amide groups is

reduced by a factor of two. This explains, why PA-12 in experiments is so much

less sensitive to the presence of water. The atomistic model that was used to

compute the elastic constants is suitable to include the effects of temperature

and water on the elastic constants.
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4.8 Polycarbonate - Amorphous Cells

4.8.1 Introduction

Polycarbonate - or more precisely Bisphenol-A-polycarbonate (BPA-PC) -

was the first polymer to be simulated in the course of this work in order to obtain

its elastic constants. Polycarbonate is a purely amorphous polymer with excel¬

lent mechanical properties, especially with a very high fracture toughness, and

good optical qualities. It is therefore used in large quantities for the production of

CDs, sunglasses, etc.Franck88 It is of great interest to elucidate the structure-

property relationships by atomistic modelling. In the framework of a BMFT-

Project with various groups from academia and industry, an attempt was made

to compute the elastic constants of BPA-PC using atomistic modelling.

Pioneering work in the field of the atomistic modelling of BPA-PC was done

by Hutnik et al., who defined a forcefield for BPA-PCHu,nik91a, generated amor¬

phous microstructuresHu,nik91b, modelled the chain dynamicsHu,nik91c, and com¬

puted the elastic and plastic response of these structuresHutnik93a. Their results

and methods were used as a basis and starting point for this work.

4.8.2 Cell Generation

The high density of 1.2 g/cm3 and the high concentration of rings impose a

challenge on the building of amorphous structures. It is not trivial to generate

good microstructures of BPA-PC:

Modifying a method of Theodorou and SuterTneodorou85a, Hutnik et

a/Hutmk9ib usec| a moc|e| Wjth fixed bond length and bond angles to build a

dense structure according to the RIS scheme. The building process was quite

complicated and involved many steps in which the interaction potentials were

slowly increased to their full strength.

it was not possible to use a similar method from within the 'Amorphous

Cell' module of 'Insightll', since on the one hand it was not possible to define RIS

weights for rings, and on the other hand, the method described in

chapter 4.6.2.1 was not able to generate structures at full density, because

always a spearing or catenation occurred and the algorithm stopped. The high¬

est density at which it became possible to produce some structures was 0.6 g/
cm3.

However, it was decided to follow a different path and to build the chains at

the lowest possible initial density of 0.01 g/cm3. Before that, the repeat unit of

PBA-PC (Fig. 4.50) was constructed and a chain of 69 repeat units (2285 atoms,

including two terminating CH3-groups) was 'polymerized'. Due to the symmetry
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Figure 4 50 Repeat unit of BPA-PC, the filled areas represent the neutral groups in the pcff91

force field

of the BPA-PC repeat unit, the actual degree of polymerization was 138 The

pcff91 force field was chosen to represent the energetic interactions, as it con¬

tained terms specially optimized for some polymers, among them polycarbonate.

Three such chains were each grown in the usual stepwise fashion in a cubic cell

of 138.6 A size. After a short minimization of 50 steepest descent and 500 conju¬

gate gradient steps to remove initial overlaps, a TpN-MD simulation of 25'000

steps of 1 fs was run to density each cell. The compression was accelerated by

applying a pressure of 1600 bar. This pressure corresponds to the tail correction

pressure of BPA-PC at the experimental density of 1.2 g/cm3 Hutnik91b for the cut¬

off of 8.25 A

The densification process is shown in Figure 4.51. The densification was

100 400200 300

MD time [ps]
Figure 4 51 Density of the three BPA-PC microstructures as a function of time

500

very fast: after the first 25 ps, the densities of the three cells lay between 1 172

and 1.178 g/cm3. This was sufficiently high to switch to a ToN-MD simulation
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with a Nose-Hoover thermostat and a Parrinello-Rahman pressure control. (If

the simulations had been carried out from the beginning in a variable shape

ensemble, very large deviations from a cubic shape would have occurred.) The

duration of the ToN simulations, the average densities during the last 50 ps of

Table 4-61 Total MD-simulation time at 300 K, densities averaged over the last 50 ps, and

final cell edge lengths of BPA-PC

Cell*
ToN-MD

[ps]
<p> [g/cm3] a [A] b[k] c[k]

450 1.20510.007 29.06 28 20 29 63

260 1 20210.007 28 01 29.95 28.72

460 1.19410.007 30.00 27 30 29 85

the MD simulation, and the final cell edge lengths are listed in Table 4-61. As it

can already be seen, there is virtually no difference between the calculated den¬

sities and the experimental value of 1.2 g/cm3.
The very fast densification can be explained by the concept of diffusion of

'free volume' out of the cube. If a real body is getting more dense, 'free volume'

(holes, cavities, and faults) is diffusing out of it, a process that takes place as

well in a simulation box. In a random walk diffusion process, the time required to

move a distance raway from the origin is given by Eq. (4-31), i.e. the time is pro¬

portional to the square of the distance. Comparing a macroscopic body of 1 cm

and a simulation box of 20 A size, the diffusion distances differ by a factor of

5 106 and the diffusion times by 2 5 1013, reducing the corresponding processes

from minutes in the real body to picoseconds in the simulation box. This allows

for a densification in a reasonable computer time.

The structures, nevertheless, are not 'good' representations of amorphous

polycarbonates, since the individual chains were considerably compacted during

the densification process. Their average end-to-end distance was only 32 and

the radius of gyration only 16 A, compared to RIS values of a chain of the same

length, which are 135 and 56 A These findings were confirmed by a solubility

parameter (square-root of the cohesive energy density) of only 14.5 (J/cm3)5,
that opposed experimental findingsHutnik91b of 20.1 to 20 3 (J/cm3)*.

'Good' structures with reasonable end-to-end distances, radii of gyration,

and cohesive energy densities were obtained from BAYER, where they had

been generated in process involving several stages of minimization and MD sim¬

ulation Ba,oulls93a
it was therefore possible to estimate the influence of the molec¬

ular geometry on the elastic constants of BPA-PC.
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4.8.3 Simulation Procedure

4.8.3.1 Torsion angle distribution

The distribution of the torsion angles of the carbonate group (Fig. 4.52) was

a) trans form t>) Cjs form

Figure 4.52: Trans (left) and cis (right) conformation of carbonate group. cpc= 0° defines the trans

state and cpc = ±180° the cis-state

computed for simulation cells 1 and 3, since they were equilibrated best. For

comparison, 15 small 18.44A-cubes from Hutnik and 2 larger 29.74 A boxes

from MSI were also included into the calculations.

4.8.3.2 Static Minimum Energy Elastic Constants

The static minimum energy elastic constants were computed by a random

deformation process. First, the polycarbonate structure was minimized down to a

gradient of 0.01 kcal/(mol-A). From thorough minimizations, it was found that this

gradient guaranteed that the energy should not lower more than 0.001 kcal/mol if

the minimization was continued to a gradient of 10~5 kcal/(mol-A). The cell was

then subject to a total of 21 random deformations, with the elements of the strain

matrix being limited to + 0.05 %. The deformed cells were again minimized with

their shape and size held fixed. The 21 unknown elastic constants could be cal¬

culated from 21 Equations of the form

b b

&V=XIC/k% (4-33)

/=1k>i

by using linear algebra methods.

4.8.3.3 Fluctuation Approaches for the Elastic Constants

After the unsatisfactory results of the static minimum energy approach,

which will be described in chapter 4.8.4.2, it became apparent that the thermal

effects on the cell size and shape can not be neglected. Andrei Gusev indepen¬

dently derived a formula, that turned out to be identical to the strain fluctuation

approach of Parrinello & Rahman. Applying this formula to very short ToN-MD
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runs of onlylO ps yielded much better results than the static calculations, as can

be seen in chapter 4.8.4.3.

However, the elastic constants obtained from this method were strongly

dependent on the length of the simulation run. More extended simulations with

detailed recording of the cell parameters and the pressure (in 1 fs steps) were

performed after the initial densification, which lasted 160 ps and has been

included into the total simulation time of Table 4-61. There were thus two runs of

more than 250 and one run of 100 ps at 300 K. In order to check for the influence

of temperature, the three structures were simulated in the ToAZ-ensemble for

100 ps at 100 K. The starting structure was the one after 160 ps.

To improve the convergence, the idea came up to use the information of

the actual pressure that had been printed out in the '.ext' files. The first trial was

the computation of the bulk modulus from the slope of the Ap-AV7(V)-plot

(Fig. 4.57). As will be reported later, this trial delivered encouraging results, and

a method was searched for to include the information of the full stress tensor to

compute the whole matrix of the elastic constants.

The result of this effort was the familiar stress-strain fluctuation formula

(Eq. (3-36)), which was applied to an already mentioned structure from BAYER,

in order to compare the efficiency of the two fluctuation approaches and the influ¬

ence of the generation process on the elastic constants. It was first necessary to

equilibrate this structure by a minimization and a short (12 ps) TpN-MD run. After

that, an MD simulation of 200 ps in the TaA/-ensemble was performed. The last

105 frames (recorded during the last 100 ps) contained the information neces¬

sary to evaluate the elastic constants using the strain and the stress-strain fluc¬

tuation approaches.

4.8.4 Results

4.8.4.1 Torsion Angle Distribution

The distribution of the torsion angles of the carbonate group of BPA-PC

microstructures that were generated with a variety of methods is shown in

Figure 4.53. The fraction of cis angles (i.e. torsion angles between -90 and 90°)

is virtually independent of the generation procedure - which included RIS and

torsional potential builders with initial densities between 0.01 and 1.2 g/cm3 and

combined minimization and dynamics equilibration - and lies between 25 and

30 %. This result is in marked contrast to recent C13-NMR investigations of

Tomaselli et a/J<>maseiii97aj wj1jcn y^ a c/s-fraction of at most 10 %, but most

probably less than 5 %.
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Figure 4.53: Distribution of torsion angles cpc and the percentage of cis angles (gray) of the car¬

bonate group: a) 15 structures of 18 A from Hutnik et al.Hu,nik91b, b) 2 structures of

29 A from this work, c) 2 structures of 20 A from BAYER, d) 3 structures of 29.74 A

from BIOSYM

This experimental finding is also in accord with the forcefield parameters of

Hutnik ef a/.Hutnik91a and of the pcff91 forcefield. These forcefields both have val¬

ues of AE= ECIS - Elrans of 1.7 and even 3.45 kcal/mol (from diphenylcarbonate

using a density functional starting geometry and a subsequent minimization

down to 10"5 kcal/(mol-A)), which lead to c/s-fractions,

[cis] =

2y
1 + y'

(4-34)

(At)
with y = expl-j-j) ,

of 5 % or much less.

An MD simulation run on a polycarbonate chain of 5 repeat units was pre¬

pared to record the distribution of the torsion angles in dynamics to see whether

MD might be responsible for the high fraction of cis-conformations. The vacuum

simulation with a timestep of 1 fs and velocity rescaling to keep the temperature

at 300 K lasted 25000 ps, during which a total of 5000 torsion angles were

recorded: after 50ps roughly 30 % of the carbonyl groups were in a cis confor¬

mation and the distribution of the torsion angles remained stationary with the tor¬

sion angles changing between cis and trans every few picoseconds.

This result was not highly conclusive, since the polycarbonate chain was
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simulated in vacuo. Trials were therefore made to simulate a solution of BPA-PC

in a theta solvent (in this case chloroform), but the cell became so large that

equilibration was not possible within a reasonable time.

4.8.4.2 Static Minimum Energy Approach

After 160 ps of dynamics, the static minimum energy elastic constants of

the first and the second PC structure were computed according to

chapter 4.8.3.2. As in dynamics, the nonbonded interactions were computed

groupwise with a cutoff of 8.5 A and a spline of 0.5 A.The resulting matrices of

the elastic constants and their Eigenvalues are given in Table 4-62. As can be

Table 4-62: Static minimum energy elastic constants, Lame constants, and Eigenvalues [all

in GPa] of the first (left) and the second (right) BPA-PC structure.

fu,
pot

^ij^ki;
[GPa]

~?U.
pot

dirndl) kU
[GPa]

8.45 9.15 11.78 0.60 0.30 0.14

9.15 8.44 9.44 0.21 0.99-0.22

11.78 9.44 8.91 0.52 0.62-0.35

0.60 0.21 0.52 1.42-0.18 0.12

0.30 0.99 0.62-0.18 2.00 0.47

0.14 -0.22 -0.35 0.12 0.47 1.84

8.06

6.37

8.89

-1.05

0.04

-0.70

6.37 8.89-1.05

5.16 8.06 0.12

8.06 8.73-1.75

0.12-1.75 2.29

0.53 1.33 0.65

0.04 -0.70

0.53-1.16

1.33-0.28

0.65 0.61

2.54 -0.44

-1.16-0.28 0.61 -0.44 2.21

Lame constants Eigenvalues X6x6 Lame constants Eigenvalues Xgx6

9.2810.537

: 0.0810.340

28.97,2.44, 1.77

1.18,-0.16,-0.31

: 6.9210.694

0.6310.439

23.38, 3.27, 2.57

1.77,0.07,-2.10

seen immediately, there is a large difference between the actual matrices of the

elastic constants and the one of a perfectly anisotropic material (Eq. (1 -78) on

page 25). Some Eigenvalues are even negative, indicating problems with the

minimization algorithm. The Lame constants are far away from the experimental

values of X = 4.27 - 5.55 GPa and u. = 0.8 -1.1 QPaHutnik93a.

Besides the technical problem to find the absolutely lowest point in a global

minimum, a short ToN-MD simulation of the first PC structure sheds light on the

principal problem. During 1 ps, the actual MD frame was dumped out every

100 fs and then minimized - including the cell parameters - down to a maximal

gradient of 10"5 kcal/(mol-A). The final energies and cell parameters are listed in

Table 4-63: the all-atom pcff91 forcefield with bond and angle deformation terms

leads to a high-dimensional energy hypersurface, where the minima are sepa¬

rated only by low energy barriers. A great number of such minima is accessible
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Table 4-63 Energies and cell parameters of minimized MD frames of BPA-PC

Time

[ps]
-mm

[kcal/mol] a [A] b[k]

Cell parameters

c[k] a | PI 7t°]

-3914.30623 29.51 28.30 28.99 92.07 92.29 8916

0.1 -3914.38439 29.56 28.28 28.96 91.88 92.33 89.06

0.2 -3914.30623 29.51 28.30 28.99 92.07 92.29 89.16

0.3 -3914.38439 29.56 28.28 28.96 91.88 92.33 89.06

0.4 -3914 15936 29.29 28.46 29.11 92.40 91.53 88.87

1 3913.97935 29 34 28.39 29.06 92.37 91.46 89 31

for a molecule at finite temperature, since the energy barriers between them are

of the same size as the kinetic energy. A picture (Fig. 4.54) might illustrates this-

Figure 4 54 Model of a two-dimensional cut through the energy hypersurface of an amorphous

material

The determination of the curvature of a single minimum is in this case of no use

in the determination of the elastic constants, which are determined by the size of

the accessible phase space at a given temperature. Since this volume is

increasing with temperature, the elastic constants of amorphous materials will

always reduce if the temperature is rising.

4.8.4.3 Fluctuation Approaches

The strain fluctuation formula yielded very satisfactory results, as can be

seen from Table 4-65 and Figure 4.55. Table 4-65 shows the results of the strain

fluctuation formula averaging over the last 250 ps of ToW-MD of the first and the

third microstructure. The Lame constants computed from such matrices are

shown in Fig. 4.55 as a function of the averaging time. They reduce with increas¬

ing simulation time, as larger and larger volumes of the phase space are being
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Table 4-64: Matrices of the elastic constants of the first (left) and the third (right) BPA-PC

structure, strain fluctuation formula, averaging time: 250 ps (200-450 ps),
300 K

TCT

<17><%W [QPa]

6.96 3.93 4.63 0.17-0.05 0.13

3.93 6.90 4.67 0.27 -0.16 0.36

4.63 4.67 6.19 0.14-0.02 0.06

0.17 0.27 0.14 1.17 0.15-0.07

-0.05-0.16-0.02 0.15 0.90 0.06

0.13 0.36 0.06-0.07 0.06 1.09

Xv)^,^ Im1
) [GPa]

8.74 4.56 4.33-0.34 0.57-0.18

4.56 5.94 4.41 -0.13 0.37 0.01

4.33 4.41 6.38 0.18-0.18-0.27

-0.34-0.13 0.18 0.95-0.04-0.11

0.57 0.37-0.18-0.04 0.58-0.35

-0.18 0.01-0.27-0.11-0.35 0.88

10

Averaging time [ps]
Figure 4.55: Convergence of the Lame constants of BPA-PC at 300 K, dotted lines mark the

range of the experimental results,

visited by the model structure. Within a time accessible by MD and present com¬

puters, X converges in the range of the experimental results, whereas u. still

seems to further reduce. This is in accord with observations made with other

polymeric systems: the normal components of the elastic constants always con¬

verge significantly faster than the shear components.

The results of three MD simulations at 100 K, where the strain fluctuations

were averaged over the last 50 ps of the 100 ps runs are in good agreement with

experimental data from BAYER as can be seen in Figure 4.56.

The search for a method which would improve the convergence behaviour

lead to the following computer experiment: As already mentioned, the informa¬

tion about the actual pressure was used to compute the bulk modulus K by

transforming Eq. (1-82) to

Ap ((1-82))
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O u.o

E

§ 0.4
SI

CO

0.0

— Exp. data

J Simulation (3 structures)

<V><1,*lrl/in>"1 [GPal

8.04 4.43 5.79 0.19-0.37 0.27

4.43 9.74 6.21 0.30 0.38 0.48

5.79 6.21 9.02 -0.06 0.03 0.51

0.19 0.30-0.06 2.05 0.09-0.09

-0.37 0.38 0.03 0.09 1.87 0.04

0.27 0.48 0.51 -0.09 0.04 0.80

100

X = 5.53 10.27 |x= 1.6810.17
200 300 400

Temperature [K]

Figure 4.56: Shear modulus of BPA-PC as a function of the temperature (left, solid line: unpub¬

lished experimental values from BAYER, circles and error bars: results from the last

50 ps of 100 ps simulations at 100 and 300 K, averaged over three microstructures)

and matrix of the elastic constants of the first microstructure (right)

The bulk modulus could now be obtained from a linear regression of a Ap vs. AVI

<V> plot.

Figure 4.57 shows such a plot with MD data of the first structure. The linear

0.75

0.50

0.25

"«"
0.

CD, 0.00

<

-0.25

-0.50

-0.7:\03 -0.02 -0.01 0.01 0.02 0.030.00

AVI(V)

Figure 4.57: Ap-Al/7(V>-plot of the first structure of BPA-PC, 104 points in regular intervals

between 170 - 370 ps after beginning of the densification, subtraction of the aver¬

age pressure of 1523 bar, straight line: regression analysis

regression of the point cloud yielded an intercept of 152315 bar, which was

subtracted from the above plot, because its origin is the correction pressure of
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1600 bar (reduced somewhat by the finite stepsize of the MD integration) The

slope (= -K) is -4.954 + 0.095 GPa, being just at the lower margin of the experi¬

mental rangeHutnik93a of 5 0 - 6.1 GPa.

The resulting elastic matrices from the second half of a 200 ps ToN-MD

simulation of the BAYER structure mentioned at the end of chapter 4 8.3.3 are

displayed in Table 4-66 There are no fundamental differences between these

Table 4-65 Matnces of the elastic constants of the BPA-PC structure from BAYER strain

(left) and stress-strain (right) fluctuation formula, 100 ps averaging time

.-1kT

TVJ^ik^ln)" [GPal ^,k°n,'(VnpJ~ [GPa]

6.81 4.24 5.46 -0 22 0 51 -0 08

4.24 7.34 4.67-0 35 0 49-0 56

5.46 4.67 7.75 -1 35 0 16-0 24

-0 22-0 35-135 1.15-0 09-0 02

0 51 0 49 0 16 0 09 0.77 0 13

-0 08-0 56-0 24-0 02 0 13 1.30

6.64 4.17 5.32-0 24 0 54-011

4.13 7.23 4.52-0 33 0 48-0 48

5.53 4.69 7.94-136 0 10-0 29

-0 20-0 26-128 1.11-0 06-0 07

0 44 0 42 0 16-011 0.76 014

-0 03-0 60-0 27 0 01 0 13 1.29

X = 4.8510.25 |x=1 20 + 0.16 X = 47510.26 |x= 1.2210.17

matrices and those of Table 4-65.

4.8.5 Discussion and Conclusions

The comparison with experimental density, radius of gyration, cohesive

energy density, and Lame constants was made at the appropriate place in the

presentation of the results. The three structures that were 'condensed from the

gas phase' reached a stable density after about 100 ps. The agreement between

the simulated and the experimental density was almost perfect, in contrast to the

end-to-end distances and the radii of gyration. Due to the affine compression,

the microstructures were several times too compact compared to the corre¬

sponding RIS values. The elastic constants obtained from strain (and stress-

strain) fluctuations, however, were not significantly influenced by this, as a com¬

parison with a more carefully produced structure from BAYER revealed. It was

even possible to grasp the influence of temperature on the elastic constants by

performing ToN-MD simulations at 100 and 300 K. The results again agreed well

with experimental data.

It can be concluded that the global 'shape' of a molecule in an amorphous

body is of no influence to the elastic constants. The method of generating and

equilibrating amorphous microstructures needn't be capable of relaxing the mol¬

ecule on large scales. It is more important that the 'local' polymer structure is

well equilibrated to obtain reasonable elastic constants.



48 5 Discussion and Conclusions 191

Static minimum energy evaluations of the elastic constants, performed by

Hutnik et al.Hutmk93a, yielded values that were in general too high

(X = 5.35 + 1.15, u. = 2.06 + 0.65). Although the generalized coordinates of Hut-

nik's model reduce the dimensionality of the phase space considerably, the

same explanation of the observed deviations as in the present work is evident. It

is therefore not possible to obtain physically meaningful elastic constants from

static minimum energy calculations, since the local curvature of the energy

hypersurface is not directly related to the curvature of the thermally accessible

phase space volume.
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5 Conclusions

5.1 Summary

It could be shown that the elastic constants of polymeric systems could be

determined with the Parrinello-Rahman strain and the novel stress-strain fluctua¬

tion formula. These fluctuation methods have been applied for the first time to

the field of polymer science. Crystalline monocrystals of polyethylene, polypro¬

pylene, cellulose-ip, and polyamide-6 and amorphous microstructures of poly¬

amide-6, polyamide-12, and polycarbonate have been simulated using the

Parrinello-Rahman Nose-Hoover molecular dynamics. In all cases, the simu¬

lated elastic constants were in good agreement with experimental values.

The statistical nature of the fluctuation formula implies a dependence of the

results on the length of a simulation run. Due to the establishment of the second

fluctuation formula, it became possible to quantify the degree of convergence of

a simulation. This convergence criterion allows to make estimates of the preci¬

sion of the elastic constants.

The accuracy of the elastic constants is determined by a number of factors:

Maybe the most important one was not subject of this work: Although the gener¬

ation of forcefields made considerable progress in the recent years, the repre¬

sentation of a quantum mechanical by classical interactions still remains -

besides the generation of amorphous microstructures - the most disputable point

in the methodology. The other factors like the system size, the sampling method,

and the duration of the simulation can be controlled sufficiently well. It has been

shown for nearest-neighbour Lennard-Jones solids that the system size and the

sampling method hardly influence the final elastic constants. Of course, they

influence the convergence behaviour, which in turn determines the necessary

simulation (and CPU) time.

Attempts have been made to improve the convergence by switching to

other ensembles, but no significant improvements could be achieved. It might be

concluded, that the sampling efficiency of polymeric systems does not signifi¬

cantly change going from one ensemble to the other. While, e.g., the elastic con¬

stants obtained from stress-strain fluctuations of the Lennard-Jones solid

converged significantly faster at low temperatures, no such effect could be

observed for polymeric systems.

It could also be shown, that the elastic constants of amorphous polymers

do not depend on the global conformation of the chain. It is therefore not neces¬

sary to completely equilibrate a microstructure by long simulation runs or to gen-
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erate very good starting structures, as long as the local conformation is in

agreement with experimental values.

But it turned out that the fluctuation distributions, which are proportional to

the elastic constants, strongly depend on the canonicity of the sampling algo¬

rithm. Non-canonical integrators significantly change the results, as does a

wrong treatment of the long-range Coulombic interactions by charged atom

groups or unsuitable summation methods.

Elastic constants are equilibrium properties and it is not meaningful to com¬

pute them for systems that undergo a relaxation process. The simulation system

must therefore be at least in a quasi-equilibrium, without noticeable changes or

drifts in the relevant cell parameters and stress.

Besides these caveats, the fluctuation methods provide robust simulation

algorithms, which can reproduce the influence of temperature and the effects of

small molecules on the elastic constants of amorphous and crystalline polymers.

There are already simulations of polymers with short fiber reinforcements

reported in the literature.Wendlm995a The canonical constant-stress, constant-

temperature molecular dynamics sampling method mainly used for this work,

also allows - with caution - to derive dynamical information like relaxation spectra

and diffusion constants.

5.2 Outlook

At present, the simulation runs necessary to obtain good statistics for the

fluctuations are rather long (0(105 -106) steps for 20 - 30 A cells) and require

days or weeks of CPU time on an average workstation. But the performance of

computers doubles every 18 monthsWldmann96a, so this problem will be less

important in the future. As it has now become possible to compute the elastic

constants of purely amorphous and purely crystalline polymers with reasonable

accuracy, it is the next logical step, to attack semicrystalline polymers. Although

a variety of m0delsTakayana9l64a,Ouall91a exists, that link the microscopic with the

macroscopic properties of a compound material, a new mesoscopic model was

developed, which allows to simulate the effect of the shape and the distribution

of the inclusions (crystallites) on the mechanical properties.Gusev97a,Gusev97b
This approach tessellates a cell containing the amorphous matrix, the crystalline

reinforcing particles and the interface between them into small discrete ele¬

ments. With the knowledge of the complete matrix of the elastic constants of the

matrix and the reinforcing particles, it will be possible to compute the elastic

behaviour of a polymeric system as a whole.
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6 Appendices

Appendix A: Coordinate Transformations

A-1: Direction Cosines

Consider two right-handed, orthogonal coordinate systems with the same

origin, but different relative orientation (Fig. A.1).

Figure A.1: Direction cosines between e^' in the transformed coordinate system {e^', e^, e$}

and the reference coordinate system {e^ e2, e3}

In order to determine the matrix that transforms one system into the other,

the direction cosines between the axes of the reference and the transformed

coordinate system are calculated.Goldstein8° In Fig. A.1, the direction cosinus

between a unit vector e,' of the transformed system and a unit vector e; of the

system of reference is

at)- cos(e;,ey) - e/-ey. (A-1)

The vector e/ can be expressed in terms of e<i, e2, e3 by the relation

e; = (e; • e1) e1 + (e/ e2) e2 + (e; • e3) e3

or (A-2)

e! " a/161 + ai2e2 + 3/3e3 •

leading to the transformation matrix A, which, operating on the components of a

vector r in the reference coordinate system, yields the components of the vector

t* in the transformed system:
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a11 a12 a13

a21 a22 a23

a31 a32 a33

Ar. (A-3)

The transformation matrix from the primed system to the unprimed system is

given by the inverse of the transformation matrix

r = A V A~1Ar = r. (A-4)

The nine components of the transformation matrix A are not independent,

since a coordinate system with arbitrary orientation, but fixed origin, has just

three degrees of freedom. The connections between the direction cosines arise

from the fact, that the basis vectors in both coordinate systems are orthogonal to

each other and have unit magnitude. These six conditions can be expressed for¬

mally as

aijaik ~ 8y/c j,k= 1,2,3, (A-5)

where b~jk represents the Kronecker symbol and the summation convention over

repeated indices is used.

A-2: Transformation of the Matrix of the Elastic Constants

Given the transformation matrix A, with elements a/; (Eq. (A-3)), that con¬

nects a unprimed reference and a primed, transformed coordinate system. The

fourth-rank tensor CljM transforms according to

'

ijkl aimainakoalpCmnop> (1-50)

while the 6x6-matnx Cmn of the elastic constants transforms iikeLekhnitsk"81

oo

mnqomqon'

mn^iom^pn'
(A-6)

with

<J,r

321

a31

*12

332

*13

323

2ai2313

2a23a22

2a33332

2ai3ai1

2a23a21

2a33331

2ai2ai1

2a22a21

2a32a31

31a23 a31a22 + a32a21a31321 a32322 a33a23 a33322 + 332a23 333321 + a31
323

a31 a:

a31a11 a32ai2 a33ai3 a33312 + a32313 a33ai1 +a3iai3 331 312 + a32ai1

3oi3ii a.0a0 a12a23 a13a21

(A-7)



196 Appendices

To transform the compliance matrix, again Eq. (A-6) is used, but with a slightly

different o-matrix, where the elements at the intersections of column 1, 2, and 3

with row 4, 5, and 6 are multiplied with a factor of 2, whereas the elements at the

intersection of column 4, 5 and 6 with row 1,2, and 3 are divided by a factor of 2.

A-3: The Eigenvalues and Eigenvectors of a 4th rank tensor

The basic formalism of the eigenvalues and eigenvectors of a 4th rank ten¬

sor A is given by the equation

A,jklXkl - **,; - X8lk*,lXkl (A"8)

The introduction of the Kronecker-deltas is necessary to perform the suffix sub¬

stitution. The following set of equations needs to be solved:

(Allkl-X8,k8ll)xkl=0 (A-9)

i.e. eigenmatrices xware deformations (ekj) where the resulting stress (o,j) is pro¬

portional to the applied strain, if AljM\s the elasticity tensor CljM. The proportional¬

ity factor X is the eigenvalue belonging to this system.

The above equations are also valid, if the Voigt notation is used, with one

major difference: Assuming, that the eigenstresses are the same (o =o:), the

eigenstrains will become

^3x3x3x3eM=^6x6e/c (A-10)

The ew transform to ek according to Eq. (1 -55) (eki = ek, if k = /, and eM =

1
ek, if k * I), which results in

^•3x3x3x32^= ^6x6 ek
(A11)

^3x3x3x3 = 2^6x6

I.e. the eigenvalues obtained from the full 3x3x3x3 tensor of the elastic

constants differ by a factor of 2 from those obtained from the Voigt representa¬

tion of the matrix of the elastic constants, if the indices k and / are different. This

is the case for the Voigt numbers 4, 5 and 6.

A-4: General Transformation Matrix

If the reference or the transformed coordinate system are not orthogonal or

if the unit vectors in the two systems are not of the same length, the transforma¬

tion matrix from the reference to the transformed coordinate system can be con¬

structed by expressing the unit vectors of the transformed system in terms of the
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reference system. In n dimensions, there are n such basis vectors (a1,a2,...a„),

which form the columns of a transformation matrix A,

A - [a, a2 ... a„] . (A-12)

This transformation matrix is identical with the one defined by Eq. (A-3) if both

coordinate systems are orthogonal and have basis vectors of the same length.

Otherwise, it is important to distinguish between co- and contravariant compo¬

nents of the transformation matrix.Renton87' Budiansky74

A-5: Metric Tensor

The scalar products of the basis vectors (a1,a2,a3) of a 3-dimensional coor¬

dinate system form the metric tensor g bySands82

or, in matrix notation

(A-13)

g = hTh, (A-14)

where h is tensor containing the base vectors as it's columns,

h - [a, a2 a3] . (A-15)

In Eqs (A-12) and (A-15), different symbols were used for the matrix containing

the basis vectors of a coordinate system in its colums. The transformation matrix

A connects two arbitrary coordinate systems and is not linked with any physical

quantity. It therefore forms a matrix. The tensor h is used in this work to describe

the shape of a crystallographic unit cell or a simulation cell and transforms itself

according to Eq. (1 -12) and thus forms a tensor.

A-6: Jacobian Matrix

Given the function

y-y(x), (A-16)

a matrix

J„ - % (A-17)

can be definedBronste,n91, which is called the Jacobian matrix of the function y.

For the above (Appendix A-1) transformation
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y = A(x) , (A-18)

the Jacobian J connects the basis vectorsRenton87 of the two coordinate systems

by

e; = J,lej and e, = Jlf ej (A-19)

For a canonical transformation, the determinant of the JacobianGoldstein80

det(J) =

y
= ±1, (A-20)

indicating that the volume of the unit cell (in phase space) remains constant

upon the transformation

A-7: Euler Angles

A coordinate system {x,y,z} is rotated in a first step by an angle c|> around its

z-Axis (Fig A 2a) forming the new coordinates {|,ti,z}
Goldstein80

Then these

b) fm&r ^
c)

Figure A 2 The rotations defining the Euler angles

new coordinates are rotated around the |-axis by an angle 6 (Fig A 2b) The

resulting coordinate system {%,r\',Q} is again rotated around it's new £'-axis by

the angle y to its final state {x'.y.z1} (Fig A 2c) All rotations are performed coun¬

terclockwise1

The transformation matrices of the three rotations are given by
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and

*()

X(6) =

Z(V) =

cos<|> sin^> 0

-sin<|) cos<|) 0

0 0 1

1 0 0

0 cose sine

0 -sine cose

cosy siny 0

—sinvjr cosy 0

0 0 1

(A-21)

(A-22)

(A-23)

These three operations are applied in sequence and the product matrix A then

follows as

cos\|fcos<|>-cos6sin<|>sin\|r cosysin^-cosGcos^siny sinysinB
- sinycos<])- cosesin<t>cos\jr - sinysin<|>- cosGcoscfpcosy cosysine

sm9sin<|) -smecoscj) cosO

(A-24)

The inverse transformation from {x!,y,2} to {x,y,z) is given immediately by the

transposed matrix AT

A"1=Ar =

cosycos<|>-cosesin<|>siny -smycos<|>-cos6sin<|>cosy sin6sin<j>

cosysin<|>- cosecos<|>siny - smysin<|>- cose cos <|) cosy -sin6cos<|)

sinysine cosysine cose

(A-25)

For generalized coordinate MD algorithms however, the use of Euler angles can

lead to singularities in the dynamics. To avoid these problems, so-called quater-

nionsEvans77a'Evans77b or modified Euler angles can be used.

Appendix B: Finite Elasticity and Cell Shape Tensor

B-1: Finite Strain From Cell Shape Tensor

The finite strain between a reference cell shape tensor H and an actual

shape tensor h can be derived as follows:

Consider a reference cell H containing a connecting vector R and a
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deformed cell h containing the transformed connecting vector r (Fig. 1.4). The

relation between R=[X1 ,X2,X$ and r=[x-|,x2,x3]T can be written as

s, = h:1x s, = /rV
' '

or
_

(B"1)

Xi - hUSl = hilH'llXk Xi - Hi,SJ - Hi,hj~kXk

So the translation vector u is given by

To obtain the finite strain according to Eq. (1-29), the following derivation must

be made,

du, ,dX, dX, _!

dxt
= h'kHkl

axy
~

ax,
= h>«{h)kl bn ~b"

(B.3)

- hikhfk,-5i,-

using for the second equation the properties of an orthogonal cartesian coordi¬

nate frame and for the third the fact, that multiplication with a Kronecker delta

exchanges the indices of a matrix. The product of the gradients of the translation

vector is

duk duk r„
u-i j r„ u-i

dX
'

dX
=

I hklHi'
~

M
'

V hkmH~m,
~ bkj

= hklMii hkmHmj- "km^mj&kr hklhf^l 8/cy + S/Ay

- hklhfii nkmH~mj-h,mH~mi-hilHl, + 5,y

Combining Eqs (1-29),(B-3), and (B-4), it is found that

1

\~ 2

du, du dukduk

1

[".A" Sil+hllH~li-*,i+hkmH~mPkn»~n) " *,„< " VC+ 8J (B"5)
2

~ -jlAm^mAAy-8,;] '

which, after transposing ^interchanging the indices), using the fact that the

inverse of a transpose equals the transpose of the inverse, and rearranging

some matrices, results in Eq. (1-36),
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According to Eq. (A-14), hlkhkm forms the metric tensor component gtm of the

deformed cell, allowing to write Eq. (1-36) asPamnelloRahman81a'similar: sqwe69a

^
= §[«r19/X-5J- (B"6>

B-2: Finite Stress (Thermodynamic Tension) from Cell Shape

Tensor

Equation (1-40),

dXdX, i dx, dx,

'--•fc.Tsfar;
or 'i-isxrfy (1"40)

expresses the relation between the actual stress o on the deformed cell and the

thermodynamic tension t referring to the undeformed cell. Using Eq. (B-1), one

easily finds that

dX, dH,nh\„xn
_!

dXt dH,nh~\xr
,

5
_

so op p
_ H hU and

t
_

tq qr r
_ H h~\ (B-7)

dX, dx, so °P 'P dx dX, '4 V jr

leading to

Javaxfax; = •/a«H8o/'i8.pHfcj/,v8ir

- JaprHsohoPHtqhqr

~ JHsohop°prh~rqHqt

which, in matrix notation, is equivalent to Eq. (1-41). The actual stresses as a

function of the thermodynamic tensions can be found in an analogous manner.

B-3: Symmetry of the Thermodynamic Stress Tensor

The thermodynamic tension tensor t is linked to the instantaneous stress

tensor a by

t = JHh"1ahr_1Hr, (1-41)

where o is a symmetric tensor, H and h are general tensors and J is a scalar.

The transpose of Eq. (1-41) can be written as
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tf= (jHh"1ah7"1H7"Jr= JHTh' oh" H', (B-9)

since

(AB)T=BTAr <=> (ABC)T= CTBTAT. (B-10)

Using the fact, that oT = o and that the inverse of the transpose of a matrix

equals the transpose of the inverse, Eq (B-9) can be transformed to the familiar

tT= JHh~1ahT~1Hr = t (B-11)

proving that the tensor of the thermodynamic tensions is indeed symmetric

Appendix C: Random Number Generators

A good overview over a great variety of random number generators can be

found in 'Numerical Recipies'.Pressetal92 A discussion of the linear congruential

and the Lagged Fibonacci random number generator is also given in Ref.

[Widmann96a]

C-1: Multiplicative Congruential Algorithm

The multiplicative congruential random number generation used in this

work is based on the 'minimal standard' proposed by Park and MillerParkMlller88a,

which generates a sequence of integer random numbers by

rin + 1
= ar\n mod m (C-1)

with a = 75 = 16807 and m = 231-1 = 2147483647.

To prevent overflows on a 32 bit computer, Schrage's method is used and

Eq. (C-1) is written as

a(T|„ mod q)-r(r\n/q) if > 0

110+1 ~

a(r|„ mod q)-r(r\n/q) +m if <0

with

q = m/a = 127773

r = m mod a = 2836'
(C-3)

Since this minimal standard (ranO in 'Numerical Recipies'Pressetal92) does

not pass all statistical tests extremely well and successive numbers differ by at

most a factor of 16807 - which leads to problems if extremely small numbers are

generated - a modification (rani in 'Numerical Recipies') was actually used.
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Besides some safeguards that prevent initialization with T|1 = 0 and the return of

endpoint values, a Bays-Durham shuffling was used to further randomize the

output. This algorithm produces about 108 (<= m/20) random numbers that pass

all statistical test. The listing below is a TCL version, that was used by DIS¬

COVER to produce random numbers for a Hybrid Monte Carlo simulation:

set randomSeed 222222

set ldum -567

set la 16807

set im 2147483647

set am [expr 1 0 / $im ]

set lq 127773

set ir 2836

set ntab 32

set ndiv [expr 1 + (($iro -1) / $ntab) ]

set eps 1 2e-7

set rnmx [expr 1 0 - $eps ]

set ly 0

for [set l [expr $ntab + 7]} [$i >- 0) (incr i -1] [

set iv($i) 0

proc random [} [

global la im am lq ir ntab ndiv eps rnmx ldum

global ly iv

if (($idum <- 0) || ('$iy)} [

if {(-$idum) < 1] then {$idum = 1) else {$idum = -?idum}

for (set j [expr $ntab + 7]} {$] >= 0] [incr ] -1] [

set k [expr $idum/$iq]

$idum - $ia * ($idum - $k * $iq) - $ir * $k

if [$idum < 0] [ $idum = $idum + $im)

if {$] < $ntab) [set iv($]) $idum]

)

set ly $iv(0)

}

set k [expr $idum/$iq]

$idum - $ia * ($idum - $k » $iq) - $ir * Sk

if [$idum < 0] ($idum = $idum + $im)

set ] [expr $iy / $ndiv ]

set ly $iv($])

set iv($]) $idum

if t($am * $iy) > $rnmx] then ( return Srnmx} \

else { return [ expr $am * $iy ])

}

C-2: Lagged Fibonacci Algorithm

The second algorithm that was used in this work is a highly portable and

vectorizable code that uses lagged Fibonacci senes.Pe,ersen93a The basic math

of the code is quite simple,

(C-4)
ri - f-float(int(0)
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but permits - with r= 273 and s = 607 - to calculate reasonably good random

numbers with extremely long periods (248-(2607-1)).
The code from PetersenPetersen93a is fully vectorizable, fast and portable to

all machines used in this work (SGI Indigo and Crimson, IBM RS6000/560 and

DEC Alpha) and was therefore used in all Monte Carlo simulations. It is, how¬

ever, not as well characterized as the multiplicative congruential algorithm, but

seems to be reasonably random (Marsaglia plots in 2D and 3D reveal no pat¬

terns). Normally, Monte Carlo simulations are not erroneous due to a 'bad' ran¬

dom number generator, but because of systematic errors due to finite relaxation

times in finite lattices.stauffer96a

Appendix D: Phase Space Volume Preservation of

Integrators

D-1: Introduction

The integration can be viewed as a transformation in phase-space that

transforms old coordinates x and velocities v

(x, v)-» (*, V) (D-1)

to new coordinates x" and velocities V. According to Eq. (A-17), the Jacobian of

this transformation is

3* cV

dx dx

ay av;
dV dV

(D-2)

For the integration algorithm to be canonical, it must be volume-preserving

in the phase space, i.e. its Jacobi-determinate must be 1 (Eq. (A-20)).

D-2: The Velocity Verlet Algorithm

The Velocity-Verlet algorithm is defined by80!*9823

X =
x+Atv+Ut2*-^-

2 m

V - ^+~[f(X)+f(X-)] = v+l^fW+f^X+ Afv+lAf2!^)]
The differentiations of Eq. (D-2), performed on the next few lines,
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cW
_ 1 +lAfJdf

dx" 2 m dx

dV

dv
= Af

dV
=

i Af

dx 2m dx

df

dx1
1 +

dV
_ +

iAf df

dv 2 m dx1

^A^df
2 m dx

At

(D-4)

result in the following determinate of the Jacobian

1 Ar2 offdV oV_dx; dV
_

+lA^df
dx dv dv dx 2 m dx 2 m dx!

2 m dx '2 m dx1 4 m dx

df

dx1

4 m dx

= 1

df_
dx1

(D-5)

It can thus be shown analytically that the velocity Verlet integrator is in principle

capable of delivering canonical trajectories

D-3: The ABM4 and Runge-Kutta Integrators

ABM4 (Adams-Bashforth-Moulton forth order) is a predictor-corrector

methodAllenTlldesley89, which requires two energy evaluations per timestep The

method itself is not self-starting - the first three steps are generated by the

Runge-Kutta method
MSIDlscover1

First, the predictor step is carried out as

r.(f+Af) = r(f)+£|(55v(f)-59v(f-Af)+37v(f-2Af)-9v(f-3Af))

Af,
(D-6)

v.(f+Af) - v(f) + £f(55a(f)-59a(f-Af) + 37a(f-2Af) -9a(f-3Af))

Using xp and Vp, v(f+Af) and a(f+Af) are calculated, which involves a force

evaluation With these values, the corrector is carried out as

rc(f+Af) = r(f) + ||(9v(f+Af) + 19v(f)-5v(f-Af) + v(f-2AQ)

vc(f+Af) = v(f) + ||(9a(f+Af) + 19a(f)-5a(f-Af) +a(f-2Af))

(D-7)

The corrected rc and vc are used to compute v(f+ At) and a(f + Af), requiring

another energy evaluation

It does not seem to be possible to proof the area-preservation for the ABM4

algorithm analytically, for there is a whole history of variables that determine the



206 Appendices

actual step. It is therefore necessary to establish a simple model system and to

perform the integration of the trajectories and the check for the conservation of

the phase space volume numerically.

D-4: The Model System

Serge Santos coded a predictor-corrector method with a Runge-Kutta start¬

up sequence and made the comparison of its behaviour to the velocity-Verlet

and the Leapfrog algorithm. The program computes seven trajectories with each

method for a number of particles: one trajectory with the initial set of coordinates

and velocities and six trajectories with small deviations in one of the space and

velocity components. The volume of the phase space at the beginning and at the

end is compared. If the volume remains constant, this can be viewed as a dem¬

onstration of the area-preservation (not a proof, of course).

A new spherical potential was used with the following form:

0U-1J no

n-1

(r-no). (D-8)

where a and e are interaction parameters and n is a number proportional to the

steepness of the potential.

10.0

10.0

Figure D.1: Plots of the model potential for n = 2,3 8. At r = 0, the energy is zero and reaches

a minimum of -e at r = (n-1 )o. The energy is zero again at r = na and raises then

proportional to f.

Particles were inserted randomly at places where the potential energy was



Appendix D Phase Space Volume Preservation of Integrators 207

negative. The velocity of the particles was also chosen randomly from the Boltz¬

mann distribution of a given temperature. A small box in phase space around the

atoms was transformed and the volume of this box was measured at the begin¬

ning and at the end. To be precise, the ratio of the final and initial volumes is

obtained by an extrapolation of the box volume to infinitely small values in sev¬

eral steps.

If an algorithm is area-preserving, the ratio of the initial and the final volume

"initial

^fmal

initial
.--9"

0' Knitial

Figure D 2 Extrapolation of the ratio l^na/initial,0 infinitesimally small Vmltai

is exactly 1.0.

D-5: The Results

As Table D-1 shows, only the Velocity Verlet algorithm is canonical (which

can be proved analytically, too) The other two algorithms show bigger or smaller

deviations from canonicity.

The Runge-Kutta and the ABM4 algorithm show the same results after one

step, because the ABM4 integrator is started by a Runge-Kutta sequence. On

the average, the Leapfrog algorithm behaves similar to velocity Verlet. This is not

surprising, since the two methods - differing in the details of implementation - are

algebraically equivalent.Frenkel96a
This failure to sample the phase space canonically can have a drastic influ¬

ence on the results, as the following data exhibits

At BAYER, ToN simulations of 100 ps (in steps of 0.5 fs) without equilibration

were performed on several BPA-PC cubes of 20 A. The equilibration was

skipped because the generation of the cubes involved multiple stages of minimi-
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Table D-1 The conservation of the phase-space volume by different integration schemes

Parameters 1 MD step, T=300K, a = 3 94 A, n = 5, |Ax| = 05 A,
|Av| =05 A/fs, decrement factor = 0 8, # of decrements = 3

Particle

#

VfmalA/init

Vel.verlet
ABM4 = Runge-

Kutta
Leapfrog

1.00000 + 0.0 0.29871 ±0.00019 0.82373 ± 0.06229

1.00000 ± 0.0 1.00180 ±0.00001 1.00382 ± 0.00006

1.00000 + 0.0 0.75618 ±0.00322 0.99186 ±0.08841

1.00000 ± 0.0 0.27641 ± 0.00001 1.01526 ±0.00116

1.00000 + 0.0 0.68185 ±0.00001 0.99405 ±0.00181

1.00000 ± 0.0 0.28967 ± 0.04553 0.98855 + 0.04987

1 00000 ± 0.0 0.71601 ±0.00006 1.04379 ± 0.00821

1 00000 ± 0.0 0.9288010.00007 1.02598 ±0.00119

1 00000 ± 0.0 0.88946 ±0.00011 0.95504 + 0.00241

10 1.00000 ± 0.0 0.40716 ± 0.00001 1.05048 ± 0.00668

zation and MD simulations While the other parameters were held constant, two

different integrators, the ABM4 and the velocity variant of the Verlet algorithm

were used. The elastic constants were calculated from the Parrinello-Rahman

strain fluctuation approach. The next table shows, that they proved to be very

sensitive to the choice of the integrator-

Table D-2 The elastic constants of BPA-PC (strain fluctuations)

Method

ABM4

Velocity-Verlet

Experiment

X [GPa]

8-10

4.2-4.8

4.2 - 5.7

ji[GPa]

3-3.5

0.8-1.2

0.8-1.1

p [g/cm3]

1.205

1.185

1.20

As can be clearly seen, correct values for the elastic constants can only be

obtained if the phase space is sampled correctly.
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Appendix E: Reduced Units

If a system consists of identical particles which interact only with a simple

Lennard-Jones potential, its behaviour is completely specified by a few parame¬

ters like the particle mass ma, the distance of zero interaction energy o, and the

depth of the potential e It is convenient to define the fundamental quantities of

mass, distance and energy in terms of these parameters in order to obtain

results that are independent of the particular choice of ma, o, and e The physical

quantities convert as follows

mass

distance

energy

temperature

density

pressure

time

force

elastic constants

m*

r*

E*

T*

p*

p*

t*

f*

m/ma

r/o

E/e

kT/e

3

pa

3
.

po /e

2V/2
E/mo j t

fo/e

C^V/NkT

a)

b)

c)

d)

e)

f)

9)

h)

1)

(E-1)

and so on

Using reduced units, the functional form of the Lennard-Jones m-n poten¬

tial (Eq (2-8)) and the expression of the forces simplify to

U*

and

a(3(c
= 24

,n + 2

V*aB
m + 2

rafJ J

(E-2)

(E-3)

which greatly increases the computational efficiency AllenTlldesley89

For MD simulations of Lennard-Jones systems, it is necessary to obtain the

distribution of the initial velocities and the equations of motion in reduced units

Expressing the velocities in reduced units,

v* =

m
v =

m
v* (E-4)
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allows to write the distribution of initial velocities as

1

p*(v*)dv* =

1

27teP

2?cP

exp

2\

27* J
Jzdv*

exp

w*
I

(E-5)

27* )
dv*

which is identical to a gaussian distribution with a mean value of 0 and a second

moment of Jt* The velocity-Verlet integrator (Eq. (2-77)) is written in reduced

units as

r*(f* + 8f*) = r*(F) + 5f*v*(f*) +h,t*2a*(t*)

v*(f*+8f*) = v*(f*) +lsf*[a*(f*) +a*(f* + 5f*)]

(E-6)

with the acceleration

a* - I ^]a 7
-

(->
t \om)

(E-7)

Appendix F: Elastic constants of 'ordered' it-PP

A 71A/-MD simulation of 1000 ps (2 106 steps) has been performed with a

completely ordered it-PP structure. The averages of the strain and the stress-

strain fluctuations of the last 500 ps have been used to calculate the matrix of

the elastic constants

Table F-1 Elastic constants averaged over the last 500 ps of a 1000 ps TtN-MD simulation

at 300 K Non-zero components are bold faced

kT, ~T
/ \/}

^ik^lm> ^ifcVKyW

8.25 3.43 7.02 0 02 -0.17 -0 03

3.43 7.19 3.36-0 09-0.30 0 02

7.02 3.36 56.00 0 03 -5.92 0 02

0 02 -0 09 0 03 2.43 -0 03 -0.19

0.17 -0.30 -5.92 -0 03 5.20 -0 04

-0 03 0 02 0 02-0.19-0 04 2.33

9.05 3.79 7.57 -0 01 0.52 -0 04

3.94 8.01 4.66 -0 03 -0.32 0 05

7.48 3.68 59.57 0 03-7.04 0 04

-0 06 -0 07 -0 38 2.62 0 08 -0.35

-0.22 -0.27 -2.42 -0 03 5.18 -0 05

-0 05 0 11 0 42 0.02-0 16 2.58

The difference to the matrix of the disordered structure (Table 4-30) is not

significant, although the components, which should be zero due to the crystal

symmetry, are in general smaller.
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Appendix G: Cluster Dynamics and Elastic Con¬

stants of PA-6

G-1: Cluster Dynamics of Water in Amorphous PA-6

This appendix lists in tabular form the water cluster sizes of three amor¬

phous PA-6 microstructures with 35 water molecules at 150, 300, and 450 K

Table G-1 150 K, Structure 1

molecules in cluster

Time [ps] #1 #2 #3 #4 #5 #6 #7 #8 rest

0-1000 17 10

Table G-2 150 K Structure 2

molecules in cluster

Time [ps] #1 #2 #3 #4 #5 #6 #7 #8 rest

0-200 20

300-400 21 10

500-1000 31

Table G-3 150 K, Structure3

molecules in cluster

Time [ps] #1 #2 #3 #4 #5 #6 #7 #8

22

23

200 22

300 16

400 25

500 25

600 25

700 22

800 22

900 25

1000 22

Table G-4 300 K, Structure 1

Time [ps]

100

200

300

molecules in cluster

#1

17

10

#2

10

10

#3 #4 #5 #6 #7 #8 rest
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Table G-4: 300 K, Structure 1

400 10

500 12 10

600, 700 16 10

800 19 10

900 10 10

1000 17 10

Table G-5: 300 K, Structure 2

molecules in cluster

Time [ps] #1 #2 #3 #4 #5 #6 #7 #8 rest

10 13

100 22

200 17 10

300 18

400 14 12

500 13 12

600 13

700 19 12

20

900 19

Table G-6:300 K, Structure 3

molecules in cluster

Time [ps] #1 #2 #3 #4 #5 #6 #7 #8 rest

12

100 22

200 24

300,400 22

500 23

600 23

700 22

800 23

1000 22

Table G-7- 450 K, Structure 1

Time [ps]

100

200

#1

~7T

26

#2 #3

molecules in cluster

#4

10

#5 #6 #7 #8 rest
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Table G-7 450 K, Structure 1

300 25

400 15

500 24

600 25

700 32

800 24

900 30

1000 29

Table G-8 450 K, Structure 2

molecules in cluster

Time [ps] #1 #2 #3 #4 #5 #6 #7 #8 rest

20

100 19 16

200 32

300 16 16

400 31

500 32

600 24

700 19

800 10 1,2

900

1000 29

Table G-9 450 K, Structure 3

Time [ps]

100

200

300

400

500

600

700

800

900

1000

molecules in cluster

#1

35

~28~

31

31

12

24

#2

22

12

27

#3 #4 #5 #6 #7 #8
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G-2: Elastic Constants of 'Dry' and 'Wet' PA-6

In the next eight tables, the elastic constants of PA-6 are listed for the dry

and wet microstructures at 0, 150, 300, and 450 K. The elastic constants were

obtained from the stress-strain fluctuations of the last 500 ps of the 1000 ps TtW-

MD runs.

Table G-10 Static minimum energy elastic constants of 'dry' and 'wet' PA-6

Dry, 0 K, Structure 1 Wet, 0 K, Structure 1 Wet, 0 K, Structure 3

13.5 61 59-04 00 00

61 14.3 6 6-02-02 04

59 66 10 7 01-0 2 00

-0 4-0 2 01 3 4-03-02

00-02-02-03 28 00

00 04 00-0 2 00 31

13.6 68 63-0 6 05 09

6 8 13.7 61-14-04-10

6 3 61 14.9 -06-04-01

_0 6 -1 4 -0 6 33 06 02

05-0 4-0 4 06 35-0 3

09-10-0 1 02-03 34

13.9 66 67 03 02. 03

6 6 13.5 63 05 02 00

6 7 6 3 13.5 0 3-02-03

03 05 03 28-0 1-01

02 02-02-01 33-01

0 3 0 0-03-01-01 35

= 581±026,u = 206±016X = 628±034,n = 323±022 X = 527±029,u = 205±018

Table G-11 Elastic constants of 'dry' PA-6 at 150 K, stress-strain fluctuation approach

Dry, 150 K, Structure 1 Dry, 150 K, Structure 2 Dry, 150 K, Structure 3

8.4 5 2 4 2-03 06-02

60 12 9 68 03 02 04

4 9 6 8 8.7-0 3 0 4 0 0

-0 4 03-0 3 24-03 00

06 02 03-0 3 16 00

-0 3 04 00 00 00 18

8.5 6161 0 4-03 01

72 11 564-0 1 00 01

55 4791 00 06 00

05-0100 2 1 -03-02

-0 3 0 0 0 6-02 29-01

01 0100-0 2-0 1 24

11.9 63 52-01 03-0 7

6 3 9.4 5 0-01-06 00

45 43 83-03-03-02

0 1-01 03 16 01-03

03-0 5-0 4 02 17 00

-0 6 0 0-02-03 00 17

. = 5711042, n = 210±026 = 5 81 ±0 26, (1 = 2 06 ±0 16 i = 5 27±029, u = 2 05 ±0 18

Table G-12 Elastic constants of 'wet' PA-6 at 150 K, stress-strain fluctuation approach

Wet, 150 K, Structure 1 Wet, 150 K, Structure 2 Wet, 150 K, Structure3

8.6 4 6 5 0 0 0-0706

7 1 12.5 8 2-02-0 0 03

5 6 6 0 10.6 0 3-01 00

00-0 2 04 22 0003

-07-00-01 00 2 Q 0 3

08 02 01 03 03 15

12.2 65 71-01 02 04

64 10.7 58 04-03 06

7 2 61 10.1 -0 5 0 3-03

-01 04 05 22-0 2 05

02-0 3 03-0 2 20-0 5

05 06-0 3 05-0 5 1

11.6 54 61-0 0-0 3 02

71 13.1 79 03-0 3 00

5 0 5 9 9.6 0 2-00-04

-0 0 0 3 0 2 19-01-03

-0 2-0 2 0 0-01 22-02

02 00-05-04-03 24

A. = 615±024, u = 214±015 X = 663±028,(i = 213±018 X = 6 41±0 15, u = 2 38±0(
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Table G-13 Elastic constants of 'dry' PA-6 at 300 K, stress-strain fluctuation approach

Dry, 300 K, Structure 1 Dry, 300 K, Structure 2 Dry, 300 K, Structure 3

5.9 4 1 42-0 1 03-05

4 6 6.7 4 4-02-02-02

4 7 4 4 6.4-0 2 0 0-01

-0 2 0 2-02 11 00-01

03 02 00 00 12 01

-0 6-0 2 01-01 01 08

5.3 5 1 4 7 0 0

5 8 8.8 t ** 0 1

4 2 3 8 5.7 -0 1

0 0 0 1-01 12

01 01

03 02

05 03

-0 2-0 2

01 02

01 02

-0 2

02

00

16

77 49 41 02 03-0 4

4 4 6.7 4 3 0 3-01 00

3 4 3 9 5.7 -0 2 -0 2 -0 4

02 03-0 2 08 01 05

0 2-01-02 01 10-01

-0 4 0 0-04 05-01 14

= 435±011,u = 099±007 X = 427±024,n = 097±015 1 = 4 17±0 15, u=1 19 ±0 09

Table G-14 Elastic constants of 'wet' PA-6 at 300 K, stress-strain fluctuation approach

Wet, 300 K, Structure 1 Wet, 300 K, Structure 2 Wet, 300 K, Structure 3

5.7

52

43

01

-0 2

01

42

7.4

42

03

-01

01

42

52

6.0

-01

-0 2

04

01-0201

0 3-0102

-0 1 -0203

09 0001

00 0502

01 0203

6.9

41

52

-0 2

-01

02

5 0-02-01 02

40-01 -02 02

5.9 -01 0 2-01

-0 1 0 8-02 01

-0 2 0 2-02

0 2-01 01

7.2 5 0 5 3 01

48 7.3 50-01

4 6 4 5 6.4 -0 1

01-01-01 07

-0 3-0 0

06 05

-01

-01

01

00

-0 3

-0 0

0 1

01

07

02

X. = 4 53 + 0 11,u = 0 78±0 07 X = 437±016,u.= 075±010 X = 498±013,n = 091 ±0(

Table G-15 Elastic constants of 'wet' PA-6 at 450 K, stress-strain fluctuation approach

Dry, 450 K, Structure 1 Dry, 450 K, Structure 2 Dry, 450 K, Structure 3

2.0 15 16 0 2-02

2 6 3.5 3 0 01-02

19 2 1 2.3 -0 1 0 0

03 0102 03 00

-0 2

00

0 100
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-0201 01

01

02

01

03

00

-01

-0 2

01
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= 2 32 ± 0 05, u = 0 27 ± 0 03X = 214±007,u.= 023±004 X. = 217±006, (i = 026 ±004

Table G-16 Elastic constants of 'wet' PA-6 at 450 K, stress-strain fluctuation approach

Wet, 450 K, Structure 1 Wet, 450 K, Structure 2 Wet, 450 K, Structure 3
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Appendix H: Elastic Constants of PA-12

In the next eight tables, the elastic constants of PA-6 are listed for the dry

and wet microstructures at 0, 150, 300, and 450 K. Except the static minimum

energy approach, all matrices were calculated from the fluctuations of the

stresses and strains in the last 500 ps of the 1000 ps 71A/-MD simulation.

Table H-1 Elastic constants of 'dry' PA-12 at 150 K, stress-strain fluctuation approach

Dry, 150 K, Structure 1 Dry, 150 K, Structure 2 Dry, 150 K, Structure 3

7.7 4 3 3 9 0 1-05-02

4 3 6.6 3 2 0 3-02-05

4 0 3 4 6.5 0 4-04-02

0 1 0 4 0 3 14-01-01

-05-02-02-01 15 01

-0 3 05-0 2 00 01 10

47 54 65

52 77 52

69 4045

-11 06 00
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0 7-1507

1 4
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-0 8 0 2
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02 06
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7546 46 00 02 03
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4 5 4 2 8.2 01 0 2-01

0002 01 14-0 2-0 3

-0403 08-01 17-01

0001-0 3 00-01 19

X = 3 89 ±020, u = 1 49±0 13 X = 546±054, (1 = 019 + 034 X = 451±012, (1=1 66±0 08

Table H-2 Elastic constants of 'wet' PA-12 at 150 K, stress-strain fluctuation approach

Wet, 150 K, Structure 1 Wet, 150 K, Structure 2 Wet, 150 K, Structure3

7.4 3 9 4 5-02 01 04

3 9 7.2 4 4 0 0-04-08

4 5 4 4 7.0 -0 7 -0 3 -0 1

00-0 3-0 1 13 00 00
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02 01 00-0 2-0 2 Q-i

X = 4 38±018, (i=1 38±012 k- 4 10±0 23, u=1 33±015 X = 400±018,u=1 24 ± 0 11

Table H-3 Elastic constants of 'dry' PA-12 at 300 K, stress-strain fluctuation approach

Dry, 300 K, Structure 1 Dry, 300 K, Structure 2 Dry, 300 K, Structure 3

3.6 2 6 2 6-02 01-03

2 7 3.1 2 3 0 0 0 3-03
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X = 2 48 ± 0 09, u = 0 44 ± 0 05 X = 268±010,(i = 043±006 X = 287±010,u = 067±006



Appendix H Elastic Constants of PA-12 217

Table H-4 Elastic constants of 'wet' PA-12 at 300 K, stress-strain fluctuation approach

Wet, 300 K, Structure 1 Wet, 300 K, Structure 2 Wet, 300 K, Structure 3
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X = 287±0 11, (i = 056±007 X = 275±011,(i = 049±007 X = 270±010,(i = 042±006

Table H-5 Elastic constants of 'wet' PA-12 at 450 K, stress-strain fluctuation approach

Dry, 450 K, Structure 1 Dry, 450 K, Structure 2 Dry, 450 K, Structure 3

1.3 1111000000
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00-0 100010000

01 0100000100
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=1 10±002,u = 009±001 X = 1 34 ± 0 05, (i = 0 01 ± 0 03 = 0 54 ± 0 03, (i = 0 07 ± 0 02

Table H-6 Elastic constants of 'wet' PA-12 at 450 K, stress-strain fluctuation approach

Wet, 450 K, Structure 1 Wet, 450 K, Structure 2 Wet, 450 K, Structure 3
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X = 0 79 ± 0 04, (i = 0 07 + 0 03X =0 38 ±0 04, (i = 0 11 ±0 03 X=1 10±0 05, (1 = 010 + 003
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