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Zusammenfassung

rylov-Raum-Methoden zum Lösen linearer

Gleichungssysteme haben die Eigenschaft,
dass sie implizit das minimale Polynom der

Systemmatrix in bezug auf den ersten Residu¬

umsvektor bestimmen.

Vektorextrapolationsmethoden werden verwendet, um

die Konvergenz von Vektorsequenzen zu beschleunigen.
Sie benötigen keine Information, wie eine solche Se¬

quenz erzeugt wurde. Wenn aber die Sequenz durch ei¬

ne lineare Iteration erzeugt wurde, kann gezeigt werden,

dass der extrapolierte Grenzwert einer Vektorextrapo¬
lationsmethode die Lösung eines linearen Gleichungs¬

systems ist. Vektorextrapolationsmethoden approximie¬

ren explizit die Koeffizienten des minimalen Polynoms
dieses Gleichungssystems ohne Zuhilfenahme der Sy¬
stemmatrix und des Vektors auf der rechten Seite. Es

ist bereits bekannt, dass diese Methoden und Krylov-
Raum-Methoden in exakter Arithmetik dieselben Ite-

rierten erzeugen, falls sie zum Lösen von linearen Glei¬

chungssystemen verwendet werden.

Die explizite Bestimmung der Koeffizienten des minima¬

len Polynoms ist numerisch nicht stabil. Krylov-Raum-
Methoden verwenden einen genaueren, impliziten An¬

satz. Auf der anderen Seite aber sind Vektorextrapola¬
tionsmethoden im Stande, nichtlineare Gleichungssyste¬
me zu lösen, die einen dominanten linearen Anteil in der

Nähe des zu extrapolierenden Grenzwertes aufweisen.



Der erzeugende Prozess der Vektorsequenz einer Vektor¬

extrapolationsmethode kann im Krylov-Raum-Kontext
als Vorkonditionierer angesehen werden. Unter Verwen¬

dung der zentralen Idee von Vektorextrapolationsme¬
thoden (Differenzvektoren der Sequenzvektoren) kann

der Vorkonditionierer um eine rekursive Vorschrift er¬

weitert werden, um die Matrix-Vektor-Multiplikation von

wiedergestarteten Krylov-Raum-Methoden zu ersetzen.

Auf diese Weise können Krylov-Raum-Methoden zum

Lösen linearer Gleichungssysteme auf das Lösen nicht¬

linearer Gleichungssysteme adaptiert werden. Sie be¬

sitzen dann ähnliche Konvergenzeigenschaften wie Vek¬

torextrapolationsmethoden.

er wissenschaftliche Hauptbeitrag dieser Doktorarbeit

ist die Entwicklung und Umsetzung dieses Ansatzes

für die allgemeinen Arnoldi-Methoden FOM und GM-

RES. Dadurch erhalten wir zwei neue Methoden zum

Lösen nichtlinearer Gleichungssysteme — vorkonditio¬

nierte Arnoldi-Methoden zum Lösen nichtlinearer Glei¬

chungssysteme, die für gewisse Problemstellungen ei¬

ne bessere Leistung erbringen können als etablier¬

te Methoden wie z.B. inexakte Newton-Methoden. Die

neuen Algorithmen wurden anhand der Chandrasek-

har H-Gleichung und einem Wärmestrahlungsproblem
des Forschungszentrums der Firma ABB in Dättwil,

Schweiz getestet.

Ein weiterer Beitrag dieser Doktorarbeit ist die Ent¬

wicklung einer allgemeinen Theorie für Vektorextrapo¬
lationsmethoden. Diese kann auch auf die neu ent¬

wickelten Algorithmen angewendet werden. Die Haupt¬

aussage dieser Theorie ist: Vektorextrapolationsmetho¬
den sind Implementationen der Methode von Henrici (ei¬

ne Verallgemeinerung der Methode von Steffensen auf

Vektorsequenzen). Neu in dieser Theorie ist die For¬

mulierung eines Kontorovich-Theorems für die Methode

von Henrici, das die Bedingungen für ihre Konvergenz

festlegt. Aufgrund unserer geometrischen Untersuchen¬

gen waren wir ausserdem in der Lage, eine Klasse von



skalaren Iterationsvorschriften zu beschreiben, für wel¬

che die Schmidt-Shanks-Transformation in nur einem

Schritt konvergiert.

In dieser Doktorarbeit werden die wichtigsten herkömm¬

lichen Verfahren zum Lösen nichtlinearer Gleichungs¬

systeme beschrieben. Überdies wird ein Überblick über

die Theorie der linearen Krylov-Raum-Methoden gege¬

ben. Beispiele und Graphiken illustrieren unsere Aus¬

führungen.





Summary

rylov space methods for solving a nonsingu-
lar linear system of equations are known to

have the property to determine implicitly the

minimal polynomial of the system matrix with

respect to the initial residual vector, i.e. a polynomial
of minimum degree, which is annihilated by the system
matrix of the linear system when multiplied with the

first residual vector.

Vector extrapolation methods have the purpose to accel¬

erate the convergence of a vector sequence. No knowl¬

edge is needed on how the vector sequence is gener¬

ated. However, if the sequence is generated implicitly

by a linear iteration, then the extrapolated limit of the

sequence is the fixed-point of a linear system. Without

making use of the system matrix and the right-hand
side of this system these methods explicitly estimate

the coefficients of the minimal polynomial of the sys¬

tem matrix with respect to the first residual vector. It is

already a known fact that vector extrapolation methods

and corresponding Krylov space methods generate the

same iterates in exact arithmetic for linear systems of

equations.

The explicit determination of the coefficient of the min¬

imal polynomial is not a stable process. The implicit

Krylov approach is better. On the other hand vector ex¬

trapolation methods are capable of solving systems of



nonlinear equations with a dominant linear part in the

area of interest.

The generating process of the vector sequence of vec¬

tor extrapolation methods can be regarded as a precon-

ditioner in terms of Krylov space methods. By using
the central ideas of vector extrapolation methods (tak¬

ing differences of sequence elements) the preconditioner
can be expanded into a recursive scheme to replace
the matrix vector multiplication in a restarted Krylov
method. This way common linear Arnoldi methods can

be extended to nonlinear ones, which have the same

convergence properties as vector extrapolation methods.

The main scientific contribution of this thesis is the de¬

velopment and implementation of this approach for the

general Arnoldi type Krylov space methods FOM and

GMRES. Thus we get two new methods for solving sys¬

tems of nonlinear equations — preconditioned Arnoldi

methodsfor solving systems of nonlinear equations. For

particular problems they have a better performance than

common methods, e.g. inexact Newton methods. We

have tested the new algorithms on the Chandrasekhar

H-equation and a heat transfer problem problem of the

research center of the ABB company in Dättwil, Switzer¬

land.

Another contribution of this thesis is the development of

a general theory of vector extrapolation methods, which

can be also applied to the new methods. The main state¬

ment of the theory is that vector extrapolation methods

are implementations of Henrici's method (a generaliza¬
tion of Steffensen's method to vector sequences). New

in this thesis is also a Kantorovich like theorem for

Henrici's method stating the conditions for its conver¬

gence. Furthermore we examined the geometric prop¬

erties of the Schmidt-Shanks transformation (another

generalization of Steffensen's method) and were thus

able to specify a class of scalar iterations for which this

transformation converges within only one step.

Several common methods for solving systems of nonlin-



ear equations are reviewed in this thesis as well as the

theory of Krylov space methods. Our considerations are

illustrated by many examples and figures.
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Chapter 1

Introduction

n this thesis we adapt iterative methods for

solving linear systems of equations such that

> they are able to find solutions of nonlinear sys¬

tems of equations. This is not an unusual ap¬

proach. In fact most of the iterative methods for solv¬

ing nonlinear systems of equations known today use the

idea that a given nonlinear operator behaves linearly in

the vicinity of a solution. Even one of the oldest iterative

methods is of that kind.

Example 1.1 Let us consider the following unconstrained non¬

linear problem

Example

Newton's

method

cp(s)=0. (1.1)

In this equation cp is a nonlinear operator Rn -> Rn, of which a

zero s has to be found. Newton's method does such a job by

supposing that cp behaves linearly in the vicinity of every ap¬

proximation Si for the solution. Given an approximate guess s0

for the solution of (1.1 ) Newton's method thus replaces the orig¬
inal nonlinear operator cp by a linear operator y(x) .= cp(s0) +

Dcp (so ) (x—so ), which is the best linear approximation of cp at s0.

If the linear system y(s) = Ois nonsingular, its solution si is unique
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and can be determined by a method for solving a linear sys¬

tem of equations. The pool of such methods is huge. However,

due to the fact that y is only an approximation to cp, si is gener¬

ally not the solution of (1.1). But in general it is a better approx¬

imation to s than s0 was. Repeating the described procedure
one can hope that in every step the method computes suc¬

cessively better approximations to s. Newton's method is not

only known to do this job very well, but also its convergence

rate is usually quadratic.

While Newton's approach is problem oriented in that the

problem is linearized locally and then the local problem
is solved by a linear solver, our approach is method ori¬

ented: By examining a large class of linear solvers —

Krylov space methods — we adapted these solvers such

that they are capable of solving nonlinear problems.

Such an approach has already been successfully ap¬

plied to

• classical iterative methods for linear systems, like

the Jacobi method, Gauss Seidel iteration, succes¬

sive overrelaxation (SOR),

• vector extrapolation methods, which have been de¬

veloped originally to speedup the convergence of

linearly generated vector sequences. However, peo¬

ple have already realized, that they are also useful

for accelerating vector sequences generated by a

nonlinear process.

Sporadically linear Krylov space methods have been em¬

ployed to solve nonlinear systems of equations. One

example for these approaches is the conjugate gradient
(CG) method. We will shortly describe this method as a

case study for adjusting a method solving a linear sys¬

tem for solving nonlinear systems of equations.

Example Example 1.2 Originally the CG method has been described

Conjugate by Stiefel and Hestenes(18) in 1952 as an iterative approach to
Gradients solve a positive definite linear system of equations in at most n

steps — n denoting the dimension of the system matrix — if no



rounding errors are involved Their point of view of the method

is an optimization of the nonlinear functional

cp Rn -> R,

XHXHAx-2bHx

In this functional A e Rnxn is a symmetric positive definite ma¬

trix and b e Rn is a vector To find the minimum of cp with re¬

spect to x one has to find the zero of its gradient Fortunately,
the gradient of this functional is

Vcp(x)H =2Ax-2b = -2r(x)

That is To find a zero of the gradient the linear system Ax = b

has to be solved Or To find the solution of the linear system
Ax = b the minimum of cp has to be determined

Hestenes and Stiefel used sk = sk-i + <xk-ipk-i as a general
ansatz to determine an approximate solution sk in each step
of the method The search direction pk, that updates the ap¬

proximate solution in every step, was defined by

Pk =Tk + ßk-lPk_i, (1 2)

with p0 = r0 By definition of sk the residual of the linear system
to be solved satisfies

rk =rk-i -ak-iApk_! (1 3)

Minimizing cp in the search direction pk_-, leads to the condition

rkPk-!=0 (14)

It turns out that much work can be saved if the search direc¬

tions are A-conjugate, which is mathematically

PraP) = o, vi > ) (15)
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Using (1.4) <xk can be determined. We have

0 = r£+1pk

= Tk Pk - «kPk Apk

(1.2) HUH
= rkrk + ßk-i rkPk_i-akpkApk

Hence <xk = (rfrkJAPk Apk). Using this result we also find that

Tk+iTk = r" rk - akPk Ark

(1 .2) H H
= rkrk-akPkAPk + akßkPk-iAPk

=o

= rkH+1pk=0. (1.6)

Roughly in the same manner ßk can be determined using (1.5).

0 = p^Apk

= rf+iApk + ßkPkApk

(1 3)
= «k1 Tk+iTk-ak^k+iTk+i +ßkPkApk

-^^—+ ßkjPkApk.

Hence ßk = (rk+1 rk+i )/(r"rk), conversely, it has been proved

by several authors that choosing these <xk and ßk implies (1.5).

The name of the method is somehow misleading, since the

residuals are the actual gradients of the functional to be min¬

imized. And, as (1.6) shows, they are rather orthogonal than

conjugate. However, the directions pk are conjugate. Since

by (1.2) pk is a linear combination of r0,...,rk, the vectors

p0)... ,pk and ro,... ,rk span the same space. That is: the di¬

rection vectors are conjugated versions of the gradients. This

caused Shewchuk to formulate the following statement: "The

name 'Conjugate Gradients' is a bit of a misnomer, because



the gradients are not conjugate, and the conjugate directions

are not all gradients. 'Conjugated Gradients' would be more

accurate"(36, p. 29).

The linear conjugate gradient method shown in Algorithm 1.1

sums up all the considerations made so far. This functional ex¬

pects as arguments the linear system specified by A and b, an

initial guess for the solutions s0 and a desired tolerance e that

the relative error of the returned result has to meet.

Algorithm 1.1 Linear Conjugate Gradient Method.

function CG(A, b, s0, e):vector;

r0 := b - As0;

Po ;= ro;

i := 0;
while ||t\|| > £||b|| do

a, := (r,V)/(p,HApJ;
Sv+i := Sv + cxvp/,

t\+i :=t\ - atAp,;

ß,:=(r,H+1n+1)/(r,Hn);
Pl+i :=i\+i + ßtp,;
i := i + 1

end;

CG := Sv

end CG;

Applying this method to solve a nonlinear system of equations
of type (1.1) the linear residual r(x) = b-Ax has to be replaced

by the nonlinear residual <p(x). Thus the computation (1.3) is

replaced by

rk := cp(sk-i + txk-i Pk-i )•

However, because (1.3) implies Apk_! = -«^1, (rk - rk-i ), we

still use that equation to replace Condition (1.5) by

P1H(r, + i-r,) = 0) Vi>).

Since ak cannot be determined by a linear equation, it has to

be determined by the scalar nonlinear equation

pkcp(sk + akPk) = 0. (1.7)
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Solving this equation is called a line search The user of the

nonlinear CG method has to provide a procedure that finds

the solutions to this problem and decides which of these shall

be chosen Any algorithm that finds these solutions can be

used

Also the choice of ßk is not unique anymore One can suppose

that rk+1rk = 0 still holds (Fletcher-Reeves approach) or not

(Polak-Ribière approach) In either case ßk becomes

pFR =

rk+irk+1
(Fletcher-Reeves), or

r£rk

ßPR =

ri?+1(r,c+1-rk)
(Polak-Ribière)

n?rk

It is known that the Fletcher-Reeves approach converges if the

starting point is sufficiently close to the solution The Polak-Ribiè-

re approach converges often much more quickly However, in

rare cases, it can cycle infinitely without converging (36, p 42)

Fortunately, convergence of the Polak-Ribière approach can

be guaranteed by choosing ßk = max [ßkR, o| However, the

best choice for ßk still remains a challenge in numerical re¬

search

Two things are notable about the transformation from the linear

case to the nonlinear case

1 The nonlinear functional to be minimized is used implicitly
Its knowledge is not required to implement the method

2 An important property of the linear CG method is that the

system matrix of the linear system to be solved has not

to be specified exphcitely It can be given implicitly as a

function that returns a matrix vector product Similarly the

nonlinear version needs a function call that returns the

value of cp(x) However, additionally a line search pro¬

cedure must be provided that solves the scalar problem
(1 7) Nonetheless this is an improvement compared to

Newton's method requiring the knowledge of the deriva¬

tive of cp

Algorithm 1 2 shows an implementation of the nonlinear conju¬

gate gradient method
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Algorithm 1.2 Nonlinear Conjugate Gradient Method.

function nlCG(cp(), linesearchQ, s0, e):vector;

r0 := cp(so);

Po ;= ro;

i := 0;
while ||t\|| > £||cp(0)|| do

av := linesearch(si,pj;
Sv+i := sx + avP/,

n+i := cp(Si+i);

a
.= / (r£+irk+i)/(r£rk);

Pl-

1 maxlO.^+^rk+i-rk))/^^)};
Pl+i :=n+i +ßtp/,
x:=i+1

end;

nICG := s,_!

end nICG;

The case study of the nonlinear CG method illustrates

how a linear iterative method can be adjusted to solve

nonlinear systems of equations.

Although CG is a Krylov space method (see Chapter 2),

it is very special among these algorithms, since it is the

only method of this class that can be interpreted in two

ways in every step: (1) solving a linear system of equa¬

tions, or (2) optimizing a scalar functional. This is why
the approach for adjusting the CG method to solve non¬

linear systems of equations cannot be generalized to the

whole family of Krylov space methods.

In this sense our approach is different and new. We use

the fact, that vector extrapolation methods (see Chap¬
ter 3) are algebraically equivalent to Krylov space meth¬

ods. Vector extrapolation methods have already been

proven to solve nonlinear systems of equations. How¬

ever, their numerical performance is bad, while the nu¬

merical performance of Krylov space methods is very

good. Considering this we came up with the idea to ad¬

just existing Krylov space methods by the help of their

mathematical equivalent vector extrapolation compan-

OUR

Approach
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ions such that they are capable of solving nonlinear sys¬

tems of equations.

Vector extrapolation methods accelerate the conver¬

gence of a sequence of vectors. This sequence of vectors

has to be provided as an input to the particular vector

extrapolation method. In our approach the sequence of

vectors is generated by an iterative process that solves

the given problem, but is rather slow or may even di¬

verge. Since the original theory of vector extrapolation
methods is based on linear problems, the iterative pro¬

cess generating the vector sequence should have a lo¬

cal linear convergence rate. Basically classical iterative

methods like Jacobi, Gauss-Seidel or SOR were used in

the linear case to serve as the generating process for lin¬

ear vector extrapolation methods. Among others their

nonlinear counterparts meet the requirements to gen¬

erate the vector sequences that can be accelerated by
nonlinear vector extrapolation methods.

Our nonlinear class of Krylov space methods uses ideas

from vector extrapolation to manage the transition from

linear to nonlinear. The new methods still require an it¬

erative process generating a vector sequence. However,

in our point of view this process acts as a nonlinear

preconditioner to the new methods. Figure 1.1 shows

the theoretical layers of the approach discussed in this

thesis.

1.1 Overview

chapter l This thesis is structured as follows. In this chapter we
first give an overview of our notation, definitions and

some important lemmas and properties which we will

use. Next we give an overview of methods solving non¬

linear systems of equations. These are mainly varia¬

tions of Newton's method, since we will see that our

approach can be compared with these types of meth¬

ods. The other class of nonlinear solvers described is
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Figure 1.1 Our approach of developing nonlinear Krylov

space methods involves nonlinear vector extrapolation
methods, which rely on nonlinear classical methods. All

of these method are linear methods originally.

the class of nonlinear classical methods since we need

them as preconditioners. At the end of the chapter we
describe a sample problem with which we will illustrate

all multivariate nonlinear problems and present numer¬

ical results for the methods described.

In Chapter 2 we describe the theory of linear Krylov chapter 2

space methods. This large class of iterative linear

solvers can be classified with respect to several parame¬

ters, of which we choose the three we consider the most

important:

Matrix Type Different Krylov space methods exist for

symmetric matrices, symmetricpositive definite ma¬

trices and general matrices.

Projection Method Krylov space methods use two dif¬

ferent approaches for projecting the residual vector

into the Krylov space: Either the residual vector is

determined such that it is odhogonal to the con¬

sidered Krylov space (OR approach) or the residual
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vector is determined such that it is minimized over

the Krylov space in consideration (MR approach).

Krylov Space Generation The generation of a Krylov

space according to its definition is numerically un¬
stable. Therefore special methods have been devel¬

oped to generate a Krylov space in a numerically
stable way. We distinguish between the Arnoldi

process based on orthogonalization, and the Lanc¬

zos process based on biorthogonality.

Table 1.1 Classification of linear Krylov space methods

with respect to three parameters: Matrix Type (rows),

Projection Method (columns), Krylov Space Generation

(colors): Grey is for symmetric Lanzcos/Arnoldi meth¬

ods, black is for general Arnoldi methods, white is for

general Lanzcos methods.

Symmetric Matrix

General Matrix

pos. def. indefinite

^^^B^^^M
GMRES

Mininimization

QMR

Orthogonalization

B1CG

In Table 1.1 an overview of linear Krylov space meth¬

ods is shown with respect to these three parameters.
For every category this figure shows only one represen¬

tative, although there are much more methods around.

Since nonlinear operators cannot be categorized with

respect to the matrix type we have to choose the most

general matrix type for our candidates to be nonlin-

earized. This is why we describe the four methods given
in the last column of Table 1.1, of which GMRES and
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FOM are Arnoldi-methods, BiCG and QMR are Lanczos-

methods. The theory of Krylov space methods is devel¬

oped with respect to the two remaining parameters, pro¬

jection method and Krylov space generation, of which

the first one is not restricted to Krylov space methods

but belongs to the larger class of projection space meth¬

ods.

In Chapter 3 the theory of vector extrapolation meth- chapter 3

ods is reviewed with respect to both for the linear and

the nonlinear case. Their connection with Steffensen's

method in the scalar case and Henrici's extension of

it in the multivariate case is revealed. The vector ex¬

trapolation methods MPE, RRE and TEA are described

and their equivalence to the Krylov space methods FOM,
GMRES and BiCG is proved.

In Chapter 4 the approaches of Krylov space methods chapter 4

and vector extrapolation methods are combined to non¬

linear Krylov space methods. For the Arnoldi process

a method is given to perform the transition to the non¬

linear case. These methods are illustrated by two new

methods nlFOM, nlGMRES.

In Chapter 5 we describe the application of an ABB DE- chapter 5

GLOR oven. By this real world application we illustrate

the performance of the new algorithms and we com¬

pare them with the existing ones that we described in

Chapter 1. Numerical results are given and interpreted.
Based on these results we conclude on our methods.

1.2 Notation and Preliminaries

1.2.1 Terminology

We refer to any mapping that returns a scalar value as

functional. Any mapping that returns a non scalar value

(i.e. a vector or a matrix) is referred to as operator.
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1.2.2 Typesetting

Throughout the thesis we use the typesetting conven¬

tions for mathematical variables shown in Table 1.2.

Table 1.2 Typesetting conventions for variables.

Mathematical

Meaning

Typeset Examples

Integer scalar

values

small non bold

roman letters

i=1

Real scalar

values

small non bold

greek letters

<x = 0.3

Vectors small bold letters

(roman and

greek)

x> tk

Matrices large bold letters

(roman and

greek)

A, W

Sets large calligraphic
letters

M

Operators and functionals reflect the type of their re¬

turn value in their typesetting, i.e.

• the operator Dtp returns a matrix,

• the operator cp returns a vector.

An exception are functionals that return a scalar value:

Since we do not deal with functionals that return integer
values, a scalar functional is always type set non bold.

However, it can be represented by a roman or a greek
letter.

We denote the transposition of a matrix by an H in the

upper right corner of an object. We use a T instead of

an H, if a transposition is used for "cosmetic" purposes

only (e.g. to save space on paper).
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1.2.3 Matrix Properties

Definition 1.3 A square matrixA g Crixn is called her- hermitian

mitian if

AH=A. (1.8)

A real square matrix A g Rnxn with property (1.8) is symmetric

called symmetric.

Definition 1.4 We call a square matrix A e Cnxn skew skew

hermitian if hermitian

AH = -A. (1.9)

A real square matrix A e Rnxn with property (1.9) is skew

called skew symmetric. symmetric

Definition 1.5 A square matrixA g Crixn is called pos- positive

itive definite if the real part of the quadraticform is pos-
definite

itive with respect to any nonzero vector a g CT1, a ^ 0,

i.e.

fie(aHAa)>0. (1.10)

Note that condition (1.10) is equivalent to requesting
that the eigenvalues (Def. 1.7) of the hermitian part

(Def. 1.10) of A are positive.

Definition 1.6 The range of a matrix A G Rmxri is de- range and

fined by NuLL SpACE

of a Matrix

01(A) := {y G Rm|3x g IT : y = Ax} .

The null space of a matrix A g Rmxri is defined by

K(A) := {xgR1t|Ax = 0}.
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1.2.4 Matrix Decompositions

Eigenvalue

decomposi

TION

Definition 1.7 If a square matrix A g Rrixri can be de¬

composed into a diagonal matrix A e Cnxn and a nonsin-

gular matrix V e Cnxn such that

A = VAV
-i

A is called diagonalizable. A is the diagonal matrix con¬

taining the eigenvalues ofA, V is the matrix of eigenvec¬
tors of A. This decomposition is called eigenvalue de¬

composition.

A hermitian matrix has real eigenvalues and orthonormal

eigenvectors.

Schur De

composition

Theorem 1.8 (cf. Theorem 7.1.3, [15]) Any squarema-

trix A g Cnxn can be decomposed according to a uni¬

tary matrix Q g Cnxn and an upper triangular matrix

U g Cnxn whose diagonal entries are the eigenvalues of
A. The decomposition ofA defined by

QUQH

is called Schur Decomposition of A. D

singular Theorem 1.9 (cf. Theorem 2.5.2, [15]) Any matrixA g

value de cuxm can be decomposed according to
COMPOSITION

A = ULVh [UtU2
L 0

0 0

= <-MUiLV

(lid

(1.12)

L g RTXT is a diagonal matrix with positive diagonal el¬

ements where r denotes the rank of A, U g Cnxn and

V g cmxm are unitary matrices. They are partitioned
intoU! g Cnxr, U2 G cnxin-r\ Vt g CmXT, andV2 £
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\li is a orthonormal basis of31(A), U2 is an orthonormal

basis of31(A)-1, Vi is an odhonormal basis ofN(A)1- and

V2 is an orthonormal basis ofN(A).

Decomposition (1.11) is called singular value decompo¬
sition (SVD) ofA, with Î. containing its singular values,

U containing its left singular vectors and V containing its

right singular vectors. The singular value decomposition

of a matrix is unique up to the order and uniqueness of
its singular values. Therefore the diagonal elements in L

can be ordered from the largest one in the upper left to

the smallest one in lower right corner of the matrix.

Decomposition (1.12) is called the economical version of

the SVD ofA. a

Definition 1.10 Any square matrix A e Cnxn can be

decomposed into its hermitian part (Definition 1.3) S e

Cnxn and skew hermitian part (Definition 1.4) T g Cnxn

so that

A = S+T.

S and T are determined by

S:=I(ah+a),
T.I (A»-A).

1.2.5 Norms

We denote norms of vectors and matrices by the com¬

mon notation ||||. If nothing else is specified, any norm

can be used.

Hermitian

part AND

SKEW

HERMITIAN

PART
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operator Definition 1.11 Let A e Cmxn be a linear operator. We

norm caii

||A|| := max ||Ax||
||x||=1

an operator norm or induced vector norm.

a norm of a Definition 1.12 (cf. [15], p. 530) Givenavectorx e Cn

vector ana- a hermitian positive definite matrix A e Cnxn. The

A-norm of a vector x is defined by

||x||A := VxHAx. (1.13)

Please recall that the corresponding matrix A must be

positive definite to ensure that xHAx is positive for any

non zero vector x — a necessary condition for (1.13)

to be a norm. The following lemma taken from Anne

Greenbaum [16] generalizes the definition above for any

induced vector norm and extends it also to matrix norms

if the matrix used is hermitian positive definite.

Lemma 1.13 (Theorem 1.3.1, [16]) If \\ \\ is a matrix

norm onMnxn, and ifM e Rnxn is nonsingular, then

HaiUhmHIMam-1!!

is a matrix norm. If\\ \\ is induced by a vector norm then

||A||mhm is induced by the vector norm

II*IImhmH|Mx||.

Proof. The matrix norm property is easily proved

by verifying the axioms of matrix norms. We there¬

fore concentrate on the induced vector norm. If ||A|| =

maxx^o||Ax||/||x||, then
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IMHM max||MAM-lx||/||x||

max||MAa||/||Ma||

max||Aa||MHM/||a||MHM.

D

Definition 1.14 Given an arbitrary matrix norm \\\\ and

a matrix A e Rnxn. The condition number k(A) is de¬

fined by

k(A) HAH.

Matrix

Condition

Number

In [26, p. 168] we find the following Lemma that helps estimating

us estimate the norm of the inverse of an operator. norms

Lemma 1.15 Let Melnxn and let\\-\\ denote any oper¬

ator norm. If ||M|| < 1 then 1 + M is nonsingular and

1

1 |M|
<||(1+M)- <

1

1-IIMH
(1.14)

Banach

Lemma

Proof A matrix 1 + M is nonsingular, if the linear

system (1 + M)x = 0 has only the trivial solution x = 0.

Suppose that (1 + M)x = 0. Then x = -Mx and ||x|| =

||Mx|| < ||M||||x||. Since ||M|| < 1, the only solution to

this inequality is x = 0. Therefore A := (1 + M)_1 exists.

From

1 = ||11| = ||A(1 + M)|| < ||A|| ||1 + M|| < ||A||(1 + ||M||),

we conclude the left hand side of (1.14). Similarly

||A||=in-AM|| <1+||A||||M||

yields the right hand side of (1.14). D
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Perturba

tion

Lemma

An important consequence of this lemma for estimating
another matrix inverse is the following one.

Lemma 1.16 (2.3.2, [28]) Let A,B g and let

denote any operator norm. If\\A \\ < p, ||A —B|| < q and

pq < 1, thenB-1 exists and

IIB"11| <
P

1 -pq

Proof. Define M := A-1(B -A). We have ||M|| <

IIA^IIIIA-BH <pq < 1. By Lemma 1.15 (1+M)-1 exists

and

ÎT^slId + Mi-'is^.
Since A(1 + M) = B, also (1 + M)-1 A-1 = B_1 exists.

Hence we have

IIB-^lld+MrlHA-1!^

as claimed. D

1-pq'

1.2.6 Inverses

Moore

Penrose

pseudo

INVERSE

Definition 1.9 gives rise to the definition of a generalisa¬
tion of the common matrix inverse.

Definition 1.17 Given the singular value decomposi¬
tion ofa matrix A g Rrixm as

L 0

0 0
A = ULVH with L

The pseudo inverse A+ ofA is defined by

A+ = VL+UH with L4
L-1 0

0 0
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1.2.7 Sets

Definition 1.18 Let s0 eRn be a given point and p g R

be a given scalar value.

We call the set

3J(s0)p) :={xeRn|||x-s0|| < p}

the open sphere around s0 with radius p.

Definition 1.19 Let s0 eRn be a given point and p g R

be a given scalar value.

We denote the closed sphere around s0 with radius p by

Ë(s0,p):={xRn|||x-s0|| < p}

1.2.8 Derivatives

We use the following definitions from Ortega and Rhein-

boldt [28] motivated by the mean value theorem 1.23 to

define two kinds of derivatives for nonlinear operators.

Definition 1.20 (Def. 3.1.1, [28]) An operator <p : M c

ln —» Rm is Gateaux- (or G-) differentiable at an interior

point ofx ofM if there exists a linear operator A g Rrixm

such thatfor any heRn,

llml|tp(x + th)-tp(x)-tAh||
=Q

t->o t

The linear operator A is denoted by Dcp(x) and is called

the G-derivative of cp at x.

Definition 1.21 (Def. 3.1.5, [28]) An operator cp : M c

Rn^Mmis Fréchet- (or F-) differentiable atxe int(M) if
there is an A g Rrixm such that

||«p(x + h)-«p(x)-Ah||

||h||
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Again the linear operator A is denoted by Dcp(x) and is

called the F-derivative of cp at x.

Note that the F-derivative is a special case of a G-

derivative. That is: Whenever an operator has an F-

derivative at a point x then it is also G-differentiable at

that point.

The following definition of partial derivatives is also given
in Ortega and Rheinboldt.

partial Definition 1.22 (Definition 5.2.2, [28]) LetMn denote

derivatives iheproduct space R^1 x • • • x R1^, where tm -\ \-nv=n.
We denote the elements ofKn by X = (xi,..., xp ) with

xt g R^1 for i = 1,..., p.

Let <p : M c fu -t Rm and, for a given X = (x-\,... ,xv) e

M, set

Mt(X) = {y GR1Tl|(x1,...,x1_1,y,x1+1,...xp) g M} .

We define cpt(X) : Mt(X) -> Rm by

cpt(X,y) -^(pfa,...^,...,^), y gMt(X).

Then cp has a partial F-derivative 3tcp(X) := Dcp1(X,x1)
at X with respect to R^1 ifxx is an element of the interior

ofMt and cpt has an F-derivative atxx.

In addition, 9tcp is strong atX if, given e > 0, there is a

6 > 0 so that

||cp(Y,y1 + H1)-cp(Y)y1 + k1)

-31cp(X)(h1-k1)|| < eH^-kJ

whenever ||X - Y|| < 6, ||ht|| < 6, and ||kt|| < 6.



1.2 Notation and Preliminaries 45

Both kinds of derivatives of cp
— Fréchet and Gateaux— jacobian

can be expressed by the Jacobian ]v (x) of the operator,

LpM :=

3icpi(x)

QlCPmM

3nCpl(x)

àn<pm(x)

if they exist. However, Ortega and Rheinboldt note that

the existence of the Jacobian neither implies the G-

differentiability nor the F-differentiability of the oper¬

ator cp.

1.2.9 Mean Value Theorem

We cite a very important mean value theorem for non¬

linear operators from Ortega and Rheinboldt without

proof. The proof can be found in their book [28, pp.

68-73].

Theorem 1.23 (3.2.12, [28]) Let cp : M c R^ -> Rm be

continuously (G- or F-)differentiable on a convex set M0 c

M, and suppose that, for constants <x > 0 and p > 0, Dcp

satisfies

||Dcp(x)-Dcp(y)||<a||x-y||P) Vx,y G M0.

Then, for any x, y e M0,

|cp(y) -cp(x) -Dcp(x)(y -x)|| < -!L.\\y-x\\v+\

D
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1.2.10 Iterative Methods

Iterative

Method

Definition 1.24 An iterative method is a computational
rulefor solving a system of (nonlinear) equations

Linear

Iterative

Method

cp :R'1 ->

cp(s)=0

,x i—> <p(x)

(1.15)

for s starting with an initial approximationfor the solution

so and generatingfurther approximations slfori = 1,2,...

by applying an iteration rule {gJ^L0

gt : Rnx(t+1 )
^ R^, (S0) Sl ,

. . . SJ ^ g(S0) Sl ,
. . . SJ

s1+1 := g1(s0,s1,...s1), (1.16)

until convergence.

Definition 1.25 A linear iterative method is an iterative

method in which thefunctional cp, the zero of which has

to befound, is defined by

AGrxu,b Gln

cp :R^ ^R^.xi-^b-Ax.

stationary Definition 1.26 If the operator of the iteration rule de-

iterative fined by (1.16) is linear, i.e. for some constant matrix
method

G e Rnxn and some constant vector deWi

g(x) = Gx + d,

the iterative method is called stationary.

Residual Definition 1.27 The operator

r: (R^^R^.R^) ^R1T,(cp,s1) ^ cp(st)

that maps the current approximation st to the operator to

be solved <p() is called residual.
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For linear iterative methods the residual is oftheform

r: (R1TX1T,R1T,R1T) -> Rn, (A,b,st) ^b-Ast.

In sections where A, b and st are obviousfrom the con¬

text, an abbreviationfor the residual is used

r1:=r(A,b,s1),

rt is called the residual vector.

Definition 1.28 Given the exact solution s of cp. error

For all iterative methods we define the error operator of
the current approximation st to be

T| :R1T^R1T,s1i-^s-s1.

In sections where s and the current approximation st are

obvious from the context, an abbreviation for the error

operator is used

Tit :=T)(Si),

r^ is called the error vector.

Lemma 1.29 Given an iterative method that converges

to a zero s of an F-differentiable operator cp, satisfying
the conditions ofLemma 1.23.

In step i the error operator r\ and the residual operator r

are connected by

r(cp,s1)=-Dcp(s)r|(s1)+0(||r|(s1)||2).
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Proof. By Definition 1.28 of the error operator we have

st = s — T|(st). Using the Taylor approximation of r(cp, s —

T|(sO) around s we get

r(cp)Sl) =r(cp,s)-Dr(cp)s)r|(s1) + 0(||r|(s1)||2)

o

= -Dcp(s)11(sl) + 0(||r|(sl)||2)

as claimed. D

Note that Lemma 1.29 reads for linear systems

r(A,b,st) =Aii(st).

1.2.11 Limit and Anti-Limit

Definition 1.30 Given an infinite sequence ofvectors (or

values) {xl},i = 0,1,2..., generated by a (possibly un¬

known) operator

g :Rn->Rn,x-> g(x)

Xi+i =g(Xx) for i>0.

We call

s = g(s)

a limit ofthe given sequence iffor every e > 0 there exists

ani>0 such that ||x, — s|| < efor all) > i.

If s is not a limit, it is called anti-limit of the sequence

<xt).

1.2.12 Types of Convergence

Iterative methods can be classified by the rate ofconver¬

gence. We distinguish between two classes. The first
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class, the quotient convergence class is motivated by the

fact that estimates of the form

||r|(xk+1)|| <Y||r|(xk)r,Vk>k0 (1.17)

often arise naturally in the study of iterative processes.

We recite a definition by Kelley [25].

Definition 1.31 (Definition 4.1.1, [25]) Let {xt} c R^

be a given sequence and seKn. Then

• the sequence converges to s Q-linearly with Q-factor

Qi G (0,1) iffork sufficiently large

||Tl(xk+l)||<Ql||T,(xk)||.

• the sequence converges to s Q-superlineraly if

i^M ||r|(x1)||

• the sequence converges to s Q-quadratically if the

sequence converges to s and there is a Q2 > 0 such

thatfor k sufficiently large

l|r|(xk+1)||<Q2||r|(xk)||2.

• the sequence converges to s with Q-order p > 1 if
the sequence converges to s and there is a Qp > 0

such thatfor k sufficiently large

||Tl(xk+l)||<Qp||T,(xk)f.

The optimalfactors Qi, Q2 and Qp are called quo¬

tient convergence factors or Q-factors, for short.

The second class, the root convergence class, is moti¬

vated in Ortega and Rheinboldt [28] by (1.17). For p = 1

and k0 = 0 this equation reduces to

||îl(xk)|| <y||Tl(xk-i)|| < ••• <Yk||il(x0)||. (1.18)
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"If Y < 1 then (1.18) shows that the norms of the error

vectors r|(xk) are decreasing as rapidly as a geometric

progression with ratio y. Hence, in analogy with the root

test for the convergence of series, we are led to consider

geometric averages of the r|(xk)" [28, p. 288]. Thus the

name root convergence.

Because it is much simpler to understand than the def¬

initions given by Ortega and Rheinboldt (although they
are more precise) we use Kelley's [25] definition of R-

convergence.

Definition 1.32 (Definition 4.1.3, [25]) Let {xj c R^

be a given sequence and s g Rn. Then {xl} converges

to s R-(quadratically, superlinearly, linearly) if there is a

sequence {£,t} c R converging Q-(quadratically, superlin¬

early, linearly) to zero such that

llxx - s|| < £,t.

We say that {xl} converges R-superlinearly with R-order

p > 1 if{E,i} converges to zero Q-superlinearly with Q-
order p.

1.2.13 Spectral Radius

Definition 1.33 (Def. 1.3.3, [16]) The spectral radius

p(A) of a matrix A g Rnxn is

p(A) := max{|A| : A is an eigenvalue ofA}.

Lemma 1.34 (Theorem 1.3.2, [16]) If\\-\\ is any opera¬

tor norm and A g Rnxn, then p(A) < ||A||.

Proof. Let A be an eigenvalue of A with |A| = p(A), and

let v be a corresponding eigenvector. Let V be the matrix

in Rnxn each ofwhose columns is v. Then AV = AV, and

p(A)||V|| = |A|||V|| = ||AV|| = ||AV||<||A||||V||.
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Since ||V|| > 0, it follows that p(A) < ||V||. D

Lemma 1.35 (Theorem 1.3.3, [16]) Let A g Rnxn be

given. For any e > 0 there is a matrix norm \\-\\ induced

by a certain vector norm such that

p(A)<||A||<p(A)+e.

Proof. The left hand side of the inequality is estab¬

lished by Lemma 1.34. Lets concentrate on the right
hand side. By the help of the Schur decomposition
(Definition 1.8) we construct a norm to a given e. Let

A = QUQH be the Schur decomposition of A and Dt :=

Diag(t, t2,... ,tn). Then we have

Ai t-1^ t-2u1>3 ... t-^+1u1)1T
"

A2 t-2u2)3 ... t-n+1u2>n

An-1 t"1T+1tLa_1)1T

For t sufficiently large the sum of all off diagonal ele¬

ments is less than e and HDtUD^1 ||i < p(A) + e. There¬

fore let us define a norm

HAIUHIDtQ^QD^Il!

According to Lemma 1.13 this is a matrix norm induced

by the vector norm || ||mhm with M = DtQH.

1.2.14 Contraction Mapping

The following theorem is well known and very impor¬
tant. It tells under what circumstances the fixed point
of a contraction mapping is unique, and it gives an up¬

per bound for the convergence rate. We cite theorem

and proof from [25].

DtUD^1 =
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Contraction Theorem 1.36 (Theorem 4.2.1, [25]) LetM be a closed

mapping subset ofRn and let g be Lipschitz continuous on M with
theorem

Lipschitz constant 0 < ct < 1 such that g(x) g M for all

x g M. Then there is a uniquefixed point of g, s g M, and

the iteration defined by

Si+i := g(St)

converges Q-linearly to s with Q-factor ct for all initial it¬

erates So G M.

Proof. Let So G M. Since g is closed on M the sequence

{sj stays in M. The sequence {sj remains bounded,

since for all j > 1

l|s,+i -s,|| = ||g(s,)-g(s,_i)|| < ct||s,-Sj-tH <...

< ff'Hs! -s0||.

Therefore

i-i

llsi-soil = 11^ sk+1 -sk|
k=0

i-l

< Y.WW+Ï -sk||
k=0

i-l

< UsT-SollX^
k=0

< ||Si-s0||/(1-ct).

Now, for all i, j > 0,

= l|g(si+,-i)-g(Si-i)||

< ct||s1+,_i -s1_1|| <
...

< o-l||s,-s0||

&
ii ii

<
y^^llsi-soll.
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Hence for all j, lim1^00 ||s1+1 — sj =0 and therefore the

sequence {sj is a Cauchy sequence and has a limit s.

If g had two fixed points s and s in M, then the following
inequality would hold,

l|s-s|| = ||g(s)-g(s)||<CT||s-s||.

Since ct < 1 this can only be true if ||s — s|| = 0, i.e. s = s.

Hence the fixed point is unique.

Finally we note that

l|Si+i -s|| = ||g(sl)-g(s)|| <ct||s1-s||,

which shows that the iteration has a Q-linear conver¬

gence rate with Q-factor ct to s. D

We like to remark that if g is linear, i.e. g(x) = Gx + d

with G g Rnxn being a matrix and d g Rn being a vector,

then by Lemma 1.35 ct equals the spectral radius p(G).

Thus Theorem 1.36 reads for a linear iterative method:

Corollary 1.37 Let G e Rnxn and d g Rn, let g(x) :=

Gx + d. If p( G) < 1, then g has a uniquefixed point s and

the iteration defined by

Si+i :=g(st)

converges Q-linearly to s with Q-factor p(G) for all initial

iterates s0 G Rn. ü

The following lemma specifies conditions such that a

nonlinear operator f with a dominant linear part has a

unique solution f (x) = y. We cite this lemma as a short¬

ened version of Lemma 5.1.6 by Ortega and Rheinboldt

[28].
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Lemma 1.38 (cf. 5.1.6, [28]) Suppose thatA g Rnxn is

nonsingular and that cp : M c In ^ ln is Lipschitz con¬

tinuous on a closed sphere 230 = 23 (x0, e) c M with con¬

stant ct where

0<CT<ß-\ ß = ||A_1||. (1.19)

Consider the operator f : 23 0 —» Rn by f (x) := Ax — <p(x).

Thenfor any y e 15-\ = 23(f(x0),p), where p := (ß_1 — a)e,
the equation f (x) = y has a unique solution in 230. Hence,

in particular, 23i c f(230).

Proof. For fixed y G 231, define the operator g : 23 0 —» Rn

by g(x) := A"1 (cp(x) +y) = x - A"1 (f(x) - y). Clearly,
f (x) = y has a unique solution in 230 if and only if g has

a unique fixed point. But, for any x, z g 230

||g(x) - g(z)|| = HA"1 (cp(x) - cp(z))|| < ßa||x-z||,

so that, by (1.19), g is contractive on 230. Moreover, for

any x g 230,

||g(x)-x0|| < ||g(x)-g(xo)|| + ||g(xo)-xo||

< ßCT||x-xo|| + ß||f(x0)-y||

< ßcre + ßp = e

by definition of p. Hence, g maps 230 into 230, and by
the contraction mapping theorem 1.36, g has a unique
fixed point s in 23 o.

The implicit function theorem is well known and impor¬
tant. It shows that under some circumstances the so¬

lution of a multivariate operator equation cp(x,y) = 0 is

defined by an implicit continuous operator x = g (y ). It

also gives conditions for the existence of the F-derivative

of the implicit operator at the solution. Theorem 1.39

and its proof are cited from Ortega and Rheinboldt [28].
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Theorem 1.39 (Theorem 5.2.4, [28]) Suppose that cp :

M c Kn x F ^ lu is continuous on an open neighbor-
hoodMo c M of a point (x0,y0) for which (p(x0,y0) = 0.

Assume that 91 cp exists and is strong at(xo,y0), and that

9i cp(xo,y0) is nonsingular.

Then there exist open neighborhoods 15-\ cRn and 23^c
Rp qfxo andy0, respectively, such that, for any y g 232,

the equation <p(x,y) =0 has a unique solutionx = g(y) g

23 t and the operator g : 232 —» Rn is continuous.

Moreover, if 92cp exists at (xo,y0), then g is F-

differentiable at x0 and

Dg(Uo) =-(3icp(xo,yo))~192<p(xo,y0)- (L20)

Proof. In a first step we show that the solutionjxo,y0)
of the equation <p(x,y) = 0 is unique in 23i x 232. Let

us therefore define A := 9icp(xo,y0), ß := ||A_11|, and let

0< CT< ß"1.

Since 9i cp is strong at (xo,y0), we may choose 6i, 62 > 0

so that

||cp(x,y)-cp(z,y)-A(x-z)||<CT||x-z|| (1.21)

for all x,z g 231 := 23(x0,6i) and y e 232 := 23(y0,62), and

that«! x232 cM0.

For a fixed y g 23 2, we define the operator ft, : 231 —> R^

by

fy(x):=Ax-<p(x,y)-<p(x0,y), VxeSi.

Now (1.21) implies that

\\iy(x)-iy(z)\\<cj\\x-z\\, VX.ZG^I.

Since cp is continuous at (xo,y0) we may also assume

that 62 has been chosen sufficiently small that

||cp(x0,y)|| = ||cp(x0,y)-cp(xo,iJo)|| < P := (ß_1 -v)à^

Implicit

Function

Theorem



56 Introduction

Now Lemma 1.38 can be applied. Thus we know that

the equation Ax —ft, (x) = cp(x0,y) has a unique solution

in 231. This implies that for any y g 232 the equation

(p(x,y) =0 has a unique solution in 231.

Let us denote this solution by g(y). In a second step
we show that the operator g : 232 —» Rn is continuous.

Let therefore y,z g 232. By definition of g, we have

<p(g(y),y) = <p(g(z),z) = 0. With the help of (1.21) we

construct

l|g(y)-g(z)ll

< HA"1 (cp(g(y),y) - cp(g(z),y) - A(g(y) - g(z)))||

+||A-1(cp(g(z))y)-cp(g(z))z))||

< ßo-||g(y) - g(z)|| + ß||cp(g(z),y) - cp(g(z),z)||.

Since ß ct < 1, by solving this inequality for || g (y ) — g (z) \\
we obtain

\\9(y)-9(z)\\<j^\\v(9(z),y)-v(9(z),z)\\.
(1.22)

Thus the continuity of cp implies the continuity of g.

In the final step we show the existence of the derivative

of g at y0. Assume that 92<p(xo,y0) exists. Then by

adding and subtracting 92cp(xo,y0) in the second step

(1.22) becomes

\\9(V) ~ 9(Vo)\\

- jTr(3^lltp(9^o).y)-<p(g(y0)>yo)ll

< y—^(ll<p(xo,y) -cp(xo,y0) - 92cp(xo,y0)(y -y0)\\

+||92cp(x0,ijo)(y-yo)ll)
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For a given e > 0 we find 6 > 0 so that for all y G 23 (y0,6)
the last inequality becomes

\\9(y)-9(y0)\\<M\y-yo\\,

A:=ß/(1-ßff)(||a2«p(xo)-y0)|| + e).

Set A := 9i cp(x0,iJo) and B := 32<p(xo,y0). We are able to

construct now

l|g(y)-g(yo)+A-1B(y-y0)ll

< ß||A(g(y)-g(y0))+B(y-yo)ll

< ßl|tp(g(y),y) -<p(g(y0),y) -Moiv) - 9(y0))\\

+ßll<p(g(y0).y) - <p(xo,y0) B(y -Vo)\\

< ßo-||g(y)-g(y0)ll + ße||y-yoll < ß(^ + e)\\y-y0\\.

This result implies that the F-derivative of g at y0 exists

and that (1.20) holds. ü

1.2.15 Standard Assumptions

In order to determine the type and rate of convergence of

an iterative method, Kelly [25] specifies three assump¬

tions on a nonlinear operator cp that are often required
to prove the convergence of a particular method.

Definition 1.40 (Assumption 4.3.1, [25]) Given a non¬

linear system as defined by ( 1.15). We refer to thefollow¬

ing assumption on cp as the standard assumptions on cp.

1. The nonlinear system cp(x) = 0 has a solution s.

2. Dcp :M^Rrixri is Lipschitz continuous with Lip¬
schitz constant ct.

3. Dcp(s) is nonsingular.
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The following lemma guarantees some upper and lower

bounds on Dcp and cp if the standard assumptions hold.

Lemma 1.41 (Lemma 4.3.1, [25]) Let us suppose that

the standard assumptions hold.

Then there is 6 > 0 so that for all x g 23 (s, 6) and any

operator norm \\-\\

||Dcp(x)||<2||Dcp(s)||, (1.23)

||Dcp(x)-1||<2||Dcp(s)-1||) (1.24)

and

1lllTTÏÏ<IMx)||<2||Dcp(s)||||11||. (1.25)
2||Dcp(s

Proof. Let 6 be small enough such that 23(s, 6) c M.

From the Lipschitz condition on Dcp it follows that for

allxG23(s,6)

||Dcp(x)|| < ||Dcp(x)-Dcp(s)|| + ||Dcp(s)||

<a||T,|| + ||D«p(s)||.

Hence (1.23) holds if ct6 < ||Dcp(s)||.

For the second equation let us set A := Dcp(x) and B :=

Dcp(s)-1. We have

IIa^ihiia^b^bii^ikba)-1!!^!!.

We can now apply the Banach Lemma 1.15 to || (BA)-11|
and obtain

IIA-11| <
l|B

i-in-BAir
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Requiring ||1 — BA|| < 1/2 makes sure that the Banach

Lemma can be applied. This inequality becomes

||1-Dcp(s)-1Dcp(x)|| = ||Dcp(s)-1(Dcp(s)-Dcp(x))||

< ||Dcp(s)-1||||Dcp(s)-Dcp(y)||

< cx||T3cp(s)
t
UN-nil (1.26)

< ŒÔHDcpts)-1!! < 1/2.

This yields 2ct6 < HDcp(s)-11| and the inequality (1.24).

The prove the final inequality (1.25) we have to recall

the fundamental theorem of calculus which ensures

cp(x)-cp(y) = Dcp(y+t(x-y))(x-y)dt.

Applying this theorem to our case and using (1.23) we

get

|cp(x) Dcp(s + tii)iidt|| < ||n| |Dcp(x)||dt

<2||D«p(s)||||T,||.

This is the right hand side of inequality (1.25).

To prove the left hand side of the inequality we use

Dcp(s) cp(x)=Dcp(s
-i

Dcp(s +tT|)T|dt,

which we transform into

T| = Dcp(s) cp(x (1 -Dcp(s)-1Dcp(x))T|dt.
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By (1.26) we are now able to estimate

(1 -Dcp(s)-1Dcp(x))dt||||Dcp(s)-1cp(x)|| > ||T,||ll-

> INI/2.

Therefore

||11||/2<||Dcp(s)-1cp(x)||<||Dcp(s)-1||||cp(x)||)

which completes the proof. D

By the help of this lemma we are now able to prove a

lemma that provides a stopping criteria for nonlinear

iterative methods by the use of the relative nonlinear

residual norm ||cp(x)||/||cp(so)||.

Lemma 1.42 (Lemma 5.2.1, [25]) Let the standard as¬

sumptions hold and let 6 > 0 be small enough so that the

conclusions ofLemma 1.41 holdfor x g 23 (s, 6).

Thenfor all x, s0 G 23 (s, 6)

NI
<

||cp(x)||
<

4k(D«p(s))||ti|

4||t,0||k(D«p(s))
"

||cp(s0)||
"

||t,0|

Proof. By Lemma 1.41 we have

Hull

2||Dcp(s) -II
< ||cp(x)|| <2||Dcp(s)||||11||, and

1
<

1
<

2||Dcp(s)

2||Dcp(s)||||n0||
"

||cp(s0)||
"

Hnol

Combining these two inequalities yields the stated in¬

equality, ü
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1.3 Existing Techniques

1.3.1 Newton's Method

The best known method to find a zero of a system of

nonlinear equations is Newton's method. It can be de¬

rived very easily by cutting the Taylor expansion of a

nonlinear operator after the first order term. Let Dcp(x)
denote the Fréchetderivative of cp at x. In the vicinity of

the zero s of cp the following expansion holds,

0 = cp(s) = cp(x) +Dcp(x)i1(x) +0(||i1(x)||2).

Solving for the error vector we get

T|(x) « —D<p(x)_1<p(x).

Now we use s =

an iteration s1+i

known method

+ T| (x) giving rise to the definition of

st + T| (st) which yields Newton's well

St+i :=st-Dcp(St) \(sl).

An algorithm for Newton's method is presented in Algo¬
rithm 1.3.

It is well known that Newton's method converges Q-

quadratically to a single zero of cp if the starting vector

So is sufficiently close to the solution and the standard

assumptions hold (see for example [25, pp. 71]). If Dcp
is not Lipschitz continuous, Newton's method converges

Q-superlinearly to a single zero of cp. However, if s is a

multiple zero of cp the convergence of Newton's method

with respect to this solution is only linear.

Another important result about Newton's method is the

Kantorovich Theorem. This theorem guarantees the con¬

vergence of Newton's method for initial guesses with

certain properties. We cite the theorem without proof

CONVER

GENCE OF

Newton's

METHOD
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Algorithm 1.3 Basic Newton Algorithm.

1 function Newton(cp() . Dcp(), s0, e):vector;

2 r0:=cp(so); {initial residual}
3 i:=Û;

4 while ||rt||>£||r0|| do

5 Jt:=Dcp(St); {derivative}
6 ht^-J-Vt; {factorize and solve}
7 s1+1 :=st + Ht; {new solution}
8 r1+1 :=cp(s1+1); {new residual}
9 i := i + 1

io end;

11 Newton := st

12 end Newton;

from Stoer [38, pp. 326]. For a proof we refer to Ortega
and Rheinboldt [28] or Rheinboldt and Antosiewicz [2].

Theorem 1.43 (Newton-Kantorovich) Given an opera¬

tor cp : M c R^ —» R^ and the convex set M0 C M. Let cp

be mutinously differentiable on M0. Moreover let cp meet

thefollowing conditionsfor an initial guess s0 G M0:

1. ||Dcp(x)-Dcp(y)||<Y||x-y|| Vx,y g M0,

2. ||Dcp(s0)-1||<ß,

3. ||Dcp(s0)-1cp(so)|| <<x.

We define constants h := ocßy and

1 ±V1 -2h

P+,- :=
^

a-

/f h < 1/2 and 23(s0,p-) c M0 the following statement

holds: The sequence {sk} defined by

Sk+i :=sk-Dcp(sk) 'cp(sk) for k = 0,1 ...

stays in 23(s0, P-) and converges to the unique root of (p

inMo n23(s0,p+).
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Although Newton's method converges very fast and uses disadvan

few steps in general, one step could be very expensive. tages of

The two main tasks in every step are ^1?
J ^ METHOD

(a) computing the derivative (line 5),

(b) solving the linear system (line 6).

In the dense case Kelley [25] estimates that the cost for

computing Dcp by finite differences is n times the cost

of an evaluation of cp, the amount of work for solving the

linear system is of order n3.

Several suggestions have been made to reduce the costs

per step of Newton's method. However, every attempt to

solve the problem has resulted in a convergence order

less than 2. Among the proposed solutions are Quasi
Newton methods that address task (a) by approximating
the first derivative of cp (or its inverses) in some way, and

inexact Newton methods that address task (b) by solving
the linear system of Newton's method approximately.

1.3.2 Quasi-Newton methods

Definition 1.44 A quasi-Newton method is a Newton

method in which the derivative of cp(sj is replaced by
an approximation ofDcp (st).

Among the approaches to reduce the costs per step of

Newton's method the following can be categorized as

quasi-Newton methods:

• the chord method and chord type methods,

• high-order methods,

• difference approximation methods,

• Broyden's method.
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The Chord Method. This is a Newton method that re¬

places the derivative of Dcp by the constant matrix J0 =

Dcp(so) throughout the algorithm. Thus J0 has to be

computed only once at the beginning of the algorithm.
Also the factorization can take place before the main

loop. This way the amount of work for solving the linear

system in every step is reduced to 0(n2), which is about

the same as for a matrix vector product. An algorithm
is given in Algorithm 1.4.

Algorithm 1.4 The chord method.

function Chord(cp(), Dcp(), So, e):vector;

r0 :=cp(s0); {initial residual}
Jo :=Dcp(s0);
i • (V

{initial derivative}

while ||rt||>£||r01| do

K-= JoV; {just solve}

St+i :=St + ht; {new solution}

r1+1 :=cp(s1+1); {new residual}
i:=i+ 1

end;

Chord := st

end Chord;

conver In general the convergence order of the chord method is

gence i provided that approximation is useful and the stan¬

dard assumptions hold.

Variations A slight modification of the chord method is using any
of the chord approximation J for Dcp(s) instead of Dcp(s0).
METHOD

Another way of minimizing work is the direct approx¬

imation of the inverse of the derivative of cp. In this

case Dcp(x)-1 is replaced by M(x) using that the matrix

vector multiplication of M(x) with cp(st) is less expen¬

sive than factorizing the matrix. In doing so one hopes
that estimating the approximate inverse in each step
and multiplying with it, is more accurate than using for¬

ward and backward substitution of a constant matrix.
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A variant of this method consists in leaving M constant

throughout the iteration. The convergence order of this

method is also 1 provided that the approximation is use¬

ful and the standard assumptions hold.

High-Order Methods: the Shamanskii Method. The

Shamanskii method combines the approach of the chord

method with Newton's method by introducing a new pa¬

rameter m in the following scheme.

s|0) := st,

-0+1)
. c0) -Dcp(St)- Vfs!'1) for 0 < j < m,

St+1
.

„(m)

Thus for m = 0 Shamanskii's method becomes Newton's

method, for m = oo it becomes the chord method.

In [25] Kelley proves that the rate of convergence of

the Shamanskii method with respect to st and s1+i is

Q-superlinear provided that the standard assumptions
hold.

The algorithm for the Shamanskii method is an exten- algorithm

sion of the first two Newton-like algorithms. Another

loop is introduced into the first while loop to perform
the inner iteration with respect to j. A simple version of

the Shamanskii method with constant m is presented
in Algorithm 1.5. We like to note that Brent [5] has con¬

sidered a similar algorithm that varies m in each outer

loop with respect to some optimality condition.

Difference approximation to Dcp. Motivated by the

definition of the G-derivative one might approximate the

CONVER

GENCE
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Algorithm 1.5 The Shamanskii method.

function Shamanskii(cp(), Dcp(), s0, e, m):vector;

r0 :=cp(s0);
i — (V

{initial residual}
I .— u,

while ||Tt|| >£||r0||do

Jt:=Dcp(s|0)); {derivative}

h^^-J-1^; {factorize and solve}

s[ ':= st + h[° , {initial intermediate solutton}

r[ := cp(s[° , {initial intermediate residual}
for j := 1 to m — 1 do

Hj'^-JrM"; {just solve}

s{J+1):=s{j)+h{j); {intermediate solution}

r|1+1):=cp(s|1+1)); {intermediate residual}
end;

St+1 •— st , {new solution}

rt+1 •— rt > {new residual}
i:=i+ 1

end;

Shamanskii := st

end Shamanskii;

matrix vector product of the derivative of a nonlinear op¬

erator cp with a vector p by

n m„
cp(x + hp)-cp(x)

Dcp(x)p
«

The following analysis is roughly copied from Kelley [25].

Suppose that an error is made in the evaluation of cp (x)
of size T|(x) with ||t|(x)|| < e for all x. Then this approxi¬
mation becomes

n m„
cp(x + hp)-cp(x)+T|(x + lap)-T|(x)

Dcp(x)p
«

h

Dcp(x)p + 0(h+e/H).
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The quantity inside the O-term is minimized by setting
h, = yfi. However, Kelley wishes x and p to be of the

same size. If this is not the case, Kelley suggests h, to be

scaled to reflect his demand. The choice

v
IIpII

meets all these conditions.

Concluding the considerations made so far we define

the difference approximation to the directional deriva¬

tive Dcp(x)p to be

0, p = 0,

p,x^

p^0,x = 0.

.h, ^
I <p(x+h||x||/||p||p)-<p(x) / n

d<p(x,p):=<( h||x||/||P|| '

P.x^°

<p(WIIpIIp)-<p(x)
VIIpII

If p is chosen to be a canonical unit vector e,, one gets
the column vectors of the Jacobian. This leads to a sim¬

pler difference approximation of the jth column vector of

Dcp(x) by

<p(x+H||x|| e-, ) — <p(x)

x = 0.

dHfxl
._

j m\ x^°
U<pl*-Jl •— \ <p(he,)-<p(x)

We denote the full approximation of the derivative of cp

containing all column vectors generated by the above

rulebyD^(x).
Kelley points out that in general DJJ, (x)p ^ d^, (x, p) since

the approximation of the directional derivative of cp is

usually not a linear operator of p.

Broyden's Method. Kelley [25] defines a quasi-Newton
method as a Newton method that provides a separate
iteration for updating the approximation of the Jacobian

in each step. Thus the Newton iteration becomes

St+i :=st- Jt^cpfSt), with Jt+i :=ip(Jt).
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The construction of J1+1 determines the quasi-Newton
method.

Broyden's method computes J1+i by a rank-1 update of

K

Jx+1 ^Jx+^h^1 With ht = S1+1 - St. (1.27)

Thus the updated approximation of Dcp satisfies the se¬

cant equation

Jt+lïk = <P(Si+l) -<p(Si)-

Broyden's method has the following advantages over

Newton's method.

• A dense rank-1 updated Jacobian can be inverted

recursively by the Sherman-Morrison formula

(M + xyH)-1 = 1 -
,,

» M-1.
M 1xyH

1 +uHM_1x

In the context of Broyden's method this formula

gets applied to (1.27) with M = Jt, x = cp(St)/||ht||
andy=ht/||ht||.

A few transformations and the assumption J0 =

1 are needed (see [25, p. 125 - 126]) to derive the

following recursive formulas for ht+1 and J1+1,

h .=

j:°<p(s1+1)

Only the vectors Ik have to be stored to perform

Broyden's iteration.
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• Broyden's method needs only one function evalua¬

tion per step.

Kelley has proven local Q-superlinear convergence for

Broyden's method if the standard assumptions hold.

An algorithm for Broyden's method is presented in Al¬

gorithm 1.6.

Algorithm 1.6 Broyden's method.

function Broyden(cp(), s0, e):vector;

r0 := cp(s0); {initial residual}
if ||ro||>£||r0||then

ho := —r0; {initial step}
si := so + h0; {first improvement}
ri:=cp(si); {residual}
i:=1;

while||rt||>£||r0||do
nt := —cp(st); {nominator ofthe new step}
for j:=1 toi 1 do

nt:=nt + h1+1(h>t)/(<h,);
end;

Ik := nt/(1 - h^nt/(h^ht)); {new step}

s1+i := st + ht; {new solution}

r1+i := cp(rt); {new residual}
i:=i+ 1

end

end;

Broyden := st

end Broyden;

1.3.3 Inexact Newton methods

Inexact Newton methods deal with the approximative
solution of the linear system, that has to be solved in

every step of the Newton iteration. Their definition is

due to Dembo, Eisenstat and Steihaug [8].
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Definition 1.45 A Newton method is called inexact

Newton method if the linear system Dcp(st)ht = —cp(st)

for ht is solved approximately, such that the following
condition holds

||Dcp(St)ht + cp(sO|| < 9l||«p(sl)||. (1.28)

The term 6t is called forcing term.

In an inexact Newton method the tolerance 6t deter¬

mines how accurate the linear system has to be solved

in step i. This is not a new idea: Actually in every

Newton iteration the linear system is solved approxi¬

mately due to round off errors (if the method is imple¬
mented on a computer with finite arithmetic). Though in

general Newton's method converges Q-quadratically on

such systems. In an inexact Newton method this obser¬

vation is used as a principle, combined with the ques¬

tion: How accurate has the linear system to be solved

in step i to achieve a certain convergence rate? The

sequence of forcing terms is used to control the conver¬

gence behavior of the inexact Newton method.

Another point of view is that it is not justified to de¬

termine an approximation st to machine precision if st

is far away from the solution and ht does not signifi¬
cantly reduce the error. Computing st up to an accuracy

beyond the required tolerance is called oversolving and

can be very expensive. On the other hand for iterates

very close to the solution it is very important to deter¬

mine st very precisely to achieve the desired tolerance

quickly. From this point of view the question is: How

accurate has the linear system to be solved in order to

minimize the amount of work?

The answer to these questions is hidden in the appropri¬
ate choice of the sequence of forcing terms. Variants of

choices have been considered by Eisenstat and Walker

in [11].
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The questions of inexact Newton methods become very

important if the linear system of the Newton method is

solved by an iterative method, because condition (1.28)

is a very common stopping criterion for linear iterative

methods. The combination of Newton with linear itera¬

tive solvers forms a large class of inexact Newton meth¬

ods often referred to as Newton-iterative methods.

Kelley [25] points out that inexact methods are some¬

times referred to as truncated Newton methods in the

context of optimization. A basic algorithm for an inex¬

act Newton method is given in Algorithm 1.7.

Algorithm 1.7 An inexact Newton method.

function iNewton(cp(), Dcp(), s0, e, 0):vector;

r0 := cp(s0); {initial residual}
i := 0;

while||rt||>£||r0||do
Jt := D cp ( st ) ; { derivative}
Find ht with

||«p(sl) + Jlhl||<9l||«p(sl)||;

s1+i := st + ht; {new solution}
i:=i+ 1

end;

iNewton := st

end iNewton;

Dembo, Eisenstat and Steihaug proved some theorems conver

on the convergence of inexact methods. The first one,
gence

which we cite here, states the local convergence of an

inexact Newton method, which is linear in the weighted
norm ||||* := ||Dcp(s)||. We give the theorems without

proof.

Theorem 1.46 (Theorem 2.3, [8]) Assume that 6t <

Qmax < t < 1. There exists e > 0 such that, if ||s0 — s|| < e,

then the sequence of inexact Newton iterates {st} con-
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verges to s. Moreover the convergence is linear in the

sense that

||s1+i -s||* < t||St-s||*,

inhere INI* :=||Dcp(s)-||. D

The sequence of forcing terms can be used to control the

convergence rate. Dembo, Eisenstat and Steihaug also

proved a theorem that summarizes the consequences of

the choice of a certain sequence. To understand their

theorem, the following definition is needed.

Definition 1.47 ([8]) Dcp is Holder continuous with ex¬

ponent p, (0 < p < 1 ) at s if there exists a > 0 such that

||D«p(x)-D«p(s)||<a||x-sr

for \\y — x\\ sufficiently small.

With this definition, the following theorem can be for¬

mulated.

Theorem 1.48 (Corollary 3.5, [8]) Assume that the in¬

exact Newton iterates {st} converge to s.

Then:

• st -+ s superlinearly ifliml^o0 6t = 0;

• st -+ s with Q-order at least 1 + p if Dcp is Holder

continuous with exponent p at s and

6t = 0(||cp(st)|n as woo;

• st -+ s with R-order at least 1 + p if Dcp is Holder

continuous with exponent -pats and {6J converges

to 0 with R-order at least 1 + p. D
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Now that we know how the choice of the sequence of choosing

forcing terms influences the convergence rate, we are THE forcing

interested in particular choices of {0J. Eisenstat and

Walker [11] have investigated this topic.

They assume the following extension of the standard

assumptions. Let \x := max{||Dcp(s)||, HDcp(s)-11|} and

M := 23(s, 6). Suppose that there is a 6 > 0 such that the

following conditions on cp and s hold

1. cp is continuously differentiable and Dcp is nonsin¬

gular on M,

2. HDcpfx)-1!! < 2|j. for x g M,

3. Dcp is Lipschitz continuous with Lipschitz con¬

stant ct on M,

4. b<2/(o\i).

They give two choices for 6t.

Choice 1 Given 60 G [0,1 ), for i = 1,2,... choose

_

||tp(St)-cp(St-i)-Dcp(St-i)ht-i||

or

fl
_

|||cp(St)||-||cp(St-i)+Dcp(St-i)ht_1|||

Choice 2 Given y g [0,1], et g (1,2], and 60 G [0,1),
choose

9>=T(^iLV v=u
Vll<p(st-i)ll/

Eisenstat and Walker note that 6t according to Choice 1

directly reflects the agreement between cp and its linear

local model at step i — 1. The second variant of Choice 1

may be more convenient to evaluate than the first one.

They proved the following theorem.
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Theorem 1.49 (Theorem 2.2, [11]) Under the assump¬

tions (1) - (4) given above on Dcp and s, ifs0 is sufficiently
nears, then {st} produced by Algorithm 1.7 with {6J given

by Choice 1 remains in 23(s, 6) and converges to s with

||s1+i — s|| <c||St-s||||St-i -s||, i= 1,2,...,

for a constant c independent ofi. D

This theorem tells us that the convergence of Choice 1 is

Q-superlinear. It is even Q-quadratic within two steps.
As Eisentstat and Walker note, according to a similar

analysis as in the case of the classical secant method, it

also follows that the convergence is of R-order (1 +v/5)/2.

Choice 2 is the result of trying to obtain faster local

convergence while retaining the potential advantages
of Choice 1. The following theorem by Eisenstat and

Walker shows that it offers attractive local convergence.

Theorem 1.50 (Theorem 2.3, [11]) If s0 is sufficiently
near s, then under the assumptions (1) - (4) given above

on Dcp and s, {st} produced by Algorithm 1.7 with {6J

given by Choice 2 remains in 23(s, 6) and converges to s.

Ify < 1, then the convergence is ofQ-order <x.

Ify=l, then the convergence is of R-order <x and of Q-
order p for every p g [1, et). D

safeguard In some cases 6t can become small for one or more iter-

ING ations while st is still far from the solution. Therefore a

method of safeguarding was suggested by Eisenstat and

Walker to avoid a volatile decreasing in 6t. The idea is

that if 6t-i is large at some point we do not allow subse¬

quent 6-values to become much smaller until this has

been justified over several iterations. For each choice

they demand 6t to be no less than a minimum value,

but only if that minimum value is above a threshold.

The minimum value is determined by raising 6t-i to

a power associated with the rate of convergence of the
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choice (neglecting the safeguard). The threshold they
chose was 0.1, which they note is somewhat arbitrary
but turned out to be effective in both their experiments
and in the experiments of Kelley.

In order to apply this safeguarding mechanism, the forc¬

ing terms have to be adjusted accordingly:

for Choice 1

9* :=max^e1)91_21 L whenever Qr_\ >0.1,

for Choice 2

6^ ^maxlet.Ye^!}- whenever yQ^ > 0.1.

Eisenstat and Walker note that "it may be possible for

each of the proposed choices to be greater than one".

Accordingly they demand, that another safeguard has

to make sure that 6t G [0,1) for each i. This is done by
minimizing the sequence with a value 6max < 1.

Algorithm 1.8 shows an implementation of an inexact

Newton method with Choice 2 that uses a linear iter¬

ative solver. The implementation shown in this algo¬
rithm is focused on the choice of the sequence of forcing
terms.

1.3.4 Classical Methods

In this section we review iterative methods that have

been invented by well known classical mathematicians

(Jacobi, Gauss) to solve their linear problems. They are

in such a sense classical that there invention marks

the beginning of iterative methods for linear systems.
For more than 100 years until the rise of the Krylov

space methods in the early 1970s, Jacobi, Gauss-Seidel

and SOR have been the main choice for solving linear
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Algorithm 1.8 A Newton iterative method with Choice 2

using the iterative method ItMet to solve the linear sys¬

tem Jtht = -cp(st).

1 function NewtonIt(cp(),Dcp(),so, £,9max,Y, <*)' vector;

2 r0 :=cp(s0); {initial residual}
3 00 '= ömax!

4 i:=0;

5 while ||rt||>£||r0|| do

6 Jt :=Dcp(st); {derivative}
7 ht:=ItMeth(Jt,-cp(rt),et); {new step}
8 St+i :=st + ht; {new solution}
9

10

11

r1+i :=cp(st + 1); {new residual}

{Forcing terms according to Choice 2}
12 if Y6ta >0.1 then {first safeguard}
13 9l+1 :=max{y(||ri+1||/||rt||)a,Ye«}
14 else

15 9l+1:=y(||rl+1||/||rl||)«
16 end;

17 61+i :=min{emax,6t+i}; {second safeguard}
18 i := i + 1

19 end;

20 Newtonlt := st

21 end Newtonlt;

systems whenever the application of an iterative solver

was indicated. Although nowadays Krylov space based

methods are the state of the art iterative solvers for lin¬

ear systems of equations, classical methods have still

some importance because

• they are very easy to implement,

• there behavior is well understood,

• they can be adjusted in a natural way to solve non¬

linear systems of equations,
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• some of them have natural parallelization proper¬

ties.

The last two properties motivate the ongoing research

with respect to developing new methods based on the

ideas of the classical methods (multisplitting and overre-

laxation).

Moreover, if the performance of a state of the art linear

solver stays below the expectations, a classical method

often serves as a good preconditioner.

Our interest in these methods is their capability of solv¬

ing nonlinear systems of equations. Nevertheless we

shortly review the linear methods. Then we show their

nonlinear interpretations and present some properties.

Let the linear system

As = b (1.29)

be given. We define a splitting of the system matrix A

by

A=:L + D+U,

where L is the strict lower triangular part of A, D its

diagonal part and U its strict upper triangular part.

Rewriting (1.29) with respect to the definition of the

splitting we get

(L + D + U)s = b.

The aim of splitting the matrix A into several parts is to

find a part of A that is easier to invert. This is the idea

of the so called splitting methods. The given splitting is

a very natural one. Two ways of developing an iterative

method based on the given splitting are

Ds^+1 :=b-(L + U)s^,

Review of

linear

SOLVERS

Jacobiand

Gauss

Seidel

(L + D)s^ := b-Us°s. (1.30)



78 Introduction

In these implicit rules J denotes the Jacobi method and

GS denotes the Gauss-Seidel method. Of course one

could also choose D + U as the matrix to be inverted.

This method is called backward Gauss-Seidel method.

Rewriting these recursive instructions with respect to

the residual of the linear system rt = b — Ast we get a

formulation suitable for implementation

s^+1 :=< + D-V,

s?-fi := s^ + fL + D)-1^.

According to Definition 1.26, both methods are station¬

ary with G = -D-1 (L + U) and d = D-1 b for the Jacobi

method and G = -(L + D)-1!! and d = (L + Dj^b for

Gauss-Seidel.

conver Several authors have proven that the Jacobi method

gence
converges for linear systems, whose system matrix is an

H-matrix [3], and the Gauss-Seidel method converges

for systems, the matrix of which is symmetric and posi¬
tive definite [15].

As the contraction mapping theorem for linear systems,

Corollary 1.37, shows, the methods converge linearly
with an asymptotic convergence rate of p(G). In general
the Gauss-Seidel method converges faster than the Ja¬

cobi method. However, its application is restricted to a

smaller class of matrices.

relaxation The methods can be extended such that the new iterate

is a weighted sum of the old iterate and the new value.

Doing this on the vector level we obtain the Jacobi over-

relaxation method and the Gauss-Seidel overrelaxation

method, which we do not focus on any further.

Proceeding so on the component level, we get the same

method for the Jacobi case. However, taking a weighted
sum of the components of the old iterate and the new

Gauss-Seidel value, we obtain the popular successive

overrelaxation method (SOR).
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As (1.30) shows, the Gauss-Seidel method determines

s1+i implicitly by

s^ := D"1 (b - Ls°f!
- Us°s).

We determine the new iterate of SOR by introducing the

weighted sum sf°f := (1 — tu)sfOR + cus^ .
The weight tu

is called the relaxation parameter. We obtain

sf°R := (1 - tu)sfOR + cuD-1 (b - Lsf°R - UsfOR).

With a few transformations this implicit formulation of

SOR can be turned into the explicit iteration rule

sf^sf^ + tL + cu^DrVf0*

SOR fits into the framework of matrix splitting methods

because it corresponds to the matrix splitting A = L +

1/cuD + (cu — 1)/cuD + U. Its iteration matrix is G :=

-(cuL + D)-1((cu-1)D + cuU).

The term overrelaxation is used if tu > 1, which is the

usual case. If tu < 1 then the appropriate term is under-

relaxation. In the case tu = 1 the Gauss-Seidel method

is retained.

Several authors have proved (see for example [3, p. 173])

that the useful interval for values of tu is (0,2). For

some matrix types the optimum value of tu is known.

However, in general it can be very difficult to find such

an optimum. Given the optimum relaxation parame¬

ter for SOR, this can speedup the convergence signif¬
icantly over the Gauss-Seidel method. However, since

the method is still a stationary method, it cannot com¬

pete with Krylov space methods or polynomial accelera¬

tion.

In a natural way the Jacobi method, the Gauss-Seidel nonlinear

method and the SOR method can be adjusted to solve methods

nonlinear systems of equations. However, to do this the

methods have to be examined in terms of components
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rather than vectors. Let us therefore examine the non¬

linear operator cp, a zero of which has to be found, in

terms of its component functionals,

cp(s) = [cp1(s),...,cp1t(s)]T.

In the same manner let us define the implicit iteration

operator f for which we would like to find the solution of

f(s1+i,St) = 0 with f(x,y) = [f1(x,y),...,f1t(x,y)]T. Then

we can specify the nonlinear Jacobi and the nonlinear

Gauss-Seidel method implicitly by

ft(x.y) := <p^{y^,,y^-^,x^,y^+^,,y^^), (1.31)

f°s(x,y) := cpt(x1,...,Xt,yt+i,...,yir). (1.32)

The nonlinear SOR method can be specified by sf°f :=

( 1 — tu)sf°R + tus^1 1.
Since this formulation involves the

Gauss-Seidel method, we solve for this value and obtain

CGS
_

cSOR ,

'
/c SOR cSOR\

St+1,1 -St,i +— lSt+1,1 St,1 )

Thus the nonlinear Gauss-Seidel specification (1.32)

can be used to find an analogous specification for non¬

linear SOR

ft (x,y) := <Pt(*i,• • • ,*t-i ,Vx + — (xx -y^),y^+^,... ,yn).

(1.33)

These methods are natural extensions of the linear

methods, since they turn into the classical linear meth¬

ods if cp is linear. A generic algorithm for nonlinear clas¬

sical methods is given in Algorithm 1.9.
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Algorithm 1.9 Nonlinear classical method.

function nlClassic(cp(), s0, e, [tu]):vector;

r0 := cp(s0); {initial residual}
i:=0;

while||rt||>£||r0||do
for j := 1 to n do

perform one Newton step on

Jacobi:

t, := solve cp,(st[ 1] + e1x + s1[1 ])forx;
Gauss-Seidel:

t, := solve cp,(s1+i[ ,] + e,x + sx[, ])forx;

si+i,i := V
SOR:

t, := solve cp,(s1+1[ j] + e-)x + sl[j ])forx;
St+i,, := (1 -cu)st), +tut,

end;

s1+i := t; {new solution}

r1+i := cp(s1+i); {new residual}
i:=i+ 1

end;

nlClassic := st

end nlClassic;

An implication of the close relationship to the linear local

methods is, that the nonlinear Jacobi method converges
convergence

locally if Dcp(s) exists and is an H-matrix, the Gauss-

Seidel method converges if Dcp(s) exists and is symmet¬
ric positive definite. The following corollary (taken in

part from Ortega and Rheinboldt [28]) is mainly an im¬

plication of the implicit function theorem 1.39. It con¬

tains the guarantee that the nonlinear classical meth¬

ods are well-defined. It also gives their local Q-conver-

gence rate.

Corollary 1.51 (cf. 10.3.4, [28]) Suppose thati : (M x

M) c (Rn xRn) -^Rn has continuous partial derivatives

9i f and 92f on an open neighborhood 230 c M of a point
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s e M at which f(s,s) = 0. Assumefurther that 3if(s,s)
is nonsingular and that

<r:= p(-a1f(s,s)-1a2f(s,s)) < 1.

Then there is an open sphere 23 := 23(s, 6) c 230 such that,

for any y G 23, the equation f (x, y ) = 0 has a unique solu¬

tion x = g (y ) in 23. Therefore, the sequence

St+i:=g(St), 1 = 0,1,..., (1.34)

is well-definedfor any s0 G 23 and satisfies

f(s1+i,St) =0, 1 = 0,1,....

Moreover, s is a point of attraction ofthe iteration defined

by (1.34). The Q-convergence is of order 1 and the Q-

factor is a.

Proof. From the implicit function theorem 1.39 it fol¬

lows that there are open neighborhoods 23 ! and 23 2 of s

such that, for any y G 232, the equation f (x,y) = 0 has a

unique solution x = g(y) in 231 ; of course in particular
s = g (s). The theorem also shows that the F-derivative

of the mapping g : 232 -+ 231 at s exists and that

Dg(s)=-a1f(s,s)-1a2f(s,s).

Now for arbitrary e > 0 Lemma 1.35 ensures the exis¬

tence of a norm on Rn such that

||Dg(s)||<ci + e.

Moreover, the F-differentiability of g at s implies that

there is a 6 so that 23 = 23(s,6) c 23t n232 and

||g(x)-g(s)-Dg(s)(x-s)||<e||x-s||, Vx g 23.
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Therefore,

||g(x)-s|| < ||g(x)-g(s)-Dg(s)(x-s)|| + ||Dg(s)(x-s)||

< (cj + 2e)||x-s||, Vxg 23.

Hence, g (23) c 23 and the Q-convergence is of order 1.

By construction, for any x0 G 23 the sequence (1.34) sat¬

isfies g(s1+i,st) =0,i = 0,1,.... Since e was arbitrary, ct

is the Q-factor. D

With this corollary we are now able to reformulate a

theorem by Ortega and Rheinboldt for the local conver¬

gence of the nonlinear Jacobi, Gauss-Seidel and SOR

method.

Theorem 1.52 (10.3.5, [28]) Let <p : M c Rn -> Rn be

mutinously differentiable in an open neighborhood 23 0 c

M of a point s g M for which cp(s) = 0. Consider the

decomposition

Dcp(s) =L + D + U

q/" Dcp(s) into its diagonal, strictly lower-, and strictly

upper-triangular parts, and suppose that D is nonsingu¬
lar and p(G(s)) < 1, where G(s) is defined by

GJ(s) =-D-1(L + U),

GGS(s) ^(L + D^U,

GSOR(s) = -(tuL + D)-1((tu-1)D + tuU), tu>0.

Then there exists an open sphere 23 = 23(s,6) in230 such

that, for any s0 G 23, there is a unique sequence {st} G 23

which satisfies the nonlinear Jacobi, Gauss-Seidel and

SOR description. Moreover limWoo st = s and the Q-order

ofthe iteration is 1 with Q-factor p ( G ( s ) ).

Proof. Because cp is continuously F-differentiable

on 23o, the implicit iteration operator f for Jacobi (1.31),
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Gauss-Seidel (1.32) and SOR (1.33) has continuous par¬

tial derivatives on some set 23' x 23', where 23' is an open

subset of 23 o of the form

23,:={xG230||xt-St|<6,,i=1,...,Ti}.

Moreover a straightforward computation shows that

a1fJ(s,s)=D, a2fJ(s,s) = L + u,

ÔTf^s.s) =L + D, 32fGS(s,s) = U,

Ôif^s.s) = L + 1d, o2fSOR(s,s) = ___1D+U.
tu tu

Since D is nonsingular 3if(s,s) is also nonsingular.
Hence

G(s)=-31f(s,s)-132f(s,s),

and the result follows directly from Corollary 1.51.

Ortega and Rheinboldt [28, pp. 320 - 331] also proved
for SOR that the R-factor is precisely p(G(s)) (and this

also applies to Jacobi and Gauss-Seidel). Moreover they
proved that more than one step of the inner scalar New¬

ton iteration does not improve the R-factor of the iter¬

ation. Even if the inner Newton iteration is executed

until convergence the R-factor still remains p(G(s)). We

therefore rephrase this result according to some famous

words of Kahan: Once is enough.

1.4 A Sample Problem

To illustrate the performance and properties of the

presented algorithms for solving nonlinear systems
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of equations we use in all our examples the Chan-

drasekhar H-equation taken from Kelley [25]. The

Chandrasekhar H-functional describes the exit distri¬

bution in radiative transfer. It is implicitly defined by

CG (0,1),

H:[0,1]^R,^ y~\
o M- + "v

d-v

To find the values of H for the argument \i G [0,1] we

define a nonlinear functional cp

|1G [0,1],CG (0,1),

cp : ([o, 1] _> R) _> R, H() h-> H(n) - 1 - |
o M- + "v

d-v

In order to find values of H for the argument \x the equa¬

tion cp(H) =0 has to be solved. Therefore the integral is

discretized by the composite midpoint rule. Integrals on

[0,1] are approximated by

-1
1

n

1
f(x)dx « — Y" f(x,) with x, = (i — -)/n for 1 < i < n.

npT
2

Setting yx = H(xJ the discretized problem turns into

finding the zero of a nonlinear operator cp, the ith com¬

ponent of which is

i \ / 1
c

S~ x^1

1=1

Kelley points out that the discretized problem has its

own physical meaning. Moreover because H has a sin¬

gularity at x = 0, the solution of the discrete problem is
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not even a first-order accurate approximation to that of

the continuous problem.

Let us define the matrix

Xl Xl

X1+X2 Xj+X^
X2 X2

X2+X2 X2+Xrl

Xn X^ Xn

-Xj^^X] XrL^X2 Xj^^Xj^-

Then the derivative of cp is

Dcp(y) = 1-^Diag(x-y)2M

1.5 Conclusion: Numerical Results

We summarize our overview of existing techniques for solving
nonlinear systems of equations by presenting numerical results

for the Chandrasekhar H-equation Parameters chosen for this

example are n = 100 and c = 0 9999 — a case for which Kel¬

ley (25) notes, that the Jacobian at the solution is not very well

conditioned Every method had to achieve a relative resid¬

ual norm of 10~7 to stop Due to the condition number of the

derivative of cp at s, «(Dcp(s)) ~ 102 this stopping criteria could

not take all of the six tested methods below a relative error of

10~7 Two of them — the chord method and the inexact New¬

ton method — stopped before a relative error of 10-7 could

be achieved The good news is that all methods achieved a

relative error of less than 10~s

The methods — the Newton method, the Chord method, the

Shamanskii method, Broyden's method, nonlinear SOR and an

inexact Newton method — have been implemented in Mat-

lab 5 3 This version of Matlab has been chosen because it still

offers a flop count command, and we like to compare the al¬

gorithms in terms of flops

The following implementation details have to be noted

Shamanskii method The parameter m that specifies, how of¬

ten the derivative of cp should be reused, was set to m =

2 — a choice suggested by Kelley (25) for this problem

M

Xl+X,
X2

X2+X!
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SOR Empirically we found that setting the relaxation parame¬

ter tu = 1 39647 turned out to be a very good choice Ac¬

cording to what has been said at the end of Section 1 3 4

the number of steps for the inner scalar Newton was lim¬

ited to 1

Inexact Newton For the inexact Newton method the linear iter¬

ative method GMRES was used, the function of which we

describe in detail in Chapter 2 We used the built in im¬

plementation of Matlab 5 3 We implemented Choice 2

for generating the sequence of forcing terms The follow¬

ing parameters were used Qmax = 0 9999, a = 2, y =09

as suggested by Kelley (25) For the threshold we chose

0 1 as suggested by Eisenstadt and Walker (11)

Table 1.3 Flops and execution times of existing methods for

solving the Chandrasekhar H-equation Flops were counted

with the flops command of Matlab 5 3 Times were measured

in Matlab on a Sun SPARC 336 MHz with 3 GB main memory

Method Iterations Mflops Time(s)

Broyden 13 22 0 23

Newton-GMRES 8 28 0 23

SOR 17 32 (3 33)
Shamanskii 6 61 0 32

Newton's method 8 72 0 32

Chord method 262 27 8 3 52

Table 1 3 lists the number of iterations, floating point operations
and times taken on a SPARC 366 Mhz architecture with 3 GB

main memory in Matlab 5 3 The time of nonlinear SOR is given

in parentheses The reason for this is that all other algorithms
can be implemented in a high level matrix-vector notation, let¬

ting Matlab choose highly optimized routines for solving trian¬

gular linear systems, matrix vector multiplication etc These rou¬

tines are at least BLAS level 2 routines that are able to exploit
the benefits of modern microprocessors such as pipelining ar¬

chitectures, parallel ALUs and big caches SOR however, had

to be implemented on the component level No matrix opera¬

tions were used, just some scalar products, which makes it BLAS

level 1 only Since Matlab is an interpreted language, no op¬

timizations (not even optimal cache usage) could be applied
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to SOR. This is why SOR achieves the lousy flop rate of 96 Kflop-

s/s compared to the Newton method, which achieves about

2.3 Mflops/s. Even the chord method, which is very slow for this

example, achieved a flop rate, that is one magnitude higher
than SOR: 789.7 Kflops/s. Of course the bad behavior of SOR

can be improved by using a compiled language instead of an

interpreted one, giving the compiler a chance to do some op¬

timization. Another improvement would be a blocked variant

of SOR.

Figure 1.2 Convergence of different methods on the Chan-

drasekhar H-equation for u = 100 and c = 0.9999.

Existing Methods Operating on the Chandrasekhar Equation
10°

10
2

10
4

5106
LÛ

0 8
0i10

0 0.5 1 1.5 2 2.5 3

Number of Flops x107

Figure 1.2 shows the convergence curves of the algorithms. In

this figure the relative error is plotted against the number of

flops needed to achieve this accuracy. The figure reveals the

local linear convergence behavior of the chord method and

SOR. We will use this linear behavior in later chapters to develop
nonlinear Krylov space methods. However, the linear conver¬

gence behavior does not take place until a few steps have

been carried out. For SOR this happens after about 3 steps,

e- Newton

- Chord

Shamanskii

Broyden
+- SOR

o- Newton GMRES
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the chord method needs about 22 steps to establish the lin¬

ear convergence rate. For both methods it is interesting to see,

that the convergence rate is better, before the linear behavior

takes place.

The other methods show superlinear convergence as has been

proved before. Nearly all of them went far below the required
tolerance of 10-7. This is a typical property of superlinear con¬

vergence: Near the solution one step results in a huge improve¬
ment.

The algorithms can be ranked in different ways: With respect

to time (the less the better), flops needed to find the solution

(the less the better) or flop rate (the higher the better). For

the Chandrasekhar H-equation the overall winner with respect

to time and flops is Broyden's method. The second place is

also very clear: it is taken by Newton-GMRES. However, the

other candidates show not such a clear behavior: Although
the chord method behaves really bad in this example, there

are other problems for which the chord method is able to beat

the Newton method (see for example (25, ch. 5.6)). SOR is the

worst algorithm with respect to the flop rate. However, imple¬

mented in an environment which allows for better optimization

it could achieve a better time, competitive to the others. Fi¬

nally Newton's method, although beaten by many algorithms
with respect to flops achieves the highest flop rate — a mark

for good parallelization properties.

Rankings of

the

Algorithms





Chapter 2

Linear Krylov Space
Methods

2.1 Motivation

efore we are able to understand nonlinear Kry¬
lov space methods, we have to analyze the well

known linear Krylov space methods. Further¬

more we have to know their properties and

how they depend on each other. In order to build up

a network of dependencies of properties we embed lin¬

ear Krylov space methods into correction space methods

and projection methods, followed by a more detailed dis¬

cussion of the four Krylov space methods FOM, GM¬

RES, BiCG and QMR operating on general coefficient

matrices. FOM and GMRES will be adopted to nonlin¬

ear problems in the next chapter.

2.2 Introduction

In 1952 the conjugate gradient method was invented

to solve linear systems with a hermitian positive def-
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inite coefficient matrix [27]. Until today many people
have been working on generalizations of this method

[31, 12, 13, 16]. The conjugate gradient method has

been adopted to linear systems with symmetric indefi¬

nite and nonhermitian coefficient matrices. Several the¬

ories around these so-called Krylov space methods have

been developed.

In contrast to vector extrapolation methods, Krylov

space methods can be explained geometrically. They
even have a lot of geometric properties. Therefore, the

basic mechanism of Krylov space methods for solving
linear systems can be explained within a few sentences:

Figure 2.1 A basic step of a linear Krylov space method.

Given a nonsingular matrix A e Rnxn and a vector b e

Rn. Suppose we want to solve the following linear sys¬

tem for sei11:

As = b. (2.1)

Krylov space methods solve this system by building sub¬

sequent Krylov spaces DCd(A,r0) with r0 := b — As0. An

important property of this sequence is: they are em-
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bedded. That means the Krylov space of dimension d

contains all Krylov spaces of smaller dimension.

Let cd be an element of Xd(A,r0). In step d some Krylov

space methods solve the linear least squares problem

mln||r0-Acd||. (2.2)
Zd

Acd is an element of ADCd(A,r0), whereas r0 is an ele¬

ment of Xd(A,r0). If ADCd(A,r0) andDCd(A,r0) are equiv¬
alent (i.e. DCd(A,r0) is an invariant subspace with re¬

spect to A) — and it is guaranteed that they become

equivalent after at most n steps —, the least squares

problem becomes a linear system that is exactly solv¬

able.

• The hope of all Krylov space methods is that the

sequence of residuals rd := r0 — Acd is (strongly)

monotonously decreasing and the required preci¬
sion of the result is obtained long before the nth

step. As we will see this hope cannot always be

fulfilled.

• The aim of these methods is that in every step the

least squares problem (2.2) can be solved by using
as much information as possible from the step be¬

fore and therefore the computational effort can be

minimized.

2.3 Correction Space Methods

Definition 2.1 Given the linear system ofequation (2.1).

We want to solve this system by an iterative method. If
the iterates st of the solution of the linear system can be

expressed as

st = s0 + ct, (2.3)
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a sum ofa starting vector s0 and a correction vector ct e

et with et c Rn being a vector space, the iterative method

for solving the linear system is called a correction space

method. The space Ct is called the correction space.

Algorithm 2.1 Basic algorithm template for a correc¬

tion space method. Input parameters are the matrix A,

the right hand side b of (2.1), an initial guess for the

solution s0 and a relative tolerance e for the stopping
criteria. The function value is the approximate solution

of the system according to the given relative tolerance e.

function CORSPM(A, b, s0, e): vector;

i:=0;

r0:= b-As0;

while ||rt|| > e||b|| do

Find c1+i in et+i;

St+i:= s0 + c1+1;

r1+1:=r0-Ac1+1;
i:= i+ 1;

end;

CORSPM:= st;

end CORSPM;

In the ith step of a correction space method a correction

vector ct e Ct has to be found. An approximate solution

st is determined by the combination of an initial guess

s0 plus the correction vector. This procedure is repeated
until convergence. A basic template of an algorithm for

a correction space method is shown in Algorithm 2.1.

In correction space methods residual vectors play an

important role. With the ansatz of st in equation (2.3)

we get the following expression for the residual vector in

step i

rt = b - Ast = r0 - Act. (2.4)
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A correction space method is a very general concept.
In fact all practical iterative methods for solving linear

systems are correction space methods.

Example 2.2 (Stationary Methods) The class of the stationary
methods, that among others contains the classical methods

described in Chapter 1, uses the following iteration rule to cre¬

ate approximations sv,i = 1,2,... of the solution of the linear

system of (2.1):

Si+i .= Gsi + d, (2.5)

with G and d being a matrix and a vector accordingly chosen

such that s .= Soo solves (2.1). In other words (1 - G) = M.-1 A

and d = M.-1 b for M being a nonsingular matrix.

With the residual vector of the given system (2.1) rl = b — Asv

we can reformulate (2.5) as

sl+i =Si + M-1n =s0 + M-1 21 r,. (2.6)

5=0

This equation tells us that every stationary method is a simple
correction space method using

C, = [M"1r0,M"1ri,...,M"1rJ

as the basis for its correction space. Using this correction space

we always choose the vector zl = [1,...,1]T, cx = Ca for

the correction. The constant vector zx is one reason why the

method is called stationary.

As we have seen in Example 2.2, stationary methods

choose a constant correction vector ct e Ct in every

step. When the maximum dimension of the space is

reached, they do not stop. In this case they start to

generate correction vectors combined by more than one

basis vector, thus creating the fractions of composites
of the basis vectors necessary in general. Trying to find

a solution quickly, we see that these methods obviously
choose neither an optimum space nor an optimum com¬

bination of the basis vectors.
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More elaborated methods try to make use of the correc¬

tion space: In every step they generate a different cor¬

rection vector with respect to some given optimization
criteria, e.g. minimizing some norm of the error vector

or the residual vector.

For finding an optimal method the following questions
arise:

1. How do we minimize the norm of the error vector

(residual vector) over the correction space?

2. How to choose the correction space?

The following section answers the first question. The

second question will be answered in Section 2.4.

2.3.1 Projection Methods

Definition 2.3 A projection method is a correction

space method that determines ct e Ct in every step i

such that rt = r0 — Act is orthogonal to a given vector

space 3\ c Rn. We call 3\ the projection space.

Let Pt be the basis of 3\ in step i of a projection method.

According to definition 2.3 a correction vector ct is de¬

termined in every step i of a projection method such

that

P^r0 = PAcx with ct G et. (2.7)

Let Ct be the basis of Ct and let ct := Ctzt. Solving (2.7)

for zx we get zx = (PACX)_1 P^r0. Therefore, in step i st

and rt become

s1 = So + C1(P1HAC1)-1P1Hr0)

rt = r0 - AC1(P1HAC1)-1P1Hr0.
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A template algorithm for a projection method is shown

in Algorithm 2.2.

Algorithm 2.2 Basic template algorithm for a projection
method. Input parameters are the matrix A, the right
hand side b of (2.1), an initial guess for the solution s0

and a relative tolerance e for the stopping criteria. The

function returns the approximate solution of the system

according to the given relative tolerance e.

1 function PROM(A, b, s0, e): vector:

2 i:=0;

3 r0:= b-As0;

4 while Unll >e||b|| do

5 choose e1+i ;

6 choose 3\+i;
7 C1+1 := basis of C1+i ;

8 P1+i := basis of 3\+i ;

9

0

1

Q1+1 := AC1+1 ;

zl+i:=(PlH+1Ql+1)-1PÎt1r0;
2 <U+i:= Qzt+i;
3 t\+i:= r0 - q1+1;
4 i:= i+1;

5 end;

6 Ct.— \~XZX,

7 st:= s0 + ct;

8 PROM:= st;

9 end PROM;

In the following we will concentrate mostly on an analy¬
sis of the residual vectors rt. For simplicity reasons let

us define Qt := ACt := {Aa|a e Ct} to be the space con¬

taining all elements in Ct multplied by A. With this def¬

inition a projection method has to determine a qt g Qt

such that rt = r0 — qt _L 3\. Furthermore we will use the

Qt := ACt as the basis of Qt.
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existence The following lemma from Eiermann and Ernst [ 10] gives
conditions for the existence and uniqueness of a qt G Qt

in a projection method.

AND

UNIQUENESS

OF Ci

Lemma 2.4 Given two subspaces Q and CP ofRn.

Thefollowing statements hold.

1. For an arbitrary r0 G Rn there exists a q G Q such

that r = r0 - q _L CP if and only ifQ + y^=Rn.

2. Such aq is unique ifand only if

Qfl!P1= {0}. (2.8)

Proof. Let P1" and Q be bases of CP1- and Q respectively.

1. If q g Q exists, then r0 = r + q with r e f1 and

q G Q. It is obvious that r0 must be in Q + CP-1.

Since r0 was arbitrarily chosen, Q + CP^ must be

equal to Rn.

On the other hand let Q + CP^ = Rn. Then we

can find (not necessarily unique) vectors z\ and

z2 such that r0 = P^zi + Qz2. Thus r = P^zi and

q = Qz2 G Q exists.

2. If Q n CP^ = {0} then there exist unique vectors z-\

and z2 such that r0 = P±z-\ + Qz2. Using r = P^Xï
and q = Qx2 we see that x-\ = zi and x2 = z2 is

the only solution for r = r0 — q G CP^ and therefore

q = z2 is unique.

On the other hand if Q n CP^ ^ {0} there exist sev¬

eral pairs zi and z2 such that r0 = P^zi + Qz2.
Therefore, q cannot be unique.

D

If qt is unique then ct is also unique, since A is nonsin¬

gular.
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An immediate consequence of this lemma is the follow¬

ing corollary:

Corollary 2.5 Given two spaces CP and Q of~Rn with their

bases P and Q respectively. Let r0 G Rn be arbitrarily
chosen.

A unique q G Q for the problem r = r0 — q _L CP exists if
and only ifdim (CP) = dim(Q) and PHQ is nonsingular.

Proof. Let us denote the dimensions of CP and Q as

d and e respectively. If q exists, Lemma 2.4 tells us

that Q + CP^ = Rn, and since q is unique Q n CP^ = {0}.
Therefore,

dim(Q + CP-1) = dim(Q) + dim^)

= e + (n-d)=n = dimfR^)

This equation implies that e = d. AC n CP^ = {0} directly
implies that PHQ is a nonsingular matrix.

On the other hand let e = d. The nonsingular property
of PHQ implies directly Q n CP^ = {0}. Then we have

dim(Q + CP-1) = dim(Q) + dim^) = e+(n-e)=n.

Therefore, Q + CP^ = Rn, which by Lemma 2.4 implies
that q is unique. D

Given the definition of projection methods let Pt, Qt be why are

bases of CPt, Qt respectively. Now we can rewrite q. =
they called

"Pro ifctton

Qtzt and with the orthogonality condition we have
methods"?

P1Hr1 = P1Hr0-P1HQ1Zx.

From Corollary 2.5 we know, that Pt Qt is an invertible

matrix if qt is unique. Therefore, we obtain a unique
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Zx = CP^Qx^V^To- Using this result for rt (2.6) yields
in

rt = r0 - QJPrQJ-^rro = (1 - QJP1HQ1)-1P1H)r0.

Lemma 2.6 Let CP and Q be two subspaces ofRn equal
in dimension. Let P and Q be their bases.

V := Q(PHQ)-1 PH is an oblique projector/romR^ = Q +

CP^ to Q orthogonal to CP (or, equivalently, along CP^J.

Proof. First we show that W is idempotent.

V2 = Q(PHQ) 1(PHQ)(PHQ)^PH = Q(PHQ) !pH =W

This is why W is a projector. Left to be shown is that

%(V) = Q and N(V) = CP-1. We do that within two steps.

• We show that Q = X(V) and Q1- = N(VH). The range

of a projector has the property that all of its ele¬

ments stay invariant on application by the projec¬
tor. Let Q1- denote the basis of Q-1.

VQ = Q(PHQ) 1PHQ = Q

WHQ^ = P(QHP) -1 QHQ^ = 0

Since Q + Q1- = Rn, Q = R(V) and Q1- = CN"(YH).

• Left to be shown is that CP^ = K(V) and CP = X(VH).
Let P1- be the basis of CP-1.

W1- = Q(PHQ)-1PHP-L = 0

VHP = P(QHP) 1QHP = P

Since CP^ + CP = Rn, CP^ = CN"(Y) and CP = R(VH).

Therefore, K(V) = CP^ and X(V) = Q as is required for V

to be the proclaimed projector. D
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Like Wx := QX(PQX)_1P performs an oblique projection
of r0 onto Qt along CP^, 1 — Wx performs an oblique pro¬

jection of r0 onto CP^ along of Qt. The effect of 1 — Wx on

r0 is shown in Figure 2.2.

Figure 2.2 Oblique projection: In the ith step rt is ob¬

tained by an oblique projection of r0 onto CP^ by the di¬

rection of Qt.

Qi

With the definition of Wx the following computations are

performed in every step i of a projection method

Qt = VxTo

rt = (1-YOro.

Lemma 2.7 Given step i ofa projection method with cor¬

rection space et, projection space CPt together with their

bases Ct and Pt respectively solving the linear system

(2.1). Let us define Mj>i := PtP^ to be the orthogonal pro¬

jector onto CPt.
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Solving (2.7) for cx e Gx is equivalent to solving

UvJx = 0. (2.9)

Proof. Ifwe want to solve (2.9), we have to find a zt G R1

such that

nyi(b-ACtZt)=0

That is: We solve (2.1) in CPt and therefore we have to

solve

P+ACtZt = Pt+b,

the solution of which is zt = (P+ACx)_1P+b. Note that

P+ACt is invertible because of condition (2.8).

With this solution the residual vector becomes

rt = b-ACtZt = (1 -AC1(P+ACt)-1P+)b.

= <t>

O is an oblique projector with CR(<D) = ACt and N(<D) =

CP^. Then rt = Ob implies PTrt = 0.

On the other hand let Pt = UiLVJ be the economical

version of the singular value decomposition of Pt (Def¬
inition 1.9). With this decomposition we have Mj>i =

PtP^ = UiU^1. Ui is an orthonormal basis of CPt and

therefore, if Prx = 0, (2.9) must hold as well. D

what if Remark. It is easy in practice to make sure that both

3\ no,^ {0}? subspaces Qt and CPt have the same dimension. How¬

ever, it might be difficult to guarantee that PQt is not

singular. Such a situation is referred to as a Galerkin

breakdown.

Assume that i := dim Qt = dim CPt and P^ Qt is singular.
Then Wx does not exist. However, we can use the Moore-

Penrose inverse to define

% = Qt(PtHQx)+PxH
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Wx is still a projector, which can be shown by the help
of one of the Moore Penrose equations:

*t = Qt(PxHQx)+(PHQx)(PHQx)+PH = Qt(PHQJ+PH =Vx

Let us consider the singular value decomposition (Defi¬

nition 1.9) of PHQt:

PHQt = ULVH = [Ut U2]
L 0

0 0 V?.
= u1£v^.

With the SVD we can rewrite Wx as

Vt = QtVL+UHPH = Q^L^U^P"

Using this result we find with a similar argument to the

one used in the proof of Lemma 2.6 that

spanjPtU^ = X{%) and span{PlU1} = 3l(*")

span{Q1V1} = %{%) and spanlQ.V^ = CN"(^)

Moreover CDt := CP^ n Qt = jx g Qt|PHx = o|. Using the what about

ansatz x = Qta for a vector x e Kn we see that x is in l
AND

"'

K(PHQt). Then Dt := QtV2 must be a basis of CDt. CDt is

a subspace of NfVO since

(PtU! )HDt = U^PHQtV2 = U^UtLV^Vj = 0.

If we apply the same argument to CRt := Q^ n CPt we find

that its basis must be Rt := PtU2 and %_ e Nf*"). How¬

ever, nothing can be said in general about CDt in connec¬

tion with Wx and %_ in connection with 1Vl respectively.
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Figure 2.3 Four symbolic views ofR1 showing spaces in¬

volved in a Galerkin breakdown of a projection method.

CDt is the intersection of CRt is a subspace of

Qt and CP^, CRt is R1 with- K(^), CDt is shared by
out the space spanned by ^Hj^^.) ^
Qt and CP^ together.

is a subspace of Qt.

CDt is a subspace of K^i), CRt is the intersection of

CRi is shared by N(%) and CPt and Q^, CDt is R1 with-

CR(VtH). CR(VtH) is a sub- out the space spanned by

space of CPt. ^ and Qt" together.
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Due to the facts that (Q1L)HQtV1 = 0 and that Q^V^ is

the basis of X(Wl) we can conclude that the range of Wx

is a subspace of Qt. An analogous consideration leads

to the result that the range of Wx is a subspace of CPt.

Figure 2.3 shows the relations between the spaces in¬

volved in a Galerkin breakdown of a projection method.

What about

$.{xi>l ) AND

!R(V" )?

Example 2.8 Let us consider the following configuration of the

bases Pv, Qv, P^, Q^ of the subspaces 3\, Ql and their com¬

plements Vi, Qi inR4:

Pt

Qx-=

o

i

0

-1

r i 0 1

i 1

i 0

0 0

r i 0 1

0 1

i 1

0 1

Q^ =

"

0 -1 1

0 0

0 1

1 1

The singular value decomposition of PHQV is

Ut =

U2 =

L =

'

V2 0
'

0 0

0
'

-1 Vl=X

'

-i

-i

'

-1

0
v2 = f

'

-i

i

With this decomposition we can calculate bases for T>1, and "Rx

D, = Q,V2
Vi

2
Rt = PtU2

-1

0

1

-1

Dr can be obtained by subtracting the second column vector

of Qv from the first one. It is equal to the first column vector of

P^. Consequently rDl is actually the intersection of Qx and 7X.
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Ri can be obtained by adding the first column vector of Q^
two times to the first one. It is equal to the first column vector

of Pv and therefore Rl is the intersection of the two spaces Q^
andO\.

The bases for R(Vl and ft (V^) become

span (A)} =Q,V! = -

span ft^U =PtUi =

^2

1

2

2 1

0

0

-1

0

1

The basis of öi(Vx) can be obtained by adding the second col¬

umn vector of Qx two times to the first one. This shows that

K(VJ is actually a subspace of Qx as stated before. Likewise

the basis of 9l(x¥l ) is the negative second column vector of Px

and therefore 5l(xPl ) is a subspace of 3\.

Bases for X(VJ and W(v") would be

span{N0K)

1 0

0 1

-1 0

0 1

span \ W(V,

0 -1

0 0

0 1

-1 0

-2

2

-2

0

Dr is the first column vector of the basis of N^K), which shows

that it is a subspace of the kernel of xVl. Rv is constructed

by adding the first and second column vector of the basis of

N(x¥l ). Therefore, Rl is a subspace of the kernel of x¥x .
o
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Let us consider step n of a projection method. In this

step the correction space and the projection space are

of full dimension n. Their bases are invertible. We can

therefore simplify Wn as

Wn = Qn(P^Qn)-1P^ = QnQ-' P-HP^ = 1.

Consequently tv = (1 — H,Tl)ro = 0 after n steps. This

is a very important observation. We have proven the

following theorem.

Theorem 2.9 Supposed, there are no rounding errors in¬

volved: Ifthe dimension ofthe correction space is consec¬

utively increased by 1 in each step, projection methods

will converge after at most n steps. D

Let the correction space Gx be given together with its ba¬

sis Ct. We have already shown that a fully working pro¬

jection method must assure that the projection space CPt

together with its basis Pt is chosen in a way that it is

• of the same dimension as Gx and

• PHQt is not singular.

The following lemma from Saad [32, p. 125] shows that

it is sufficient to choose Pt either as a basis of Gx or Qt

(e.g. Ct resp. Qt) to solve the linear system (2.1):

Lemma 2.10 Let A, G and CP satisfy either one of the

following two conditions:

1. A is hermitian positive definite and CP = G.

2. A is nonsingular and CP = Q.

Then the matrix M := PHQ is nonsingularfor any bases

P and C of CP and G, respectively.

Converges

within tl

steps!

How to

CHOOSE THE

PROJECTION

SPACE?
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Proof.

1. Since CP = G there exists a nonsingular matrix G

such that P = CG. Therefore, we can write M =

GHCHAC. Since A is positive definite, so must be

CHAC. With G being nonsingular, so must be M.

2. Since CP = Q there exists a nonsingular matrix G

such that P = QG. Hence we can write M as M =

GH(CA)HAC. Since A is nonsingular, (CA)HAC
is of full rank and even positive definite. With G

being nonsingular, so must be M.

D

With the last lemma we have only two cases of projec¬
tion methods left to analyze: One for positive definite

matrices and a more general method for nonsingular
matrices.

Orthogonal Residual Methods

Definition 2.11 A projection method with CPt = Gx is

called orthogonal residual method (or OR methodj.

The algorithm for an OR method is a slight simplifica¬
tion of Algorithm 2.2. Because CPt is identical to Gx, line

number 9 can be dropped and every occurrence of Pt

can be replaced by Ct. The whole algorithm for an OR

method is shown as Algorithm 2.3.

what is If the system matrix of the linear system A is hermitian

minimized? positive definite, an OR method is also a minimization

method.

Lemma 2.12 Let A be hermitian and positive definite.

An OR method minimizes the A-norm of the error vector

t|t over the correction space Gx in each step i.
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Figure 2.4 Orthogonal Residual (OR) method: This is a

projection method with CPt = Gx: r0 is projected unto Gx
along Qt.

Qi

Proof The error vector is given by t|t = s — st. Since

St = s0 + ct with ct = CtZt in an OR method, the error

vector can be expressed as

T|t = S So CtZt = T|0 CtZt

The A-norm of the error vector is

\K\\l = i1xHAilt = il"Aiio - IrtfAC^ + ztHCtHACtZt

Minimizing this norm for zt results in

Zt = (C^ACt)-1 C?At,0 = (C^ACt)-1 CtHr0.

This is the component vector that an OR method com¬

putes in every step. D
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Algorithm 2.3 Template algorithm for an Orthogonal
Residual Method.

function ORM(A, b, x0, e) : vector;

i:=0;

n:= dimension(A) ;

r0:= b-Ax0;
while ||Tt|| > e||b|| do

choose et+i ;

C1+i := basis of et+i ;

Ql+1:=ACl+1;

zt+i-ic^Q^r^Vo;
qi+i:= Qt+izt+i;

rl+1:=r0-ql+1;
i:= i+ 1;

end;

cx.— \~XZX,

St:=x0 + ct;

ORM:= st;

end ORM;

HOW TO

CHOOSE THE

CORRECTION

SPACE?

Let A be hermitian and positive definite. Lemma 2.12

tells us, that in every step of an OR-method the A-norm

of the error vector is minimized. That is the A-norm of

T)t £ {t)o} + &i is minimized in step i, whereas in step
i + 1 the A-norm of t|1+1 g {t|0} + Ct+i is minimized.

A monotonous descending sequence of error (A-)norms

can be obtained by claiming that Gx should be contained

in et+i for all i > 1.

Lemma 2.13 Given a linear system with hermitian pos¬

itive definite system matrix A. An OR method converges

monotonously, i.e. ||ti1+i||A < ||tkIIa if the following rule

holds

gx c et+i (2.10)
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Proof. Let us consider the difference of two subsequent
error vectors

a:=T)t Tlt+i = ci+i cf

Equation (2.10) tells us that a g et+i • Consequently the

difference of two subsequent residual vectors

rt r1+i =q1+i qt =Aa

is an element of Qt+i. An OR method determines r1+i

such that it is an element of C^ .
Since A is hermitian

t|1+1 is thus an element of Q^. Hence we have

\K\\l =iltHrt = (a + i1l+1)H(Aa + rt+i)

= aHAa + Ti^1Aa-|-aHr1+1 +Ti^1r1+1
=o =o

= lK + K+illi-

Since ||a||A > 0, ||t|1+1 ||a < ||t|Ja as proclaimed. D

Let us now define the scalar functional r\:

r\ :Rn^l,XH ||r)(x)||A = sHAs-xHAs - sHAx+xHAx.

The functional is chosen such that for hermitian A r\ (xx)
is the square of the A-norm of the error vector t|t. If A

is split into its hermitian part S and its skew hermitian

part T, the gradient of this functional becomes

Vri(x) = V (sHAs - 2Re(sHSx) - 2Im(sHTx) +xHAx)

= -2Re(sHS) -2Im(sHT) +2xHS.
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In the hermitian case the gradient becomes —2rH. The

local optimum direction for the change of xt is there¬

fore rt. Hence the correction space should be chosen as

follows

Ci =r0

et+i = spanlCt.Tt}

= span{et,r0 +ACtZt} = span j Gx, AVq j .

This scheme suggests choosing Gx as a Krylov space

with matrix A and vector r0. Optimization of an OR

method on a linear system with a hermitian positive
definite system matrix using a Krylov space leads to the

well known Conjugate Gradient (CG) method (see for ex¬

ample [32, pp. 176]).

However, little can be said about the nonhermitian pos¬

itive definite cases.

Minimum Residual Methods

Definition 2.14 A minimum residual (MR) method is a

projection method with CPt = Qt.

A general algorithm for an MR method is shown in algo¬
rithm 2.4.

what is Since Qt is the projection space of a minimum residual

minimized? method, the component vector zt is obtained by

Qx^QxY' QxHro

This is the solution of the normal equations of the min¬

imization problem ||rx|| = minzeRi||r0 — Qxz\\. Hence in

step i of an MR method the 2-norm of the residual is

minimized over the projection space Qt.
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Algorithm 2.4 Template algorithm for a Minimum

Residual Method.

function MRM(A, b, x0, e): vector;

i:=0;

n := dim(A);

r0 :=b-Ax0;
while ||Tt|| >e||b|| do

choose et+i;

C1+i := basis of et+i ;

Q1+1 :=AC1+i;

Zx+i := (QtH+iQx+i)_1 QxH+iro;
Qt+i := Qt+izt+i;

rl+i :=r0-ql+1;
i:=i+ 1;

end;

ct := CtZt;

st :=x0 + ct;

MRM := st;

end MRM;

Lemma 2.15 An MR-method converges monotonously, monotonous

i.e. ||rl+11| < ||rt||, if convergence

Qt C Qt+i.

Proof. We have r1+i = r0 — q1+i and rt = r0 — qt with

q1+i e Q1+i and qt G Qt.

Let us consider a := r1+i — rt = qt — qt+i •

• Since Qt C Qt+i, a g Qt+i .

• The MR-method determines r1+i, such that r1+i G
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Using these two facts we conclude that a is orthogonal
to r1+i. Thus we get the proclaimed statement

||rt||2 = ||rt+i||2 + ||a||2>||rt+i||2.

D

In Figure 2.5 the statement of Lemma 2.15 is depicted
for the first two steps of an MR-method.

Figure 2.5 Minimum residual (MR) method: This is a

projection method with CPt = Qt. Since r0 is the hy-
pothenusis of a right angled triangle spanned by r0 and

r-\, \\r-\ || is less or equal to ||r0||. The same thing applies
to ri and r2, and more generally to rt and r1+i.
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Let us consider the scalar functional r: How to

CHOOSE THE

T R^ _> R •
CORRECTION

SPACE?

x=> ||r(A,b,x)||| = bHb-2Re(bHAx)+xHAHAx

The functional is chosen such that r(sj is the square

of the 2-norm of the residual vector rt. The gradient of

this functional is

Vr(x) = -2(bH-xHAH)A = -2r(A,b,x)HA

This equation tells us that the local optimum direction

for the change of st is AHrt. According to this the cor¬

rection space should be chosen as follows:

Ct = AHr0 (2.11)

et+i = span|et,AHTt|
= span{el)(AHA)lAHr0} (2.12)

This scheme suggests choosing Gx as a Krylov space

with matrix AHA and vector AHr0.

Let us consider the normal equations of (2.1):

As = b with Â := AHA and b := AHb

The residual vector of this system is

ft = AH(b-Ast) =AHrt.

Applying an OR method to the normal equations leads

to the following expression for finding the component
vector zt:

Zt = (C^ÂCt)-1 CtHft = (Q^Qtr1 QtHî\ (2.13)

The suggested correction space for this OR method is

a Krylov space with matrix Â and ft. This is the same
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correction space we got for the MR method in equations

(2.11) and (2.12). Furthermore equation (2.13) tells us

that an MR method using such a correction space is

in fact an OR method on the normal equations of the

given linear system. Optimization on OR methods on

the normal equations of the linear system using Krylov

spaces leads to algorithms known as CGNR and CGNE

[32, pp. 237].

It is well known that normal equations may cause nu¬

merical problems, because the condition of the system
matrix is squared. However, we will see in the next sec¬

tion that using such a scheme can also have a bad alge¬
braic impact on the convergence of a method and that

a better and simpler choice for the correction space ex¬

ists.

2.4 Krylov Space Methods

2.4.1 Motivation

Using the ansatz (2.4) of correction space methods for

the residual in step i, we transform the linear system
(2.1) into the equivalent system

ACoo=r0. (2.14)

This system has to be solved for c^ which is equivalent
to the initial error vector t|0. To solve this system A-1

has to be approximated. This can be achieved by using
the minimal polynomial \iA of the system matrix A. Let

d

M-a (x) := Y_ œxXx
1=0
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be the minimal polynomial of A. Then we have

d-1

Ha (A) =1<x0+A^2 «a+iA1 0.

1=0

And consequently the following relation holds:

1

<x0

d-i \

1=0 /

This implies

,
-i

1
d-1

=—y_ ot+iA1.

Thus the solution of (2.14),

d-1

= Cd-1 = T|0 = V (Xt+1 AV0
<x0

1=0

(2.15)

is a linear combination of vectors AVo, 0 < i < d — 1 and

is therefore an element of the Krylov space %d--\ (A,r0).
With these observations we have shown already the fol¬

lowing theorem taken from [20].

Theorem 2.16 If the minimal polynomial of the nonsin¬

gular matrix A has degree m, then the solution to Ax = b

lies in the space %m (A, b ). D

Example 2.17 Consider the linear system

3 12 1 1 1

0 3 0 1-2 3

0 0 2 0 0-4 ,
,0 n,.

0 0 0 2 4 0
X=

^
• (Z16)

0 0 0 0 4 0

0 0 0 0 0 4
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Its matrix is positive definite. The minimal polynomial of the ma¬

trix is:

HaM = (x-3)2(x-2)(x-4)

= x4 - 12x3 + 53x2 - 102x + 72.

This polynomial has degree 4. A Krylov space method should

therefore converge within 4 steps. The results for OR methods

and MR methods with and without using a Krylov space as

the correction space with initial residual r0 = [-2,1,1,1,1,1]T
in Matlab are shown in Table 2.1.

Table 2.1 Results for Example 2.17 with initial residual r0 =

[-2,1,1,1,1,1]T in Matlab: Ml and M2 are OR methods, M3

and M4 are MR methods. The numbers listed in the table for

OR methods are ri^Ar^, whereas the numbers for MR meth¬

ods are r"n. The correction space used by Ml and M3 is

a Krylov space Xx(A,r0), M2 uses {St|0, ..., Sr|l_1}, M4 uses

{AHr„,...,AHv,}.

i Ml M2 M3 M4

0 4.916667 4.916667 9.000000 9.000000

1 4.254902 2.557133 6.020619 5.071106

2 0.034812 0.362755 0.114399 3.150672

3 0.001845 0.220116 0.005666 1.915598

4 0.000000 0.056908 0.000000 1.504152

5 0.167435 0.037557

6 0.000000 0.000000

In this table the component vector zx in the two Krylov space
methods Ml (OR method) and M3 (MR method) converge in

different ways to z4 = 1/72[102,-53,12,-1]T, finally resulting in

an initial error vector r|0/

t|0 = c4 = Cz4 = =!- (l 02 • 1 - 53A + 12A2 - A3) r0

and a residual vector

r4 = Ar|4 = ]- ill A -102A + 53A2 -12A3 +A4)r0.
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In the last expression the second factor is the minimal polyno¬
mial of A making r4 (and hence t|4) vanish.

M4 is a Krylov space method of OR type on the normal equa¬

tions of (2.16) (and thus also an MR method). The eigenvalues
of their matrix AHA are the singular values of A

a = [26.5880, 6.0739,3.9748,1.9830,1.8426, 0.2456].

Because all of the singular values are different, the minimal

polynomial of AHA has maximum degree 6. Consequently M4

converges within the maximum number of steps.

Similarly the eigenvalues of the symmetric part S of A are

A(S) = [0.0237,0.5434,2.1745,3.8714,5.4143,5.9727].

Because all of the eigenvalues are different, the minimal poly¬
nomial of S has maximum degree 6. Although method M2

builds a space that includes always the local optimum search

direction as the next basis vector, it also converges not before

the full dimension 6 of the correction space is reached.

Summing up the statements made so far in this section

we can describe a Krylov space method as follows: It is

a projection method that uses a Krylov space as its cor¬

rection space to approximate the initial error t|0, which

is a member of the Krylov space.

Definition 2.18 A Krylov space method is a projection
method with correction space C, = DC, (A, r0).

It has been mentioned by Wilkinson [39, pp. 369] that

the simple approach of building a Krylov space by com¬

puting the vectors r0, Ar0,..., A,_1r0 consecutively as a

basis for DC, (A,To) is numerically unstable. The column

vectors become more and more linearly dependent, be¬

cause they converge into the direction of an eigenvec¬
tor associated with the largest absolute eigenvalue. To

overcome this numerical problem several schemes have

been developed for Krylov space generation for general
matrices, one by Arnoldi involving orthogonalization, the

other one by Lanczos involving biorthogonalization.
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2.4.2 Arnoldi Process

Given a matrix A and a vector a we want to generate a

sequence of orthonormal basis vectors for Krylov spaces
DCt(A, a) with i = 1,2,.. . n.

To obtain orthonormal vectors, we employ a scheme

that differs from the normal Gram-Schmidt procedure
in that we do not have a the full set of vectors to be

orthogonalized at the beginning. Instead the basis vec¬

tors are generated by multiplication by A when they are

needed. The first basis vector is the normalized start¬

ing vector vi := a/||a||. The other vectors V2,...vTl are

generated as follows.

Vl := a/||a||

tj+l

i

:= Av, — Y~ hajVi with h,t),
i-i

= v^Av,

v,+i :=t,+i/||t,+i||

(2.17)

l|t, + 1|| =

hj + lj

This scheme is called Arnoldi Process. An implementa¬
tion is shown in Algorithm 2.5.

It is natural to label ||t,+i || as H,+i ,,
because

|t,+i II2 = t^+1t,+1 = t^+1 Av, - Y_ Hi,,tJ|1vl. (2.18)
1=1

The Gram-Schmidt procedure in the Arnoldi Process

guarantees tJ^Vt = 0 for i < ). Therefore, the terms

in the sum of (2.18) vanish and we get

ci+il
t,+i

rtîtiAv, =v^+1Av, =h,+1), (2.19)
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Algorithm 2.5 Modified Gram-Schmidt version of the

Arnoldi-Process.

function Arnoldi(A, a):[matrix, matrix];

vi:=a/||a||;
for j := 1 to n do

t,+1:= Ap,;
for i := 1 to j do

Ki :=^t,+1;
t,+i := t,+i — HtjVt;

end;

Vi.j := Pi+iIU;
vi+i := tj+i/N+i,)'
j:=j + 1;

end

Arnoldi :=[V,H];
end Arnoldi;

Let us recall that a vector v, is an element of DC, (A, a) if arnoldi

and only if it can be rewritten as a polynomial in A vectors span
J

3C(A,a)

1-1

v, = Y~ <xk ,Aka for some <xk ,. (2.20)

k=0

The following lemma shows that the Arnoldi process

generates vectors v, e DC, (A, a) and that every gener¬

ated vector v, is necessary to span DC, (A, a) as long as it

is not an invariant subspace.

Lemma 2.19 Given a matrix A and a vector a. The

Arnoldi process described by (2.17) guarantees

v,+i GDC,+i(A,a).

Moreover, as long as DC, (A, a) is not an invariant Krylov

space, the leading coefficient <x,_i )5 ofv^ does not vanish.

Proof. We prove the statement by induction with re¬

spect to j > 1.
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Initialization vi = t^o- e DCi (A, a) and <x0)i = jK ^ 0.

Induction Step We now use the hypothesis v, g

DC, (A, a) and the iterative scheme to show the

statement. In (2.17) we replace v, and vt in the

manner of (2.20) by polynomials and obtain v,+i

as

1
/ i-i i i-i \

vi+i =

TÜ iT
A Y^ ak,,Aka- YK,-, Y ak)iAka .

11*'+! II V kTo tl th J

(2.21)

This equation shows that v,+i is a polynomial in A

of degree j. For some <Xk,i+i it can be rewritten as

i

v,+i = Y_ «k.,+1 Aka g DC,+i (A, a).
k=0

Together with the hypothesis a,-i,, ^ 0 equation

(2.21) also implies

ai,i+i =ai-i,i/llti+ill ^°-

D

K,, = o for As a consequence of this lemma and the polynomial
i > j +1 representation (2.20) of v,,

Aev, GDC,+e(A,a). (2.22)

The usage of the Gram-Schmidt procedure guarantees

v, _L DC,-! (A, a) D DC,_2(A, a)D...D%^(A, a).

Equation (2.22) tells us that Aev, g DC,+e(A, a). Putting
all these things together, we get

v^Aev, =0 for k> j + e. (2.23)
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The Arnoldi process can be expressed in matrix form matrix rep

as RESENTATION

AV, = V,H, + h,+1 ,,^+t e]1 = V,+1 H,+1. (2.24)

In this equation H, is the matrix containing the values

Ht)k with i < ) and k < j. H,+i contains additional values

h.,+1^ with k < j.

Equation (2.23) states that H, is a () x j) upper Hes¬

senberg matrix. Matrix H,+i is H, extended by a row

containing one value in the last column. Thus H,+i is

of size ( j + 1 x j ).

Multiplying (2.24) by V, on the left side, we get

V^AV, = H, (2.25)

If j = n, V, = (V^1)-1 is an orthogonal matrix and this

equation describes the Arnoldi Process performing a

similarity transformation on A. However, there is no

guarantee that j = n can be achieved.

2.4.3 Symmetric Krylov Space Generation

Although we will not deal with hermitian system matri¬

ces, it is necessary to understand how a Krylov space is

constructed in the hermitian case for the understand¬

ing of the decisions in the next subsection. Hence let A

be a hermitian matrix.

With A being hermitian, a consequence of (2.23) is

v^Aev, = v^Aevk = 0 for k > j + e.
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So the sum in the Arnoldi process can be replaced by

only two terms. Scheme (2.17) becomes

Vl := a/||a||

tj+l := Av, — v^Av,v, -vJl^VjV,-!

lit, ||

v,+i :=t,+i/||t,+i||

This process is known as the symmetric Lanczos Pro¬

cess. It is hidden behind the CG algorithm, but it also

has many other applications.

As a consequence of the general Arnoldi process (2.19),

we find that ||t,+i || = vj^, Av, = v^Av,+i. This value can

be reused for determining t,+2.

With A being hermitian, we conclude that the iterative

scheme becomes less expensive in work and in memory.

Each step of the scheme has equal costs. Only two basis

vectors have to be stored to determine the next one.

The matrix representation H, reduces to a tridiagonal
matrix.

2.4.4 Lanczos Biorthogonalization

The cost effectiveness of the symmetric Lanczos process

compared to the general Arnoldi Process is so huge that

people are willing to pay a price to keep it in the general
case. If H, has to stay tridiagonal with A being a gen¬

eral matrix, the usage of a Krylov space on AH suggests
itself.
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Let V, be a basis of DC, (A, a) and W, a basis of DC, (AH, a).

Following the strategy of the Arnoldi process let both

bases be constructed such that the following expres¬

sions are true

AV, = V,H, +h,+1),v,+1e}\ (2.26)

AHW, = W,K, + k,+1 >)W)+1 e. (2.27)

Equation (2.24) tells us that H, and K, are upper Hes¬

senberg matrices. However, since we want them to be

tridiagonal, their components as well as the values H,+1 ,

and k,+1 ,
have to be determined in a different way in the

Arnoldi process.

Multiplying (2.26) by W and (2.27) by V on the left determining

side, both equations can be combined. hj AND ^

W^(V,H,+h,+1),v,+1<) =

(

;vi,)^+1+k,x)v,

W^AV, = (V^AHW,)

Claiming that the bases W, and V, are biorthogonal, i.e.

W^V, = 1, cleans up this equation and we get

W^AV, = H, = K^ = ( V^AHW, ) . (2.28)

Since H, and K, are upper Hessenberg matrices, they
must be tridiagonal. Equation (2.28) even reveals the

values for their components: Ht), = w^Av, and kt), =

v,HAHw,.
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The price to pay for keeping the tridiagonal structure

is: Two bases instead of one (including matrix multipli¬
cation by AH) and the replacement of orthogonality by

biorthogonality. These considerations lead to the Lanc¬

zos biorthogonalization.

Vl := a/||a|| w, := a/||a||

tj+l

i i

:= Av, - Y_ Kivt ui+i := AHw, - Y_ hhxwx
1=1-1 1=1-1

v1+1 := t,+1/h,+1), w,+1 := u,+1/h.,))+1

with h,t), = w^Av,

determining Values H,+i,, and H,,,+i are chosen with respect to the

+ i,)h,
^ + 1,5

=

^,1 + 1

condition vj^, w,+1 = 1, which results in

N+i.iVi+i = tj+i^+i-

One of these two values can be arbitrarily chosen, the

other one is bound by this equation. Common values

are

îï-i+1,1 = yltj+iu-i+i and Vi+i =tJ+iui+i/lai+i,i-

With this choice H, is symmetric with respect to abso¬

lute values.

As in the symmetric Lanczos algorithm, values H,+i ,

and H,,+i can be reused for the determination of t,+2
and u,+2. An algorithm for the Lanczos biorthogonaliza¬
tion is shown in Algorithm 2.6.

Whereas the Arnoldi process ends exactly when H,+i ,

vanishes, this is not true for Lanczos biorthogonaliza¬
tion. In fact the Lanczos biorthogonalization can have

a serious problem, when |t^u,| becomes small. Such

an event is called breakdown or near breakdown of the

biorthogonalization. A number of approaches has been
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Algorithm 2.6 Lanczos Biorthogonalization.

function BiOrth(A, a):[matrix,matrix,matrix];

V! :=w, := a/||a||;
hi j := w^Avi ;

t2 := Avi — HijVi ; u2 := AHWi — HijWi ;

for j := 2 to n do

N.i-1 := \/Ku^
hi-i,i :=KT—[t]i'[h<

vi :=tjA,,j-i;
w, :=u,/h,_i,j;

Vi:=wrAvi;

t,+1 :=Av, -Hj^v, -hj-T^v,-!;

u,+1 :=AHw, -Hj^-vv, -hj^-T-Wj-i
end

BiOrth := [W, V, H]

end BiOrth;

developed to avoid such breakdowns, other approaches

try to deal with it. Saad [32, pp. 208] gives an overview

of these methods.

2.4.5 General Arnoldi Type Methods

Full Orthogonalization Method The full orthogonal¬
ization method combines the Arnoldi process with the

OR approach.

Definition 2.20 The Full Orthogonalization Method

(FOM) is a Krylov space method based on the Arnoldi

process with projection space CP, = 6, = DC, (A,r0).
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In step ) the Arnoldi process generates an orthonormal

basis V,. Using 6, = span{V,} the residual of FOM be¬

comes

r, = r0-AV,z,

The OR approach requests CP, = span{V,}. Since r0 is an

element of DC,(A,r0), (2.25) and (2.7) imply that

z, =H-1e1||r0||. (2.29)

when to Evaluating the residual norm in each step by
STOP?

||r,|| = ||r0-AV,z,||

is expensive. However, we know by (2.24) that the resid¬

ual can be expressed as

r, = (r0-V,H,z,)-h,+1),v,+1<z,. (2.30)
s •

=0

By the choice of z, in (2.29) FOM cares for the bracketed

expression to vanish and hence

Pi HNI =H,+1),|e^z,|,

which is less expensive to calculate.

The considerations made so far are summarized in Algo¬
rithm 2.7. Some improvements in this algorithm could

be made with respect to evaluating the component vec¬

tor z, by (2.29). However, these improvements have

been initially developed for GMRES treated in the next

subsection and their necessity is much better motivated

by that algorithm. That is why this technique is ex¬

plained in the next subsection.

Equation (2.30) gives rise to the two following properties
of the FOM Algorithm.
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Algorithm 2.7 Full orthogonalization method (FOM).

function FOM(A, b, s0, e):vector;

r0 :=b-As0; po := ||r0||; vi :=r0/p;
•i • 1 •

1 •— I,

while p,

*i+i :=

for i:=

Ht),

end;

i > e||b|| and j < n

Av,;
1 toj do

:=VtHt,+i;
:=t,+i -ha,,vx;

do

z, :=H.r1eill^o||;

N+1,1 := Pi+i II;

vi+i := ti+i/N+i.p

p, :=h,+1),|e^z,|;
j:=j + 1

end;

FOM^So+Vj-tZ,-!
end FOM;

Property 2.21 The residual vectors r0 ... r,_-| generated

by the FOM algorithm span the Krylov space DC, (A, r0 ).

Proof. Equation (2.30) makes sure that rt = cxv1+1 for

some constant value cx and i = 1
... j — 1. By construc¬

tion r0 is an element of DC,(A,r0) and vx,i = 1
... j span

DC,(A,r0). Therefore, the residual vectors r0 .. .r,_i also

span DC, (A, r0).

Property 2.22 The residual vectors generated by FOM

are orthogonal.
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Additional properties include the possible Galerkin

breakdown of FOM mentioned in section 2.3 and the

rather unpredictable behavior of the residual norm.

Generalized Minimum Residual Method The general¬
ized minimum residual method combines the MR ap¬

proach with of the projection methods with the Arnoldi

process.

Definition 2.23 The Generalized Minimum Residual

Method (GMRES) is a Krylov space method based on

the Arnoldi process with projection space CP, = Q, =

span,{AV,}.

In each step j the 2-norm of the residual vector r, :=

r0 — AV,z, is minimized with respect to z,. With the

help of (2.24) and the orthogonality of V,+i this norm is

transformed into

= ko-vi+i H,z,| = enroll-H,zi^il

Solving the

least

SQUARES

PROBLEM

Due to the special structure of H, the least squares

problem H,z, ~

e-\ ||r0|| can be solved by reusing much

information from step j — 1.

Let

R (2.31)

denote the QR decomposition of H,. Because H, con¬

tains just one lower diagonal to be eliminated, only one

Givens rotation per step is necessary to gain the de¬

composition. Let G, (k) denote the Givens matrix in step

j that eliminates H,+i,,, precisely

G,(k):=

k-2)

COSk

-sink

smk

COSk

'(>-k).

. (2.32)
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Then Q becomes Q = G,(l G,(j)H. Let also

9i

Pi+i
Q>ilM (2.33)

Thus the least squares problem has been transformed

into a linear system R,z, = g, that has to be solved in

each step j and cannot be simplified any further. R,
is updated columnwise from step to step. To do this all

further cosines and sines from the Givens matrices have

to be stored. However, g, and p,+i can easily be updated
from one step to the other by the following recursion

Pi :=Fo||,

P, := -P,-i sin, ,

9o-=

g, :=
01-1

p, cos,
(2.34)

This update procedure can also be applied to FOM.

The residual norm of the least squares solution is

ei r0 H,z,|| = |p,+i|,

and therefore its norm can be easily obtained by ||r, || =

IPi+il-

The considerations made so far are summarized as a

function in Algorithm 2.8. In this algorithm the ele¬

ments of R, are denoted by rt),. In a practical imple¬
mentation of the algorithm one would not store H, and

R, but rather replace the components of H, with the val¬

ues of R,.

Property 2.24 The residual norm ||r,|| of GMRES con¬

verges monotonously.

Proof. Since GMRES satisfies all the conditions of

Lemma 2.15, it has a guaranteed monotonous conver¬

gence, ü
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Algorithm 2.8 Generalized minimum residual method

(GMRES).

function GMRES(A, b, s0, e):vector;

r0 :=b-As0; po := ||r0||; Vi :=r0/p0;

i:=i;
while |p,_i | > e||b|| and i < n do

{Arnoldi Process}

t,+i :=Av,;
for i:= 1 to j do

ht,, := vt,+1 ; t,+1 := t,+1 - h^Vt;
end;

N+i ,i
:= 11*1+1 II - vi+i := *)+i A)+i ,i;

{ Update previous Givens Rotations}

ri,i :=lai,i'.
for i:= 1 to j —1,

end

't,i

.Ti+1 ,,

cost sint

sint cost

't,i

Ht+i,,

{Actual Givens Rotation}

tan^h,^,/^,;

cos,

r1,1:- '1,1'

j, .- 1/vl + tan2; sin, := cos, tan;

r, ,
:= r,, cos, +lv

{Right hand side and component vector}
Jj)

.

:= p, cos,; p,+i :=-p, sin,;

RrV;

j:=j + 1

end;

GMRES := s0+V,_1z,_1
end GMRES;
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2.4.6 General Lanczos Type Methods

Biconjugate Gradient Method The Biconjugate Gradi¬

ent Method (BiCG) combines the OR approach of the

projection methods with the Lanczos biorthogonaliza¬
tion. However, to make use of the advantages of this

process, some changes have to be introduced to the OR

paradigm.

Let V, be the basis of 6, = DC, (A, r0) and W, the basis of

DC, (AH, r0) generated by a biorthogonal Lanczos process.

In step j an OR method would determine the residual

vector r, by

r, =r0 - AV,z, with z, := (VfAV,)-'V^r0.

However, to make use of the tridiagonal structure of H,
generated by the Lanczos process, z, is determined by
BiCG rather the following way.

z, := (W^AV,)-^^ =H-1e1||r0||

This way r, is determined such that it is orthogonal to

DC, (AH,r0) rather than the correction space DC,(A,r0).

Definition 2.25 The Biconjugate Gradient Method

(BiCG) is a Krylov space method based on Lanczos

biorthogonalization with projection space DC, (AH, r0 ).

Due to the usage of the Lanczos biorthogonalization
neither V, nor W, is needed to determine z,. But so

far V, is still needed to determine r,. Techniques devel¬

oped for CG however allow us to eliminate V, in r, and

therefore to save memory.

Eliminating

the FULL

Lanczos

bases
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Since H, is tridiagonal, it can be decomposed very easily
into matrices L, and U,.

1 Yi-i

b Pi
.

'

m yi

M-1-1 Yi-i

Hi
.

with Ak, |j.k recursively being defined by

m := ßi,

Ak+i := «k+i/M-k, M-k+i := ßk+i -Ak+iYk, 1 <k<j.

Let us define now a basis of direction vectors

P, := V,^1 (2.35)

and an associated coordinate vector y, := L^ei ||ro||.
With these definitions r, reads as

r, =r0 AP,y,.

Evaluating P,U, = V, we see that v, = Yi-iP,_i + M-iP,-
Thus p, can be generated recursively by

1 r^ro
Pi:=^Vl=rHXr;ro'

Pk+i := (vk+i -YkPk)
M-k+1

ßi Yi

<X2 ß2 Y2

H,

«i-i ßi-
c

L,U,
A2 1

A, 1

(2.36)

(2.37)
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Furthermore the structure of L, makes it also possible
to determine the components of y, in recursive way.

yi := Ikoll

yk+i := —Ak+iyk

With these recursions the residual vector r, can now

also be recursively obtained by

r0 := b - As0

r,+1 :=r, -Ap)+1y,+1

The considerations made so far result in a first draft of

BiCG shown in Algorithm 2.9.

The residual vectors r, and the direction vectors p, have

some important properties that allow us to improve this

algorithm.

Let us consider the additional linear system

AHs = b. (2.38)

Solving this system in the same manner as (2.1), the

residual vector for s, becomes

f, = f0 - AHW,z, with z, =H-He1||f0||. (2.39)

Similarly as in (2.35) let us also define a basis of search

directions P, for the residual vector (2.39),

P, := V,L-H (2.40)

as well as its associated coordinate vector

y,:=UrHe1||f0||)

such that the residual vector becomes f, = f0
— AHP,y,.

Properties

of the

algorithm
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Algorithm 2.9 A first version of the biconjugate gradi-
ent method (BiCG).

function DraftBiCG(A, b, s0, e):vector;

r0 := b - As0; v0 := w0 := p0 := 0;

o^ := (j-o := 1 ; yo :=-|M|
V! :=w, :=r0/||r0||;

while Hr,-! || >e||b|| do

ß, :=w*Av,;

t,+i := Av, - ß,v, - Yi-i v,-i ;

u,+1 := AHw, - ß,w, - f^w,^

A,:= <Vm-i-i;

Vj '= -A,y,-i;

Hi := ßi -A,y,-i;

P, := Vm-i -Yi-i/M-iP,-i;
ri:= r,_! -Ap,y,;
s, := s, i +p,y,;

<x,+1 := ylt^^+il;
Ti :=

1 +H „

«, + ,t1 + 1U1+ 1'

v,+i := ti+i/«-i+i;
w,+i :=u,+i/y,;
i :=1 + 1

end;

DraftBiCG := s,_! ;

end DraftBiCG;

Property 2.26 The residual vectors r0,...,r,_i span

the Krylov space DC, (A,r0) and the residual vectors

f0,...,f,_i span the Krylov space DC,(AH,f0). Specifi¬

cally, r, = c,v,+i andf, = c,w,+i.
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Proof. Using (2.26) and (2.27) we get for the residual

vectors r, and f,

r, = r0 - V,H,z, - h,+1 t)V)+, e^z,, (2.41)

f, = f0 - W,H^z, - H,,,+i w,+1 efzy (2.42)

By construction the initial residual vectors r0 and f0 are

elements of the space spanned by the column vectors of

W, and V, respectively. W^r, = 0 and Vf, = 0 make

sure that the first two terms of (2.41) and (2.42) vanish,

establishing r, = c,v,+1 and r, = c,w,+1 for some con¬

stant values c, and c,. Since V, is a basis of DC,(A,r0)
and W, is a basis of DC,(AH,f0), [r0...r,_i] must be

a basis of DC,(A,r0) and [f0...f,_i] must be a basis of

DC,(AH,fo). ü

Property 2.27 The direction vectors p,,..., p, span the

Krylov space DC, (A, r0) and the direction vectors p,,..., p,

span the Krylov space DC, (AH, f0 ).

Proof. We prove the statement by induction with re¬

spect to j for vectors p,,..., p,. An analog proof exists for

all quanltities connected to the transposed linear sys¬

tem (2.38).

Initialization Equation (2.36) tells us that p^ is pro¬

portional to Vi .

Induction Step By hypothesis p, is an element of

DC,(A,r0) and p, is an element of DC,(AH,f0). We

showp,+1 GDC,+1(A,r0).

Equation (2.37) shows that p,+1 is a linear com¬

bination of v,+i g DC,+i(A,r0) and p, e DC,(A,r0).
Therefore, p,+1 e DC,+i(A,r0).

Since v,+i contributes with a non zero portion, p,+1
is a vector with a contribution in this direction and

it is the only one. D
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Property 2.28 (Biorthogonality) The residual vectors

r, andf, are biorthogonal, i.e. f^r, = OJori ^ j.

Proof The biorthogonality of f
x
and r, is a direct con¬

sequence of Property 2.26 and the biorthogonality of wx

and v,. ü

Property 2.29 (Biconjugacy) The bases of direction

vectors P, and P, as defined by Equations (2.35) and

(2.40) are biconjugate, i.e.

P^AP, =1.

Proof.

THE COMMON

BiCG

ALGORITHM

P^AP, = L^W^AVjU-1 = L-^U-1 =1.

developing With these properties we are able to derive the more

elegant BiCG algorithm, which uses the sequence of the

two types of residuals and the direction vectors also for

the generation of the Krylov spaces. This way this algo¬
rithm gets on without the basis vectors v, and w,.

Properties 2.27 and 2.26 give rise to the following ansatz

for a new sequence of direction vectors q, and q,, j =

1,2

1
qHAr

q, :=r0) q,+1 := r, - ^i|)l>,ql with ipi.i := _HaJ

1=1 Qi "-Hi

'
_ _ f"Aqx

Qi -=fo, q,+i :=f,-2_t|jt,,qt with ipi.i :=
.H,n

1=1 fli A1i

The factors 4>t,i and x|jr>1 have already been chosen such

that Property 2.29 is accomplished.
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Since the new direction vectors have the same direction

as the old ones, the residual vectors can be obtained the

same way as before:

r0 := f0 :=b-As0,

fHr
r,+1 := r, - cu,Aq,+1 with tu, := -q-1

'

f,HAq,+1

fHr

f,+1 := f, - cD,AHq,+1 with tu, :=
J J

q,+i>vr,

The factors tu, and tu, have been chosen in order to en¬

sure fj^r, = 0 and rr,+i = 0. The definitions of q,+1
and q,+1 imply

i

frAcii+i = qîtiAqi+i +X^.^^Aqi+i =

1=1

i

q}tiAq,+1+^ipt,,q,+1Aqt= q^iAri-
1=1

This lets us even simplify

ïfri
tu, := tu, :=

q,+iAq,+/

The next two lemmas show that the definition of r, and

f, is enough to satisfy f
k r, = 0 for k ^ j.

Lemma 2.30 The definitions ofr, and q, imply fk r, = 0

jork< j.

Proof. We prove the statement by induction with re¬

spect to d := j — k.

Initialization For d = 1, fJl, r, = 0 because tu, has been

chosen to ensure that.
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Induction Step We suppose that d > 1. The induction

hypothesis is fJlmr, = 0 for 0 < m < d. With the

definition of r, we get

f^Vi =f}ldr,_1 -tu,_!fJidAq,

The first term of the right hand side expression
vanishes because of the induction hypothesis. The

second term can be reduced to zero by using the

definition of q,_d+1.

1-d

if-dAcli = qJ-d+iAq, +^^t,,-dqtHAq,
1=1

Since j — d + 1 < j all the terms vanish, making
fJldAq, = 0 and hence f}ldT, =0. D

Lemma 2.31 The definitions off, and q, imply fkr, = 0

fork> j.

Proof. We prove the statement by induction with re¬

spect to d := k — j.

Initialization For d = 1, fJ^,r, = 0 because tu, has been

chosen to ensure that.

Induction Step We suppose that d > 1. The induction

hypothesis is fJHhmr, = 0 for 0 < m < d. With the

definition of f,+d we get

f1 + dT1 = fi + d-1T1 — ^l+ d^i+d^l-

The first term on the right hand side expression
vanishes because of the induction hypothesis. The

second term can be reduced to zero by using the

definition of q,+1.

i

q^dAr, = q* dAq,+1 + ^^t,,q* dAqt
1=1
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Since j + d — 1 > j all the terms vanish, making

qJ^dAr, = 0 and hence fJ^dr, = 0.

D

The definitions of r, and r, imply that the sum necessary

so far to evaluate q, and q, reduces to only two terms.

qkAr,

îfAqv

1

CUk-1
Ok-i ri-fk**i

0 k< j
^f"r, k = j

CU,_l 1 I

1

1 Mk
CUic-!

V '(f^ric-! -f"rk)
0 k< j

1 ~H
f"r, k

0),_! 1 >

This gives rise to the following simplification

1 ffr, ffr,
^•=-^=-^ =

^q?Xq7
=

^^-7

Let us sum up all these simplifications into the following
scheme.

r0 := b - As0 fo := b - As0

qi := r0 qi := f0

r, := r,_! -cu,_-|Aq, f, := f,_i
-

tu,_ lAq,

q,+i := T*i+^iq, q,+i :=f,+i|j,q,

ïHfh -ill • > '

^' rr-ir)-i
ana tu, .— H

n

The common BiCG function is directly derived from this

scheme. It is presented in Algorithm 2.10.

Quasi Minimum Residual Method (QMR) The Quasi
Minimum Residual Method (QMR) combines the MR ap¬

proach of the projection methods with Lanczos biorthog-
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Algorithm 2.10 Common BiCG algorithm.

function BiCG(A, b, s0, e):vector;

r0 :=f0 :=b-As0;

qo := qo :=0;

^0:=0;

*o := f£ r

j:=0;
while ||r,|| > e||b|| do

1j+i = r,+i|j,q,; q +i :-= f,+

tj+i := Aq,+i; t)+i = AHq,+i
tu, := *,/(q^it1+i)
s,+i := s,+tu,q,+1;
î*i+i := r, -tu,t,+1; ri+i := r^

4>>+i :=fJ|ifi+i:
^)+i = 4>)+i/4>);
i =) + i

end

BiCG := S,-1
end BiCG;

*M,;

tu,t,+1;

onalization. As in GMRES the residual in step j is ob¬

tained by

r, = r0-AV,z, = r0-V,+1H,z, = V,+1 (enroll -H,z,).

However, V,+i is not an orthogonal matrix anymore.

And so this matrix cannot be dropped, when ||r,|| has

to be evaluated. This is why in QMR ||r, || is not mini¬

mized directly. Instead only the norm of its component
vector in DC,+i (A,r0) = span{V,+i} is minimized, hence

the name Quasi minimum residual method.
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Since W,+1 is orthogonal to V,+1 this norm can be ex¬

pressed by

IW^UHIdllroll-H^I

Thus in every step of QMR the residual r, is deter¬

mined such that it is orthogonal to span {W,+iH,} =

spanJYVj+iWj^AV, I. Concluding all the statements

made so far, we can describe QMR as follows.

Definition 2.32 The Quasi Minimum Residual Method

(QMR) is a Krylov space method, based on Lanczos bi¬

orthogonalization with projection space

05, = spanjW^Wj^AV,}.

The minimization algorithm follows the lines of GMRES.

However, due to the special structure of H, it can be

simplified in order to perform a constant number of op¬

erations in each step of the iteration.

Let us denote H, as

H,

ßi Ti

<X2 [il T2

<x3 ß3 T3

a,-i ß,-i T,-i

ßi

<x,+1

Like GMRES, QMR performs a QR-decomposition of H,
in each step that uses as much information from the

previous step as possible. Therefore, let the definitions

(2.31) and (2.32) also be applied in this context.
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Obtaining

the

qr decomp

Due to its structure a column of H, is affected by only
three consequent Givens transformations. Hence the

upper triangular matrix R, has the following structure.

Ri

ßi Yi 61

ß2 Y2 62

ßs Y3

ßi- Ti -2 6,-2

ßi -1 f,-1

ßi
0

The Givens matrices accordingly resized to 4 x 4 the fol¬

lowing relation holds between the columns of H, and

Ri.

'61-2'

T1-1

ßi
0

GfilGfi-llGf

0

T1-1

ßi

«-1+1

The components of the right hand side vector QHei ||r0||
are obtained recursively the same way as in GMRES,

described in equations (2.33) and (2.34).

updating the The approximation of the solution in step j is deter¬

mined bySOLUTION

VECTOR

So V,z, so + VjR^g

>-i
Let P, := V,R,

'. Like in the derivation of BiCG we can

evaluate V, P,R, to see that v, P,ß) +Pi-if,-i

p,_26]-2. Thus p, can be generated recursively

Pi := vi/ßi

P,+i := (v,+i -[p,-i,P,][S,-i,Y,]T)/ß1+1
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Since g, only changes in its last component, s, can be

obtained by updating s,_i with P,g, .

The Lanczos procedure, the recursive columnwise QR-

decomposition, the recursive computation of the right
hand side and the update of the solution are combined

to the QMR function given in Algorithm 2.11. To im¬

prove the readability of the algorithm we introduced vec¬

tors h, = [Y,-i,ß,]T, b, = [<x,,ß,]T, and p, = [S,_2,Yi-i]T
to denote pieces of columns of the matrices H, K and R.



Algorithm 2.11 QMR algorithm.

function QMR(A, b, s0, e):vector;

r0 :=b-As0; pi := ||r0||; j := 1;

cti := 0; yo := 0; cos_i := coso := 1; sin_i := sin0 := 0;

p_-i := Po := 0; v0 := w0 := 0; Vi := W] := r0/pi ;

while |p,| > e||b|| do

{Lanczos Biorthogonalization}

ci+i Av, ; ui+i AHw,;
ß, :=w^t,+1;
h, :=[Y,-i,ß,]T;k, :=[<x,,ß,]T;
t,+i :=t,+1 -[Vj-T.VjJh,;
u,+1 :=u,+1 -[•w,_1)-w,]k,;
CTi+i := *h-iui+i;

ai+i := vH+il; Ti := °"i+i/<*i+i;
vi+i :=t,+i/a,+i; w,+i :=u,+1/y,;

{Giuens Rotations}

sin,_2 0

cos,_2cos,_i sin,_i
— cos,_2 sin,_i, cos,_i

tan:= a,+i/ß,;
1

P,:=

ß,:=

h,;

h,;

cos.
,2.

1 + tan ; sin, := cos, tan;

ß, := ß, cos, +<x,+i sin,;

{RHS, gamma, dir. vect. and sol. update}

g,(l) :=p, cos,; p,+1 :=-p, sin,;

P, :=(vi-[P,-2,P,-i]p,)/ß,;
s, :=s,+p,g,
j:=j + 1

end;

QMR:=s,_,;
end QMR;

(i).



Chapter 3

Vector Extrapolation
Methods

3.1 Introduction

ector extrapolation methods are the key tech¬

nique to develop nonlinear Krylov space meth¬

ods. They are capable to accelerate the con¬

vergence of any given vector sequence {xt}, i =

0,1,2, ...j by extrapolating a limit or an anti-limit re¬

spectively. Especially they are able to accelerate lin¬

early generated vector sequences. This way they can

help solving a linear system more quickly. In this case

it is known that they are mathematically equivalent to

preconditioned Krylov space methods. On the other

hand they are also able to accelerate nonlinear vector

sequences.

In this chapter we give a survey of the most important
vector extrapolation methods. We show their connection

to linear Krylov space methods. Also a large part of this

chapter deals with their ability to accelerate nonlinear

vector sequences. We motivate the nonlinear behavior
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by first studying scalar sequences and then transform¬

ing our results to the multivariate case.

3.2 General Theory

Given a

vector

sequence

Let us consider a sequence of vectors {xj, i = 0,1,2,...j.
We suppose that this sequence is generated by a linear

process

H+i g(xt) := Gxt + d. (3.1)

The vector sequence may not necessarily converge. But

we assume that G has no eigenvalue 1. This condition

implies that Iteration (3.1) has a unique fixed point s

with s = Gs + d, which is the solution of the linear sys¬

tem

As = d with A := 1 G. (3.2)

commutation Because of their close relationship, the iteration matrix

property of q anc[ thg system matrix A commute with each other
AND

with respect to matrix multiplication.

AG = (1 G)G = G(1 GA. (3.3)

Aim of

vector ex

trapolation

METHODS

Definition 3.1 Given a sequence of vectors {xx}, i =

0,1,2,...), with the property that the unknown operator
that generates the vector sequence has a unique fixed

point s on a given set §.

A vector extrapolation method extrapolates approxima¬
tions s, g § of s using the known elements of the given
vector sequence.

By Definition 3.1 vector extrapolation methods approx¬

imate s. For this purpose the distance et between s and
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an element of the given vector sequence xt is an impor¬
tant term. We refer to this value as the error of a vector

sequence element. It is defined by

£t :=T|(Xt) =s-xt.

If the vector sequence is generated by a linear iteration

(3.1), the error in step i can easily be connected to the

initial error

£t = s xt = Gs + d Gxt-i — d = Get i = GTeo.

With this observation xt can be rewritten as xt = s —

GTe0. Thus a linear combination of the sequence ele¬

ments xt results in

d d d d

Y_ ßiXt = Y_ ^s - Gl£o) = « Y ^ ~ Y ßtGl£o- 0.4)

1=0 1=0 1=0 1=0

This leads to the basic idea ofvector extrapolation meth¬

ods: Find a linear combination of certain elements of

the vector sequence such that the error terms are elim¬

inated. That is: find ßx, i = 0... d such that

d d

Y ßi = 1 and Y ßtGl£o = 0- (3.5)

1=0 1=0

This way the linear combination of the sequence ele¬

ments (3.4) reduces to s. Thus the problem of vector

extrapolation can be reduced to finding the minimal

polynomial of G with respect to the initial error e0. If

the sum of the coefficients of the minimal polynomial
ßt,i = 0... d is normalized to 1, the extrapolated limit

(or anti-limit) s is given by

d

S = Y ßlXl'
1=0
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eliminating There are two problems in the proposed procedure: First

the unknown we (j0 not know £0, secondly we do not know G. Both
initial error

problems can be soived with the help of the difference

vectors 6xt := g(xt) — xt between subsequent elements of

the given vector sequence.

One notable property of the difference vectors is their

equivalence to the residual vectors of the sequence ele¬

ments pt := r(A, d,xt),

6xt = Gxt + d xt = d Axt = pt- (3.6)

This equivalence implies another important property of

the difference vectors — their connection to the error,

6xt = d-Axt = As - Axt = Aet. (3.7)

This last property combined with Property (3.3) gives
rise to the following theorem.

Theorem 3.2 The minimal polynomial of G with respect
to £t is also the minimal polynomial of G with respect to

6xt.

Proof. From (3.7) we know 6xt := Aet. Let \ic be the

minimal polynomial of degree c of G with respect to 6xt.

Likewise let -vd be the minimal polynomial of degree d of

G with respect to et. Using the commutation property
(3.3) of G and A we have on the one hand

0 = MG)6Xt=A|ac(G)et.

Since A is nonsingular, \xc(G)ex must be zero. Conse¬

quently ~Vd must divide \xc.
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On the other hand

vd(G)el = 0 = Avd(G)et =^d(G)6xt.

Therefore \ic divides -vd and hence \ic = Td .
D

Theorem 3.2 tells us that finding the minimal polyno¬
mial of G with respect to the unknown initial error is

equivalent to finding the minimal polynomial of G with

respect to the known initial difference vector. Therefore

the above mentioned problem is solved by taking differ¬

ences.

Also the unknown G can be eliminated from the pro- eliminating

posed method by using the difference vectors. Note theTHE iteration

following property.
MATRIX

6xt = x1+i — xt = Gxt + d Gxt-i — d

= G6xt-i = GT6x0. (3.8)

Before we proceed, let us first introduce the notation

g'(x):=g(i:fg(x) )...), (3.9)

i times

i.e. the i times repeated application of the operator g to

an argument x is abbreviated by the notation gl(x).

Let us define a matrix operator

xd: Rn->Rnx(d+1),

x->Xd(x):=[x,g(x),...,gd(x)], (3.10)

This notation allows us to gather consecutive iterates

into a matrix, e.g. Xd(x0) = [x0)... ,xd].

Let us define a second matrix operator

Ad: Rn->Rnx(d+1),

x=> Ad(x) :=Xd(g(x))-Xd(x).
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This notation allows us to gather consecutive differ¬

ences into a matrix, e.g. Ad(x0) = [6x0,... ,6xd].

Let b := [ß0,..., ßd]T. Then, using (3.8) vector extrapola¬
tion methods can be reformulated in the following way:

Definition 3.3 A vector extrapolation method constructs

b g Rd+1 with the smallest possible d g N, d > 0, such

that

"1
...

_

Ad(x0)

The extrapolated solution s is given by

s = Xd(x0)b.

In order to find b and d the methods start with the

smallest possible degree ) = 0. In each step ) is raised

by one, and one more vector of the sequence x, is taken

into account. However, system (3.11) cannot be solved

exactly for ) < d and has to be replaced by the following
formulation

A,(x0)b, «0 s.t. [1 ... l]b, = 1, (3.12)

with Ad(x0) = [6x0)... ,6xd] and b, := [ß0),,..., ß,,,]T con¬

taining the coefficients of the extrapolating polynomial
to determine the approximate solution s,, given by

i

s, :=X,(x0)b, =^ßt),Xt. (3.13)

1=0

Associated with the approximate solution is an error de¬

fined by

(3.11)

T|, :=s s,.
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We define the residual r, of the approximate limit (or

anti-limit) as

r(A,d,s,) d As,

By (3.13) the residual turns into

i i

r, = d-A^ßt),Xt = ^ßt,,(d-AXt)
1=0 1=0

since the sum of the coefficients ßt), is 1. The bracketed

expression is the residual of the sequence elements pt,

which by (3.6) is equivalent to the difference vector 6xt.

Thus the residual of the approximate solution turns fi¬

nally into

T-> =^ßt,,6Xt = A,(x0)b,. (3.14)

1=0

If ) = 0 the best approximation for s is s0 = x0. Therefore

TO = Po-

If ) < d it is not clear how to determine the coefficients. How to

Like in Chapter 2 this problem is solved by projection. f°LVET

Let ?, be a space of dimension ) and P, a matrix con¬

taining a base of ?,. System (3.12) is solved by

n ...
r

APPROXIMATE

SYSTEM (3.12)

P|%(xo). b,= (3.15)

Thus the coefficients ßt),, i = 0... ) are determined by

projecting r, into "Vj- subject to

Lpm (3.16)

1=0

Lemma 3.4 Vector extrapolation methods are correction

space methods. In step ) their correction space is the

Krylov space 6, = DC, ( G, 6x0 ).
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Proof. Let us define yk), := 2~Il=k+i ß^,r Tne defini¬

tion of the difference vectors implies xt = x0 + 2~Zk=o ^xi<-

Inserting both values into (3.13) yields in

i i-i i-i

s, = x0 + Y ßt.j Y8x'k=Xo + Y Yk>i Gl<6xo- (3-17)

1=1 k=0 k=0

This result can be written as s, = x0 + A,_i (x0)c,_i,
with A,_i(x0) being the basis of DC, (G,6x0) and c,_i :=

[Y0)1,---,Yi-1);|]T- D

As an immediate consequence of this lemma, we can

formulate an expression for A-1. From Equation (3.7)

we know that A_16xo = e0. Therefore 2~Zk=o Yk,i Gk in

Equation (3.17) is an approximation of A-1 restricted to

the span of 6x0.

By the way, approximating the inverse of the system
matrix of a linear system by a matrix polynomial is also

the basic idea of polynomial preconditioning.

conver Lemma 3.5 Let {x0,xi,...} be a vector sequence gener-
gence within atea- ty a UnearproCess xt+1 = Gxt + d, a>here G g Rnxn.
AT MOST TL

steps Vector extrapolation methods accelerating this vector se¬

quence converge mathematically within at most n steps.

Proof. According to (3.5) vector extrapolation meth¬

ods find the minimal polynomial of G with respect to

the initial error e0. The Cayley-Hamilton theorem [19,

p. 86] states that any square matrix is annihilated by
its characteristic polynomial, that is x(G) = ®< and con¬

sequently, x(G)e0 = 0. The degree of the characteristic

polynomial is at most the order of G. Hence the degree
of the minimal polynomial of G with respect to e0 can

be at most n. D
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3.2.1 Mathematical Equivalence to Linear Krylov

Space Methods

As shown in Section 2.4.1 by (2.15), Krylov space meth¬

ods solve the linear system (3.2) by approximating the

initial error T|0 by a polynomial in A.

il o « Y aMAlro
1=0

Equation (3.17) implies that the error of the first vector

sequence element e0 « s,+i —x0 = YX=o Tk,) Gk6x0 is also

approximated by a polynomial, but rather in G than in

A. However the close relationship between the two ma¬

trices suggests that those methods are mathematically
equivalent as shown by the following lemma.

Lemma 3.6 DCrJA.ro) =^(6,6x0).

Proof. Let T|0 be any element in DCrJA,^), i.e. there

exist ctt, i = 0... n — 1 such that

rt-1 rt-1

T|0 = Y aiAlro = Y at^ ~~ G)T6x0 =

1=0 1=0

YocxY(-1)v(1Ag^Xo = Y(-r)*Y (^Wk6x0.
1=0 k=0

^ ' k=0 i=k
^ '

Thus T|0 is also an element of 9Cr,.(G,6xo). On the other

hand let e0 be any element in %n(G, 6x0), i.e. there exist

Yk, k = 0... n — 1 such that



156 Vector Extrapolation Methods

rt-1 n-1

£o = Y TkGk6x0 = Y Yk(l - A)kro =
k=0 k=0

n—1 k •, n n—1 n—1 •,>.

lTkI(-Dir avo = 2J-1)1!; -rkAVo'
k=0 1=0

^ '

1=0 k=i
^ '

which shows that e0 is an element of 9Cr,.(A,ro). Since

both vectors t|0 and e0 were chosen arbitrarily, %xx(A)Xq)
must be equivalent to %n ( G, 6x0 ).

We have already seen that vector extrapolation meth¬

ods are projection methods using 6, = DC,(G,6x0) (3.4),

which by the last theorem immediately leads to the fol¬

lowing corollary.

Corollary 3.7 Vector extrapolation methods are Krylov

space methods. D

The proof of Lemma 3.6 gives also a relation between

the coefficients of the minimal polynomial determined

by a vector extrapolation method and the coefficients of

the minimal polynomial determined by a Krylov space

method,

Oi,j = i-l)lY (ijYk>> aild ^.3 = (_1)kX(^)0tl.J-

The binomial coefficients in these formulas indicate one

reason for the worse numerical behavior of the vector

extrapolation methods compared to Krylov space meth¬

ods, when they are applied to solve linear systems of

equations.
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3.2.2 Choosing the Projection Space CP,

Since vector extrapolation methods are correction space

methods and their coefficients are determined by pro¬

jection, they are projection methods according to Def¬

inition 2.3. By Lemma 2.10 we know that the choice

for the projection space CP, can therefore be restricted to

DC, (G,6xo) = span{A,_i (x0)} for a positive definite ma¬

trix A and to span{AA,_i (x0)} for a nonsingular matrix

A. The latter base can easily be obtained by computing
second order differences.

Let us define second order difference vectors,

62x, := 6g(x,) — 6x,,

and the corresponding matrix operator

A2d: Rn->Rnx(d+1),

XHA2d(x):=A(g(x))-A(x). (3.18)

Then we have

AA,(x0) = [(1-G)6x0,...,(1-G)6x,]

= [OXo-oxl... ,6x, -6x,+1] = -A2(x0). (3.19)

Although it is sufficient to choose the two spaces men¬

tioned above as projection spaces, we have already seen
in the chapter about linear Krylov space methods that

from an algorithmic point of view it makes also sense

to consider the space DC, (AH,r0) which is by Lemma 3.6

equivalent to DC,(GH,6x0). Indeed these considerations

lead to another class of vector extrapolation algorithms,
the epsilon algorithms.
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3.2.3 A, (x0 ) Base Construction

As we have already mentioned in the last chapter A, (x0)
is ill conditioned for large values ). To deal with this

problem Sidi [37] suggests a successive QR decomposi¬
tion of A, (x0) by a modified Gram-Schmidt process.

Let us denote the QR decomposition by A, (x0) = Q,R,,
with Q, = [q0,...q,] and the components of R, as rt)k.

An algorithm for obtaining this decomposition from a

sequence of column vectors 6xt, i = 0... ) is given in Al¬

gorithm 3.1.

Algorithm 3.1 Modified Gram-Schmidt QR decomposi¬
tion of A, (x0).

function MGS(A, (x0), )):[matrix,matrix];
for k := 0 to ) do

qk := 6xk;

for i := 0 to k. — 1 do

i-t.k := q^Qk!
Qk := qk-Ti.kQt

end;

Tk.kHlqkll;
Qk := QkAk.k

end;

MGS:= [Q,, R,];
end MGS;

3.3 Nonlinear Behavior

In order to apply vector extrapolation methods to a non¬

linear problem, we suppose that there exists already a

nonlinear iterative method

Xi+i = qM, (3.20)
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g being a nonlinear vector valued operator. This oper¬

ator has the property that the solution of the nonlinear

problem s is a fixed point of g.

Figure 3.1 Scheme for applying a vector extrapolation
method to a nonlinear problem.

so = x00) -> s00)^s1= x(0r] -> sj,1)^s2 = ...

y(°)
_v

c«V -yd)
_v

e(U
*"k(0) "^

^kfO) *"k(1) W)

A vector extrapolation method is applied as follows (see

also Figure 3.1):

1. We start with ) = 0 and an initial guess s0 which
actsasa

s

generated.

actsasa

starting vector x00) for the sequence to be

2. We use the existing iterative method (3.20) and Xq

to generate a sequence of vectors x0 ,..., xj.V >.

3. A vector extrapolation method is used to extrapo
lateintermediate

approx

from the given sequence.

lateintermediate

approximations s0 ,..., s^), of s

4. The last intermediate approximation s,+1 := s^),
is used as a new starting point x01+1) for a new

sequence.

5. The procedure is repeated from step 2 until con¬

vergence.

Sidi and Brezinski use the term cycling to refer to such

a scheme. In the context of linear iterative solvers such

as FOM and GMRES such a scheme is described by the

term restart.

Two other terms frequently used in this context are in¬

ner and outer iteration. The inner iteration uses the gen-
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erated sequence elements x0' ,... ,x|V > to extrapolate in¬

termediate approximations s0 ,..., sj.1' >. The outer iter¬

ation generates the iterates s0, si, etc by the help of the

inner iterations.

In this thesis we will prefer to use the term restart. To

save memory, restarted schemes are also used for solv¬

ing linear systems of equations.

3.3.1 One Dimensional Motivation: Steffensen's

Method

In order to get an idea of what happens when we apply
this procedure, let us first study the nonlinear behavior

of extrapolation methods for one dimensional problems.
In this case all the vectors become scalar values. The

consequence is that there are no intermediate approx¬

imations. Assuming that we consider the step from )
to ) + 1 we simplify the notation by dropping the () ) and

() +1 ) in the exponent of all values involved in the further

analysis of the one dimensional case.

Nearly all vector extrapolation methods rely on the as¬

sumption that the sequence is produced by a linear it¬

eration x1+i = cxt + d. This means that they determine

the intersection between the bisecting line y = x and

the line h, : y = ex + d1. In the scalar case always the full

"linear system" is solved. Therefore all of them generate

the same approximate solution s,+1 = ßo,ix0 + ßi,ixi
with

and ßi,i = ;
OXo — <

1 There Is one algorithm that Is not known to rely on a linear system
of equations. This algorithm Is called vector epsdon algorithm (VILA).

Since this algorithm does not fit Into our framework, we won't deal

with It.
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Since the linear system to be solved is of full rank, the

minimal polynomial vanishes,

0 = m (c) = ßijc+ ß0)i = 6x0c -6xi.

Hence the slope of h, is

c = 6x-|/6xo

and d = x-\ — cx0. Thus line H is a secant through the

points (xo,xi) and (xi ,x2) as depicted in Figure 3.2.

Figure 3.2 Picture of values involved in a step from )
to ) + 1 of a one dimensional nonlinear extrapolation
method. We see that the error value n,+1 of the extrap¬
olated solution s,+i is smaller than the error value n, of

the initial guess x0 = s,.

xo = s, Xl
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With these values the approximate solution s,+1 can be

expressed after one step as

d xi - cx0 6x0xi-6xix0
,_ 01,

s,+i =
-z

=

—j
= — (3.21)

1 — c 1 — c 6x0 — 6x1

6s-6s, =:b(s,), (3.22)' 62s,1

with 6s, = g(s,) —s, and 62s, = 6g(s,) —6s,. The step from

(3.21) to (3.22) is possible because Xq = s,

Equation (3.22) identifies the extrapolation method for

scalar sequences as Aitken's A2 method [17, p. 72].

Aitken's method is a scheme for accelerating the con¬

vergence, given the discrete values of any sequence. In

the context of accelerating a nonlinear iterative scheme

xi+i = 9(xx) it is known as the DiagonalAitkenProcedure

or Steffensen's method respectively [17, p. 90].

Steffensen's method rewritten in terms of g is

w ï
9 (x) -x

b x := x -——— (3.23)
g g x -2g x +x

*g(g(*)) -9M2

g(g(x)) -2g(x)-M

In order for Steffensen's method to work as desired, it

is essential that both functionals g and b have exactly
the same fixed points. This requirement is established

by the following lemma.

Lemma 3.8 Let g be a given scalar and differentiable

functional.

Functional b as defined by (3.23) has afixed point at s if
and only if g has afixed point at s.
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Proof. By (3.23) we have

b(x)=x-(gM~x) with v(x):=g(g(x))-2g(x)+x.
•v(x)

(3.24)

The mean value theorem allows to reformulate g(g(x))
the following way

9(gW) = gW + gU)(gW-x),

with £, lying between x and g(x). This formulation of

g(g(x)) turns the denominator of (3.24) into

v(x) = (g(x)-x)(g'(E,)-1),

and hence

b(x) = x

We observe: For x —> s, £, tends also to s. If g'(s) ^ 1 then

s is a fixed point of b if and only if it is a fixed point of g.

Let now x* be any argument for which g
' (x* ) = 1 and let

c = itefunc(x*) — x*. g(x) — x — c must have a multiple
zero at x*. In this case we can express g as

g(x) := c+x + f(x)(x-x*)k

with k > 1 and f (x*) ^ 0. The derivative of g is

g'(x) = 1 +f'(x)(x-x*)k+kf(x)(x-x*)k-1.

Using these expressions for b we get

c + f(x)(x-x*)
W *

f'(x)(x-x*)+kf(x)'

g(x) -x

g'(«-T
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Let now s = x*. If g(s) = s, c must vanish. Since f (s) ^ 0,

b has a fixed point at s. On the other hand if g(s) ^ s,

c^O and b becomes

b(s) = s-k?T^s-

D

local Ostrowski [29] has intensively analyzed the local behav-

convergence j0r 0f steffensen's method. The following considerations

are an extract of his results.

First we observe that Steffensen's method is invariant

against translating g on the bisecting line. To show this,

let us define afunctional y (x) := g(x+ct) — ct. Steffensen's

method applied to this functional becomes

at \
{l{x)-x)2

ß(x)=x
——— (3.25)

y(y(x))-2y(x) +x

(g(x + <x)-(x + <x))2
= \x -\- <x) (X,

g(g(x + ct)) — 2g(x + a) + (x + a)

which is equal to b (x+ct) — ct. This is why we can restrict

our study to the case s = 0. We assume that g '(s) exists.

However, we will still use the error r\ := x — s in our

considerations to ease the transition to the general case.

Let us use the following ansatz for g in the vicinity of s,

g(x) :=<xr| + R(x)r|A, (3.26)

with À > 1 and R(x) bounded for x —> s, i.e. limx^s R(x) =

p, such that g'(s) = <x. Note that a particular choice for

Rfx) would be

at \ \~ y y» i-

R(x)
=

2_ —{—ti
i=A
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if g has a Taylor expansion at s. In this case p becomes

P = ^>. 13.27,

The ansatz for g with s = 0 turns b into

=

-aR(x)xnA + R(g(x))xg(x)A - R(x)2n2A
lXJ

(ct-l)2x+(ct-2)R(x)r|A + R(g(x))g(x)A'
l ' '

If the first derivative of g at s is not equal to 1, b turns superlinear

into (QUADRATIC)

CONVERGENCE

0(r|)

This result shows that s is a point of attraction and the

method converges with a superlinear rate. In particular
if the Taylor expansion of g around s exists, the method

of Steffensen converges at least quadratically.

Due to the geometrical construction it is easy to see that linear

the method is not defined at s if g'(s) = 1. Nevertheless convergence

s is also a point of attraction in that case. To show this,

the denominator of b has to be further examined. The

ansatz of (3.26) already contains the derivative of g at s,

which is g '(s) = ct. For the actual case we assume a = 1.

This choice of a turns g into

g(x)=n(l+R(x)11A-1)

and hence the denominator of b in (3.28) into

v(b(x)) =-R(x)nA + R(g(x))g(x)A

= nA(R(g(x))(1+R(x)nA-1)A-R(x))

= nA (R(g(x)) - R(x) + AR(g(x))R(x)nA-1 + 0(n2A-2)) .
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For our purposes we now have to develop R(g(x)). Using
(3.26) we get by the mean value theorem

R(g(x)) =R(x) + R'(£,)(g(x)-x)

= R(x) + R'(£,)R(x)riA with x<£,<g(x).

Since £, ~ r\ for nswe can estimate R(g(x)) as

R(g(x)) = R(x) +nA-1R(x)^R'(y = R(x) + nA~1 O (£*'(£,) ).

Inserting this result into the last expression for -v(b(x))
we get

Mb(x)) =nA (AR(x)V-1 +nA~1 0(£,R'(£,)) + 0(n2A-2)) .

If r|R'(x) —> 0 for x —> s we get

•v(b(x)) =AR(x)2r|2A-1(1 +o(l)). (3.29)

Using this result and (3.26) for the numerator of b in

(3.25) we get for b in the vicinity of s

wi
r(x)Va v,(,

b x = x—
,

.

,t ,,,—=—
—-- = x— — + o m .v '

\R(x)2r\2*-i (] +o(l)) A
v u

Finally we are able to estimate the error of b in the vicin¬

ity of s

b(x)-s = (1--)n+o(n).

This result shows that s is a point of attraction in the

case a = 1 if r|R'(x) —> 0 for x —> s. The convergence

however, is linear with factor 1 — 1/A.

The latter condition r|R'(x) —> 0 for x —> s can be refor¬

mulated by considering g
'
in the vicinity of s

limg'(x) = limct+ (R'(x)ri + AR(x))nA_1
X^S X^S

= a + ApriA_1.
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Example 3.9 To illustrate the quadratic convergence rate we

compare a fixed point iteration,

xl+i = gl*! := 3 sin(x,/3 - 0.66) + 2,

with the iteration accelerated by Steffensen's method. We

start both methods at s0 = 0 and stop them if the relative

error goes below 10~10. The fixed point of g is approximately
s = 3.0079956588341082, and g'(s) = .9418625018648241 indicat¬

ing a slow convergence rate for the fixed point iteration.

Table 3.1 Relative errors of a scalar fixed point iteration and

its acceleration by Steffensen's method. The basic iteration

xx+i =3 sin(xv/3 -0.66) + 2 converges linearly, the accelerated

method converges quadratically

Step Basic iteration Steffensen

0 1.00000000000000 1.00000000000000

1 0.94659252794868 0.72466550539586

2 0.90354466621430 0.49575283569324

3 0.86765481338535 0.14411511166047

4 0.83697156346778 0.03533181499826

5 0.81022278285217 0.00298120684933

6 0.78653620118510 0.00002396860169

7 0.76528963796686 0.00000000156753

8 0.74602495796382 0.00000000000009

447 0.00000000009691

Table 3.1 shows the results of both methods. One should see

from these results that the basic iteration has a slow linear con¬

vergence rate while Steffensen's method converges quadrati¬

cally.

Steffensen's method has a singularity in s if g'(s) = 1.

On computer systems with finite arithmetic the method

will break down, before the solution is obtained pre¬

cisely. The question arises: How close can the method

get?

The break down happens, when the denominator of b

vanishes by cancellation, i.e. if x becomes numerically

Numerical

analysis of

the singular

CASE g'(s) = 1
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of the same size as 2g(x) — g(g(x)). Let e be the machine

epsilon. Then the following condition must hold in order

for cancellation to happen,

|x|(1+e)>|2g(x)-g(g(x))|>|x|(l-e).

In other words, as long as the following condition holds

there will be no cancellation

|x|e < |2g(x)-g(g(x))|-|x|

< |2g(x)-g(g(x))-x| = Hb(x))|.

With x —> s using (3.29) to estimate the denominator we

get the following condition for the absolute error r\,

|s|e<APVA-1.

Solving for the error we find

n > ^V O-30)

To interpret this inequality let us suppose the following
situation. We want to find the approximate fixed point
of g with g'(s) = 1. The result is required to meet a given
tolerance. The inequality guarantees that Steffensen's

method will deliver such a result without a break down

if the right hand side of (3.30) is less than the requested
tolerance. However, if we are lucky, we might get even

closer to the solution. Therefore the right hand side

of (3.30) is an upper bound for the achievable error of

Steffensen's method in the case g'(s) = 1.

We can specify a more concrete upper bound if g has a

Taylor expansion around s by using (3.27),

il > 2A-;/(A-l)!A! 'S|e

g(A)(s)2'
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Due to the factorials we see that for higher values of

A Steffensen's method becomes quickly useless in the

case g'(s) = 1.

Example 3.10 Let us present an example for the linear con¬

vergence in the case of g'(s) = 1. We compare the perfor¬
mance of Steffensen's method for two functionals

gi(x) := (100x-3-104)2+x = 300+(x-300)+ 104(x-300)2,

g2(x) := (IOOx-3- 104)3 +x = 300+ (x-300) + 10s(x - 300)2.

Both functionals have the same fixed point s = 300. The differ¬

ence between the two functionals is: gi has A = 2 and p = 104,
whereas g2 has A = 3 and p = 10s. Another difference is that

the fixed point iteration for g2 is not able to converge to s, be¬

cause |g'(x)| > 1 for every x.

Figure 3.3 Absolute error of Steffensen's method applied to

two functionals with g'(s) = 1. The convergence rate is linear.

The maximum achievable accuracy is dependent on the func¬

tional

Steffensen's method for functions with f (s)=1

+30000)2+x
+30000)3+x

0 500 1000 1500 2000 2500 3000

Number of steps

I u
\

:\

3_ I
10 r

10 r

10

f1(x)=(100x
f2(x)=(100x

a rf



170 Vector Extrapolation Methods

In Figure 3 3 the absolute errors of Steffensen's method for the

functionals gi and g2 are plotted We let the method run until

break down in MATLAB on a machine with IEEE arithmetic and

its double precision machine epsilon e = 2 220446049250313

10_1 s
The starting value is chosen very near the solution, s0 =

300 01, because the global convergence of the method is very

slow for both functionals

The method breaks down after having obtained the following
absolute errors

gi rn 23 =3 691820893436670 10~8,

92 r|2675 =4 961853846907616 10~s

The smallest absolute error guaranteed by (3 30) is

9i
„30°£g

= 6 931 764956787648 10"
2 108

92

300e
=7 40095979741404 10~s

3 1012

Both error bounds match the effectively obtained error very

well

Nonlocal

Conver

GENCE

In [17, pp. 93] Henrici has proven a non local con¬

vergence theorem for Steffensen's method. However,

he only gives a proof for one case2 out of actually six,

two others3 are left for the students to prove. In Sec¬

tion 3.3.2 we provide a Kantorovich-like theorem that

proves that under certain conditions the sequence gen¬
erated by Steffensen's method is well defined and con¬

verges to a fixed point of g.

3.3.2 Multivariate Case

In [17, pp. 115-118] Henrici generalizes the one di¬

mensional Steffensen method to the multivariate case.

2g(x) ><x, g'(x)<0, g"(x) >0

3(a) 0< g'(x) <1, g"(x) > 0, (b) g'(x) >1, g"(x) >0
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Given a nonlinear operator g : Rn i—> Rn, the fixed point
of which has to be found. As in the scalar case the

method constructs in step j a hyperplane n : y = G(l)x +
d(l) interpolating n+ 1 consecutive operator values s, =

Xq ,Xi = q(Xq ),... ,x\l'+~i = g(Xn). As before we sup¬

pose that the method performs a step from j to j +1, and

we drop these indices in the further analysis in order to

improve the readability of the presented formulas.

Let us first define the generalized divided difference — a

term used by Johnson and Scholz [24] motivated by the

definition of the Steigung by Schmidt in [33].

Definition 3.11 Given an operator g : Rn —» Rn and a

matrix operator Xn--\ : Rn —» Rnxn as defined by (3.10).

The matrix operator G(x,y) : R^x2 -> Rnxn implicitly de¬

fined by

G(x,y)(Xn_i (y) - Xn_! (x)) = V, (g(y)) - Xn_! (g(x))

is called generalized divided difference.

Note that G(x,y) = G(y,x). Also note that Definition 3.11

is a special case of the divided difference V(x,y) : Rnx2 —>

Rnx2,

T(x,y)(y-x) = g(y)-g(x),

as defined by Johnson and Scholz.

This special case implies

||g(x + h)-g(x)-G(x,x + h)h||
=

||h||

Therefore, if the Fréchet derivative of g exists atx, it can

be obtained by lining o G (x, x+h). Ortega and Rheinboldt

call G a consistent approximation of Dg [28, p. 355].

Moreover, according to Ortega and Rheinboldt, G is even
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a strongly consistent approximation of Dg, because the

following inequality holds in a vicinity of x,

||Dg(x)-G(x,x + h)||<c||h||.

As shown in Equation (3.8) the linear operator G(l) of

the hyperplane n satisfies 6xt = G(l)6xt_i, and therefore

G(l) satisfies

A^_i(g(s,)) = X1T_1(g2(x0))-X1T_1(g(x0)) =

[6x0,Sx-[,... ,Sxn^-[] = G(j) [6x0,Sx-[,... ,Sxn^-[]

= Vi (g(xo)) - Vi (xo) = G(l) • An_! (s,). (3.31)

This equation shows that G(l) is actually a generalized
divided difference. In particular

G(,):=G(s„g(s,))

The offset d of the hyperplane to be determined can be

obtained analogously to the scalar case,

d:=X! - G(l)x0 = g(s,) - G(s,, g(s,))s,.

Henrici obtains a slightly different formula by using the

same dependency for xn+-\ and xn, which makes no dif¬

ference mathematically because of the constructed lin¬

ear relation of the operator values. However, our ap¬

proach will show that Steffensen's method and vector

extrapolation methods are actually equivalent.

From step j to j + 1 we determine the intersection s1+i of

the hyperplane determined by s, with the space diago¬
nal,

s,+1 = Gs,+1 + d = Gs,+1 + g(s,) - Gs,.

Using g(s,) = (g(s,) — s,) + s, and solving for s1+i the

equation reveals the next iterate as

s)+1 =s1 + [1-G(s1)g(s,))]-1(g(s1)-s1). (3.32)
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It is possible to determine the inverse of 1 — G without henrici's

constructing G. By Equation (3.31) we know that G =
improvement

An-i (g(s,))ATl_i (s,) '. Thus we can rewrite 1

1 - G = [An_! (s,) - Vi (B(s,))]An-i (s,:

G as

Note that by (3.18) An^l(sJ)-An^l(g(sJ)) is the negative

matrix of second order differences A
n-1 \°j) Therefore

the inverse of 1 — G is —A2^ (s,)Ar,._i (s)_1 .
Hence Stef¬

fensen's method for multivariate systems becomes

>i+i T_1(s,)A2_1l '6s,. (3.33)

Note that this expression is indeed a generalization of

the scalar case (3.22).

Definition 3.12 The iteration defined by (3.32) or (3.33)

respectively is called Henrici's method.

An implementation for Henrici's method according to

this definition is given in Algorithm 3.2.

If we examine Equation (3.17) we see that in each step equivalence

vector extrapolation methods determine OF vector

Extrapola

i à c iac TION

Sj+i = x0 + A6x0 = s, + A6s,,

with Ä denoting an approximation of A-1 restricted to

the span of 6x0 or 6s, respectively. On the other hand

Henrici's method determines the approximate solution

by (3.32), which is an equivalent formulation if A^-i (s,)
is invertible. We have proven the following lemma.

Lemma 3.13 Given a vector extrapolation method accel¬

erating the convergence of the given nonlinear sequence

(3.20). Ifk(j) is always chosen such that the degree of
the minimal polynomial is obtained at the end of each

step, i.e. Ä(,) = A^J, the vector extrapolation method

generates the same iterates as Henrici's methodfor mul¬

tivariate systems. D
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Algorithm 3.2 Henrici's method according to (3.32) and

(3.33).

function Henrici(in: g(), s0, e): vector;

r0 := g(s0) -s0;

j:=0;
while ||r0|| > e||r,|| do

{Compute sequence elements and differences}

x^:=s,;x^:=Q(x^);
KV0) ._ V(J) _V(J).

for i := 2 to n + 1 do

x[^:=g(x[^);
KV(J) ._ V(J) _V(J) •

62x^2:= 6x^-6x^2;
end;

{Variant (3.32)} {Variant (3.33)}
C := A2 (s^A^ls,)-1 ; t := A2 (s,)-16x^;
h:=C_16x^; h:=-An(s,)t;

{Compute new solution and residual}

s,+1 :=s, +h;

1*1+1 := g(s,+i) -s,+i;

end;

Henrici := s,
end Henrici;

Note the difference between Henrici's method and vec¬

tor extrapolation methods if Axx_-\ (s,) is not of full rank.

In this case G cannot be constructed. Therefore (3.32)

cannot be solved and (3.33) has to be solved approxi¬

mately. Vector extrapolation methods, however, do not

need to solve the full rank system of (3.32) in order to

get a good approximation for the next step.

On the other hand Krylov space methods also solve lin¬

ear systems by approximation. Since vector extrapola-
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tion methods are equivalent to Krylov space methods

(Corollary 3.7) the following Lemma holds.

Theorem 3.14 Given a vector extrapolation method and

its corresponding Krylov space method.

Henrici's method applying the given Krylov space method

to solve (3.32) approximately with starting vector 0 gen¬

erates the same iterates as the given vector extrapolation
method if both methods use the same number ofinterme¬

diate steps. ü

Example 3.15 Let us illustrate the last lemma by the example
of the Chandrasekhar H-equation introduced in Chapter 1. The

following methods are used to find a solution:

1. MPE - this is the restarted vector extrapolation method

equivalent to FOM in the linear case (see 3.4.1),

2. RRE - this is the restarted vector extrapolation method

equivalent to GMRES in the linear case (see 3.4.2),

3. Henrici's method using FOM to solve (3.32) (with starting
vector 0 in each step),

4. like in the last item Henrici's method, but using GMRES

rather than FOM,

5. Henrici's method using the pseudo inverse of Ad_i (s, ) to

solve (3.33), i.e. s, + 1 = s, — An_i (s, )A\_-[ (s, ) + 6s,.

Due to the very bad condition of (1 - G) — 1017 to 1022 — we

use Maple 8 on a Linux workstation with an accuracy of 38 dig¬
its so that we are able to compare the algorithms. The problem
size is n = 10, and the constant c is set to 0.9999. For all algo¬
rithms the number of intermediate steps is 2. This number seems

low. However, for bigger numbers the algorithms become indis¬

tinguishable in the plots.

The plot of the evolution of the relative errors during the algo¬
rithms is shown in Figure 3.4. By varying the accuracy we ob¬

served that the oscillating behavior of MPE and Henrici-FOM is

not a numeric effect. We see:

• Algorithms based on (3.32) and on a least squares solu¬

tion of (3.33) are not equivalent in general.
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Figure 3.4 Error plots of four different algorithms for finding the

solution of the Chandrasekhar H-equation: two vector extrap¬
olation methods and three variants of Henrici's method are

implemented and run in Maple 8 with Digits = 38, n = 10,

c = 0.9999.
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A vector extrapolation method can be formulated as a

Henrici method based on (3.32) using the correspond¬

ing linear solver. Henrici using FOM is equivalent to MPE,

Henrici using GMRES is equivalent to RRE.

The least squares solution of (3.33) is equivalent to a Hen¬

rici method using GMRES and to the corresponding vec¬

tor extrapolation method RRE.

well defined In [24] Johnson and Scholz explicitely state that their

method, Theorem 1 — a Kantorovich-like theorem for another

r^^R multivariate Steffensen method — is not applicable to

Henrici's method. However, by the help of the general¬
ized divided difference we have been able to reformulate

their theorem such that it is applicable to this method.

Our theorem states conditions such that the method
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is well defined and converges R-superlinearly to a fixed

point of g.

Theorem 3.16 Let g : Rn —» R^ be a given operator with

a generalized divided difference defined onM CRn. Let

so G Rn be an initial guess. Suppose for x,x' ,y,y' e

B(so,max(a, 2aß))

Ho(so) — «oil < a, (3.34)

Htl-Glso.glso))]-1!! < ß, (3.35)

||G(x,y)-G(x',y')|| < a(||x-x'|| + \\y y '\\). (3.36)

Leth:=2o-aß(l +ß).

Then,

1. if 'B(so,max(a,2aß)) ç M and h, < 1/2 then the se¬

quence, generated by Henrici's method,

s,+i := b(s,),

b(s,) ^Sj + n-GfSj.gfs^jr^gfs^-s,), (3.37)

is well defined and converges to a fixed point s e

B(so,max(a,2aß)) of g.

2. Thefixed point lies in the sphere

-, ,
aß (1 -a/1 -2h)

Sso.pi with pi:=-!-i ^ ^,(3.38)
h,

and the R-convergence rate is given by

lhlj = ||s-sj<^|£--. (3.39)

3. Let P2 := aß (1 + a/1 - 2h) /h. If (3.36) holds in the

larger sphere 23(so,P2 + «0 then the fixed point is

unique in the ball 23(so, 92)-
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Proof.

1. Let us define a0 := a, ß0 := ß, H0 := h, and

ai:=——, ßi :=
^——, Hi :=2aaißi(1 + ßi).

2 1 -Ho

For simplicity let us also define

23, := 23(s1,max(a1,2a1ß1)).

First we show that 231 is a subset of 23 0: Since H <

1 /2 we have

OLn

«i <
-j-

< «o and (3.40)

a0ßoH0 a0ßo
,„.,,

aißl=2TT^HoT-^- (3-41)

By the two bounds (3.34) and (3.35) and the defi¬

nition of b (3.37) the following inequality holds

||si-so|| < ||[1-G(s0)g(so))]-1||||g(so)-so||

< a0ß0. (3.42)

Thus we have 231 C 230.

Secondly we show that (3.34) holds with respect
to si and cti. We use (3.42), the definition of the

generalized divided difference and an implication
of (3.37),

si - g(s0) = G(s0,g(s0))(si -s0),

to show

||g(si)-si|| = ||g(si)-g(s0) + g(s0)-si||

< ||G(si)so)-G(so,g(so))||||si -s0||

< ct(||si -so|| + ||so-g(s0)||)||si -So||

< aa^ßo(l +ßo) =ai. (3.43)
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Thirdly we show that (3.35) holds with respect to

si and ßi. We use (3.34), (3.36), (3.42) and (3.43)

to show

||G(si)g(si))-G(so,g(so))||

< o-(||si -so|| + ||g(si)-g(s0)||)

= o-(||g(si) — si +si -so+s0-g(s0)|| + ||si -s0||)

< a(||g(si)-si||+2||si -So|| + ||so-g(so)||)

< ct ( —-+2a0ßo + ao)

< CTa0 f - +2ß0 j

< 2CTa0(l+ß0) = ^.
po

By the help of this estimate, (3.35) and H0 < 1/2
we are now able to apply the perturbation lemma

(Lemma 1.16) and conclude

||(1-G(g(si),si))-1||<T-^- = ßi.
I — rio

Thus all hypotheses of the theorem are satisfied

with respect to si and the constants indexed by 1.

By induction, it follows for all j > 1 that s, exists,

that s, satisfies the hypotheses of the theorem with

respect to the constants et,, ß, and H, and that 23, C

23,_i. Since the radius of 23, decreases in each step,
s := Soo is the only element in lim,^^ 23, and thus

is a fixed point of b. As the induction on (3.40)

shows, a, < ao/41, and

llgW-Mf^.
As j tends to infinity, the right hand side of this

equation tends to zero and s, tends to s. Therefore

s is also a fixed point of g.
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2. By the definitions of the constants h,, a, and ß, we

get from the induction in proof of statement 1

2CTa,ß,(1+ß,)h,(l-V(1+ß,))
„

h?
v,+i =

— .'.-
, .„

—

<

2(1-h,)2 -2(1-h,)2-

(3.44)

From (3.41) we know

v,+i :=a,+iß,+i =v,2-1 _hy
(3.45)

Let us define pi (h.) := (1 - a/1 -2h.)/h. For 0 < h <

\ this functional is greater than 1 and increases

monotonously. Hence we can write

( N-i A
v, < v,pi(h,) <v,pi

' '

2(l-h,_i)2y
i-i

= v,_ipi(h,_i) -v,_! < voPi(Ho) - Y Vi-

1=0

By (3.42) and the latter relation we conclude

i

||s,+i -So|| < Yvj -

voPi(Ho) for all j > 0.

1=0

With j = oowe get (3.38).

For the convergence rate we need two inequalities
that can be proven by simple induction using the

inequalities (3.44) and (3.45)

'b —

2

^
vo^ho)2'-1

Vi < -zi -

2i
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From the latter we get the estimate

v J< nu.M1
n, , ii ^ V ^

v0(2h0r v- (2H0

l|s,+k+i -s,n <

2_v,+1
<

2i+1Hq }_ —x

<

1=0
"

1=0

vo(2ho)2'
2i ho

'

which, for k —> oo, yields (3.39).

3. The uniqueness of the fixed point is proved by con¬

tradiction. Let us suppose that there exists an¬

other fixed point s ^ s in 23(s0, P2) satisfying g(s) =

s.

Let us define p2(H) := (1 + a/1 -2h.)/h. For 0 < h <

1 /2 this functional is greater than 2 and decreases

monotonously. We use the following ansatz

||s — So || = 9oP2(bo)v0 with 0<60<1.

Let us define two auxiliary operators

cp(x) := x + [1 -G(s0,g(s0))r1(g(x)-x),

O(x) := 1 + [1 - G(s0) g(so))]-1 (G(x, g(x)) - 1).

Note that Si = cp(s0), s = cp(s) and O(s0) = 0. We

construct

||s-si|| = ||cp(s)-cp(s0)-0(so)(s-so)||

< ßo||g(s)-g(so)-G(s0)g(so))(s-so)||

= ßo||[G(so)s)-G(s0)g(so))](s-So)||

< ß0CT||s-g(so)||||s-So||

< ß0CT(||s-s0|| +a0)||s-s0||.
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Let us set 61 := max(60,1/2) < 1. Since P2(b0) > 2

we have a0 < a06i P2(b0). We also have ||s — s0|| <

6ia0ßoP2(bo). Therefore

||s-si|| < 6iCTa0ßo(1 +ßo)P2(b0)Ho||s-s0||

= 0i9o-rP2(lao)2vo

= ei6o(p2(Ho)-1)vo

< e1e0P2(H1)v1.

Let us define 6t := max(F]k=o 0k, 1/2) for i > 1. By
induction we get

1
]

1

||s-s,|| < p^^Yle, <——]Jex
1=0

l ' iJ
1=0

1
1

- öTM^n01'

Hence lim^ooHs — s,|| = 0, and the sequence {s,}
converges to s. But this is absurd because it has

been proved in Step 2 that this sequence converges

to s. Therefore s must equal s. This proves the

uniqueness of the fixed point in 23(s0, P2).

D

The convergence rate given by (3.39) can be analyzed as

follows. Let £,, := aß(2h,)2'/(21H). We can express £,,+i by

_

aß(2h)2'+1
_

(2h)2'aß(2h)2'
_

(2h)2'
^1+1 ~

2%
~

2-2ih
~

2
^'

For h, = 1 /2 this expression becomes

£,,+i = -£,,,
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indicating linear convergence. However, if h is less then

1/2, the factor —^— converges very fast to 0, showing
that the R-convergence is superlinear but not quadratic
in this case.

Moreover, Ortega and Rheinboldt proved quadratic lo¬

cal R- and Q-convergence of (3.37) if D g is Lipschitz-
continuous in a vicinity of s and Dg(s) is not singular
[28, pp. 369-374].

The proof of Ortega and Rheinboldt is based on the ex¬

act solution of the linear system of (3.37) in every step.
However, to prove local quadratic convergence this con¬

dition is too restrictive. Let d < n denote the degree
of the minimal polynomial of Dg(s). A sufficient condi¬

tion for quadratic convergence is that the linear system
in the "very last" step is solved exactly. Therefore if a

Krylov space method is used to solve the linear system
of (3.37), it only has to find a solution within a Krylov

space of dimension d. This is basicly what Jbilou and

Sadok [23] proved for the vector extrapolation methods

MPE, RRE and MMPE. Based on our consideration we

state that this principle holds for all vector extrapola¬
tion methods used to solve the linear system of (3.37).

However, if the linear system is solved less exactly, the

quadratic convergence rate gets lost immediately and

only superlinear convergence is retained.

Example 3.17 Let us illustrate Theorem 3 16 by the original ex¬

ample of Henrici (17, p 117) A fixed point of the following op¬

erator has to be found

gM=H+f,
X-,
—

X2_

the solution of which is s = [0 7718,0 4196]J The derivative of g

isDg(x) = BD (x) with

2 2
"

2 -2
Dfx) =

0

X2

and B =
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We are now able to estimate

||Dg(x)-Dg(u)|| = ||BD(x-u)|| < ||B||||x- y\\.

This way we get an upper bound for a = ||B|| = 2.8284 in this

example. Let us choose s0 = [0.79,0.41]T as the starting vector

for Henrici's method. Then we have a = ||g(s0) — s0|| = 0.04605

and ß = ||[G(so,g(so))-1]_1|| = 0.9725 and finally h = 2craß(1 +

ß) = 0.4997 < 0.5. Hence all the conditions for Theorem 3.16

are satisfied. We can be sure that Henrici's method applied to

the problem converges.

Table 3.2 Development of the relative error, a, = ||g(s, ) - s, ||,

ß, = ||[G(s,,g(s,)) - IT11| and h, = 2cra,ß,(1 + ß,) of Henrici's

method applied to a fixed point problem g(x) = x originally
published by Henrici. All the values stay below their bounds

given in Theorem 3.16.

i KII/INI a, ß3 H,

0

1

2

3

4

2.3400- 10~02

1.2149 -10-03

6.4185- 10~os

1.9606- 10~10

2.1184- 10~15

4.6053- 10~02

1.6989- 10~03

6.4185- 10~os

1.7933- 10~10

0

0.9725

1.0497

1.0552

1.0552

4.9971 -lu"1

2.0678 -10~2

8.0097-lO"5

2.2000 -10~9

0

The results are shown in Table 3.2. Although the conditions

for Q-quadratic convergence are satisfied, we only see super-

linear convergence in the relative error. At the fixed point s

G(s,g(s)) is not defined. Therefore ß4 could not be determined

by our algorithm. However, since G(x, y ) is a consistent approxi¬
mation of D g we can determine lim, ^oo ß, = ||[Dg(s)-1]_11| =

1.0552. The sequence {ß,} in Table 3.2 acknowledges this con¬

sideration.

As we have mentioned already in the last two examples
the evaluation of G (s,, g (s, ) ) causes numerical problems.
Vector extrapolation methods do not need to evaluate

this matrix. They implicitly determine it. In the next

section let us therefore describe two particular vector

extrapolation methods in closer detail.
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3.4 Methods Based on Polynomial
Extrapolation

This section deals with the details of implementations of

particular vector extrapolation methods based on poly¬
nomial extrapolation. The considerations made in the

following subsections are based on the considerations

made for the linear case. However, as we have already
seen, the resulting algorithms can easily be adopted for

the nonlinear case.

3.4.1 Minimal Polynomial Extrapolation

The Minimal Polynomial Extrapolation Method (MPE) is

based on the fundamental idea that the leading coeffi¬

cient of the minimal polynomial does not vanish. If it

did, a polynomial of lesser degree would be the mini¬

mal polynomial. The not vanishing leading coefficient

of the extrapolating polynomial is used as an invariant

during the process of finding the degree of the minimal

polynomial.

Let m-, := Y.l=o ßi,i6xt be the extrapolating polynomial
for finding s,. Equation (3.11) requires that the sum of

the coefficients of the minimal polynomial be 1. To find

such coefficients, MPE defines ahJ := 1 and solves the

least squares problem

i-i

y~ «a)16x1 = A,_i (x0)a, ~ —6x, (3.46)

1=0

for a, := [ct0),,..., <x,_i JT. To fulfill the constraint (3.16),

the solution of this problem is divided by the sum of all

coefficients ct, := 1 + Y.l=o °^,t Thus the coefficients of

M-, are obtained by

ßx,, = -^ for 1 = 0,... J.
CTi
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By the help of (3.17) the approximate solution s, is then

determined by

i
at

i-1

s, = Y -^xt = x0 + Y Yt,,6x1
£— CT, £—

1=0 1 1=0

with

i

Ti,,:= Y — for i = 0,...,j-1) (3.47)

k=i+1
1

or simpler

s, =Xo+A,_i(x0)c, with c, :=[y0tV... ^^.^.

saving Applying the following procedure neither the sequence
memory vectors nor the difference vectors have to be stored. Let

us denote the QR decomposition of A, (x0) by Q,+1 R,+i =

A,(x0). Then

Q,+1R,+i = A,(x0) = [A,_i(x0)|6x,] = [Q,R,|Q,p,+1],

with p1+1 being the last column vector of R,+i. The least

squares problem (3.46) can now be transformed into a

linear system

R,a, =-Q^6x, =-Q^Q,p,+1 =-p)+1. (3.48)

In the last equation p1+1 := [ri)1+i,... ,r11+i]T holds the

first j components of the last column vector of R,+i. The

update procedure used for solving the linear systems of

FOM and GMRES (Section 2.4.5) can also be used to

solve this linear system.

determining Evaluating the norm of the residual by determining the

the residual residual vector according to (3.14) and then taking its
NORM

norm in each step is a rather expensive way. Sidi [37]

has shown that this job can be done much cheaper.
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With the help of (3.48) the residual vector in (3.14) be¬

comes

ri = —AiM

+ i

1

Pj+i
0

+i

Pj+i

ri+i,i+i

R,a,

]_
CT,

JJ+1

0

r1+1,1+1

Hence the residual norm becomes ||r,|| = r,+i))+i/|a,|,
which by (3.47) turns into ||r, || = r1+i1+i 17,-1,,!.

All the statements made so far result in a version of MPE

that is shown in Algorithm 3.3. This algorithm uses an

operator g() and the initial guess to generate the vec¬

tor sequence on the fly. The QR decomposition in the

algorithm is performed by the modified Gram Schmidt

process of Algorithm 3.1.

Solving the linear least squares problem (3.46) can be

described algebraically by its normal equations. These

can easily be transformed into

0 = ct,A,_i (x0)HA,(x0)b, = ct,A,MHr,.

Thus the projection method consists of projecting the

residual vector r, unto span{A,_i (xo)}"1. As (3.17) tells

us, the associated correction space is span{A,_i (x0)}.
Therefore 6, = ?,, which proves the following theorem.

Theorem 3.18 The minimal polynomial extrapolation
method (MPE) is mathematically equivalent to FOM ap¬

plied to System (3.2). D

Equivalent

Krylov

Space

Method:

FOM

3.4.2 Reduced Rank Extrapolation

The idea of the Reduced Rank Extrapolation method

(RRE) is to minimize the residual of (3.14) by applying
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Algorithm 3.3 Minimal Polynomial Extrapolation.

function MPE(in: g(), x0, e): vector;

xi := g(x0); 6x0 :=xi -x0; c_i := D;

R0:=D;Q0:=D;
Ri := ||6x0||; Qi :=Sx0/^^;
po := ||6x0||;
j:=0;
while p,>po£ do

x,+2 := g(x,+i ); {new sequence vector}

6x,+i := x,+2 — x,+i ; {new difference vector}

Q1+2R,+2 := A,+i (x0); {successive QR decomp.}

P,+2 := [ti),+2,---,i-,),+2]t; {Isq rhs vector}

a,+i :=—~R~+lp,+2', {least squares solution}

ct,+i := 1 + Y-l=o at,i+i > {sum of coefficients}

{transform coefficients}

^^ := ^77;
for i := j - 1 to 0 by —1 do

Yi.,+1 :=Yi+i,,+i +<*i+i,,+i/°"i+i;
end;

P,+i := Iy, ,+i lr,+2 j+2', {residual norm}

end;

s, :=x0 + Q,R,c,;
MPE := s,

end MPE;

the constraint (3.16). That is

r, = A,(x0)b,~0 s.t. ^ßt)l = 1. (3.49)

1=0

To solve this constrained least squares problem the fol¬

lowing trick is used: Define a matrix B,+i g r(i+i )*(i+i )
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B1+1

1
..

1"

0 "•

with B^1, =

0
.. .

0 1_

1 -1

1

With the definition of this matrix the residual can be

transformed into

r, = A,(x0)b, = A,(x0)B1"+11B,+ib, = 6x0 + A^(x0)c,.

Note that the components of B,+ib, = [1,Yo,,,- •• ,Y,-i,,]T
indeed meet the definition of Yk,, in Lemma 3.4. The

constraint is used to obtain the first component of this

vector. Now A,(xo)B_+11 = [6xo,A^(x0)] which results in

the given formula for r,. This result allows us to solve

the constrained least squares problem of (3.49) by the

unconstrained least squares problem

A, (x0)c, ~ -6x0. (3.50)

This derivation is used for theoretical purposes only.
Sidi [37] uses another way to solve (3.49). Let us rewrite

the system as

r, = A,(x0)b, ~0 s.t. W,+ibt), = 1

with W,+i :=[!,... ,1].

This system can be solved by the classical method of

Lagrange for solving a minimization problem with con¬

straints. Let us define the principal functional to be

minimized

^b,,A):=b^A,(xo)HA,(x0)b,+2A(l-b^W}+ 1-
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In this principal functional we introduced a factor 2 for

connecting the linear constraint. This is a legal action,

because we may argue that we "borrowed" this factor

from A. We mainly introduced it to avoid a nasty number

in the final system to be solved. The gradient of 4> is

given by

V^(b1)A)=[2b^A1(xo)HA1(xo)+2AW1+i,2- 2b^+1

The gradient has to vanish for a particular pair of b,
and A. The system to be solved is therefore the following
linear system,

A,(x0)HA,(x0)
W,+i

-w£,
0 A

(3.51)

System (3.51) can now be solved within the following
steps:

1. Solve A,(x0)HA,(x0)z = W^1 for z.

2. Determine A = 1/(W,+1z).

3. Determine b, = Az.

With the QR decomposition of A, (x0) the system of the

first step becomes Rj^, R,+i z = Wj^,.
To determine the residual norm, let us note the follow¬

ing result that arises from inserting the lower part of

(3.51) into its upper part,

||r, ||2 = b^A, (x0)HA, (x0)b, = b^W^+1 A = A.

Hence llr. vx.

We have tested newer solution methods to solve the

constrained least squares problem (3.49) such as direct

elimination and the nullspace method. However system
(3.49) is so ill conditioned that these methods usually
do not have any impact on the accuracy of the solution.
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The observations made so far are summed up into a

function RRE in Algorithm 3.4.

Algorithm 3.4 Reduced Rank Extrapolation.

function RRE(in: g(), x0, e): vector;

xi := g(x0); 6x0 :=xi -x0; c_i := D;

R0:=D; Q0:=D;
Ri := ||6x0||; Qi := bx0/rltl;
Po := ||6xo||;
j:=0;
while p,>po£ do

x,+2 := g(x,+i ); {new sequence vector}

6x,+i := x,+2 — x,+i ; {new difference vector}

Q1+2R,+2 := A,+i (x0); {successive QR decomp.}

{step 1}z:=R-+H2[l)...,1]H;
z := R-^z;
A:=l/([1,...,l]-z);

{step 3: transform coefficients}

Y,,,+i :=z,+2A;
for i := j - 1 to 0 by —1 do

Yi,,+i :=Yi+i,,+i +zt+2A;
end;

P,+i := v^;

end;

s, :=x0 + Q,R,c,;
RRE:=s,

end RRE;

{step 2}

{residual norm}

From (3.19) we know that A2(x0) = AA,(x0). By the

proof of Lemma 3.6 we know that A, (x0) is a basis of the

Krylov space DC, (A, r0). By Lemma 3.4 we know that it is

the correction space. Solving (3.50) is therefore equiv¬
alent to minimizing ||r,|| over the Krylov space DC,(A,r0)
transformed by a left hand side multiplication with the

system matrix A. This is exactly what GMRES does. We

have proven the following theorem.

Equivalent

Krylov

Space

Method:

GMRES
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Theorem 3.19 The reduced rank extrapolation method

(RRE) is mathematically equivalent to GMRES applied to

System (3.2). D

nonlinear Using(3.50) we see by the proof of Lemma 3.4 that RRE

behaviour obtains sk by

Sk = x0 + Ak-i (x0)A2._-[ (x0)+6x0.

Reusing sk as a new x0 — as we do when dealing with

nonlinear systems of equations — we obtain

s,+i = s, - Ak-i (s,)A^_, (s,)+6s,.

This is equivalent to Henrici's method (3.33), where the

linear system of rank k < n is solved by a least squares

approach. Therefore RRE deserves to be called a natural

generalization ofHenrici's method.

3.5 Epsilon Algorithms

Epsilon algorithms are the second big group of algo¬
rithms of vector extrapolation methods. The story of

these algorithms begins with an important result inde¬

pendently found by Schmidt in 1941 [34] and Shanks in

1955 [35]. They formulated a transformation of a vector

sequence for the acceleration of its convergence based

on the quotient of two determinants. This transforma¬

tion is nowadays known as Schmidt-Shanks transform.
However, computing determinants must be avoided in

numerical analysis. But already in 1956 Wynn [40]

discovered a recursive scheme to make the computa¬
tion of the Schmidt-Shanks transform feasible, the so

called epsilon algorithm. This algorithm was extended

by Wynn himself to the vector epsilon algorithm, which

was observed to perform well on the acceleration of vec¬

tor sequences. Unfortunately up to day a representation
of this algorithm in terms of a determinantal formula
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was not found. Thus it is not known, if and what kind

of linear system is solved in the background of this al¬

gorithm. This problem was addressed by Brezinsky in

1975 [6] when he developed the topological epsilon al¬

gorithm This algorithm is known to be mathematically
equivalent to the Biconjugate Gradient method (see Sec¬

tion 2.4.6) in the case of a linearly generated vector se¬

quence.

3.5.1 Schmidt-Shanks Transform

The Schmidt-Shanks transform was independently de¬

veloped by Schmidt [34] and Shanks [35]. It transforms

a given (nonlinear) scalar sequence {x0,xi,...} into a se¬

quence {s0, si,...} converging faster to the same limit or

anti limit s as the original sequence. It is a generaliza¬
tion of Steffensen's method.

The main idea of the Schmidt-Shanks transform is to

interpret the given sequence as an operator in d dimen¬

sional vector space as follows: Let g be the unknown

generating functional of the sequence {x,}, j = 0,1,2,...

given a starting value x0 and x,+i := g(x,). We use the

notation for the repeated application of a functional in¬

troduced by (3.9) on g and define the operator

G(x):=[x,g(x),...,gd-1(x)]T. (3.52)

Note that this operator has a scalar argument! By con¬

struction this operator has a fixed point s := [s,..., s]T if

g has a fixed point s.

We start with an initial guess x0 := st for the fixed point
s and construct a hyperplane n defined by d succes¬

sive points of this operator. These points are defined by

s[0) :=G(x0), s[V] :=G(xi), ..., s^11 :=G(xd_i). With
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Figure 3.5 Three dimensional plot of figures involved in

one step of a Schmidt-Shanks transform for d = 3.

g(gWL
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HLKs

x2t

*X1|
JO)

7t

Si+1

x]\

9(x)

x2\

X3*

X4*

G(x) =
X

gM

_g(gW)J

these values the hyperplane becomes

7t:x = s|0) + ^Aj(s«)-s«+1))
i=o

xo 6xo ... 6xd_2

xd_i 6xd_i ... 6x2d-3

(3.53)

1

Ao

Vd-2
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A step of the Schmidt-Shanks transform is based on the

hypothesis that the curve of the operator G lies in the

hyperplane n. Therefore the new approximation s1+i is

determined by the intersection of the hyperplane with

the space diagonal d : x = A[1,..., 1]T, i.e.

Si+1

Si+1

x0 6xo 6xd_d-2

xd_i 6xd_i 6*2d-3

1

Ao

Ad-2

The unknowns are s1+1, A0,..., A d_2. The rearranged sys¬

tem becomes

1 6x0 . . . 6xd_2

1 6xd_i ... 6x2d-3

Si+1

Ao

Ad-2

x0

*d-i

This system is solved for the first unknown by Cramer's

rule. We get the original (although transposed) formula¬

tion of the Schmidt-Shanks transform

x0 6x0 ... 6xd_2

xd_i 6xd_i • • •
6x2d_3

1 6x0 • 6xd_2

1 6xd_i . • i>X2d-3

Si+i = ed_i (x0) := —^—_____—
--

— -

_ (354)

For the case d = 2 this transform determines a line that

intersects with the diagonal in the (x, y)-Plane, in which

case the transform becomes

S1+1 = ei(x0) =

x0 6x0

Xl 6x1

1 6x0

1 6x1

XoÔXo — Xl 6x0

6x1 — 6x0
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which is nothing else than Steffensen's method (com¬

pare (3.21)). This is why the Schmidt-Shanks transform

is a natural generalization of Steffensen's method. This

generalization reveals that fixed points of linear func¬

tionals are computed exactly by the Schmidt-Shanks

transform for d = 2.

Figure 3.5 shows a three dimensional plot of all the fig¬
ures involved in one step of a Schmidt-Shanks trans¬

form for d = 3.

représenta Definition 3.20 A determinant of thefollowingform
TION IN TERMS

OF HANKEL

DETERMI

NANTS

Hk(Xn

Xyi

Xn+1

X-n+1

Xn+2

X-a+k—1 X^+k

is called Hankel determinant.

X\\

Xr]

Xn+2k-2

The Schmidt-Shanks transform can be expressed as

a ratio of Hankel determinants. Let us sum up the

columns of the numerator of (3.54) subsequently. Let

us subtract subsequent rows of the denominator and

develop the resulting determinant by the upper left el¬

ement which remains 1. Thus the Schmidt-Shanks

transform becomes

e_-i(x0) :=

X0 Xl ... Xd_i

Xd-1 Xd_2 • • • X2d-2

62x0 62Xd_2

62Xd_2 ••• 62X2d-4

Hd(x0)

Hd-i(62x0)'

Kerneland Definition 3.21 The set of all sequences, for which a

kernel
sequence transformationfinds the exact limit (or anti limit)

uNCTioNALs
g wi^nin one step (g called kernel of the sequence trans¬

formation.
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Brezinski and Redivo Zaglia[7, p. 79] have given the

kernel for the Schmidt-Shanks transform using deter¬

minants of size k.

Definition 3.22 We call an iterationfunctional g kernel

functional of an acceleration method, if thefixed point s

of thatfunctional is exactly determined by that acceler¬

ation method within one step regardless of the choice of
the starting value x0.

A sufficient condition for g to be a kernel functional

of the Schmidt-Shanks transform using determinants

of size k is that the functional has exactly one fixed

point and that the graph of the corresponding opera¬

tor G defined by (3.52) lies in a hyperplane in a vector

space of dimension k for all values of x. Due to the

help of Prof. Jörg Waldvogel, who had the basic idea

of how to find such a functional, the following theorem

was formulated. It describes an infinite class of nonlin¬

ear scalar functionals g for which the operator given by
(3.52) is planar in k dimensional space.

Theorem 3.23 Let k e N, M c R and cp : M -> M, x =>

xk_1 be an invertiblefunctional. Let h,:R^R,x=}cx + d

be a linear scalarfunctional. The coefficients c and d are

chosen such that h maps all elements ofM to any subset

ofM.

Then thefollowing expressionfor g (x) is defined,

g(x) := cp oho cp
1
(x) = cp(h.(cp

1
(x))) = (cxk-i + dj

(3.55)

The graph ofG (x) := [x, g(x),..., gk_1 (x)]T is planar inM^.
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Proof. To prove the statement, we have to find a hyper-

plane 7t : Y-^Zo a^ = 1' containing G. G(x) is contained

in the hyperplane n if the following equation holds,

k-1

Y_ aigT(x) -1=0. (3.56)

1=0

Let y := x^t
.
With the given expression for g, we obtain

gT(x)= icxy+Yc
V i=o

Therefore the left hand side of (3.56) is a polynomial
in y of degree k — 1. The coefficients of the left hand

side of (3.56) have to vanish. This results in a system
of linear equations with k unknowns ao,..., a.k-i which

has always at least one solution. Thus we have found

a hyperplane containing G, which completes the proof.
D

Thus Theorem 3.23 guarantees the first condition for

g defined by (3.55) being a kernel functional. The sec¬

ond condition — g having exactly one fixed point — is

established by the following lemma.

Lemma 3.24 Let M c R and cp : M —» M, cp(x) = xk_1 be

an invertible nonlinear scalarfunctional. Let s eM.be a

fixed point of h, : R —» R, a linear scalarfunctional with

Then g as defined by (3.55) has exactly one fixed point
inM.

Proof. Let selbe the only fixed point of h. This is

only possible if H' ^ 1, because a linear functional with

h.' = 1 is parallel to the bisecting line y = x. Such a

function has either infinitely many fixed points or none.

k.— i
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The following equation holds,

s = h(s)

Since cp is invertible in M, a unique value s g M can be

found such that cp-1 (s) = s. The above given equation
can be transformed into

cp-1(s)=h(cp-1(s)),

and further into

s = cp(h.(cp-1(s))) = g(s)

Because cp is invertible, s is the only fixed point of g. D

By combining Theorem 3.23 and Lemma 3.24 the suf¬

ficient condition for g defined by (3.55) being a ker¬

nel function of the Schmidt-Shanks transform using
determinants of dimension k is satisfied. The follow¬

ing example illustrates the behavior of one instance of

the described class of kernel functions for the Schmidt-

Shanks transform for k = 4.

Example 3.25 Let g be

g(x) =(\J +2

Using this function the following equation holds regardless of

the value of x,

GM

1

-39

351

-729

= -11232

This means that G(x) is contained in the four-dimensional hy¬

perplane

xi -39x2 +351x3 -729x4 =-11232
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The function g has exactly one fixed point at 27, which the

Schmidt-Shanks transform with k = 4 is able to find within one

step regardless of the choice of the starting value. For x0 = 0

we get

27:

0 8 18.96 24.11

8 10.96 5.15 1.90

10.96 5.15 1.90 0.66

5.15 1.90 0.66 0.22

for xo = 3 we get

27:

3 15.27 22.59 25.47

12.27 7.32 2.88 1.01

7.32 2.88 1.01 0.34

2.88 1.01 0.34 0.12

1111

8 10.96 5.15 1.90

10.96 5.15 1.90 0.66

5.15 1.90 0.66 0.22

1 1 1 1

12.27 7.32 2.88 1.01

7.32 2.88 1.01 0.34

2.88 1.01 0.34 0.12

Brezinski [6] notes that instead of s[ any other point of

the hyperplane could be used as the anchor of the hy¬
perplane of (3.53). In particular he uses the last vector

(d-1
.
This choice results in the linear system

Si+i xd_i 6x0 • • • 6xd_2

Si+1 X2d-2 6xd_i • • • 6x2d_3

1

Ao

Ad-2

and finally a variant of the Schmidt-Shanks transform

Si+i = ed_i(x0) :=

X d-i 6x0 ... 6xd_ 2

X2d-2 6xd_i • • • 6x2d_3

1 6xo • 6xd_2

1 6xd_i .. • 6x2d-3
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A similar transformation of the determinant in the nu¬

merator as before yields

i , Hd(x0)
e_-i(xo)

=

Hd-i(62xor

3.5.2 Scalar Epsilon Algorithm

Already in 1956 Wynn discovered that there is a recur¬

sive scheme to determine the quotient of determinants

for the Schmidt-Shanks transform. Let 6e(l) denote the

difference e — e
.
The following scheme describes

his scalar epsilon algorithm (SEA).

e(l)
e-i :=0, Vi >= 0,

fco •= Xi, Vi >= 0,

e(l) . >+i)
•-

e,-i
+

1

6e,W
' Vi,j >=0.

The values ed() of the Schmidt-Shanks transform are

related to the epsilon values as follows.

4'j = ed(x,), and e<'j+1 = 1±-y

Wynn proved these relations in [40] by induction using
the expansion of the quotient of two determinants by
Schweins [1, pp. 106- 109].

The epsilon values e are commonly displayed in a ta- epsilon

ble of which the index i denotes the row and the index table

j denotes the colum. However, for a progressive imple¬
mentation of the algorithm storage of subsequent diago¬
nals is convenient. Baring this consideration in mind a

distorted epsilon table is depicted in Figure 3.6 in such

a way that the diagonals appear as rows. This way the
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Figure 3.6 Epsilon Table: Epsilon values involved in

the computation of e2(x0) and their dependencies. In

a progressive computation only the most recent two di¬

agonals (appearing as rows in this figure) have to be

stored.

figure clearly reveals the observation that only two di¬

agonals of the epsilon table have to be remembered to

compute the next diagonal of the table.

implementa- A progressive implementation of the scalar epsilon al-

tion gorithm is given in Algorithm 3.5. In this algorithm we

use the notation e := (e\d],..., e^dj2], e|d] = e\à_-]+2) to

represent a diagonal of the epsilon table. Diagonals are

numbered by the lower index of the last element of the

diagonal.
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Algorithm 3.5 Progressive implementation of the scalar

epsilon algorithm.

function SEA(g, x0, e):vector;

so := xo;

Po := g(so) -s0;

e|01:=[Û,x0];
d:=0;

while |pd| > e|p0| do

xd+i := g(xd);

e[d+1]:=[0,xd+1];
for j := 0 to d do

6e
d-1)

[d+1]

[d+1]

'-1 + 2

Jd] ,

6e

Jd]
.

^1 + 2'

d-1)
-1

end;

if d + 1 mod 2 = 0 then
[d+1].

Sd+i := ed+3

Pd+i := g(sd+i'
end;

d:=d+l

end;

SEA:=sd

end SEA;

sd+i

3.5.3 Generalized Schmidt-Shanks Transform

To extend the Schmidt-Shanks transform to systems of

linear equations Brezinski [6] introduced the notation of

the vector determinant.

Definition 3.26 Let N be a block matrix whose first
block row contains only vectors of the same size, i.e.

N

ai,i

«2,1

a1,

<X2

Oiix 1 ••• «n



204 Vector Extrapolation Methods

Let Nt, denote the matrix that arises by deleting the ith

row and )th column ofN.

We define the vector determinant of N as a linear com¬

bination of the vectors a, ,,..., a, n
the coefficients of

which are signed cofactors, i.e.

det(N) := 2J-I)k+1 det(N1>k)a1>k.
k=1

Thus the vector determinant is determined by devel¬

oping the determinant of the matrix N in the classical

sense with respect to its first row.

When we use DC, (GH, a) as projection space with a being
an arbitrarily chosen vector, System (3.15) becomes

aH6x0 aH6x,

aH6x,_i ... aH6x2,-i

(3.57)

Let the matrix of this system be denoted by M and let

Mt, denote the submatrix of M obtained by deleting
the ith row and the jth column from M. Solving (3.57)

by Cramer's rule for ßk)1 results in

ßk,j
,k+1det(Mi)k)

det(M)

Using (3.13) to determine the approximate solution s,

we obtain the generalized Schmidt-Shanks transform,

s, = e,(x0) :=

1

det(M)

x0 A-,

aH6x

aH6x,_i ... aH6x2,-i-i
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We already know that det(M) is a Hankel determinant,

in particular H, (aH62x0). Let us define

H,(a,x0) :=

Xo ... x,

aH6x0 ... aH6x,

aH6x,_i ... aH6x2,-i

Note that this definition implies H,(aHx0) = aHH,(a,x0).
With this definition the first variant of the generalized
Schmidt-Shanks transform becomes

e,(x0)
H1+i(q,x0)

H,(aH62Xor
(3.58)

By a similar idea as for the scalar epsilon algorithm
Brezinski defines the second variant of the generalized
Schmidt-Shanks transform by

e,(x0)
H,(aH62Xo)

aH6x,_i

x2,
aH6x,

aH6x2,-i

This is another vector extrapolation method that corre¬

sponds to the projection space DC, (GH, (G-1ïH a .

3.5.4 Topological Epsilon Algorithm

Since determinants are not always easy to compute, a

recursive algorithm for computing the quotient of the

determinants of the generalized Schmidt-Shanks trans¬

form similar to the epsilon algorithm would be desir¬

able. To develop such an algorithm one can rely on the

epsilon algorithm, but one has to find a way to invert
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vectors. Brezinski [6] uses ordered pairs of vectors (x,y)
to define

V_1 := —n- and x_1 := —--.

y x yHx

Thus we have

(x_1) x = l and yHy_1=1.

Let 6e(l) denote the difference e — e
.

Similar to

Wynn and his epsilon algorithm Brezinski proved that

the sequence transformation defined by (3.58) on the se¬

quence of vectors x0,..., x, can be obtained recursively

by the following scheme, which is known as the Topo¬

logical Epsilon Algorithm (TEA1).

e-i = 0 e(l) -x Vi >= 0,

e(l)
-

fc2, + 1
-

e(l+1) +

fc2i-1 + Nï]
-i

Vi,j >=0,

e(l)
-

62,+2 - 4r+ HU
-1

Vi,j >=0,

with Hi]
-1

a

,
a

1 b£2,

aH(s4;') aH(s4;')'

\'Se{l] 1
-1

a
i s4;'

[0e2,+ 1
( 3fc2, + l )Ha-! (Se^V,)"*^1"

(3.59)

Very similar to the scalar case the corresponding values

of the generalized Schmidt-Shanks transform are

e^ = e,(xx), and e£>+1 = -pJL_

The second variant of the generalized Schmidt-Shanks

transform yields a second topological epsilon algorithm
(TEA2).
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t2,+2

with

0 e(l) -x

,(t+1)
'2) + 1

-

c2,-1

,(t+1)
~'2j

K]

Se(l)

0e2, + 1
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6e^
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M )H5J>+1)'(6e
2, + U 6e2,

The corresponding values of the second variant of the

generalized Schmidt-Shanks transform are

4V = ëi(xi). and 4V+i
=

2i+1 aHë,(6xt)

Since TEAl fits perfectly into our framework of vector

extrapolation methods, we know already by Lemma 3.4

that its correction space is DC, (G, 6xo). By Lemma 3.6 we

know that this space is equal to DC, (A, To). If we choose

a = r0 = 6x0 the assumptions of (3.57) show that the

projection space of TEAl is DC, (GH, r0), which is equal to

DC (AH,r0) by very similar considerations as in the proof
of Lemma 3.6. However, a Krylov space method using
these two spaces satisfies Definition 2.25, which is the

definition of the biconjugate gradient method. Thus we

have proven the following theorem.

Theorem 3.27 Under the assumptions (3.1) the topolog¬
ical epsilon algorithm as defined by Scheme (3.59) is

equivalent to BiCG applied to System (3.2) if a = 6x0.
D

Equivalent

Krylov

Space

Method:

BiCG

The implementation of the topological epsilon algorithm
is similar to the implementation of the scalar epsilon al¬

gorithm. However, even and odd values of j have to be

distinguished. The epsilon table for TEAl in Figure 3.7
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Figure 3.7 Epsilon Table for TEAl: Epsilon vectors in¬

volved in the computation of e2 (x0 ) and their dependen¬

cies. Although e2 is dependent on epsilon vectors from

three different diagonals, it is possible to store only the

most recent two diagonals.

2j + l/2j+2,j = -1,0,l,...

-1 0 1 2 3 4 •••

e2(x0)

shows that epsilon vectors with even column index are

dependent on values from two previous diagonals. How¬

ever, a clever implementation will realize that the only
information needed from the first of these are differ¬

ences of even columns. Storing these difference vectors

separately saves one half of the storage of that diago¬

nal. Difference vectors Se'1+ '
can replace Se'1' if they

are computed after 4+2 nas been stored. At the end of

an odd diagonal d the difference vector S4 ,
has to be

computed.
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Algorithm 3.6 Progressive implementation of the first

topological epsilon algorithm.

function TEA1 (g, x0, a, e):vector;

So := Xo;

r0 = g(s0)-s0;
-[0] := [0,x0];
d:=0;

while ||rd|| > £||r0|| do

xd+i := g(xd);
E[d+1] := [0,xd+i];
for j := 0 to d do

g-(d-l) ._
„[d+1]

_

_[d]
.

0ei •- 61+ 2 ei+2'
if j mod 2 = 0 then

_

1

'8eJd-j)'
—

i

a

aHSeJ"-'1
els e

'S4d-J)'
-i SejV'

(ôe1(d-'))Hôe1(d7')
end;

[d+i]
._

[d]

e,+3 •— e, + 1 + 'Sejd-J)'
— i

end;

if d + 1 mod 2 = 0 then

<•
._-[d+1].

Sd+i •- ed+3 .

^d+1 := g(Sd+i) -sd+i

end;

d:=d+l

end;

TEAl := sd

end TEAl;

These dependencies are shown in Figure 3.7 by curved

arrows. However, they have been neglected in the im¬

plementation ofAlgorithm 3.6 in order to provide a clear

progressive version of the topological epsilon algorithm.

Gander, Golub and Gruntz [14] remark that — although
the algorithm generates the same residual vectors as
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the non symmetric Lanczos algorithm — it only needs

to compute matrix-vector multiplications with G and

not with GH. However, we need to point out, that this

advantage is compensated by a much higher memory

requirement: To solve a d x d system of equations the

storage of 4(d—1) —1 epsilon vectors and |_(2(d—1) —1)/2J
difference vectors is needed, so a total of 5d—0(1 ) differ¬

ence vectors. This is nearly 5 times the size of the sys¬

tem matrix, if it is a dense matrix. Furthermore as we

will see in our conclusion, the numerical performance
is rather bad, compared to a linear solver. This is why
the topological epsilon algorithm is not a good choice, if

the system matrix is known.

3.6 Conclusion

To conclude this chapter we present two examples to

illustrate the numerical performance of vector extrapo¬
lation methods.

Example 3.28 The first example is a numerical experiment on

a linear problem taken from (14). We compare the perfor¬
mance of linear Krylov space methods FOM, GMRES, BiCG and

QMR with the performance of MPE, GMRES and TEAl. The

problem is an elliptic partial differential equation

x—^ + U_- I + ßu= a with Q = (0,1) x (0,1).
9x dyj

with Dirichlet boundary conditions on 912. We discretize this

system using centered differences for both the first and second

order derivatives on a uniform mesh. The mesh size h = 1/32 is

used which corresponds to 961 unknowns. The boundary con¬

ditions are chosen such that the solution u to the discrete sys¬

tem is one everywhere.

Gander, Golub and Gruntz point out that "the parameters y

and ß can be varied to make the problem more or less difficult

to solve. The greater y is chosen, the more unsymmetrical the

system becomes, and the value of ß makes the system more
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or less positive definite."(14). The basic iteration we use in our

experiment is Gauss-Seidel, a stationary method generating a

vector sequence according to (3.1). The Krylov methods solve

the corresponding preconditioned system given by (3.2). The

initial approximation x0 = s0 is the zero vector.

Figure 3.8 Linear Krylov space methods versus vector extrapo¬
lation methods for n = 961, y = 96, ß = 0. The basic iteration is

Gauss-Seidel.
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The development of the relative error of the numerical experi¬
ments are shown in Figure 3.8. This figure indicates the mathe¬

matical equivalence of FOM and MPE, GRMES and RRE, BiCG

and TEAl.

It also shows that Krylov space methods are numerically more

stable than the vector extrapolation methods. The most clear

difference can be seen when comparing BiCG to TEAl. The

convergence curve of TEAl branches off the one of BiCG after

about 20 iterations. TEAl takes about twice as much iterations

as BiCG to converge to the same tolerance (60 compared to

34). Thus it also consumes much more memory — as already
mentioned before. Fortunately, Gander, Golub and Gruntz dis-
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cuss in their paper how these drawbacks can be overcome by

restarting the algorithms Brezinski also has tried to solve these

numerical problems by bordering methods However, not even

TEAl shows a worse numerical behavior than its Krylov space

counterpart, but also MPE and RRE branch off in the last two

iterations Even if these differences can be neglected in this

example, cases can easily be found, in which the worse numer¬

ical behavior of MPE and RRE is apparent On the other hand

this example shows that there are linear cases for which MPE

and RRE are able to compete with their Krylov space counter¬

parts

Brezinski and Redivo Zaglia point out that "the main in¬

terest of these algorithms mostly lies in the possibility
of obtaining quadratic derivative-free methods for sys¬

tems of nonlinear equations"[7, p. 307]. Let us therefore

conclude with another example demonstrating the nu¬

merical behavior of the presented vector extrapolation
methods for a nonlinear problem.

Example 3.29 Let us perform a numerical experiment on the

Chandrasekhar H-equation We use the same parameters n =

100, c = 0 9999 as in the concluding example of the introduc¬

tion for this nonlinear problem Newton's method, the chord

method, Newton-GMRES and SOR are compared with the vec¬

tor extrapolation methods MPE, RRE and TEAl

The vector extrapolation algorithms are wrapped by the er¬

ror control framework developed for inexact Newton methods,

given in Algorithm 1 8 However, neither the operator cp, a zero

of which has to be found, nor the derivative Dcp are provided
as an argument But they are replaced by an operator g, a

fixed point of which has to be found In our case one step of

the chord method is used for g In Algorithm 1 8 the assign¬

ment used to obtain the residual in lines 2 and 9 is replaced by

i\ =g(sx)-sx Lines 6 to 8 are replaced by the call of the par¬

ticular vector extrapolation method The same parameters for

controlling the convergence behavior of Newton-GMRES are

also used for these nonlinear vector extrapolation methods

9max = 0 9999, a = 2, y =09 SOR uses a> = 1 39647 as the

relaxation parameter

The development of the relative error of the several methods
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Figure 3.9 The Chandrasekhar H-equation with n = 100 and

c = 0.9999.
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operating on the given problem is shown in Figure 3.9. Times

and Flops measured on a Sun Sparc 336 Mhz with 3 GB main

memory are shown in Table 3.3.

Table 3.3 Flops and execution times of several methods for

solving the Chandrasekhar H-equation. Flops were counted

with the flops command of Matlab 5.3. Times were measured

in Matlab on a Sun SPARC 336 MHz with 3 GB main memory.

Method Iterations Mflops Time(s)

Newton-GMRES 8 2.8 0.22

Newton 8 7.2 0.30

RRE 7 3.9 0.39

MPE 7 3.9 0.46

TEAl 7 8.4 1.21

Chord 262 27.8 3.23

SOR 17 3.2 3.55
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As expected, both figure and table show that the vector ex¬

trapolation methods behave in a similar way as the Newton-

GMRES method. TEAl is the worst of the compared vector ex¬

trapolation methods. The drift off from Newton-GMRES can be

explained by the startup time of the chord method, which has

to perform a complete Gaussian elimination in the first step.

From the point of view of sequence acceleration we read from

the table that MPE and RRE accelerate the chord method by a

factor 8.2 (i.e. MPE and RRE need about 12 percent of the time

the chord method takes), TEAl accelerates the chord method

by a factor 2.7 (which is 37.5 percent of the chord method -

a similar value as published by Brezinski in (7) for another prob¬

lem).

The performance of the vector extrapolation methods is de¬

pendent on the basic method for the fixed point iteration. For

example the nonlinear Jacobi method results in worse conver¬

gence behavior. However, using SOR only saves the startup
time and does not yield in a better convergence behavior than

the chord method elsewhere.

Newton's method is by far the best method with respect to the

Megaflop rate. However, Newton-GMRES and the vector ex¬

trapolation methods compete very well. Using larger problem
sizes reveals that all of them compete even better and beat

Newton's method with respect to the execution time.

We have to mention that the main advantage of the vector

extrapolation methods consists in their not requiring the deriva¬

tive of cp. In this example the amount of work for evaluating

Dcp is small (120817 flops). This is why this advantage does not

count in the obtained results. However, there are larger prob¬
lems where this advantage becomes important.



Chapter 4

Nonlinear Krylov

Space Methods

4.1 Introduction

s has been shown in the last chapter, Krylov

space methods are mathematically equivalent
to vector extrapolation methods, when they are

applied to solve linear systems of equations.

Moreover, we have found that vector extrapolation meth¬
ods are generalizations of Henrici's method, when they
are applied to systems of nonlinear equations. Henrici's

method is a nonlinear solver comparable to Newton's

method. It can be viewed as an accelerator of an exist¬

ing iterative method, or it can be viewed as an effective

solver of a system of nonlinear equations requiring the

help of a nonlinear preconditioner. These two points of

views are depicted in Figure 4.1. Our point of view is

the second one.

Definition 4.1 Given a system of nonlinear equations

<p(x) = 0. (4.1)
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We call a nonlinear operator g nonlinear preconditioner,

if a solution s of (A. 1) is afixed point of g and the daco-

bian of g has no eigenvalues equal to 1.

Note that a preconditioner usually should not worsen

the convergence of a solver, when it is applied. This is

why one would expect that the fixed point s of g should

also be a point of attraction. However, our methods do

not require the preconditioner to converge to the fixed

point, although the quality of a preconditioner might be

measured with respect to this property.

A more important property is that the iteration x1+i :=

g (xt) should not stagnate in any direction. Therefore the

Jacobian of g is not allowed to have eigenvalues equal
to 1.

Figure 4.1 Different points of view: (a) Henrici's method

as accelerator for an ineffective nonlinear solver, (b)

Henrici's method as nonlinear solver requiring the help
of a nonlinear preconditioner.

Accelerator

Nonlinear Solver
f

Solution

Preconditioner

Nonlinear Solver Solution

In this chapter we develop the framework to combine

vector extrapolation methods and Krylov space meth¬

ods to nonlinear Krylov space methods. These methods

are capable of solving nonlinear systems of equations

by the help of a nonlinear preconditioner. They remain

mathematically equivalent to their vector extrapolation

counterparts and thus Henrici's method.
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4.2 Arnoldi Type Methods

Arnoldi type methods make use of the Arnoldi process.

In step j this process generates a new basis vector of

the Krylov space by multiplying the system matrix A

with the last basis vector v,. Our problem is, that we do

not know A. We do not even know G = 1 — A. Therefore

the matrix vector multiplication Av, has to be replaced.

Our first aim is to develop a recursive scheme ex¬

pressing the matrix vector multiplication Av, by known

objects. The following lemma gives such a recursive

scheme.

Lemma 4.2 Given an arbitrary linearly generated vector

sequence {xx},for which x1+1 = Gxt + d holds, where G e

Rnxn is a matrix the eigenvalues of which do not equal
1. We set A := 1 — G and 6xt := x1+i — xt.

Let V,+i := [v0,..., v,] e Rrixi be the orthonormal Arnoldi

basis of the Krylov space DC,(A,6x0). Let H, e R1+1xi

be the extended upper Hessenberg matrixfor which the

Arnoldi equation V,+iH, = AV, holds. Leth, denote the

last column vector ofH,.

Then using thefollowing scheme

qo

1
'

IM'

ij
i

Vo := [1],

Pj
._

]
f-|(l + 1)x(i + 1) -[H,|0])(h,- 0 )•

thefollowing equation holds

Av, = q,6x,+1 +V,+1p,.
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Proof. We prove the statement of the theorem by in¬

duction.

Initialization Since by (3.8) and (3.2) A6x0 = 6x0 — 6xi

we have

Av« =A7rrAr = tte—rr(6xo-oxi) = _tte—fr6xi + v°-
6x0 6x0 6x0

Induction Step The Arnoldi process guarantees

V,+1h, =Av,_! = q,_16x, +V,p,_,.

The second equality holds by the induction hy¬
pothesis. Reordering the vectors and matrices in

this equation we get

h,+1),v, = q,_i6x, - [V,|0] ( h;
Pj-i
0

• (4.3)

When multiplying the last equation by A, we use

again A6x, = 6x, — 6x,+i. We obtain

h,+1),Av, =

q,_! 6x, - q,_! 6x,+1 - A [V, |0] ( h, - Pj-i
0

Solving (4.3) for q,_i 6x, and using this expression

as well as the Arnoldi equation AV, = V,+iH, in

the last equation, we finally obtain

h,+1 jAv, =

-q^ôx^+V^O-^IOjWh,- Pj-i
0

Replacing the given expressions for q, and p, in

this equation completes the proof. D
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The recursive scheme given in Lemma 4.2 can be used

to compute the matrix vector multiplication Av,. With

the result of this operation an Arnoldi step can be per¬

formed to compute v,+i and H,+i. These are the only

objects required to compute the next matrix vector mul¬

tiplication. Thus, by Lemma 4.2 the matrix vector mul¬

tiplication has been successfully replaced by a recursive

scheme.

However, the scheme described in this lemma has a nu¬

merical drawback, which we like to illustrate by the fol¬

lowing linear example.

Example 4.3 We apply the recursive scheme from Lemma 4.2

to the linearly generated sequence

r -i i

xx +
2

-1

-1

Table 4.1 shows the values of q, and p5 obtained by the recur¬

sive scheme.

Table 4.1 Values of q, and p5 for the given example.

j 1) Pi

0

1

2

3

-0.2516

0.8683

-7.3578

296.2253

mT

[-0.4981, 0.6200]T

[-0.8602,-0.5972, 0.7557]T

[-11.4420, -8.4234, -3.1968, 0.8004]T

We see that the absolute values of q, grow exponentially. They

change the sign in every step.

The observed exponential growth of the values of q, is

not an accident: The better the preconditioner works,

the faster the norm of the difference vectors decreases.

The norm of the difference vectors affects H,+i,,, and

the values of q, reflect the product of these norms with

xo ,xx+i
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changing signs. Therefore in the computation of Av, the

product q,6x,+i is unbalanced: If q, becomes large, one

can be sure that the norm of 6x,+i is small.

To solve this problem, we use the fact that the difference

vectors 6x0...,6x,_i span the Krylov space DC,(A,6x0)
(see Theorem 3.6). The following lemma shows how to

construct the orthonormal basis of the Arnoldi process.

Lemma 4.4 Given all conditions ofLemma 4.2.

For i = 0... ) the Gram-Schmidt process applied to

(—l)16x1 yields the same orthonormal vectors vt as the

Arnoldi process applied to AT6x0.

Proof. The statement is proved by induction.

Initialization The initialization is trivial, since v0 =

6xo/||6x0||.

Induction Step The induction hypothesis is

[6x0)-6x1)... ,±6x,_-|] = V,K,.

Let w, denote the normalized vector that arises by

orthogonalizing 6x, against V,. By the induction

hypothesis we have

i-i

k,+1),+1w, = (-1)>6x, -^k1+1),vt
1=0

'l-V,V^)(-l)'6x,. (4.4)

Equation (4.3) implies

6x, = (_ip----^Vl),v, + [V,|0](h, Pj-i
0

(4.5)
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Replacing this expression for 6x, in (4.4) we get

V IA, - _____.,

Both vectors w, and v, have the same length 1 and

the same sign. Therefore they must be the same.

Moreover we obtain for free a direct connection be¬

tween k,+i,+i and q,,

D

The last lemma shows that the orthonormal basis of the

Gram-Schmidt process applied to the signed difference

vectors (—1)'6x, is the same as the orthonormal basis

generated by an Arnoldi process constructing DC, (A, 6x).
However, the extended Hessenberg matrix H, and the

upper triangular matrix K, are different.

By the help of the last two lemmas the following theorem
solves this problem. It provides a recursive scheme for

obtaining the next column of the extended upper Hes¬

senberg matrix H, using the last two columns of the

upper triangular matrix obtained by the Gram-Schmidt

process and the actual extended upper Hessenberg ma¬
trix H,-i.

Theorem 4.5 Given [6x0)—6xi,...,(—1)5_16x,_i] = V,K,
— a QR-decomposition determined by a Gram-Schmidt

process, let AV, = V,+iH, be the result of an Arnoldi

process on A and 6x0.

Then the column vectors of H, can be obtained by the

following recursive scheme

Ho = []GR1x0,

h, =
± (k,+1 +

(I-Pj-iIO])^-
0 ) Vj > 1.
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Proof. The initial value for H0 is trivial.

The recursive part of the given scheme remains to be

proven. From (4.5) we know

-IV bx, =V1+1 lhi
Pi-i

Nj-i

Thus we observe that the last column vector of K, takes

the following form

k

i+i h, Pj-i
0

|q,-il- (4.7)

Using (4.6) we can rewrite that as

k,+i = kjjhj —
Pj-i
0 |q,-il-

Our aim is to eliminate q,_i and p,_i. Using their defi¬

nitions (4.2) we get

k,+i = kjjHj —
:i - [Hj-tIO]) (n,_! -[pT_1)0])/|q1_2|

0

The recursive sensation happens by the help of (4.7):

the expression (h,_i — [p|_, ,0])/|q,_2| can be replaced

by k,. Thus we get

k,+i = kjjhj —
(i-tiVïiODk,'

0

Solving this equation for h, yields the proposed result.

D

Theorem 4.5 implies a procedure for obtaining the Ar¬

noldi basis V, and the extended Hessenberg matrix H,,
if the signed difference vectors (—1)'6x, are orthogonal-
ized against each other. This results in the nonlinear

Arnoldi process, which is implemented in Algorithm 4.1.
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Algorithm 4.1 Step j of the nonlinear Arnoldi process.

function nlArnoldi(j ,v,,V, ,k, ,H, i )

: [ vector,vector.vector] ;

{Modified Gram—Schmidt orthogonalization}
for i := 0 to j — 1 do

kt+1,,+1 :=v^vt;
v, :=v, -k1+1),+1vt;

end;

Vi.i+i HWI;
v, :=v,/k,+1),+1;

{Determining the Hessenberg matrix}

h, := k
i
•= ^i+i

(1-[H,_1|0])k
0

A,,,;

nlArnoldi := [k,, h,, v,] ;

end nlArnoldi;

The algorithm performs one step of the Arnoldi process

from j — 1 to j. Its arguments are the step number j,
the signed difference vector v, := (—lp6x,, the already
obtained Arnoldi basis V,, the last column vector of

the actual upper triangular matrix of the Gram-Schmidt

process k, and the already obtained extended Hessen¬

berg matrix H, i from the last step. It returns the next

column of both the upper triangular matrix and the ex¬

tended Hessenberg matrix and the new vector of the

Arnoldi basis.

The nonlinear Arnoldi process can be used to refor¬

mulate all Arnoldi based linear Krylov space methods

as nonlinear Krylov space methods. Thus resulting in

a huge family of nonlinear Krylov space methods, for

which a vector extrapolation counterpart might not even

exist. In the following we present the nonlinear versions

of the two Arnoldi based algorithms from Chapter 2.
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4.2.1 Full Orthogonalization Method

Algorithm 4.2 Nonlinear FOM with constant number

(n) of steps.

function nlFOM(g(), s0, e, n): vector;

b:=g(0);

repeat

x0 :=s0; x-i := g(x0);
6x0 :=x-[ -x0; p0 := ||ox0||;

ki,i := Po! v0 := 6x0/po; {Gram—Schmidt setup}
Ho := D ; {Arnoldi setup}
for j := 1 to n do

x,+1 := g(x,); 6x, :=x,+1 -x,;

[k,, h,, v,] := nlArnoldi( (-1 p6x,, V,, k,_!, H, ! ) ;

z, := H^1 e-\ p0; {common FOM}

s, :=s0 +V,z,;
p, :=h,+1),|e^z,|

end;

So := sn {restart}
until p^ < e||b||;
nlFOM := s^

end nlFOM;

The nonlinear Arnoldi process is everything needed to

transform linear FOM into nonlinear FOM. An algorithm

combining linear FOM with the nonlinear Arnoldi pro¬

cess is given in Algorithm 4.2.

This algorithm takes as arguments the nonlinear pre¬

conditioner g, an initial guess of the solution s0 and a

desired tolerance e. For the ease of understanding we

formulated the algorithm such that it performs a con¬

stant number of steps until a restart takes place. This

is the last argument n, the algorithm takes. However, a

fancier implementation will use the framework of inex¬

act Newton methods for error control described in Chap-
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ter 1 to have a variable number of steps (less steps far

from the solution, more steps near the solution).

4.2.2 General Minimum Residual Method

Replacing the linear Arnoldi process by the nonlinear

Arnoldi process in GMRES results in the nonlinear ver¬

sion of GMRES shown in Algorithm 4.3.

This algorithm takes the same arguments as nonlinear

FOM. Instead of the constant number of steps used in

this algorithm, one would also like to use the error con¬

trol framework for inexact Newton methods described

in Chapter 1. For the ease of understanding this frame¬

work has not been implemented in Algorithm 4.3.

4.3 Lanczos Type Methods

In analogy to the nonlinear Arnoldi methods, the aim

of nonlinear Lanczos type methods is to replace the

matrix vector multiplications Av, and AHw, by using
information from the topological epsilon algorithm or

its relatives. There are strong indications that such a

replacement can be found: First Theorem 3.27 shows

the mathematical equivalence of the topological epsilon

algorithm and the biconjugate gradient method, sec¬

ondly Brezinsky [7, p. 236] mentions how the direc¬

tion vectors of the conjugate gradient method can be

constructed from the topological epsilon algorithm if it

is applied to a linear system with a symmetric positive
definite matrix.

The benefit of such a replacement would be a nonlin¬

ear Lanczos biorthogonalization resulting in a nonlinear

BiCG algorithm and a nonlinear QMR algorithm. As far

as we know there is no vector extrapolation counterpart
known so far for the latter algorithm.

However, up to now we have not been able to develop
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Algorithm 4.3 Nonlinear GMRES with constant num¬

ber n of steps before restart.

function nlGMRES(g(), s0, £, n): vector;

b:=g(0);

repeat

x0 :=s0; x-i := g(x0);
6x0 :=x-[ -x0; po := ||6x0||;

ki,i := Po! v0 :=6x0/po;

Ho := D;

for j := 1 to n do

x,+1 := g(x,); 6x, :=x,+1-x,;

[k, ,h, ,v,] := nlArnoldi(6x,, V, ,k,_i ,H,_i);
{Update previous Givens Rotations}

ri,i :=lai,i'.
for i:= 1 to j—1,

ri+i ,i

't,i

+1.1.

cost smt

- sint cost h,t

end;

{Actual Givens Rotation}

tan:=h,+i ,/r,,,;

cos, := 1/v 1 + tan2; sin, := cos, tan;

rhJ :=rhJ cos, +H,+i,, sin,;
{Right hand side and component vector}

Pj :=-Pj-i sin,; g,

z,:=K-'g^;
end;

So := sn

until p^ < e||b||;
nlGMRES := s^

end nlGMRES;

(1)
:= p,_i cos,;

a recursive scheme that can replace the matrix vector

multiplications mentioned above. Therefore nonlinear

Lanczos type methods remain an interesting field to be

investigated.
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4.4 Conclusion

Let us begin our conclusion with a numerical example.

Example 4.6 We illustrate our nonlinear Krylov space meth¬

ods by the Chandrasekhar H-equation introduced at the end

of Chapter 1. To show that nlFOM is numerically more stable

than MPE we use a larger problem with n = 400. We com¬

pare the Newton method, the chord method, Newton-GMRES,

MPE, RRE, nlFOM and nlGMRES. All algorithms had to achieve

a required relative residual norm of 10~10. For Newton-GMRES,

MPE, RRE, nlFOM and nlGMRES the error control mechanism of

inexact Newton methods is used as described in Chapter 1.

MPE, RRE, nlFOM and nlGMRES use the chord method as the

nonlinear preconditioner.

Both algorithms nlGMRES as well as nlFOM use the update pro¬

cedure with Givens rotations discussed in Chapter 2 for GMRES

to decompose the upper Hessenberg matrix into a sequence

of rotation matrices and an upper triangular matrix.

Figure 4.2 shows the error curves of the particular Algorithms.
We see that RRE and nlGMRES and MPE and nlFOM show a

comparable behavior.

Table 4.2 shows the number of (outer) iterations, floating point

operations and time measured on a Sun SPARC 336 MHz with

3 GB main memory for the compared algorithms applied to the

given problem. RRE and nlGMRES have comparable results,

nlFOM is slightly better than MPE although it takes more outer

iterations.

The Krylov space paradigm is a field very well re- conclusion

searched by numerical analysts. Therefore our hope is

that transferring these vector extrapolation algorithms
to the Krylov space paradigm gives rise for further ideas

for numerical improvement of these algorithms.

The new algorithms are able to solve nonlinear problems
without the knowledge of the Jacobian. However, they

rely on the application of a nonlinear preconditioner.

Further work should include research on Lanczos type
methods and epsilon algorithms. In this field the trans-
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Figure 4.2 The Chandrasekhar H-equation with n = 400 and

c = 0.9999.
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Table 4.2 Flops and execution times of several methods for

solving the Chandrasekhar H-equation. Flops were counted

with the flops command of Matlab 5.3. Times were measured

in Matlab on a Sun SPARC 336 MHz with 3 GB main memory.

Method (Outer) Iterations Mflops Time(s)

Newton-GMRES 9 50.3 53.63

Newton 9 417.6 117.85

RRE 8 112.3 123.24

nlGMRES 8 114.0 125.00

nlFOM 11 118.7 132.35

MPE 8 129.2 148.63

Chord 437 750.5 1323.41

fer to the Krylov space paradigm promises completely
new algorithms such as nonlinear QMR, for which no

vector extrapolation counterpart is known as of today.
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This could also have an impact on new vector extrapo¬
lation methods. Moreover, we think that it is very likely,
that the bad behavior of TEAl algorithm shown at the

end of Chapter 3 can be cured by such a transfer with

respect to memory requirements, amount of work and

numerical stability.





Chapter 5

Application

5.1 Introduction

n this chapter we apply the new algorithms to

a real world problem. We describe the sim¬

ulation of an ash melting oven used in the

Deglor project of the Asea Brown Boveri Com¬

pany (ABB).

The simulation consists of a heat transfer problem: The

distribution of the temperature and the heat fluxes at

the surface of the oven are determined in the stationary
case. The physical model of the oven and its discretiza¬

tion lead to a nonlinear system of equations, which can

be solved with the algorithms that have been described

in this thesis.

In our diploma thesis [21] and in a conference paper

[22] we have dealt with the parallelization of the simu¬

lation. The parallel simulation was used to examine the

behavior of a very large Deglor oven that was build by
the ABB in Japan. The parallelized code used nonlinear

Jacobi, Gauss-Seidel and SOR as a solver.
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In this chapter we explain the purpose and the geometry
of the oven. Next we describe the problem, the physical
model and its discretization. Then we apply our new al¬

gorithms to the simulation of a medium sized oven that

was built in the research center of the ABB company

in Dättwil/Switzerland for test purposes. We compare

the results to competing existing algorithms. Finally we
conclude on the results made in this thesis.

5.2 ABB's Deglor Oven

purpose When waste is incinerated, an ash is produced in the

filters containing toxic heavy metals at a level of ap¬

proximately 10 percent. Melting the ash allows for the

evaporation of the heavy metals. The heavy metals in

gaseous form are conducted into another filter, where

they condensate. The condensed heavy metals are haz¬

ardous waste and have to be disposed carefully.

About 90 percent of the ash do not evaporate. If the melt

is cooled down, it becomes glass, which can be recycled
for further industrial processes.

shape Figure 5.1 shows a picture of the upper part of a De¬

glor ash melting furnace. The floor represents the upper

surface of the melt. Heat elements powered by electric¬

ity are hanging from the ceiling. They are surrounded

by protection tubes. Three cold spots are on the walls

and on the floor. These are locations where the tem¬

perature is considered to be constantly cold (i.e. 600 K)

throughout the simulation. The first cold spot on the

left side models a hole in the left wall, where new ash

is pushed into the oven. The second cold spot is the

place on the upper surface of the melt below that hole,

where the new ash is placed when its pushed into the

oven through the hole. The third cold place is at the

back wall. It models a hole, where the evaporated heavy
metals may leave the furnace.
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Figure 5.1 Picture of a Deglor ash melting furnace con¬

sisting of 3 cold spots and 4 protection tubes each of

which contains 2 heat elements.
Heat Elements

Protection Tubes

Cold Spots

The modeling of the oven's geometry and the graphi¬
cal output of the results were done by ASTRID/B2000,

a modular finite element analysis system developed at

EPFL Lausanne [4]. To store the data this system uses

a data management system called MEMCOM. Both pro¬

gramming environments are commercial products and

can be obtained from SMR Engineering & Development,
a consulting company specialized in scientific comput¬

ing and engineering computer simulation.

Tools

5.2.1 Physical Model

Definition 5.1 Given two points x-\ and X2 on given sur¬

faces, a view factor describes thefraction ofthe intensity

of radiation between these two points x-\ and X2. Since

the points are located on surfaces, we can define angles

<x, ß between the distance vector I := %2 x-\ and the

normal vectors ofthe surface at the given points (see Fig¬
ure 5.2).

Surface

View

Factors



234 Application

Figure 5.2 The angles a and ß and the length of the

distance vector I are quantities for computing the view

factor v(x-\ ,X2) between the two points x-\ and %2 on the

surfaces 3^ and $2-

The view factor v(x-\ ,x2) depends on the distance I :=

11*2 — x-\ || of the two points and their angles, i.e.

cos <x cos ß
v(xi,x2) :=

-j- .

If there is an obstacle between the two points, the view

factor becomes zero. We also define the viewfactor to be

zero ifxi equals X2.

The walls of the oven together with the outside walls

of the protection tubes form a closed space (exterior re¬

gion) .
The same is true for the protection tubes together

with the heat elements (interior regions). Both types of

regions can be viewed to have a cold outside wall (1) and

a hot emission part (2) (see Figure 5.3). Inside these re¬

gions heat radiation takes place. The interior regions
are connected to the exterior region by heat conduction.

heat Let p(x) denote the heat flux at a point x. Let T(x) be

radiation y-^ temperature and e(x) the heat radiation coefficient

at this point. The ratio of power emitted by the black

body for a range of wavelengths to the whole spectrum
at temperature T(x) shall be represented by y{x), u de¬

notes the Boltzmann constant. To determine the distil-
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Figure 5.3 a) Every region can be divided into a cold

outside wall (1) and a hot temperature emission part

(2). b) The diagram denotes our notation for these parts
of the oven.

bution of temperatures and heat fluxes on the surface of

the Deglor oven the following equation has to be solved

for T p for all points x of the surface $ of a closed region
of the oven (see [9]) :

Pi*J

efxl
V(x,y)]—^v(y)dny)

= y(x)oT(x) — v(x,y)Y(y)aT(y)4dy(y). (5.1)

In this equation the heat flux is dependent on the 4th

power of the temperature.

On the outside walls and the tube walls heat conduc- heat

tion happens. Let TQ(x) denote the temperature on the conduction
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outside of the wall and Ji (x) the temperature on the in¬

side at a point x. The heat conduction is modeled by a

linear dependence of temperature and heat flux, i.e.

p(x)=<x(x)(To(x)-Ti(x)). (5.2)

In this equation oc(x) denotes the heat conduction coef¬

ficient at the point x.

5.2.2 Discretization

model of The aim of the simulation is to determine physical val-

the furnace
ues on ^e surfaces of the oven. Therefore the model of

the furnace has only two dimensions.

An ash melting furnace consists of the following geomet¬
ric solids: planes (the floor, the ceiling, the walls, cov¬

ers of the protection tubes), cylinders and semi spheres

(protection tubes), cylinders and half toruses (heat ele¬

ments). The ceiling of the oven is a plane with holes. The

ceiling of the oven is a plane with holes. Each protec¬
tion tube causes one. Therefore the ceiling is partitioned
into subplanes. Four subplanes form a rectangular area

containing one hole.

subdomains The solids of which the oven is composed, are called

subdomains. Every furnace has five large plane subdo-

mains, four for the walls and one for the floor. The ceil¬

ing is formed by small planar subdomains, the number

of which is four times the number of protection tubes.

Every protection tube consists of a cylindric and a semi

spherical subdomain. Every heat element consists of

two cylindric subdomains and a half torus shaped ones.

The oven in Figure 5.1 consists of 65 subdomains.

the mesh Every subdomain has only two dimensions. Therefore

and surface
we can specify a two dimensional grid for each sub-

lements
domain. Cylinders and spheres are approximated by

prisms. This way every subdomain is partitioned into a

finite number of quadrilateral surface elements.
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Definition 5.2 The view factor v3r(3r-\ , S^) between two

surface elements 3^ and $2 is the average over all view

factors between these surface elements, i.e.

V*(?,,?2
1

1

«ii^iini^i

v(x,y)dy(y)dy(x)

ffl ^2

?, ff2

cos <x cos ß

\2
à3[y)à3[x).

To simplify the linear system of equations which we are

developing for the problem, we will use the following def¬

inition from [9, p. 2].

Definition 5.3 The standard modification w^,^) of

the view factor between two surface elements 3^ and $2

is defined by

w(2u22) :=v*(2u22

1

«ll^il

9-H

cos acosß

\2
d3r(y)d3r(x).(5.3)

?! ?2

Note that view factors of surface elements are symmet¬
ric, i.e. v3"($1,$2) = v3r(3r2,^) whereas the standard

modification is not. Instead the standard modification

satisfies w(^,^2) = H^ll/ll^i \\w(^2,^). However, the

integral in (5.3) is still symmetric.

We put all the view factors of the surface elements into a

matrix V and their standard modifications into a matrix

Wwithvt), =v9r(3r1)3r2) andwt>, =w(3r1,32).

The integral in (5.3) is approximated by partitioning the

source and the target surface elements ^ and J2 into

k subareas 3^1 k and S^.i k- Of these subareas the

angles ai k)i kandßi k,i k and the distance li k,i k

of the points in the center are computed. There values

are considered to be constant on the whole subarea.
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The integral is approximated by the symmetric sum

cos <x cos ß

I2
-d_-(y)d_'(x) =

cos <xt)1 cos ßt)1

?1 ^2

1=1 1=1 1.1

A linear Let us define an order for the surface elements and as-

system Sjgn an in(jgx to every surface element. We consider

the physical quantities of (5.1) to be constant on a sur¬

face element. Therefore let the physical quantities be

indexed according to the surface elements. Let n de¬

note the total number of surface elements. With these

assumptions the discretization of (5.1) becomes

TL , TL

i = 1
...

ni.

C i. -"
C

//..
• -

^ £ -,,
•

, ; 1
^l

1 L1 1

1=1
'

1=1

This set of equations defines a linear system in the val¬

ues pt and YiaTt4. Let us put heat fluxes into a vector p,

temperatures into a vector t and the values YtoT4, (i =

] ...ri) into a vector h.

As we have seen in Figure 5.3, every region can be di¬

vided into a cold wall and a hot temperature emission

part. On the surface of the cold wall we suppose that the

temperature is known, on the surface of the hot part we

suppose that a distribution of the heat fluxes is known.

Therefore let the surface elements be ordered such that

those belonging to the cold outside wall hold indexes

in the range 1
... m — 1, whereas those belonging to the

hot temperature emission part hold indexes in the range

m.. . n.

According to the partition of the surface elements the

matrix containing the standard modification of the
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view factors can be partitioned in to four submatrices

Wtj G R(m-1)x(m-1)j Wl>2
- R(m-1)x(n-m)j yy^

-

R(n-m)x(m-1) and yy^
- R(n-m)x(n-m) guch fl--}. W

becomes

[ Wi,, w1>2 1

L w2>1 W2)2

Likewise let all vectors be partitioned into a subvectors

the first of which belongs to Rm_1 and the second to

Rn-m.

Let us also define two diagonal matrices E and H the

diagonal elements of which are defined by

et t
= et and h,t t

=
.

£t

These matrices are partitioned in the same way as W.

With these definitions and the assumption that the emis¬

sion coefficients et do not depend on the temperature Tt

the discretized linear relation between p and T4 for a

whole region can be rewritten in matrix vector notation

r i-w,,, -w1>2
L -w2>i 1 - W2)2

=:A

r Ej-j-WuH,,, —Wi 2rl2 2

L -W2,iH,,, E2)2 — W2)2H2)2

=:B

It is true that the heat fluxes on the surface of the hot

temperature emission part is known. However, on the

walls only the outside temperature is known. The heat

flux on the walls is related to the outside temperature

by (5.2), which is in discretized form

hi

b2
(5.4)

Pi
V2

Vw — aw(to — tw)- (5.5)
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In this equation the vectors pw and tw hold the un¬

known heat fluxes and temperature on the inside of the

wall, t0 holds the known temperature on the outside of

the wall. The constant <xw denotes the heat conduction

coefficient at the wall. The equation describes a lin¬

ear relation between temperature and the heat fluxes.

The combination of (5.5) with (5.4) results in a nonlin¬

ear system in heat fluxes and temperature.

Performing the simulation means finding the tempera¬
tures and heatfluxes in the stationary case of the fur¬

nace. The engineers at ABB have considered two models

of the oven: A simple model describing the exterior re¬

gion only and a complex model describing exterior and

interior regions.

5.2.3 Simple Model: Exterior Region Only

Let us partition the exterior region into walls and ceil¬

ing (W), floor (F), cold places (K) and outer sides of the

protection tubes (O), see Figure 5.3.

Let the number of protection tubes be t. According to

this name scheme the matrices A, B and the vectors t

and p can be partitioned as

A

B

AW|AF|AK|A'

BwBfBv b :i)i
'W|df|dk|d0'

IA(t)

|B0

tw,tF,tK,t,
O >•••>To

(1) (t
Pw)Pf)Pk>Po )-)Po

Let the vector containing the outside temperature be de¬

noted by t0. Using (5.5), (5.4) the definition of h and the
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partition of the matrices and vectors the system to be

solved for the outer region turns into

Mtb)4ya AwC + AFt4 + AK< + Y_ ^-o A
V 1=1 /

t

<xwBw(to - tw) + BfPp + BkPk + Y Bo)Po|- (5-6)

1=1

In this equation we supposed that Yi is constant. We

also introduced the notation of the power of a vector. It

means that the power has to be applied to every compo¬

nent of that vector.

To get an impression of what is unknown and what is

known, the known vectors have been underlined. The

other values are unknown. Let us put them into the

vector of unknowns x := [tw^F^Ki^o >••
• 1*0 ]T-

Reordering (5.6) we define

A :=

B :=

c :=

ya
(1)

Aw|AF|0K|Ao'J|...|Ao-

<xwBw|0fI — Bk|0o I... |0o

-<xwBw| -BfIyoAkI-Bq1'

|to,pF,tK,p0 ,... ,p0 J .

B_>

With these definitions the nonlinear system (5.6) can be

rewritten in a simple form as

<p(x) := Ax4 + Bx + c = 0 (5.7)

The operator cp holds a polynomial in every component.
We are interested in finding a zero of cp.
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5.2.4 Complex Model: Exterior and Interior

Regions

An interior region consists of the inner side of the tubes

(I), a cover (C) and heat elements (H) — see Figure 5.3.

Since all values we deal with concern the ith interior

region, we omit the (i) for the ease of reading.

In every interior region the linear system (5.4) holds. At

the walls of the tubes the heat conduction equation (5.5)

holds, which in the case of the interior regions becomes

P! = <XT (to -ti).

The constant <xT denotes the heat conduction coefficient

on the tube walls. At the cover we have

pc = <xw(t0 -tc).

Similarly as before the nonlinear system inside the in¬

terior regions turns into

ya(A1ti+Act4c+AHt4H) =

<xTBi(tp_ -ti) + <xwBc(to-tc) +BhPh-

Again known values have been underlined in this equa¬

tion.

combining The nonlinear system (5.6) for the exterior region still

the regions
appijes However, the values Pq are now longer known

values. Instead the exterior region is now connected to

the interior regions by the relation

The System

in THE

Interior

Region

pW=aT(tW-tW).
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With this alteration (5.6) turns into

Mtb)4Yct Aw4 + A^t + Ak< + XA£X

t

awBw(to-tw)+BFpI + BKPK + aTXBo)(t|l)-to)
1=1

Let us define the vector of unknown values

x :=

+(i) +(i) +(i) +(t) .(t) .(t) . . .(i) .(t)
I ' C ' H '

' ' '
' I ' C ' H ' W > T > KK ) lO '

' ' '
' O

Again we define matrices A and B and the vector c.

Ä is a block diagonal matrix whose diagonal blocks are

Ä(l) -vct\a{i]\A{i]\AM for i = 1..... t and

Ag+1) =y^[Aw|Af|0k|Ao1)|...|aW

The structure of B and the meaning of its blocks is

shown in Figure 5.4.

The constant c becomes

c .— l-awBc to — _H pH ,•
• •,-«wdc to — _H pH ,

-<xwBwt0 -BFpF +Y<rAKt4<]T.

With these definitions we obtain again a nonlinear oper¬

ator cp as described by (5.7), of which we are interested

in finding a zero.
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Figure 5.4 Structure of matrix B.

(1)
,

• • •

,
(t)

,
ext. region

5.3 Numerical Results

Oven from We perform the simulation on the complex model of the oven

ABB Research shown in Figure 5.1. This oven was built by the research center
Center 0f jne ^ßß company in Dättwil/Switzerland for test purposes.

This oven consists of 4 protection tubes each holding to 2 heat

elements. Each interior region contains 1080 surface elements,

the exterior region has 2420 surface elements. The whole dis¬

cretized model consists of 6740 surface elements.

Figure 5.5 shows the structure of the two matrices Ä and B.

Each of them is of size 6740 x 6740. Matrix À shows the block di¬

agonal structure described before. B has the special structure

shown in Figure 5.4.

Physical The total power radiation which is equally distributed over the

Values heat elements is 18 kW. The outside temperature is set to 300 K,

the temperature of the cold regions is 600 K. The heat flux on

the floor is set to 0 W. Initial values for the temperatures on the

walls and the ceiling are 1670 K, 1700 K on the floor, 1800 K on

the tube walls and 2000 K on the heat elements.

Algorithms The engineers at ABB were happy with results containing 6 cor¬

rect digits. This is why every tested algorithm had to achieve
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Figure 5.5 Structure of matrices A and B for the given
problem.

a relative residual norm of 10 s. We tested the following algo¬
rithms to perform the simulation

Newton-GMRES This method has been proven to be very ef¬

fective on the Chandrasekhar problem in previous chap¬
ters. We also chose it, since it is related to the new algo¬
rithms: These can be viewed as incomplete Henrici meth¬

ods. Newton-GMRES is an incomplete Newton method.

For both Newton's method and the Henrici method the

same convergence statement exist. The same parame¬

ters were used as in the introduction to control the con¬

vergence behavior.

Nonlinear Jacobi Up to now this method has been used in the

parallel implementation we dealt with in (21) and (22).

Nonlinear Jacobi consists of an inner iteration perform¬

ing a local Newton iteration on every vector component.
The outer iteration is the actual Jacobi process. For this

numerical experiment Jacobi was implemented in Mat¬

lab. The number of steps for the inner iteration was cho¬

sen to be constantly 15. With fever Newton steps Jacobi

did converge to the desired tolerance.

Nonlinear FOM and GMRES, MPE and RRE Of course the new

algorithms nonlinear FOM and GMRES had to be tested,

but also their mathematically equivalent vector extrapo¬
lation companions MPE and RRE to see if the new algo-
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rithms make an improvement. All these algorithms used

nonlinear Jacobi as the preconditioner (the base itera¬

tion respectively). However for these algorithms we were

able to use a version of Jacobi that performed only one

step of the Newton iteration on each component — an

algorithm that would not have converged to the desired

tolerance. For all these algorithms the same mecha¬

nism was used to control the convergence as for Newton-

GMRES.

Figure 5.6 Development of the relative error for different

algorithms computing the simulation of the Deglor oven

of the ABB research center in Dättwil/Switzerland. The

times were taken on an Intel Pentium IV machine running
at 1.7 GHz rate equipped with 512 MByte Memory, SuSE

Linux 8.0 and Matlab 6.5.
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Results The results of the numerical experiment are shown in Figure 5.6.

We were not able to get an old Matlab version for our Linux

machine that is able to count flops. However, we have seen in

the concluding section of Chapter 4 that time and flops corre-
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late very well for the tested algorithms. Therefore we measured

time instead of counting flops.

The surprise is that Newton-GMRES did not perform very well on

the given problem although we used the same algorithm as

in the previous chapters and we used the same convergence

control mechanism. Newton-GMRES took 520 seconds to con¬

verge to the requested tolerance.

We never expected the nonlinear Jacobi algorithm to con¬

verge very well. It converged very linearly and delivered a so¬

lution at the requested tolerance after 677 seconds.

Figure 5.7 A closer look on the results for the methods

nonlinear FOM, nonlinear GMRES, MPE and RRE.
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A closer look on the performance of the other algorithms is

shown in Figure 5.7.

These algorithms were about ten times faster than Newton-

GMRES and nonlinear Jacobi. They roughly performed equally

well on the given problem. The fastest algorithm was nonlinear

GMRES. It computed the result to the requested tolerance af¬

ter 47 seconds. Nonlinear FOM needed 51 seconds. However,
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it returned a result about one magnitude better than GMRES.

The time differences to their mathematical equivalent vector

extrapolation companions MPE and RRE are neglectable.

5.4 Conclusion

In this thesis we have combined linear Krylov space

methods with the vector extrapolation approach in or¬

der to derive nonlinear Krylov space methods that are

numerically more stable than the vector extrapolation
methods are.

To do this we have presented the theory of Krylov space

methods. We have categorized Krylov space methods

with respect to three properties: matrix type, projec¬
tion method and Krylov space generation. Since non¬

linear systems of equations do not consist of a single
matrix, the first property does not count. We have de¬

scribed and discussed in detail the two projection ap¬

proaches (orthogonalization, minimization) and the two

Krylov space generation methods (Arnoldi, Lanczos bi¬

orthogonalization) used today for linear systems with

general matrices. Thus we have presented four linear

Krylov space methods:

FOM an Arnoldi method using orthogonalization,

GMRES an Arnoldi method using minimizaion,

BiCG the basic Lanczos method using orthogonaliza¬
tion,

QMR the basic Lanczos method using quasi-minimiza-
tion.

We have shown that all vector extrapolation methods

can be regarded as incomplete Henrici methods. We

have proven a Kantorovich like theorem for their con¬

vergence, which did not exist for Henrici methods. To¬

gether with existing results for Henrici's method such
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as the proven local quadratic behavior by Ortega and

Rheinboldt [28] and by Jbilou and Sadok [23] we have

extended the perception of Henrici's method (and Stef¬

fensen's method as well) as a method equally powerful
as Newton's method. Moreover, Henrici's method does

not require the knowledge of the Jacobian!

While combining the linear Krylov space methods with

the vector extrapolation methods, we have concentrated

on Arnoldi methods and developed a nonlinear Arnoldi

process consisting of a nonlinear preconditioner, a Gram-

Schmidt process and basically a matrix vector multipli¬
cation. The replacement of the Arnoldi process in lin¬

ear Arnoldi methods by the nonlinear Arnoldi process

results in nonlinear Arnoldi methods. We have done

this replacement in the two presented linear algorithms
FOM and GMRES and thus developed a nonlinear FOM

and a nonlinear GMRES algorithm. These algorithms
have been tested on one theoretical problem, the Chan¬

drasekhar H-equation, published by Kelley [25], and on

a real world problem of the ABB Company [9, 22, 21].

In the first problem the algorithms have shown a perfor¬
mance comparable to that of incomplete Newton meth¬

ods, as we have expected. In the second problem the

algorithms have shown a much better performance.

We conclude the discussion of the new algorithms by aspects of

pointing out some aspects: THE NEW

Algorithms

Numerical performance Our new methods, that use

the Krylov space approach, do not improve the nu¬

merical performance of vector extrapolation meth¬
ods. But the numerical performance of our algo¬
rithms is comparable to vector extrapolation meth¬

ods. Therefore they are not suitable for solving
linear systems of equations. In fact, we believe

that using the difference approach of another ba¬

sic iteration is the limiting factor for their numer¬

ical performance. Therefore, we think that our

methods do numerically the best they can do us¬

ing this approach. However, since the Krylov space
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paradigm is a topic, which many researchers are

working on studying linear systems of equations,
our work is a step towards connecting these two

classes of algorithms in the nonlinear contact. We

expect more such relations like we found. But this

is left to future research.

Memory requirements The new algorithms use about

the same amount of memory as their mathemat¬

ically equivalent vector extrapolation companions
and they do not require any more memory than

their linear companions.

Newton's method One aim of this thesis was that the

new algorithms beat Newton's method with respect
to large dense systems of equations. Not only they
are able to beat Newton's method in this respect.
The last problem has also shown that there are

cases, where incomplete Newton methods perform

poorly whereas the new algorithms perform very

well.

Parallelism The parallelism of the new algorithms is

dependent on the parallelism of the preconditioner
and the parallelism of the linear method it gen¬
eralizes. The Gram-Schmidt process and the ma¬

trix vector multiplication that it uses, can be paral¬
lelized very well. If the preconditioner used is non¬

linear Jacobi or Gauss-Seidel or SOR, the resulting
method has good chances to parallelize very well.

Lanczos Methods As has been mentioned in Chapter 4

chances are good that similar considerations on

the topological epsilon algorithm (or similar meth¬

ods) like we did on Arnoldi methods lead to a non¬

linear version of the Lanczos biorthogonalization.
Such an approach has the possibility to improve
the numerical performance and the memory re¬

quirements of the topological epsilon algorithm in

an enormous way. In its basic version the TEA

is neither numerically stable nor is it efficient in
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memory usage. However, its linear Krylov space

companion BiCG is very well known for using lit¬

tle memory, variants of the algorithm promise good
numerical performance. Therefore the development
of a nonlinear Lanczos biorthogonalization could

improve the performance of the TEA a lot. More¬

over, this approach would also result for free in

a nonlinear QMR algorithm — a completely new

solution method, since so far no equivalent vec¬

tor extrapolation method is known for this Lanczos

method.
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...
until {comprehension}

end PhDthesis.
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