
DISS. ETH NO. 21009

Multi-Robot Coverage and Path Planning
for the Inspection of Curved Surfaces

A dissertation submitted to

ETH ZURICH
for the degree of

Doctor of Sciences

presented by

Andreas Breitenmoser

Master of Science in
Electrical Engineering and Information Technology

Eidgenössische Technische Hochschule (ETH) Zurich, Switzerland

born on May 12, 1983
citizen of Mosnang SG, Switzerland

accepted on the recommendation of

Prof. Dr. Roland Siegwart, ETH Zurich

Prof. Dr. Alcherio Martinoli, EPF Lausanne
Dr. Roland Moser, ALSTOM

Prof. Dr. Daniela Rus, Massachusetts Institute of Technology

2013





To all the good people I knew but are gone,
and to my little sister I have never known.



ii



Acknowledgments

First and foremost, I would like to thank my thesis supervisor, Prof. Roland
Siegwart, for providing me with all the necessary support to realize this work
and for having me as a PhD student at the Autonomous Systems Laboratory
(ASL)—definitely a great place to do robotics research, to learn about new
crazy robot designs and to find a friendly atmosphere.

I am also very grateful that I had the chance to spend three unforget-
table research visits at the Distributed Robotics Laboratory (DRL) at MIT.
I would like to thank Prof. Daniela Rus for hosting me, for all the inspiration
and guidance. I wish to thank Prof. Alcherio Martinoli for the motivat-
ing discussions whenever we met at conferences or other occasions during
the past years. I appreciate Dr. Roland Moser’s vision for robotic inspec-
tion, which initiated this research project. The research was supported by
ALSTOM. I am honored that Prof. Daniela Rus, Prof. Alcherio Martinoli
and Dr. Roland Moser agreed to be on my doctoral committee.

This work would not have been possible without the support of various
people. I wish to thank the following colleagues: Javier Alonso-Mora, Philipp
Krüsi, Dr. Martin Rufli and Ulrich Schwesinger for stimulating discussions
about robot motion planning, coordination and control; Prof. Mac Schwager,
Dr. Seungkook Yun, Byoungkwon An and Prof. Eduardo Torres-Jara for
shared insights and a warm reception; all the colleagues at ASL and DRL I
spent a good time with at work, at conferences or other lab activities.

Many thanks to all the great co-authors for the fruitful collaboration.
I would like to thank Dr. Gilles Caprari, Dr. Fabien Tâche, Dr. Wolfgang
Fischer, Dr. Laurent Kneip, François Pomerleau and Prof. Cédric Pradalier
for the help on MagneBike, Dominik Haumann for the DisCoverage exten-
sion, Hannes Sommer for incomparable mathematical excursions, and Javier
Alonso-Mora, Dr. Martin Rufli and Dr. Paul Beardsley for the joint work on
the wonderful DisplaySwarm alias Pixelbots project.

During my doctorate, I also had the opportunity to work together with
many graduate and undergraduate students who were eager to explore new

iii



ideas. Especially, I wish to thank Christian Forster, Elena Stumm and Jean-
Claude Metzger. Elena’s and my joint (sometimes late night and remote)
testing of the MagneBike robots, as well as Jean-Claude’s company at work
(and when exploring Boston) are in good memory.

Furthermore, I would like to thank the technical support staff of ASL,
Thomas Baumgartner, Stefan Bertschi, Markus Bühler and Dario Fenner,
for their help in building and maintaining our robots at an exceptionally
high level of quality.

Finally, I wish to thank my friends and my family for all their support.
I sincerely thank my parents—for everything.

Zurich, January 2013

iv



Abstract

This dissertation proposes different algorithms for multi-robot coverage and
path planning in 3D environments of challenging geometry. The problem
of deploying a group of mobile robots is studied for covering environments
which present obstacles, nonconvexities and curved surfaces.

The general motivation of this work is drawn from robotic inspection. The
periodic inspection of industrial structures and infrastructure is crucial for
their safe and efficient future operation. The inspection task can be under-
stood as the complete coverage of a structure in order to detect developing
defects and prevent more severe damages, destruction or supply shortfalls.
In seeking to develop assistive inspection tools of increased autonomy, au-
tonomous inspection robots, equipped with appropriate coverage and path
planning algorithms, could lead to desired improvements in reliability, effi-
ciency, accessibility and flexibility of today’s inspection and maintenance.

This dissertation is structured in three parts, of which the first part em-
beds the latter two parts, which present the thesis’s main contributions of
multi-robot coverage and path planning.

The first part describes the motivating inspection scenario and derives the
underlying problem formulation for our work. The hybrid coverage concept
is introduced, which provides a basic formulation for multi-robot coverage:
hybrid coverage combines deployment and sweeping motion by performing
one after the other. Hybrid Voronoi coverage offers particularly interesting
properties in the context of the inspection scenario. The hybrid Voronoi
coverage solution deploys the robots by constructing a Voronoi tessellation
of the environment, assigning each robot to a Voronoi region and steering the
robots to the regions’ centroids in a first stage. In a second stage, each robot
covers its assigned Voronoi region by moving along a sweeping pattern.

The second part then develops the methods that allow for deploying a
group of robots in nonconvex environments and on curved surfaces within
the first stage of hybrid Voronoi coverage. To cope with nonconvex environ-
ments, a coverage solution is designed in continuous space, which combines

v



Voronoi coverage with path planning. The robots explore obstacle bound-
aries and plan paths to circumnavigate obstacles on the way to their goal
positions. If a goal position is not reachable, a robot moves to the closest ac-
cessible position in free space, which realizes a gradient projection method in
distributed fashion. In addition, two coverage solutions for curved surfaces,
using a discrete environment representation, are presented. Each robot mod-
els the environment as triangle mesh, which provides a graph embedded in
3D space. The first coverage algorithm computes shortest path distances and
propagates a discrete wavefront on the robot’s graph representation to ob-
tain a centroidal graph Voronoi tessellation. The second coverage algorithm
approximates distances on the surface through the Euclidean distance in the
ambient space and locally exchanges vertices between adjacent Voronoi re-
gions of robot neighbors to create a final centroidal Voronoi configuration. By
additionally computing a metric tensor field locally on the surface, the shape
of the Voronoi regions can be made adaptive in position, size, orientation and
aspect ratio according to the present anisotropy.

The third part addresses the underlying problem of moving individual
robots through uneven terrain and over curved surfaces of the 3D environ-
ments. Mesh-based and point-based path planning are proposed. The pre-
sented navigation solution for mesh-based path planning generates a triangle
mesh from 3D point clouds and plans a triangle strip path on the mesh. A
vector field is created along the extracted strip, which guides a robot over
the approximated surface. Point clouds, unlike triangle meshes, intrinsically
do not provide connectivity information. Point-based path planning saves
the mesh generation step but needs ways to establish connectivity through-
out the point cloud. Two navigation solutions for point-based path planning
are suggested. The first navigation solution for dense point cloud planning
generates a dense point cloud in a preprocessing step, using tensor voting
for augmenting the point cloud. Connectivity is established by subdividing
the augmented point cloud into a regular grid structure and constructing a
graph incrementally. A specialized graph-based planner connects the succes-
sive discretized robot poses along the surface into a 6-DoF path, considering
kinematic as well as structural constraints. The 6-DoF path is then trans-
formed from 3D space into 2D space by projecting movements into local
tangent planes of the surface, which makes 2D trajectory tracking for robot
control possible. The second navigation solution for sparse point cloud plan-
ning fits quadric surface patches locally to the augmented 3D point cloud to
establish connectivity. By developing and expanding motion primitives on
the surface patches, the robot is finally controlled on the surface.

vi



The coverage and navigation solutions have been evaluated in simulations,
and in experiments with the e-puck robot and MagneBike robot platforms.
MagneBikes are compact inspection robots, which can climb ferromagnetic
structures due to their magnetic wheels. With respect to the multi-robot
inspection task, a vision-based relative localization system, consisting of a
camera and a target module with four active or passive visual markers has
been developed and evaluated. It provides a lightweight solution for local-
izing a robot’s full 6D pose, which is especially beneficial for the relative
localization of inspection robots that climb curved surfaces in 3D space.

In summary, the coverage and navigation solutions developed within this
thesis investigate and contribute concepts that are of general relevance for
environment modeling, path planning and coordination of robots operating
in real world scenarios.

Keywords: Multi-robot systems, Robot deployment, Distributed algo-
rithms, Voronoi coverage, Coverage path planning, Path planning in 3D en-
vironments, Environment modeling, LIDAR point clouds, Mesh generation,
Curved surfaces, Wheeled and climbing robots, Relative robot localization,
Robotic inspection

vii



viii



Kurzfassung

Diese Dissertation behandelt verschiedene Algorithmen für die Flächenab-
deckung durch Mehr-Roboter-Systeme und deren Pfadplanung in geometrisch
anspruchsvollen 3D-Umgebungen. Es wird die Problemstellung untersucht,
wie mehrere Roboter zu verteilen sind, um Umgebungen abzudecken, die
Hindernisse, nichtkonvexe und gekrümmte Oberflächen aufweisen.

Der Beweggrund für diese Arbeit ist in der Inspektion mit Robotern be-
gründet. Periodische Inspektionen von Infrastrukturbauten und industriellen
Anlagen sind entscheidend für deren sicheren und effizienten Betrieb. Die
Inspektionsaufgabe kann durch die vollständige Oberflächenabdeckung einer
Struktur gelöst werden, wobei entstehende Defekte entdeckt und somit ern-
ste Schäden, Zerstörung oder Versorgungsengpässe vermieden werden kön-
nen. Wird die Selbständigkeit der unterstützenden Inspektionswerkzeuge er-
höht und weiterentwickelt, könnten autonome Inspektionsroboter, die mit
geeigneten Algorithmen für die Flächenabdeckung und Pfadplanung aus-
gerüstet sind, zu wünschenswerten Verbesserungen bezüglich Zuverlässigkeit,
Effizienz, Zugänglichkeit und Flexibilität bei Inspektion und Unterhalt beitra-
gen.

Die Dissertation ist in drei Teile gegliedert. Der erste Teil führt auf die
beiden folgenden Teile hin, in denen die Hauptbeiträge der Flächenabdeckung
durch Mehr-Roboter-Systeme und deren Pfadplanung behandelt werden.

Der erste Teil beschreibt das herausfordernde Inspektionsumfeld und leitet
die zugrunde liegenden Fragestellungen für unsere Arbeit ab. Das hybride
Flächenabdeckungskonzept wird eingeführt, das eine grundlegende Formu-
lierung für die Flächenabdeckung durch Mehr-Roboter-Systeme bereitstellt:
Die hybride Flächenabdeckung kombiniert die Formierung und die Flächen
überstreifende Bewegung durch Ausführen eines Schrittes nach dem andern.
Die hybride Voronoi-Flächenabdeckung weist besonders interessante Eigen-
schaften im Zusammenhang mit dem Inspektionsumfeld auf. Die Lösung
mit der hybriden Voronoi-Flächenabdeckung formiert die Roboter durch eine
Voronoi-Flächeneinteilung der Umgebung, indem jeder Roboter einem Voro-

ix



noi-Bereich zugeordnet wird. Jeder Roboter wird zu Beginn in den gewichte-
ten Flächenschwerpunkt eines Bereiches gesteuert. Anschliessend deckt jeder
Roboter seinen zugeordneten Voronoi-Bereich ab, indem er sich entlang eines
Flächen überstreifenden Musters bewegt.

Der zweite Teil entwickelt die Methoden, die es erlauben, eine Gruppe
von Robotern in nichtkonvexen Umgebungen und auf gekrümmten Ober-
flächen im ersten Schritt der hybriden Voronoi-Flächenabdeckung zu posi-
tionieren. Um nichtkonvexe Umgebungen zu meistern, wird für die Flächen-
abdeckung im kontinuierlichen Raum eine Lösung entworfen, die die Voronoi-
Flächenabdeckung mit der Pfadplanung kombiniert. Die Roboter erkunden
die Grenzen von Hindernissen und planenWege, um Hindernisse auf demWeg
zu ihren Zielpositionen zu umgehen. Wenn eine Zielposition nicht erreichbar
ist, bewegt sich der Roboter zum nächstgelegenen erreichbaren Punkt im
Raum. Dies verwirklicht ein Gradienten-Projektionsverfahren auf verteilte
Art und Weise. Zudem werden zwei Lösungen für die Flächenabdeckung
von gekrümmten Oberflächen mit unterschiedlichen Umgebungsdarstellun-
gen vorgestellt. Jeder Roboter modelliert die Umgebung als Dreiecksgitter-
netz, welches einen im 3D-Raum eingebetteten Graphen bereitstellt. Der
erste Flächenabdeckungsalgorithmus berechnet die kürzesten Wegstrecken
und breitet eine diskrete Wellenfront auf der Graph-Darstellung des Roboters
aus, um eine Flächenschwerpunkt basierte Graphen-Voronoi-Flächeneintei-
lung zu erzielen. Der zweite Flächenabdeckungsalgorithmus nähert Distanzen
auf der Oberfläche durch die Euklidische Distanz im umgebenden Raum
an und tauscht angrenzende Knoten zwischen Voronoi-Bereichen benach-
barter Roboter lokal aus, um schliesslich eine Flächenschwerpunkt basierte
Voronoi-Anordnung zu erstellen. Indem lokal auf der Oberfläche ergänzend
ein metrisches Tensorfeld berechnet wird, kann die Form der Voronoi-
Bereiche entsprechend der gegenwärtigen Anisotropie in der Position, der
Grösse, der Orientierung und dem Abbildungsverhältnis angepasst werden.

Der dritte Teil befasst sich mit der zugrunde liegenden Fragestellung,
wie einzelne Roboter durch unebenes Gelände und über gekrümmte Ober-
flächen von 3D-Umgebungen zu bewegen sind. Eine Gitternetz und Punkt
basierte Pfadplanung werden vorgeschlagen. Die vorgestellte Navigationslö-
sung für die Gitternetz basierte Pfadplanung erstellt ein Dreiecksgitternetz
aus 3D-Punktwolken und plant einen aus Dreiecken bestehenden Streifenpfad
auf dem Gitternetz. Entlang des resultierenden Streifens wird ein Vektorfeld
erstellt, das den Roboter über die angenäherte Oberfläche führt. Im Gegen-
satz zu Dreiecksgitternetzen enthalten Punktwolken keine Information über
die Verbindungen von Punkten. Die Punkt basierte Pfadplanung spart den
Gitternetz-Erstellungsschritt ein, muss aber Verbindungen durch die Punkt-

x



wolke aufbauen. Zwei Navigationslösungen für die Punkt basierte Pfadpla-
nung werden angeregt. Die erste Lösung für die Planung mit dichten Punkt-
wolken generiert eine dichte Punktwolke in einem Vorverarbeitungsschritt, in-
dem zusätzliche Information zur Punktwolke durch Tensor Voting dazugefügt
wird. Verbindungen werden aufgebaut, indem die mit zusätzlicher Informa-
tion versehene Punktwolke in eine regelmässige Gitterstruktur unterteilt und
schrittweise ein Graph konstruiert wird. Ein spezialisierter, Graph basierter
Planer verbindet laufend die diskretisierten Roboterpositionen entlang der
Oberfläche zu einem 6-DoF Pfad, während er kinematische und strukturelle
Randbedingungen beachtet. Der 6-DoF Pfad wird anschliessend vom 3D-
Raum in den 2D-Raum transformiert, indem Bewegungen in lokalen Tangen-
tialebenen der Oberfläche abgebildet werden. Dies ermöglicht den Robotern
das Verfolgen von Trajektorien im 2D-Raum. Die zweite Navigationslösung
für die Planung mit spärlichen Punktwolken passt Quadriken lokal an die
3D-Punktwolke an, um Verbindungen zwischen den Punkten herzustellen.
Durch die Entwicklung von Bewegungsprimitiven auf den Quadriken wird
der Roboter schliesslich auf der Oberfläche gesteuert.

Die Flächenabdeckungs- und Navigationslösungen wurden in Simulatio-
nen und Experimenten mit e-puck Robotern und MagneBike Robotern evalu-
iert. MagneBike Roboter sind kompakte Inspektionsroboter, die dank ihren
magnetischen Rädern auf ferromagnetischen Strukturen klettern können. Im
Hinblick auf die Mehr-Roboter-Inspektionsaufgabe wurde ein Bild basiertes
Lokalisierungssystem bestehend aus einer Kamera und einem Zielmodul mit
vier aktiven oder passiven visuellen Marken entwickelt und evaluiert. Es
ist eine leichtgewichtige Lösung, um die vollständige 6D Position und Ori-
entierung eines Roboters zu lokalisieren. Sie ist besonders geeignet für die
relative Lokalisierung von Inspektionsrobotern, die auf gekrümmten Ober-
flächen im 3D-Raum klettern können.

Die Flächenabdeckungs- und Navigationslösungen, die in dieser Disserta-
tion entwickelt wurden, untersuchen Konzepte und bringen Konzepte ein, die
von allgemeiner Bedeutung sind für die Umgebungsmodellierung, die Pfad-
planung und die Koordination von Robotern in realen Umgebungen.

Stichworte: Mehr-Roboter-Systeme, Roboterverteilung, Verteilte Algo-
rithmen, Voronoi-Flächenabdeckung, Abdeckungspfadplanung, Pfadplanung
in 3D-Umgebungen, Umgebungsmodellierung, LIDAR Punktwolken, Gitter-
netz-Erstellung, Gekrümmte Oberflächen, Fahrende und kletternde Roboter,
Relative Roboterlokalisierung, Inspektion mit Robotern

xi



xii



Acronyms

1D 1-dimensional
2D 2-dimensional
2.5D 2.5-dimensional, 3D environment restricted to 2D plane

and variable height in perpendicular direction
3D 3-dimensional
4D 4-dimensional
6D 6-dimensional
ACVT Anisotropic Centroidal Voronoi Tessellation
CCVT Constrained Centroidal Voronoi Tessellation
CGAL Computational Geometry Algorithms Library
CVT Centroidal Voronoi Tessellation
DCVT Discrete Centroidal Voronoi Tessellation
DoF Degrees of Freedom
ECM Extended Marching Cubes mesh generation method
FOV Field Of View
FTM Fast triangulation mesh generation method
GPU Graphics Processing Unit
ICP Iterative Closest Point
IMU Inertial Measurement Unit
IR Infrared
ITM Irregular triangular mesh generation method
LED Light-Emitting Diode
LIDAR Light detection and ranging device, or laser range finder

xiii



MAV Micro Aerial Vehicle
MLS Moving Least-Squares
NDT Non-Destructive Testing
P3P Perspective-3-Point
PCA Principal Component Analysis
PCL Point Cloud Library
PSM Poisson surface mesh generation method
RBF Radial Basis Function
RF Radio Frequency
ROI Region Of Interest
ROS Robot Operating System
RRT Rapidly-exploring Random Tree
SLAM Simultaneous Localization And Mapping
YUV Color space with one brightness (Y)

and two chrominance (UV) components

xiv



Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Environments and Robots 15
2.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Steam Chest Environment . . . . . . . . . . . . . . . . 16
2.1.2 Test Setups . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 MagneBike Robots . . . . . . . . . . . . . . . . . . . . 20
2.2.2 e-puck Robots . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Mathematical Methods 25
3.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . 25
3.2 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Curved Surfaces . . . . . . . . . . . . . . . . . . . . . 28
3.3 Computational Geometry . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Voronoi Tessellations . . . . . . . . . . . . . . . . . . . 30
3.3.2 Graph Search and Shortest Paths . . . . . . . . . . . . 35

3.4 Structure Inference . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Basics of Tensor Voting . . . . . . . . . . . . . . . . . 37
3.4.2 Tensor Voting Applied to Point Clouds . . . . . . . . 39

3.5 Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 System Models . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Gradient Descent Controller . . . . . . . . . . . . . . . 45
3.5.3 Cooperative Control . . . . . . . . . . . . . . . . . . . 46

xv



3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 The Concept of Hybrid Coverage 53
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Hybrid Coverage Solutions . . . . . . . . . . . . . . . . . . . . 56
4.3 Variants of Hybrid Coverage . . . . . . . . . . . . . . . . . . . 57

4.3.1 Examples for Hybrid Coverage of Type 1 . . . . . . . 58
4.3.2 Examples for Hybrid Coverage of Type 2 . . . . . . . 61
4.3.3 Combination of Type 1 and Type 2 . . . . . . . . . . 64

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 Comparison of Hybrid Coverage Algorithms . . . . . . 65
4.4.2 Application of Hybrid Coverage to Inspection . . . . . 70

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Multi-Robot Coverage under Constraints 73
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Voronoi Coverage in Nonconvex Environments . . . . . . . . 77

5.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . 77
5.3.2 Gradient Projection Controller . . . . . . . . . . . . . 79
5.3.3 Combining Voronoi Coverage with Path Planning . . . 81
5.3.4 Properties of the Nonconvex Coverage Algorithm . . . 86

5.4 Voronoi Coverage in Unknown Environments . . . . . . . . . 88
5.4.1 DisCoverage and Star-Shaped Domains . . . . . . . . 88

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5.1 Evaluation of the Nonconvex Coverage Algorithm . . . 90

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Multi-Robot Coverage on Curved Surfaces 97
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Voronoi Coverage on Curved Surfaces . . . . . . . . . . . . . 101

6.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . 101
6.3.2 Surface Coverage with Shortest Path Distance . . . . 104
6.3.3 Surface Coverage with Approximative Euclidean Dis-

tance . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.4 Properties of the Surface Coverage Algorithms . . . . 117

6.4 Extensions to Adaptive and Hybrid Coverage Control . . . . 120
6.4.1 Adaptive Surface Coverage . . . . . . . . . . . . . . . 121
6.4.2 Application to Hybrid Coverage . . . . . . . . . . . . 122

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xvi



6.5.1 Comparison of Surface Coverage Algorithms . . . . . . 124
6.5.2 Extensions of Surface Coverage Algorithms . . . . . . 130

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Mesh-Based Path Planning on Curved Surfaces 135
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Triangle Strip Planning . . . . . . . . . . . . . . . . . . . . . 138

7.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . 138
7.2.2 Environment Representation . . . . . . . . . . . . . . 138
7.2.3 Path Planner and Robot Control . . . . . . . . . . . . 142
7.2.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3.1 Evaluation of Triangle Strip Planning . . . . . . . . . 145

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 Point-Based Path Planning on Curved Surfaces 149
8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Dense Point Cloud Planning . . . . . . . . . . . . . . . . . . . 153

8.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . 153
8.2.2 Environment Representation . . . . . . . . . . . . . . 154
8.2.3 Path Planner . . . . . . . . . . . . . . . . . . . . . . . 157
8.2.4 Robot Control . . . . . . . . . . . . . . . . . . . . . . 164

8.3 Sparse Point Cloud Planning . . . . . . . . . . . . . . . . . . 167
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.4.1 Evaluation of Tensor Voting . . . . . . . . . . . . . . . 170
8.4.2 Evaluation of Dense Point Cloud Planning . . . . . . . 173

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Relative Robot Localization in 3D Space 183
9.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.3.1 Camera and Target Modules . . . . . . . . . . . . . . 189
9.3.2 Optimization of Target Geometries . . . . . . . . . . . 190

9.4 6D Relative Localization . . . . . . . . . . . . . . . . . . . . . 192
9.4.1 Pose and Marker Prediction . . . . . . . . . . . . . . . 193
9.4.2 Blob Extraction . . . . . . . . . . . . . . . . . . . . . 193
9.4.3 Pose Update . . . . . . . . . . . . . . . . . . . . . . . 195

9.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.5.1 Localization of a Handheld Module . . . . . . . . . . . 197
9.5.2 Aerial Vehicle Localization . . . . . . . . . . . . . . . 199

xvii



9.5.3 Relative Localization for Multiple Robots . . . . . . . 199
9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10 Conclusion 203
10.1 Discussion of Contributions . . . . . . . . . . . . . . . . . . . 204
10.2 Outlook on Future Work . . . . . . . . . . . . . . . . . . . . . 206

A Proofs 209
A.1 P-Norms and the Parallel Axis Theorem . . . . . . . . . . . . 209

Bibliography 213

Curriculum Vitae 231

xviii



List of Figures

1.1 Industrial inspection. . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Inspection sequence. . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Steam chest environment. . . . . . . . . . . . . . . . . . . . . 17
2.2 Test setups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Robot platforms. . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Rotating LIDAR and 3D point clouds. . . . . . . . . . . . . . 22

3.1 Tensor voting in three dimensions. . . . . . . . . . . . . . . . 38
3.2 Tensor voting framework. . . . . . . . . . . . . . . . . . . . . 40
3.3 CVT and Voronoi coverage. . . . . . . . . . . . . . . . . . . . 49
3.4 Distributed computation and gradient descent. . . . . . . . . 49

4.1 Concept of hybrid coverage. . . . . . . . . . . . . . . . . . . . 57
4.2 Two types of hybrid coverage. . . . . . . . . . . . . . . . . . . 58
4.3 Combinations of hybrid coverage. . . . . . . . . . . . . . . . . 65
4.4 Coverage by flocking and sweeping. . . . . . . . . . . . . . . . 66
4.5 Coverage by a robotic band. . . . . . . . . . . . . . . . . . . . 66
4.6 Hybrid Voronoi coverage. . . . . . . . . . . . . . . . . . . . . 67
4.7 Comparison of hybrid coverage variants. . . . . . . . . . . . . 68
4.8 Expert knowledge and user guidance. . . . . . . . . . . . . . . 71

5.1 Transformation to star-shaped domain. . . . . . . . . . . . . . 89
5.2 Voronoi coverage in a U-shaped environment. . . . . . . . . . 91
5.3 Cost for covering the U-shaped environment. . . . . . . . . . 91
5.4 Voronoi coverage in an environment with narrow passage. . . 92
5.5 Voronoi coverage in an environment with two free-standing

obstacles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Voronoi coverage in an environment with one nonconvex free-

standing obstacle. . . . . . . . . . . . . . . . . . . . . . . . . . 93

xix



5.7 Voronoi coverage in a 3D nonconvex environment. . . . . . . 94
5.8 Voronoi coverage in an L-shaped environment. . . . . . . . . 95
5.9 Voronoi coverage in a U-shaped environment. . . . . . . . . . 95

6.1 Graph-based representation. . . . . . . . . . . . . . . . . . . . 101
6.2 Wavefront propagation. . . . . . . . . . . . . . . . . . . . . . 111
6.3 Vertex exchange. . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Hybrid surface area coverage. . . . . . . . . . . . . . . . . . . 123
6.5 Simulations on a curved surface. . . . . . . . . . . . . . . . . 125
6.6 Experiments on a curved surface. . . . . . . . . . . . . . . . . 127
6.7 Statistical evaluation. . . . . . . . . . . . . . . . . . . . . . . 128
6.8 Additional nonconvexity. . . . . . . . . . . . . . . . . . . . . . 129
6.9 Adaptive surface coverage of a sphere. . . . . . . . . . . . . . 131
6.10 Adaptive surface coverage of a torus. . . . . . . . . . . . . . . 131
6.11 Hybrid surface area coverage of a steam chest. . . . . . . . . . 132

7.1 Triangle strip path and vector field generation. . . . . . . . . 143
7.2 Triangle strip path and vector field on Stanford Bunny. . . . 146
7.3 Generated triangle meshes of industrial structures. . . . . . . 146
7.4 Simplified triangle mesh and planned triangle strip paths. . . 147

8.1 Token reduction of LIDAR point cloud. . . . . . . . . . . . . 155
8.2 Environmental feature maps. . . . . . . . . . . . . . . . . . . 156
8.3 Graph connectivity. . . . . . . . . . . . . . . . . . . . . . . . . 159
8.4 Discrete control set. . . . . . . . . . . . . . . . . . . . . . . . 160
8.5 Robot control. . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.6 Paths on curved surfaces. . . . . . . . . . . . . . . . . . . . . 166
8.7 Sparse point cloud planning. . . . . . . . . . . . . . . . . . . . 168
8.8 Robustness against variation in point density. . . . . . . . . . 171
8.9 Variation of masking parameter β. . . . . . . . . . . . . . . . 172
8.10 Robustness against variation in noise. . . . . . . . . . . . . . 173
8.11 Obstacle avoidance and negotiation. . . . . . . . . . . . . . . 175
8.12 Path planning on geometrically complex surface. . . . . . . . 176
8.13 Path planning in the steam chest. . . . . . . . . . . . . . . . . 177
8.14 Computation times for navigation with dense point cloud plan-

ning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.15 MagneBike avoiding a hole obstacle. . . . . . . . . . . . . . . 179
8.16 MagneBike negotiating an edge obstacle. . . . . . . . . . . . . 180

9.1 The P3P problem. . . . . . . . . . . . . . . . . . . . . . . . . 187
9.2 Relative localization system. . . . . . . . . . . . . . . . . . . . 191

xx



9.3 6D relative localization. . . . . . . . . . . . . . . . . . . . . . 194
9.4 Blob extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.5 Relative localization of a handheld module. . . . . . . . . . . 198
9.6 Relative localization of a flying quadrotor. . . . . . . . . . . . 200
9.7 Relative localization of multiple robots. . . . . . . . . . . . . 201

xxi



xxii



Chapter 1

Introduction

An ever-growing infrastructure—including existing and newly built pipelines,
piping systems, storage tanks and power plants—calls for periodic inspection
and maintenance to guarantee its safe and efficient operation in the years to
come. Many existing power plants are reaching the end of their designated
lifespan. Aging, corrosion and mechanical stress cause material losses and
structural damages, which may lead to leakages in the structures or their
complete destruction (see Figure 1.1, bottom row). Inspection and main-
tenance allow for the early detection of defects and prevention of massive
damages in installations, or of supply shortfalls. The periodic inspection
of fossil and nuclear power plants is furthermore prescribed in safety and
environmental regulations and is required by law.

However, the inspection task is often a difficult one, which is to this day
conducted by human inspectors and involves environments with limited ac-
cessibility (see Figure 1.1, top row). Non-destructive testing (NDT) enables
the inspection of industrial structures by reducing damage caused by the
inspection to a minimum. Visual inspection, Eddy-current and ultrasonic
testing are among the approved sensing methods commonly used for NDT.
If a structure is not accessible disassembly is required, and parts need to be
moved to a workshop for inspection. This involves increased risk of disas-
sembly damage and high cost due to the outage of the facilities during the
inspection procedure. If a structure can be accessed in the field, in-situ in-
spection with handheld devices, such as cameras or borescopes, is possible
with the advantage of reducing the outage duration.

More recently, remote-controlled mobile systems have been increasingly
considered for inspection. Such systems are semi-automated but typically
clamped or mechanically guided, allowing movements with a few degrees of

1



2 1. INTRODUCTION

Figure 1.1: Industrial inspection. Top row: NDT of industrial structures presents
many challenges: manual work, need for reliability and expert knowledge, limited
accessibility and safety issues. Bottom row: Typical ultrasonic NDT system with
pulser/receiver, sensor probe and display device, scanning a metal test structure
with buried defect; burst tube, which demonstrates possible consequences of missed
defects at inspection. (Image sources: ALSTOM Power Services, Aqualified LLC,
RIGCOM Access.)

freedom. The development of these systems is motivated by the search for
more automated solutions and assistive inspection tools to address the major
challenges of periodic inspection. Assistive inspection tools should provide
for:

1. Maximum reliability, safety and inspection quality. Inspection tools
provide sensing and actuation technology in order to achieve repeatable
and persistent monitoring of a structure. Data recorded at periodic in-
spection runs is gathered in a consistent way over long time periods.
An exact history of the measurements can be created and human er-
rors reduced. Automated systems must be as reliable as traditional
systems. Accurate localization and navigation systems are therefore
key requirements of any automated solution.

2. Maximum efficiency and reduction of outage time. Most current in-
spection devices must be guided manually. These procedures require
accurate professional skills and are time consuming. Automated in-
spection tools promise a speed-up through increased automation, par-



1.1. OBJECTIVES 3

allelization of task execution and inspection during running operations.
Societal dependence on power and on other basic supplies implies short
outage durations. Moreover, reduced inspection time means reduced
cost and increased profitability. Superior cost efficiency again enables
more regular inspections.

3. Maximum accessibility and coverage. Certain parts under inspection
are not reachable by human inspectors without risk or great difficulty.
Even if a structure can be accessed with a sensor probe, the inspector’s
view might be occluded and an exact construction plan, such as a 2D
drawing or 3D visualization, is usually not available. Inspection tools
may be augmented by additional capabilities and offer aids in order to
access otherwise inaccessible or unknown structures.

4. Maximum flexibility and ease of use. Industry lacks in experienced
inspectors. Thus human experts should mainly be needed for analyzing
the inspection results. In addition, manual inspection is demanding.
Inspection tools can help to ease the process of inspection and make it
scalable and applicable by non-experts. Industrial structures are often
not standardized; therefore, inspection tools should furthermore adapt
to moderately varying environments and conditions.

We believe that autonomous inspection robots can implement assistive in-
spection tools with a high potential to improve reliability, efficiency, coverage
and flexibility of future inspection and maintenance.

1.1 Objectives
We draw our motivation from the inspection scenario. It presents an inter-
esting and challenging problem for research in mobile robotics. The main
objective of this thesis is to study multi-robot coverage and path planning
methods with regard to autonomous coverage and navigation in environments
with obstacles and curved surfaces. We analyze general theoretic concepts
for covering complex geometries but also look at the more specific application
of inspecting a steam chest environment with wheeled climbing robots.

We formulate our long-term vision and the concrete objectives of this
thesis in the following. The remainder of this introduction is organized as
follows. In Section 1.2, we summarize the state-of-the-art in related research
areas of environment modeling, robot path planning and multi-robot coverage
from the perspective of robotic inspection of curved surfaces and complex 3D



4 1. INTRODUCTION

environments. The contributions of the thesis are stated in Section 1.3 and
the thesis’s structure and content are outlined in Section 1.4.

Assistive Inspection Tools. Robotic inspection presents in its basic form
a search, coverage or exploration problem. The inspection task is therefore
composed of search, coverage and exploration tasks. If detecting the existence
of a defect in a structure is sufficient, the problem of finding single defects
can be viewed as a search task. In the case where a complete inspection is
required, a complete search or coverage task is performed. Complete sensor
coverage results in a map of the environment, which includes the locations
of all detected defects. In addition, if the environment is unknown prior
to inspection, an exploration task to explore the environment—either in a
separate precedent exploration step or in a combined step of exploration and
search or coverage—has to be conducted.

During the inspection task, an environment or surface is monitored from
a distance or in close contact. A camera or laser sensor is moved through the
environment or a NDT sensor of given footprint is swept in close proximity
over the surface. We see the mobile robots as the carriers of such inspection
tools; the robots carry an inspection sensor and move directly on the surface
that needs to be inspected.

For practical realization, this requires a full mobile robot system. Ap-
propriate sensors for the inspection as well as for the robots’ perception of
the environment need to be incorporated. Locomotion and adhesion princi-
ples must allow for climbing surfaces and negotiating obstacles on the way.
Global localization and mapping of complex 3D industrial structures must
be provided, such that the robots can localize themselves, map the environ-
ment and report the locations of the detected defects accurately. The maps
further enable 3D visualization, collision detection and navigation, including
both local and global path planning on the surface. In addition, collaborative
inspection with a group of robots needs for communication and coordination
policies that orchestrate localization, environment modeling and planning
among the robots.

Robot design, locomotion and adhesion, sensing and localization in the
context of the inspection scenario have been the subject of two previous
dissertations (Fischer, 2010; Tâche, 2010). In this thesis, we mainly address
the problems of planning and multi-robot coordination.

Path Planning for Complex Environments. Our goal is to develop
path planning algorithms that enable a robot to move in realistic 3D envi-
ronments. The environments are composed of obstacles, uneven terrain with



1.1. OBJECTIVES 5

varying navigability or the surfaces of 3D objects. Particularly the last type
of environments presents a rather unique feature, which directly originates
from climbing 3D structures, such as tanks and tubes of industrial plants.
In these environments, climbing robots move along 6D trajectories through
full 3D space but always remain constrained to the surface. The modeling of
such environments presents a first challenge. As path planning is insepara-
bly linked to the underlying environment representation, questions of how to
represent the 3D environments and how to plan feasible and optimal paths
through these environments both need to be answered. With respect to the
motivated inspection scenario, we hope to provide navigation solutions that
increase the autonomy of inspection robots and lead to inspection tools with
improved repeatability, coverage and ease of use.

Toward Multi-Robot Coverage and Inspection. Based on the path
planning capabilities of a single robot, our goal is to develop distributed cov-
erage algorithms which deploy multiple robots in the environments. Again,
the environments may include obstacles and can be curved. These constraints
need to be included in the coverage solutions. Depending on the inspection
task and sensor type, covering paths need to be generated, such that every
location in the environment has been either scanned by a robot’s sensor from
a distance or visited by a robot for coverage with a contact sensor. With re-
spect to our inspection scenario, we envision multiple inspection robots which
parallelize the inspection process and exploit synergies, leading to increased
inspection efficiency, robustness and quality.

Scope, Basic Assumptions and Limitations. Robotic inspection and
multi-robot systems both represent an extensive branch of robotics research.
As mentioned above, a single robot inspection task assumes a fully developed
mobile robot system in place. Moreover, the inspection of industrial struc-
tures is particularly challenging due to the complexity of the environment.
A multi-robot system then involves several such robots and focuses on their
interaction. It becomes clear that, in order to make good progress, we need
to narrow down the area under study and take meaningful assumptions.

Given the overall objective of increasing the autonomy for assistive in-
spection tools, and against the background that locomotion and localization
have been addressed in previous dissertations, we focus on parts that have
not yet been studied in the context of inspection. We extract some of the key
challenges that occur along an inspection task, and contribute specifically,
namely to environment modeling and path planning, multi-robot coverage
and relative robot localization.



6 1. INTRODUCTION

We make the following basic assumptions. The presented coverage solu-
tions all build on the kinematic model of a single integrator. We assume that
such a simple kinematic model is sufficient, since the high-level coordination
policies can always direct a low-level controller to follow the velocity input.

The proposed coverage algorithms are designed to be decentralized and
allow for distribution on multiple robot platforms, such that only wireless
communication among neighboring robots in a limited communication range
is required. However, our focus is not on communication between robot
neighbors or between a robot and its base station as such. We do not study
communication delays, losses of packets or signal strength, or interference
and multi-path phenomena resulting from confined environments.

In terms of localization, we assume that a good estimate of the robot
poses is provided by a localization module. If not otherwise stated, we as-
sume ideal global localization of the robots. The localization in 3D space has
been studied for the MagneBike robot platform by Tâche (2010) and Tâche
et al. (2011), and an extension of the localization framework is presented
by Pomerleau et al. (2011). Furthermore, experiments showed that, even
though localization uncertainty is not modeled explicitly, the proposed cov-
erage solutions are robust against modest localization errors.

We model the environments from 3D point clouds, which consist of a sin-
gle laser scan or multiple scans that have been aligned beforehand. We do not
consider dynamic map updates, incremental mapping and fusion of multiple
robot maps. For the multi-robot coverage which involves mesh maps, we con-
struct the underlying mesh first. In the cases where we assume that the robots
do not know the mesh model, the mesh updates are simulated by robots that
incrementally uncover the already constructed underlying mesh as they go.
However, we have modeled environments from noisy data, and methods have
recently been presented in the literature that allow for incremental dense re-
construction of the environment (e.g., Newcombe et al. (2011)), what makes
us confident that our assumptions are not overly restrictive.

The main limitation is hence the lack of an underlying multi-robot simul-
taneous localization and mapping (SLAM) framework, which serves as basis
for the higher-level navigation and coordination modules. Although most
of the core components for a complete multi-robot inspection system are
available, it requires a significant integration effort to combine localization,
mapping, path planning and multi-robot coverage all together on an inspec-
tion robot platform like MagneBike. With respect to the inspection scenario,
further open issues include the equipment of the robot platforms with NDT
sensors and their test within the proposed navigation and coverage solutions,
as well as the practical implementations of the robots’ power supply and



1.2. STATE-OF-THE-ART 7

communication during deployment inside the industrial structures.

1.2 State-of-the-Art
To start with, we provide an overview on different research activities that
have addressed problems related to robotic inspection and navigation in 3D
environments and environments with complex geometry; they have led to
results relevant for building autonomous inspection tools. Additional related
work, more focused on the respective problem, will be reviewed at the begin-
ning of each chapter.

Mobile Robots for Uneven Terrain and 3D Environments. Robotic
inspection systems often follow a clear trend: they include small-size climb-
ing robots with high mobility but without much integration of sensing, lo-
calization and planning, or conversely, systems with advanced localization
and mapping or planning capabilities but with limits in climbing or navigat-
ing 3D environments. The MagneBike robot, which is presented in Chap-
ter 2 in more detail, is an attempt to combine both sides. Fischer (2010)
and Tâche (2010) include overviews on locomotion principles for climbing
robots, and Caprari et al. (2012) surveys robot systems designed for the in-
spection in power plants. Moser et al. (2007) presents an example for mobile
inspection devices, which increasingly find use in industrial inspection. Al-
ternatives to ground and climbing robots are aerial vehicles, which allow for
high mobility in 3D environments and are becoming more and more popu-
lar. Burri et al. (2012) presents an example for their application in robotic
inspection. Apart from inspection, robot systems for navigation in rough
terrain and other difficult to navigate environments are advancing. Rusu
et al. (2009) gives a representative example for an agile robot system with
integrated localization, mapping and path planning. The special issue in the
International Journal of Robotics Research on 3D Exploration, Mapping, and
Surveillance (Michael et al., 2012) provides further insight in recent achieve-
ments of navigating robots in challenging 3D environments.

Perception and Modeling of 3D Environments. The aforementioned
robot systems move on uneven terrain and in 3D environments. Methods
that create 2.5D representations like elevation maps are commonly used to
model rough terrain environments for navigation (Hebert et al., 1989; Thrun
et al., 2004b). Extensions to multi-level surface maps (Triebel et al., 2006)
introduce several surface classes per cell to allow for modeling vertical struc-
tures and environments with multiple overlapping levels, such as bridges or



8 1. INTRODUCTION

underpasses. However, this solution is not intended for robots which tra-
verse vertical surfaces and ceilings or move in full 3D space. Environments
can alternatively be modeled by 3D evidence or voxel grids (Moravec, 1996;
Wurm et al., 2010). Aside from grid-based representations, polygonal surface
meshes are able to represent the surfaces of complex structures more accu-
rately. However, 3D surface reconstruction methods undergo a permanent
trade-off between computation cost and accuracy. Accurate but computation-
ally demanding approaches from computer graphics (Kazhdan et al. (2006),
and references therein) are confronted with simpler and faster but less accu-
rate methods developed for robotic applications (Gingras et al., 2010; Marton
et al., 2009). We will explore mesh-based representations further in Chap-
ter 7. Another option is to work directly on the point clouds (Pomerleau
et al., 2011; Smith et al., 2011; Vaskevicius et al., 2010; Vona and Kanoulas,
2011). This is beneficial when dealing with noise and topological distortions,
since it makes the merging of data sets easier and avoids the cost of one entire
processing step by bypassing explicit surface reconstruction. We will come
back to point-based representations in Chapter 8.

Path Planning in 3D Environments. In general, search-based, sampling-
based, as well as combinatorial planning all rely on a graph structure that
connects through different states (LaValle, 2006). Graph search algorithms
like Dijkstra’s algorithm, A* or D* algorithms (Dijkstra, 1959; Hart et al.,
1968; Koenig and Likhachev, 2002; Stentz, 1995) are thus commonly used for
path planning. Both the Theta* and the Field D* algorithms and their ex-
tensions to 3D (Carsten et al., 2006; Ferguson and Stentz, 2006; Nash et al.,
2010), offer methods to generate paths that are no longer constrained to graph
edges in 2D maps and 3D volumes. Kimmel and Sethian (1998) and Surazh-
sky et al. (2005) furthermore plan shortest paths on curved surfaces based on
fast marching and window propagation methods, exploiting the surface mesh
as graph structure. More specifically, Howard and Kelly (2007) and Wet-
tergreen et al. (2010) plan trajectories for rovers over rough terrain; feasible
trajectories are generated by forward simulation on mesh models. Wetter-
green et al. (2010) uses A* search for global path planning. Howard and
Kelly (2007) builds on a detailed vehicle model and an optimization-based
trajectory generation framework with applications to local and global motion
planning in the context of state lattices (Pivtoraiko and Kelly, 2005). Re-
lated to the application of robotic inspection of surfaces, the work by Englot
and Hover (2011) deals with in-water ship hull inspection by an autonomous
underwater vehicle. The ship hull is modeled as surface mesh from sonar
range data and inspection paths encompassing the reconstructed model are



1.3. CONTRIBUTIONS 9

generated by sampling-based motion planning. However, the robot’s motion
resides in open 3D space and, different from our inspection scenario, is not
directly constrained by the surface geometry.

Multi-Robot Coverage of Curved Surfaces and 3D Environments.
Atkar et al. (2005) presents a method to generate spray gun trajectories for
the uniform coverage of topologically simple surface patches in automotive
spray painting. A hierarchical automated segmentation procedure extends
the approach to work for more complex surface geometries (Atkar et al.,
2009). The idea of decomposing a surface area in order to cover simpler
surface patches bears relations to our coverage solutions presented in Chap-
ter 4 and Chapter 6. Extensions from single to multi-robot systems open
up another research field. Correll and Martinoli (2009) presents a coverage
algorithm for a miniature robot swarm which collaboratively inspects the
compressor blades of jet turbines. A multi-robot system for ultrasonic NDT
of industrial structures is developed by Hayward et al. (2006) and Dobie
et al. (2007), with the main focus on the system’s reconfigurability to real-
ize a robust and adaptable distributed scanner. Tavakoli et al. (2012) uses
a heterogeneous multi-robot system composed of a pole-climbing robot and
multiple ground robots for automated inspection of the outer surface of indus-
trial piping systems. The ground robots collaboratively map the structure to
be climbed and localize the climbing robot. Due to the uniform geometry of
the pipe structures, however, mapping and planning are largely reduced to 1D
and 2D problems. Multi-robot coverage of 3D environments is alternatively
studied for flying robots. Schwager et al. (2011) and Renzaglia et al. (2012),
among others, deploy multiple aerial vehicles with down-looking cameras in
3D space to monitor an environment. The optimization-based coverage algo-
rithms aim at maximizing the visible area while keeping mutual overlaps in
coverage and distances between the vehicles balanced.

1.3 Contributions
In our work, we have developed mobile robots, and navigation and cover-
age solutions for their control. The presented algorithms apply in general
to multi-robot coverage and path planning, and particularly under the con-
straints of a geometrically complex environment. Environments with obsta-
cles and curved surfaces are characteristic for inspection scenarios. Our long-
term goal is toward assistive inspection tools of increased autonomy, which
enable the robotic inspection of infrastructures with benefits in inspection
reliability and efficiency, accessibility and flexibility.



10 1. INTRODUCTION

The contributions of this thesis are as follows.
1. Hybrid Coverage Concept. We present the concept of hybrid coverage,

which suggests to combine deployment and sweeping motions in differ-
ent scope and order. This offers an alternative view on existing coverage
algorithms and proves helpful in developing new coverage algorithms.

2. Coverage of Nonconvex Environments. We combine Voronoi coverage
with path planning. Original Voronoi coverage does not allow for obsta-
cles and nonconvexities in the environment; the built-in path planner
can resolve this issue. We further extend an exploration method related
to Voronoi coverage to nonconvex environments. Our considerations fo-
cus on continuous space and include theoretical proofs. The coverage
solutions are implemented and tested with a group of e-puck robots.

3. Coverage of Curved Surfaces. Our focus here is on coverage using a
discrete representation of the environment. We use Voronoi coverage
on a graph, which leads to solutions for 2D and 3D environments with
obstacles and nonconvexities, and in particular for 2D manifolds em-
bedded in 3D space. Ways of how to additionally control and adapt the
resulting coverage are shown. Two coverage solutions are implemented,
compared and tested with a group of e-puck robots.

4. Mesh- and Point-Based Path Planning. Environment modeling and
path planning for 3D environments are inseparably linked. We present
two navigation solutions for curved surfaces, which are based on two
different representations of the environment. The mesh-based solution
reconstructs a triangle mesh from a 3D point cloud and plans triangle
strip paths on the mesh. The point-based solution augments a 3D
point cloud and plans paths directly on the point cloud without further
need of the mesh generation. Both path planners support the higher-
level coverage solutions. They allow for robot navigation in realistic
environments with obstacles and curved surfaces or rough terrain. The
navigation solutions are implemented, and demonstrated in simulations
and experiments with the MagneBike robot.

5. 6D Relative Localization System. Relative localization between robots
is a basic requirement for any multi-robot coordination. We support
our coverage solutions with a lightweight vision-based relative localiza-
tion system, which allows for 6D relative localization. It is particu-
larly developed for the relative localization of climbing robots in 3D
inspection tasks. The relative localization system is implemented, and
demonstrated with a quadrotor helicopter and two e-puck robots.



1.4. ORGANIZATION 11

1.4 Organization

First we show the organization of the thesis as it is motivated by the inspec-
tion scenario. Then we present the contents chapter by chapter.

Figure 1.2 gives a schematic overview of a typical sequence in robotic
inspection. The key parts which we address throughout this thesis are high-
lighted. It starts with an industrial structure, which needs to be inspected.
An inspection robot is launched. The robot uses its perception to sense the
environment and record raw data, e.g., 3D point clouds from a laser range
finder. The point cloud is preprocessed and features are extracted. The ro-
bot estimates its internal state by using odometry, and accelerometers or an
IMU. Based on the estimated pose, the point clouds are registered and the
robot is localized (Tâche, 2010). Either the environment is known, partially
known or unknown. For unknown environments, a new map needs to be
built. The map of the environment enables robot navigation. We present
techniques for mesh reconstruction and augmentation of point clouds, as well
as mesh-based and point-based path planning techniques in Chapter 7 and
Chapter 8. The goal for the path planner is provided by user guidance or
by a high-level coordination policy, which controls a mission or task, e.g.,
a coverage task. If multiple robots are involved, the robots localize each
other, exchange information and agree on their current goals. Chapter 9 de-
scribes an example of a relative localization system, which can be used for
inspection robots. Chapter 4, Chapter 5 and Chapter 6 present distributed
coverage algorithms, or policies respectively, for the deployment of the robots
and coverage of the structure. Local planners and low-level controllers move
the robots along the planned paths toward a specified goal. Obstacles are
detected and are either avoided or negotiated. Principles of robot locomotion
and obstacle negotiation are studied by Fischer (2010).

The inspection sequence actuates the inspection robot and, when re-
peated, moves it through the structure. If a location is reached that needs
to be inspected, the robot can activate carried inspection sensors to scan the
surrounding surface.

The thesis begins with an introductory part about robots, environments
and mathematical methods used, which forms the basis for the later chap-
ters. We discuss different multi-robot coverage concepts and transition to the
main chapters of the thesis, which present the contributions on multi-robot
coverage and path planning. Each chapter has a short introduction, which
motivates the chapter, a related work section, which presents further work
that is specifically related to the chapter, and a main section, which presents



12 1. INTRODUCTION

Sensing & 

Inference

Environment 

Modeling

MeshRegister

Navigation

Global

Planner

Local

Planner
Control

Localization

Global Relative

Coordination

Mission / Task PolicyIndustrial 

Structure

Robotic 

Inspection

Inspection

Internal

Localization & 

Mapping

Communication

Planning & 

Coordination

Locomotion & 

Manipulation

Obstacle Negotiation

Low-Level Control

Cable Handling

Climbing / Adhesion

Low-Level Control

Low-Level Control

Robot 4 / Base Station

Robot 3 / Base Station

Robot 2 / Base Station

Base Station

Robot 1 / Base Station

Visualization

User Guidance

Inspection Analysis

Power Management

Environment

Figure 1.2: Inspection sequence. In order to achieve robotic inspection of an
industrial structure, a robot needs modules for sensing, localization and mapping,
path planning and coordination, locomotion and obstacle negotiation, communica-
tion and power management. The modules that are mainly covered by our work
are highlighted in blue. The coordination of multiple robots through coverage poli-
cies is presented in Chapter 4, Chapter 5 and Chapter 6. Environment modeling
and robot navigation are the topics of Chapter 7 and Chapter 8. Relative robot
localization is finally addressed in Chapter 9.

the methods and results. Each section concludes with a summary of the
chapter, including a valuation of the main achievements.

Chapter 2 introduces the environments that were used for simulations
and experiments, as well as a typical industrial structure, which represents a
case study and benchmark for the robotic inspection. Furthermore, the used
robot platforms, the MagneBike and e-puck robots, are presented.

Chapter 3 gives definitions and describes mathematical methods to pro-
vide a theoretical background for the later developments. It covers necessary
basics from differential geometry, computational geometry, structure infer-
ence with tensor voting, robot path planning as well as feedback and cooper-
ative control. In particular, the important concepts of Voronoi tessellations
and Voronoi coverage are introduced.



1.4. ORGANIZATION 13

Chapter 4 explains the hybrid coverage concept. Several examples of
hybrid coverage variants are provided. Some variants are evaluated in sim-
ulation and the hybrid Voronoi coverage method is found to be particularly
promising, especially with respect to the inspection scenario.

Chapter 5 addresses the extension of Voronoi coverage to handle obstacles
and nonconvexities. The nonconvex coverage algorithm formulates a con-
strained optimization problem and uses ideas from the gradient projection
method from optimization. Voronoi coverage is combined with robot path
planning to find a solution. Besides, the transformation for extending the
DisCoverage exploration algorithm to environments with arbitrary obstacles
is described.

Chapter 6 applies the Voronoi coverage method to curved surfaces. We
use triangle meshes to represent the environments. Two adaptive coverage
algorithms are presented, which both deploy multiple robots into discrete
Voronoi partitions over the surfaces. In order to generate a Voronoi partition,
the first coverage solution propagates a discrete wavefront over the mesh,
whereas the second solution exchanges vertices of the mesh locally between
robots.

Chapter 7 describes meshing and path planning methods for mesh-based
path planning. Several state-of-the-art surface reconstruction methods are
evaluated and triangle strip paths are planned over realistic 3D meshes. The
robots are guided by a continuous vector field controller. In support of the
surface coverage and inspection, covering triangle strips are constructed to
completely cover the surface area.

Chapter 8 presents the alternative point-based path planning. 3D point
clouds of curved surfaces are preprocessed and augmented by tensor voting.
Using dense point cloud planning, a path is planned over the surface, taking
noise in the point cloud, local surface characteristics and obstacles on the
surface into account. Sparse point cloud planning represents an alternative
approach, where geometric shapes are fitted to a sparser point cloud and
motion primitives are developed on the fits.

Chapter 9 gives a description of a 6D relative localization system for
relative localization of multiple robots in a 3D environment. The vision-
based localization system is compact and lightweight and consists of two
complementary modules. The target module is detected and tracked by a
camera module, which allows for the estimation of the target’s pose.

Chapter 10 concludes the thesis and gives an outlook on future work.



14 1. INTRODUCTION



Chapter 2

Environments and Robots

This chapter presents the environments and robot platforms used in this
thesis. We describe a characteristic environment for the robotic inspection
task, as well as the different environments and test setups we used for the
simulations and experiments. Furthermore, the MagneBike robots and the
e-puck robots are introduced.

Our intention in this chapter is threefold. First, the chapter complements
the motivation of Chapter 1 by giving concrete examples for an industrial
environment that needs to be inspected and a group of climbing robots that
executes the inspection task. An overview of the key figures of the steam
chest environment and the MagneBike robots is provided. Second, equipping
the reader with knowledge of a typical environment and robot platform with
respect to the inspection scenario helps in understanding decisions that are
motivated by the real application. The environment characteristics and the
robot design serve as a starting point for the development of many of the
concepts and algorithms in this thesis. Third, the chapter presents the envi-
ronments and robots that are used in simulations and experiments through-
out the thesis. The specifications of the test setups and robots contain useful
information, which supplement the discussions in the results sections of the
following chapters.

The specifications of the steam chest environment and the MagneBike
robot have previously been reported in parts in the dissertations of Fischer
(2010) and Tâche (2010), and at conferences (Breitenmoser et al., 2010c) and
in journals (Stumm et al., 2012; Tâche et al., 2009, 2011). The chapter is
divided into two main sections. Section 2.1 describes the different environ-
ments and Section 2.2 presents the MagneBike and the e-puck robots. The
chapter is concluded with a summary in Section 2.3.

15



16 2. ENVIRONMENTS AND ROBOTS

2.1 Environments
We first present an example of a typical steam chest environment. Some spe-
cific challenges and characteristics of the environment are highlighted, which
provide the specifications for the inspection task. Moreover, we describe the
test setups built for the experimental evaluation of the developed navigation
and coverage solutions.

2.1.1 Steam Chest Environment
Steam chests are ferromagnetic tube-like supply structures for feeding hot
steam into the steam turbines of a power plant (see Figure 2.1, left). The
high temperature and pressure of the steam as well as vibrations from the
turbines cause stress in the structure and lead to defects or degradation of
the material. In order to inspect steam chests by conventional inspection
tools, disassembly of the structure is necessary. Handheld borescopes cannot
be used because of the high number of bends or intersections and the large
diameter of the pipes.

Steam chests represent a challenging environment for mobile robotics.
They are three-dimensional, and their geometry is complex and constraints
arise from different types of obstacles, narrow sections and sections of vary-
ing sizes. A climbing inspection robot must be able to bring a sensor to any
point on the curved surface, independently of the robot’s orientation with
respect to gravity. Another challenge is the lack of natural light and percep-
tual features. The metal walls may be reflective and the texture is mostly
uniform. Artificial landmarks or external beacons cannot be installed as ac-
cessibility or connectivity is limited by the closed metal structure. Sensors
that may operate under such conditions need to meet further requirements
of desired sensor range and accuracy, limited power consumption, size and
payload. Furthermore, exact 3D models of the steam chests are generally not
available at the time of inspection, since plans are outdated or simply not
existent. Methods for environment modeling must allow for the representa-
tion of the topology of the closed surfaces; the environment is beyond general
2.5D and localization of a robot’s full 6D pose is required. A comprehensive
list of requirements for an inspection robot with respect to locomotion and
localization in a steam chest environment is provided by Tâche (2010).

The steam chest of Figure 2.1 was put out of service and is used as a
benchmark in our work. It is about 5 m long, has seven entry points and
the pipe diameters vary between 20 cm and 70 cm. Figure 2.1 on the right
shows a 3D point cloud of the steam chest, which was collected in the course



2.1. ENVIRONMENTS 17

Scan ID

0 58x

z

y

Figure 2.1: Steam chest environment. Left: Example of the steam chest which
was used as benchmark in our work. Right: Cut view of the registered 3D point
cloud (the shading of the points follows the scan acquisition numbers, the light gray
line represents the trajectory of the rotating Hokuyo URG-04LX laser range finder,
and the balls show the scanner poses where MagneBike took a scan).

of a field experiment, where the MagneBike robot was navigated through the
environment by remote control. The robot was localized by the localization
method presented by Tâche et al. (2011). For the point cloud, 59 scans were
recorded, using the rotating Hokuyo URG-04LX laser range finder mounted
on the MagneBike robot, and registered along a 5.8 m long path. This cor-
responds to roughly one scan registered every 10 cm along the path.

2.1.2 Test Setups
Next we describe the test setups which were used in the experiments for the
coverage solutions of Chapter 5 and Chapter 6, and the navigation solution
of Chapter 8.

Steam Chest Mock-Up

For realistic evaluation of the developed methods, a test setup was built to
mimic the expected steam chest environment (see Figure 2.2, left). The test
setup consists of a steel pipe composed of three parts: one main cylinder of
0.8 m diameter and 1.9 m length, an expanded section of 1 m diameter and
0.5 m length, and a small cylinder, 0.4 m in diameter and 0.6 m in length,
branching off from the main section. We use a Vicon motion capture system1

to localize the robots during the experiments and to provide ground truth
of the robots’ trajectories. The top portion of the main pipe can be taken

1http://www.vicon.com



18 2. ENVIRONMENTS AND ROBOTS

Figure 2.2: Test setups. Left: Steam chest mock-up with sections of different
diameters and lengths. Right: Test setup with overhead camera, which tracks the
three e-puck robots deployed on the planar ground plate. The bumpy slope test
setup covered with dark brown flexible magnets can be seen in the background.

off in order to allow the cameras of the Vicon motion capture system to see
inside and track the robots. This test setup was used for the experiments of
Chapter 8.

Planar and Bumpy Slope Test Setups

We built a test setup with an overhead camera to track a group of robots
(see Figure 2.2, right). We used cameras with resolutions of 1280 × 960
and 1280 × 1024, respectively. The obtained localization accuracy is in the
range of 1 cm up to 3 cm. The camera captures the images and passes
them on to a base station. The images are read into the ARToolKit (Kato
and Billinghurst, 1999), which extracts the markers carried by the robots
and determines their pose. The navigation and coverage solutions are then
executed on the base station to compute the robots’ action for the next time
step. The base station continuously sends information over Bluetooth and
operates the robots by remote control. Each robot receives the commands
and actuates its stepper motors, which closes the control loop.

The low-level control runs on the robots. The algorithms for tracking and
for the actual path planning and coordination, running on the base station,
use Matlab2. This way, we can reuse the code base from the Matlab simula-
tions, which provides us with high flexibility in respect of rapid-prototyping

2http://www.mathworks.ch



2.1. ENVIRONMENTS 19

and testing. The drawback lies in Matlab’s relatively low speed. Solutions
are provided by Matlab’s MEX files or real-time toolboxes.

The test setup comes in two versions. The first version consists of a
planar 1 m × 1 m ground plate. The camera is mounted in a distance of
1.35 m above ground. This setup was used for the experiments of Chapter 5;
a similar test setup was used in the experiments of Chapter 9. The second
version is a bumpy slope of 1.2 m × 1.2 m base area. The curved surface
is built from plywood and a thin carbon steel sheet covered with a flexible
magnet is laid on top of the wooden frame. This version of the test setup
was used for the experiments of Chapter 6.

Virtual Environments

We implemented the algorithms for the navigation and coverage solutions in
Matlab and C++. Matlab and the robot operating system (ROS)3 are used as
simulation environments. ROS wrappers are provided for some of the C++
implementations. The C++ implementations interface the point matcher
library (Pomerleau et al., 2011), and depend on the external libraries Eigen4

for linear algebra, Nabo5 for nearest neighbor search and OpenMesh6 for mesh
representation. OpenMesh provides an efficient halfedge-based data structure
for representing and operating on triangle meshes. The system furthermore
offers optional interfaces to the powerful computational geometry, point cloud
and mesh processing libraries CGAL7 and PCL8.

Various standard 3D models from computer graphics, CAD models of the
bumpy slope test setup, as well as real 3D point clouds recorded with the
rotating Hokuyo URG-04LX and Hokuyo UTM-30LX laser range finders (see
also Figure 2.4) were used for the simulation experiments.

3Robot Operating System, http://www.ros.org
4Eigen library, http://eigen.tuxfamily.org
5Nabo library, http://github.com/ethz-asl/libnabo
6OpenMesh library, http://www.openmesh.org
7Computational Geometry Algorithms Library, http://www.cgal.org
8Point Cloud Library, http://pointclouds.org



20 2. ENVIRONMENTS AND ROBOTS

2.2 Robots
In the following, we present the two robot platforms we have mainly worked
with.

2.2.1 MagneBike Robots
A strong motivation for this thesis originates from the development of the
MagneBike robots (see Figure 2.3, left) and their application, the inspection
of industrial environments, such as the steam chest environment. The main
focus of this thesis is on the study of the methods for autonomous navigation
and multi-robot coverage. However, during the last years another challenge
was the ongoing development of the MagneBike robots. We will take this
opportunity to present a brief summary of the MagneBike robots; a more
detailed description of the robot platform can be found in the works of Tâche
et al. (2009), Tâche (2010), Fischer (2010), and Caprari et al. (2012). The
MagneBike robot exists in an older prototype version and a newer revised
version. Five units of the newer version of the MagneBike robot have been
prepared, and three of them are currently assembled, programmed, and tested
under laboratory conditions.

MagneBike is a compact and lightweight climbing robot (18.5 cm ×
14.3 cm × 17.0 cm, 3.3 kg), which consists of two magnetic wheel units
in a motorbike arrangement. The wheels are enhanced with lateral lifters, or
respectively, with passive parallel wheels in the newer version of the robot’s
wheel unit (Fischer, 2010), which stabilize the robot and enable the robot to
negotiate step-like obstacles. MagneBike’s locomotion and adhesion concepts
with an active degree of freedom on the front steering wheel and permanent
magnets integrated into both wheels allow driving on ferromagnetic surfa-
ces of industrial structures, which were not designed specifically for robots.
The robot can climb vertical walls, follow circumferential paths inside pipe
structures and pass over complex combinations of convex and concave step
obstacles with almost any inclination regarding gravity. It requires only lim-
ited space to maneuver because turning on spot around the rear wheel is
possible.

MagneBike is integrated with electronics on-board; it features up to five
Maxon motors and encoders for actuation of the two wheels, the steering
fork, and the two pairs of lateral lifters. Further sensors of the robot are a
three-axis accelerometer, and strain gauges in the lifters and the robot body
to measure forces and deformations. The platform is composed of a Gumstix
Verdex Pro single-board computer running Linux. ROS is used as the overall



2.2. ROBOTS 21

Figure 2.3: Robot platforms. Left: Two MagneBike robots, one equipped with
the rotating Hokuyo URG-04LX laser range finder. The newer revised version (left)
and older prototype version (right) are shown. Right: Two e-puck robots, equipped
with visual markers for tracking by an overhead camera.

framework and is cross compiled for the ARM architecture of the Gumstix
(GumROS). The low-level components are executed as ROS nodes directly
on the robot, including low-level control, actuation of motors and readout
of sensors. Other higher-level ROS nodes, such as the modules for environ-
ment modeling, path planning, multi-robot coordination or visualization and
graphical user interfaces, run on a base station. The connection to the ro-
bot is established either via cable and Ethernet or over a wireless network.
The robot is currently tethered and connected to an external power supply
of 24 V. MagneBike can optionally be equipped with a rotating LIDAR for
recording 3D point clouds of its environment (see Figure 2.3 and Figure 2.4,
left). The scanner module consists of a Hokuyo URG-04LX laser range finder
in the case of the older prototype, and for the newer platforms, a rotating
laser range finder based on the Hokuyo UTM-30LX is currently developed9.

The recorded 3D point clouds are usually noisy, anisotropic and show
high variations in density. In addition, specular reflections occur on metal
surfaces, which results in increased deformations of the point clouds. These
reflections do not only depend on the surface itself, but also change with
the type and characteristics of the laser range finders used. Figure 2.4 on
the right shows 3D point clouds obtained with the Hokuyo URG-04LX and
Hokuyo UTM-30LX laser range finders. From our experience, the UTM-

9http://www.hokuyo-aut.jp



22 2. ENVIRONMENTS AND ROBOTS

Figure 2.4: Rotating LIDAR and 3D point clouds. Left: Rotating Hokuyo UTM-
30LX laser range finder; the scanner is developed as environment sensor for the
newer MagneBike versions but is, as shown, also designed for stand-alone use.
Right: 3D point clouds of a tube-like structure, obtained with the Hokuyo UTM-
30LX (top) and Hokuyo URG-04LX (bottom) laser range finders. Note how the
sensor resolutions, sensitivity to reflections and uniformity of the recorded point
clouds vary for the two laser range finders.

30LX laser range finder provides significantly better results in both range
and accuracy, especially in reflective environments. For a detailed analysis of
LIDAR performance and its change for different range sensors and different
surfaces in industrial environments, refer to our work presented by Pomerleau
et al. (2012).

The 3D point clouds obtained from the laser range finders can be used to
perform 6D global localization of the MagneBike robot (Tâche, 2010; Tâche
et al., 2011). The localization is a sequential process. The robot uses read-
ings from the wheel encoders and orientation information from the three-axis
accelerometer to compute an estimate of its current pose, what is called 3D
odometry. After a certain distance has been traveled, the robot stops and
takes another full 3D scan of the environment. The 3D transformation be-
tween the two last 3D scans is computed by the iterative closest point (ICP)
algorithm (Besl and McKay, 1992), using the 3D odometry estimate for ini-
tialization. While the robot navigates, this process of local scan registration is
repeated; robot position and orientation are updated, and a representation of
the environment from aligned point clouds is incrementally constructed (see



2.3. SUMMARY 23

Figure 2.1, right). In this thesis, we will use such point cloud representations
as input to our navigation solutions.

2.2.2 e-puck Robots
For our multi-robot experiments, we use several e-puck robots (Mondada
et al., 2009). The e-puck robot is a small two-wheel differential drive robot
with a diameter of 7 cm (see Figure 2.3, right). e-puck is equipped with
a dsPIC microcontroller, various sensors (e.g., IR proximity sensors) and
actuators (e.g., LEDs). It is powered by a Li-ion battery, and offers a RS-232
and a Bluetooth interface for communication.

We kept the kinematic model of the robots in the experiments simple:
the e-puck robots rotate until their front direction is aligned nearly parallel
to the next goal direction (typically within ±5◦) and then drive straight to
the goal.

We additionally equipped the e-puck robots with visual markers on the
top for tracking by an overhead camera, and small magnets at the bottom
for climbing ferromagnetic surfaces like the bumpy slope test setup.

2.3 Summary
This chapter presents the relevant environments and robots used in the con-
text of this thesis. The steam chest environment represents a typical indus-
trial structure which could be inspected by climbing robots like MagneBike.
The MagneBike robot platform is a compact wheeled climbing robot de-
signed for inspecting curved surfaces of complex 3D structures. Localization,
environment modeling, path planning and multi-robot coordination for the
MagneBike robots and their unique environments pose challenging problems,
which are of general interest for mobile robotics.

In addition, we describe the e-puck robot platform and the test setups
used for the simulations and experiments presented in this thesis. We will
come back to these environments and robots repeatedly throughout the sec-
tions of the following chapters.



24 2. ENVIRONMENTS AND ROBOTS



Chapter 3

Mathematical Methods

This chapter introduces the theoretical background for the work of this the-
sis. It covers basics of differential geometry in Section 3.2 and computational
geometry in Section 3.3, describes a specific computational framework for
structure inference in Section 3.4 and summarizes concepts from control the-
ory in Section 3.5. First, we define some relevant notation and terminology
in Section 3.1.

3.1 Notation and Terminology
General Notations

We let N be the set of all natural numbers including zero, and define the
set of positive natural numbers as N>0 = N \ {0}. R≥0 denotes the set of
nonnegative real numbers. N ∈ N>0 is the number of dimensions, e.g., RN is
the Cartesian product R × RN−1 and defines a N -dimensional vector space
over the real numbers.

A subset X ⊂ RN is called convex if and only if, for any pair x, y ∈ X
and t ∈ [0, 1],

t x + (1− t) y ∈ X , (3.1)

i.e., all points along the line segment that connects x and y are contained in
X . A nonconvex set is now defined as a set that is not convex.

A subset X ⊂ RN is called star-shaped if and only if there exists a point
x ∈ X , such that, for all y ∈ X , the line segment from x to y is contained in
X .

A metric is a distance function which defines a distance between two
elements of a set. An important class of metrics over RN is induced by the

25



26 3. MATHEMATICAL METHODS

p-norm, which is given by

‖x‖p =
(

N∑
i=1
|xi|p

)1/p

, (3.2)

with p ∈ N>0 and i ∈ N>0. If not otherwise stated, we assume in the following
that indices i, j, k, l or similar are elements of N>0.

For p = 2 we get ‖x‖2, which is the common Euclidean norm. The
Euclidean norm induces the Euclidean metric or Euclidean distance. The
Euclidean space is the space of Euclidean geometry, i.e., it is the normed
vector space with the Euclidean inner product or dot product defined on
RN . Euclidean spaces are distinguished from curved spaces of non-Euclidean
geometry, where all axioms of Euclid are satisfied except for the parallel
axiom (Kühnel, 2006). Refer also to Section 3.2 below.

According to our convention, vectors and matrices are written in bold
type, x and R. If not otherwise stated, the vectors are assumed to be column
vectors. Row vectors are given by xT = [x1 ... xi ... xN ] for N dimensions.
Vectors that are composed of n column vectors of dimension N are written
as column vector X = [xi]ni=1 = [x1, ... , xi, ... , xn], with each xi ∈ RN and
X ∈ RnN . Furthermore, we write in abbreviated form xij = xj − xi.

The translation vector to express frame A (attached to object obj) with re-
spect to frame B is denoted by tBA or tobj,B , and a rotation matrix to express
a vector given in frame A with respect to frame B is given by RBA. The trans-
formation of combined translation and rotation is written as [RBA | tobj,B ].

The “ ̂ ” symbol represents unit vectors or normalized vectors, x̂. The
“− ” symbol denotes the mathematical average or mean, x = 1/n

∑n
i=1 xi.

The prime “ ′ ” means a vector that is projected, constrained or restricted to
a set, x′, and the “˜” symbol denotes an estimated or modified quantity, x̃.

For the function f : RN → R and vector x ∈ X , the gradient is defined as
the N -dimensional row vector ∇f(x) = [∂f/∂x1 ... ∂f/∂xi ... ∂f/∂xN ]. The
time derivative is given as ∂x(t)/∂t = ẋ(t) = [ẋ1(t), ... , ẋi(t), ... , ẋN (t)].

We write an objective function or cost H in one of two alternative forms.
H(X ) denotes the function H : RN → R, and H(X) is H : RnN → R. A
critical point or optimizer of the objective function H is denoted by the “ ∗ ”
symbol, x∗ and X∗ respectively, which are solutions of ∇H = 0T.

A graph G = {V, E} is composed of a finite set of vertices, V , and an
edge set E = V × V , with edges e = (v, w) ∈ E, v 6= w, and v, w ∈ V .
The n vertices vi of a graph are points of a discrete set, and we write for a
graph embedding in X , vi ∈ XG and XG ⊂ X , or XG = [vi]ni=1, where vi
denotes the vector that describes the position of the graph vertex vi in X .



3.1. NOTATION AND TERMINOLOGY 27

An objective function HG can then be defined accordingly for the discrete
set of points XG or XG, respectively. A one ring neighborhood N ring

i of a
vertex vi is the set of m = |N ring

i | vertices vj = vnil , l ∈ {1, ... , m}, that are
connected to vi via an edge eij = (vi, vnil).

Robot-Specific Terminology

Our understanding of a robot or robot system in this thesis encompasses sys-
tems that are decision-making and are provided by sensing and actuation
devices for perception, communication, reasoning, planning and execution.
If not otherwise stated, we assume that each robot ri of a group of n ho-
mogeneous robots is equipped with several modules, including sensing, lo-
calization, environment modeling, communication, path planning, and high-
level coordination modules. An environment sensor (e.g., a LIDAR) allows
to record data from the environment within a sensor range of radius Rsens
for environment modeling and localization, and an inspection sensor (e.g., a
NDT probe) allows to detect points of interest, such as defects, in the robot’s
environment. A communication device enables the exchange of information
among neighboring robots within a communication range of radius Rcom.
Two robots are said to be neighbors if they are within communication range.

The world or environment which the robots operate in is referred to as the
workspace W ⊂ RN of the robots. A workspace includes besides the region
of the n robots, R = {ri}ni=1 ⊂ W, the free space Ω ⊂ W and the obstacle
space O ⊂ W. Other robots in the workspace need to be avoided. Obstacles
may be negotiated with some effort, i.e., they are part of Ω, or cannot be
passed and need to be circumvented by the robots, i.e., they are part of O.
∂Ω denotes the boundary of Ω and I(Ω) = Ω\∂Ω represents the interior of Ω.
The positions of the n robots ri are given by the set P = {pi}ni=1, or vector
P = [pi]ni=1 ∈ Ωn alternatively, with pi ∈ Ω representing the position of a
single robot. The robot position on a graph G, vpi = p′i, results from the
robot’s position pi constrained onto the graph. In addition, a robot might
have an orientation; the 3D position and the 3D orientation of a robot in a
3D environment define the 6D robot pose.

For path planning, yet another space, the configuration space C, or more
generally, the robot’s state space X , is of great importance. The configuration
space for a robot with m-DoF, or the state space with m components respec-
tively, is a topological m-dimensional manifold and encompasses the set of
all rigid-body transformations or state transitions which can be applied to a
robot configuration or state x (LaValle, 2006). The control inputs or actions
u, which trigger such configuration and state transitions, are contained in a
predetermined control or action space U .



28 3. MATHEMATICAL METHODS

3.2 Differential Geometry
This section introduces some of the necessary tools to describe curved surfaces
and shortest paths on the surfaces in mathematical terms. We closely follow
the book by Kühnel (2006).

3.2.1 Curved Surfaces
A surface in R3 can generally be described for the components (x, y, z) by
a function F : R3 → R as F (x, y, z) = 0, whenever it holds ∇F 6= 0T.
Examples are planes or quadric surfaces. A quadric surface or quadric can
be defined by xT Q x + PT x + C, with x ∈ R3, and for a 3 × 3 matrix Q,
a vector P ∈ R3 and a constant C.

The surface integral over the surface area A ⊂ R3 with real-valued func-
tion g(x) is written as ∫

A

g(x) dF (x) , (3.3)

where dF (x) denotes a surface element.

Manifolds

A m-dimensional submanifold M ⊂ RN is defined by the local parametriza-
tion f : U →M, where U ⊂ Rm. m is the dimension and N−m denotes the
codimension of the submanifoldM. RN is the ambient space, and φ := f−1

is called a chart ofM.
TRN := RN × RN is the tangent bundle of RN . For every fixed point

x ∈ RN , the space TxRN := x × RN denotes the tangent space at the point
x. The tangent space of the m-dimensional submanifold M at the point
q ∈M is the subspace TqM⊂ TqRN . The tangent bundle ofM then is the
collection of tangent spaces, TM :=

⋃
q∈M TqM.

M is further called orientable if there exists a definite choice of rotational
directions in each tangent plane, which is not changed within the individual
charts.

Intuitively speaking, am-dimensional differentiable manifoldM is a topo-
logical space that in the vicinity of every point q resembles Rm, i.e., locally
or in the small the topology of a manifold is the same as that of Rm. In par-
ticular, every m-dimensional submanifoldM ⊂ RN is also a m-dimensional
manifold. However, a manifold can be described in terms of local coordinates
in the form of parametrizations or charts, such that it does not necessarily
rely on an ambient space.



3.2. DIFFERENTIAL GEOMETRY 29

Curved spaces are typically described by Riemannian geometry. The
central subject of Riemannian geometry is the Riemannian manifold. A
Riemannian manifold is defined as a differentiable or smooth manifold S
together with a Riemannian metric k, forming the pair (S, k). The Rieman-
nian metric k on S defines at every point q ∈ S an inner product kq(x, y)
on the tangent space TqS, with tangent vectors x, y ∈ TqS. The inner
product is positive definite for all tangent vectors, and determines lengths
and angles. The length or norm induced by the inner product is given by
‖x‖2 :=

√
k(x, x) =

√
xT K x, and the angle β between the two tangent

vectors x and y can be defined by cos (β) ‖x‖2 ‖y‖2 = k(x, y).
The Riemannian metric is also referred to as the metric tensor. In local

coordinates the metric tensor is expressed as the tensor of degree 2, or the
symmetric positive definite matrix K, also denoted Kq to indicate that it is
given at a point q ∈ S. A standard example of a Riemannian manifold is
(S, k) = (RN , k0), with k0 the Euclidean inner product, and K = IN . Be-
sides angles and lengths of curves, the Riemannian metric allows for defining
the area or curvature of a surface.

Curves and Geodesics

A regular parametrized curve is given as the continuously differentiable func-
tion γ : [0, 1] → RN . γ̇(t0) is the tangent vector at t0 relative to γ, and
γ̇ 6= 0 holds everywhere. The length of the curve is given as

∫ 1
0 ‖γ̇(t)‖2 dt.

On a Riemannian manifold (S, k), the length of a curve γ : [0, 1]→ S can
be written as

∫ 1
0

√
k(γ̇, γ̇) dt.

Geodesics are intuitively the generalization of straight lines to curved
spaces. The shortest paths on a surface S are known to be the geodesics.
The geodesics can be found by locally minimizing the length of the curve γ
on the surface S. A geodesic is also the curve γ for which, at each point
along the curve, the vector defined by the second derivative γ̈ is normal to
the surface S, i.e., a geodesic preserves the direction on a surface.

Surface Curvatures

For a unit normal vector at a point q ∈ R3 of a surface M ⊂ R3, a nor-
mal plane can be defined as a plane that contains the normal vector. The
normal plane intersects the surface in a curve γ and contains the curve’s tan-
gent vector, γ̇ ∈ TqM. Different normal planes at q generate different such
curves with different curvatures. The principal curvatures kq, 1 and kq, 2 of
M at q result as the curvatures with maximum and minimum values, and the
principal curvature directions are the directions of the corresponding tangent



30 3. MATHEMATICAL METHODS

vectors. The mean curvature can be defined based on the principal curva-
tures as kq,H = 1/2 (kq, 1 + kq, 2), which is an extrinsic measure of surface
curvature. The Gaussian curvature is defined by kq,G = kq, 1 kq, 2 and is
an example for an intrinsic measure of surface curvature. For kq,G = 0, a
developable surface results, which is a surface that can be flattened onto the
plane without distortion. Examples for developable surfaces are cylinders
and cones.

3.3 Computational Geometry
This section reviews two problems in computational geometry and describes
algorithms that provide solutions. Our focus is mainly on Voronoi and De-
launay tessellations. In addition, we include some of the basics in the com-
putation of shortest paths on graphs. The book by de Berg et al. (2000)
serves us as an instrumental resource. Further information about Voronoi
and Delaunay tessellations can be found in the survey paper by Du et al.
(1999) and in the book on spatial tessellations by Okabe et al. (2000). More
information on graph search methods and robot path planning are provided
by Bertsekas (2005) and LaValle (2006).

3.3.1 Voronoi Tessellations
A Voronoi tessellation means a specific subdivision of space into so-called
Voronoi regions, and is defined as follows.

Definition 3.1. A Voronoi tessellation1 of an open set W ⊂ RN is the set
of Voronoi regions V(P) = {Vi}ni=1, such that n ≥ 2, I(Vi) ∩ I(Vj) = ∅ for
i 6= j,

⋃n
i=1 Vi =W, and

Vi = {q ∈ W | ‖pi − q‖2 ≤ ‖pj − q‖2, ∀j ∈ {1, ..., n} , j 6= i} (3.4a)

=
⋂
i 6=j

H(pi,pj) . (3.4b)

The Voronoi regions represent polytopes in W, each defined by half-spaces
H(pi,pj) = {q ∈ W | ‖pi − q‖2 ≤ ‖pj − q‖2}, for i 6= j.

The positions P = {pi}ni=1 are the generators of the Voronoi tessellation.
In the case where the generators are placed in a bounded domain Ω ⊂ W, a
bounded Voronoi tessellation is defined as the set V(P) = {Vi ∩ Ω}ni=1. For

1We will make use of the terms “Voronoi tessellation”, “Voronoi diagram” and “Voronoi
partition” interchangeably along this thesis.



3.3. COMPUTATIONAL GEOMETRY 31

n = 1, there is only one generator and no Voronoi tessellation can be con-
structed; however, one might view the entire space W, or Ω respectively, as
the region associated with the single generator.

The dual of the Voronoi tessellation is the Delaunay tessellation D(P).
Let us first look at the dual graph of V(P), denoted GD = {VD, ED}. The
graph GD has a node vi for every Voronoi region Vi, and two nodes vi and vj
are connected if the corresponding Voronoi regions Vi and Vj have a common
edge or boundary, i.e., it holds Vi ∩ Vj 6= ∅. This leads to a one-to-one corre-
spondence between the bounded faces of GD and the vertices of V(P). The
Delaunay tessellation is then obtained from the dual graph GD by embedding
the edges eij ∈ ED of GD as the straight line segments pipj into RN . In R2, a
Delaunay triangulation is obtained by adding additional edges to the 2D De-
launay tessellation. A triangulation is further called a Delaunay triangulation
of P ⊂ R2 if and only if the circumcircle of any triangle in the triangulation
does not contain a point of P in its interior (de Berg et al., 2000). Fur-
thermore, an optimal triangulation can be defined in terms of the minimum
angle over all its triangles, i.e., by how much the angles of the triangles in
the triangulation differ. A Delaunay triangulation of P is an angle-optimal
triangulation, which maximizes the minimum angle over all triangulations of
P. Similar formulations can be obtained for N -dimensional Euclidean space
by exchanging “triangles” and “circumcircles” for “polytopes” and “circum-
hyperspheres”.
Definition 3.2. A centroidal Voronoi tessellation (CVT) is a Voronoi tes-
sellation V(P), where the generators P coincide with the centroids CV =
{cVi}

n
i=1 of the Voronoi regions,

pi = cVi . (3.5)

The centroid or mass center cVi of a Voronoi region Vi is given as

cVi = 1
MVi

∫
Vi

q ρ(q) dF (q), MVi =
∫
Vi

ρ(q) dF (q) , (3.6)

where MVi is the mass and ρ : W → R≥0 is the (distribution) density func-
tion. An example for a CVT and its generation is provided by Figure 3.3 and
Figure 3.4.

CVTs are related to optimization. As shown by Du et al. (1999), the CVT
can be understood as the local minimizer of an aggregate objective function
or cost of the form

H(P, Y) =
n∑
i=1

∫
Yi

‖pi − q‖22 ρ(q) dF (q) , (3.7)



32 3. MATHEMATICAL METHODS

where the generators are written as a single nN -dimensional position vector,
and Y = {Yi}ni=1 is an arbitrary tessellation of W. In other words, the
tessellation being the Voronoi tessellation, Y = V, and the generators being
the centroids, pi = cVi , is a necessary condition forH(P, Y) to be minimized.
In the case of a cost minimum, the generators at the centroids are the critical
points of the objective function HV(P) := H(P, V), p∗i = cVi . The objective
function HV(P) is nonconvex and a CVT represents a local minimum. CVTs
are not unique. In R2 for example, regular tessellations into squares, triangles
or hexagons all represent valid instances of CVTs.

However, a global minimizer does exist, and the optimal CVT leads to
the lowest value of HV(P) among all the possible CVTs. Gersho’s conjec-
ture states that “asymptotically as the number of generators gets larger and
larger, the optimal CVT will be forming a regular tessellation consisting of
the replication of a single polytope whose shape depends only on the spatial
dimension” (Du and Wang, 2005a). For two dimensions, such a single poly-
tope is known and the basic Voronoi region of an optimal CVT is the regular
hexagon.

Computation of Voronoi Tessellations

An optimal algorithm for computing Voronoi tessellations is known as For-
tune’s algorithm, which runs for n generators in O(n logn) time (de Berg
et al., 2000). The computation of CVTs can be achieved by probabilistic
or deterministic algorithms: probabilistic MacQueen’s algorithm is based on
random sequential sampling, whereas deterministic Lloyd’s algorithm com-
putes Voronoi tessellations and centroids iteratively. Our focus is on the
Lloyd’s algorithm (Lloyd, 1982).

A description of Lloyd’s algorithm is given in Algorithm 1. Lloyd’s al-
gorithm basically consists of two steps: (1) the computation of a Voronoi
tessellation for the current generator set, which assigns regions to the gener-
ators, and (2) the update of the generators with the regions’ centroids, which
minimizes the objective function HV(P) further. Lloyd’s algorithm can be
analyzed under different viewpoints. As we will also see in Section 3.5.3, in
its simplest form it implements a gradient descent method, which results in
linear convergence to the final CVT. Moreover, through its iterative nature
and convergence of the generators to a fixed final configuration of centroids
CV = {cVi}

n
i=1, it represents a fixed point iteration. Let in N dimensions be

L : RnN → RnN , with L = [Li]ni=1 and Li(P) = cVi for the nN -dimensional
position vector P = [pi]ni=1. It follows immediately that CVTs are fixed
points of L(P).



3.3. COMPUTATIONAL GEOMETRY 33

Algorithm 1 Lloyd’s Algorithm

Require: Set of n generators with initial positions P =
{

p0
i

}n
i=1 ⊂ Ω, for

the given set Ω ⊂ W, with density function ρ defined on W.
1: loop {Fixed point iteration}
2: Construct the Voronoi tessellation V of Ω with respect to P
3: Compute the centroids CV of the Voronoi regions V;

update the locations with these centroids: P ← CV
4: end loop
5: return Final configuration {V, CV} upon convergence

Generalizations of Voronoi Tessellations

Over the years, many variants of Voronoi tessellations have been developed,
which lead to generalizations of the original Voronoi and Delaunay tessella-
tions. A Voronoi tessellation can basically vary in the set of generators used,
the way we measure distance between generators, and the type of space we
consider. In our case, we look exclusively at point sets P, use a distance
function d(q, pi) which is either based on the Euclidean distance or a short-
est path distance, and study Euclidean space as well as curved spaces. Note
that a consistent generalization of a Voronoi tessellation or CVT should al-
ways reduce to the original Voronoi tessellation or CVT under appropriate
settings. We give here three examples of extensions to CVTs, which are of
relevance for the subsequent chapters. Further examples are provided by Du
et al. (1999) and Okabe et al. (2000).

Constrained CVTs. Related to the definition of a CVT, we can define
the constrained centroidal Voronoi tessellation (CCVT) as the Voronoi tes-
sellation V(P) with Voronoi regions

VC, i = {q ∈ S | ‖pi − q‖2 ≤ ‖pj − q‖2, ∀j ∈ {1, ..., n} , j 6= i} , (3.8)

restricted to S =
{

q ∈ RN |G0(q) = 0 ∧ Gj(q) ≤ 0, ∀j ∈ {1, ..., M}
}
, with

continuous functions G : RN → R, and a set of generators P ⊂ S. The
positions pi ∈ P are located at the constrained centroids cVC,i of the Vo-
ronoi regions VC, i. They are found to be the normal projections c′Vi of
the unconstrained centroids cVi , defined by Equation (3.6) in RN , onto
S (Du et al., 2002). Du et al. (2002) shows that the CCVT is a nec-
essary condition for the minimization of the aggregate objective function
after Equation (3.7) under constraints, where generators are positioned at



34 3. MATHEMATICAL METHODS

p∗i = cVC,i = c′Vi . Hence, the constrained centroids are further given by
cVC,i = argmin

pi∈VC,i

∫
VC,i
‖pi − q‖22 ρ(q) dF (q).

Discrete CVTs. Given a discrete set of points Q ⊂ RN , the discrete cen-
troidal Voronoi tessellation (DCVT) in Euclidean space can be defined as the
Voronoi tessellation V(P) with Voronoi regions

VD, i = {q ∈ Q | ‖pi − q‖2 ≤ ‖pj − q‖2, ∀j ∈ {1, ..., n} , j 6= i} , (3.9)

where the generators are located at the centroids cVD,i . Points that are
equidistant to two or more generators are assigned according to a predefined
priority; we assign point q to the generator with lowest index i, i.e., min {i, j}
for ‖pi − q‖2 = ‖pj − q‖2. The positions pi ∈ P can either be contained
in the full set RN or are restricted to the discrete set Q, which leads to
discrete centroids cVD,i ∈ Q. The aggregate objective function now becomes
HV(P) =

∑n
i=1
∑

q∈VD,i
‖pi − q‖22 ρ(q) and the centroids can be computed

as cVD,i = argmin
pi

∑
q∈VD,i

‖pi−q‖22 ρ(q). Note that this formulation of the

Voronoi tessellation and objective function is typically used in clustering.
Another discrete version of a CVT can be defined over a graph. The Voro-

noi tessellation G(VG) = {VGi}
n
i=1 of a graph G = {VG, EG} is also called the

graph Voronoi tessellation or network node Voronoi diagram (Okabe et al.,
2000). A DCVT on the graph is then given by the graph Voronoi tessellation
G(VG), where each Voronoi region VGi corresponds to the set of vertices of
the subgraph Gi = {VGi , EGi} , Gi ⊂ G, with

VGi =
{
v ∈ VG | dG(v, vpi) ≤ dG(v, vpj ), ∀j ∈ {1, ..., n} , j 6= i

}
, (3.10)

and each generator related to vertex vpi ∈ VGi coincides with the graph cen-
troid indicated by vertex vci ∈ VGi . The edges of the subgraph Gi are given
by the set EGi = {e = (v, w) | e ∈ EG ∧ v, w ∈ VGi , v 6= w}. Similar to the
example above, we prioritize vertices of lowest index if several vertices are
equidistant, i.e., min {i, j} for dG(v, vpi) = dG(v, vpj ). This time the aggre-
gate objective function becomes HG(VG) =

∑n
i=1
∑
v∈VGi

dG(v, vpi)2 ρG(v),
which is a function of the vertex set of discrete generator positions {vpi}

n
i=1,

and we get for the graph centroids vci = argmin
vpi∈VGi

∑
v∈VGi

dG(v, vpi)2 ρG(v).

The distance dG : VG×VG → R≥0 is the (weighted) shortest path distance on
the graph G (possibly weighted by edge weights ω(e)), and ρG : VG → R≥0
denotes the weight at vertex v.



3.3. COMPUTATIONAL GEOMETRY 35

CVTs in Non-Euclidean Metrics. In this last example, we present a
more abstract variant of a Voronoi tessellation using a non-Euclidean metric.
The Voronoi tessellation of a curved space obeys—different from tessellations
of Euclidean space—the laws of Riemannian geometry (see Section 3.2). For
example, a curved surface in R3, such as a sphere or torus, can be described
by a parametrization in the 2D parameter plane; computing a CVT on the
plane in non-Euclidean metric and mapping back onto the curved surface
may result in a conventional CVT of the parametric surface.

The anisotropic centroidal Voronoi tessellation (ACVT) is defined ac-
cording to Du and Wang (2005b) as the Voronoi tessellation V(P) of the
2D Riemannian manifold S, with the Riemannian metric described as the
positive definite metric tensor Kq and the Voronoi region given as

VA, i =
{

q ∈ S | dq,pi ≤ dq,pj , ∀j ∈ {1, ..., n} , j 6= i
}
, (3.11)

such that pi = cVA,i , i.e., the generators pi ∈ P are positioned at the
anisotropic centroids cVA,i . Du and Wang (2005b) suggests to measure dis-

tance by a directional distance dq,pi =
√

(pi − q)T Kq (pi − q). Although
this distance is not symmetric and thus no proper metric as such, it proves ad-
equate for a practical definition of the ACVT. It is consistent with the defini-
tion of standard Voronoi diagrams in the isotropic metric and straightforward
to compute (see Du and Wang (2005b) for further discussions). A necessary
condition for the optimization problem of minimizing cost HV(P) over the
curved space S requires the tessellation of S to be an ACVT (Du and Wang,
2005b). The anisotropic centroids can again be computed from the minimiza-
tion of the aggregate objective functionHV(P) =

∑n
i=1
∫
VA,i

d 2
q,piρ(q)dF (q).

Applying the directional distance, we get cVA,i =
(∫

VA,i
Kq ρ(q) dF (q)

)−1∫
VA,i

Kq qρ(q)dF (q), for each VA, i. Finally note that, for an isotropic metric
tensor Kq, the ACVT reduces to the original CVT with Euclidean distance
metric.

3.3.2 Graph Search and Shortest Paths
A common way to represent the geometry of an environment is by a graph
G = {V, E}. Classical graph-based representations from computational ge-
ometry include Delaunay graphs, Voronoi diagrams, as well as reduced vis-
ibility graphs (LaValle, 2006). These graphs all define so-called roadmaps.
Roadmaps are topological graphs, which describe the connectivity informa-
tion of an environment’s geometry. Roadmaps are, besides regular 2D grids,
typical environment representations in robot path planning.



36 3. MATHEMATICAL METHODS

A (discrete) shortest path from a start vertex vs to a goal vertex vg on the
graph G is computed by a graph search or label correcting method (Bertsekas,
2005). Graph search methods assign a cost to each encountered vertex v,

f(v) = g(v) + h(v) . (3.12)

The cost function g denotes the cost-to-come, i.e., the accumulated cost along
the path from the start vertex vs to the current vertex v. The cost function
h represents the cost-to-go, i.e., the estimated cost from the current vertex v
to the goal vertex vg. As the optimal cost-to-go is not known, a heuristic is
used. Thereby, the heuristic must always be admissible in order to guarantee
optimal shortest paths, which means that the heuristic is always an underes-
timate of the true optimal cost-to-go (LaValle, 2006). A common choice for
the heuristic h is the Euclidean distance between v and vg.

The known vertices are stored in a priority queue L. The vertices are
sorted according to their cost value f(v) and at each iteration of the search,
the vertex with lowest cost is selected next. The selected vertex is removed
from the priority queue and expanded, i.e., its neighboring vertices are in-
serted into the priority queue. If a neighboring vertex has already been
inserted into the priority queue, it is not added again but its cost value f(v)
is updated. The graph search method terminates when the goal vertex is
expanded.

The following three graph search methods are popular in robotics, and
particularly relevant for this thesis:

Dijkstra’s Algorithm. The Dijkstra’s algorithm (Dijkstra, 1959) is a sys-
tematic graph search method that does not use a heuristic estimate. The cost
reduces to f(v) = g(v). Dijkstra’s algorithm guarantees an optimal solution.

A* Algorithm. The A* algorithm (Hart et al., 1968) is the heuristic ver-
sion of the Dijkstra’s algorithm and expands, just as described above, the ver-
tices in the priority queue according to the smallest value f(v) = g(v)+h(v).
The A* algorithm also results in an optimal solution.

D* Algorithm. The D* algorithm (Koenig and Likhachev, 2002; Stentz,
1995) is an incremental version of the A* algorithm that allows for efficient
replanning. If a graph undergoes a dynamic update, i.e., vertices or edges,
or vertex or edge cost respectively, have changed, the D* algorithm does not
need to plan completely anew. Only edges or vertices that were affected by
the change in the graph are reevaluated. This results in an overall improved
search time during replanning.



3.4. STRUCTURE INFERENCE 37

3.4 Structure Inference
This section gives a brief introduction to tensor voting, a method for percep-
tual grouping and structure inference from sparse and noisy data. A more
general overview of the tensor voting framework can be found in the books
by Medioni et al. (2000) and Mordohai and Medioni (2006). In addition,
King (2008) provides valuable insight into the application of tensor voting to
3D environment modeling. Tensor voting can be used for the preprocessing of
LIDAR point clouds in the navigation solutions of Chapter 7 and Chapter 8.

3.4.1 Basics of Tensor Voting
Tensor voting is a generic solution for perceptual organization problems, and
is based on a set of Gestalt principles, which are believed to be used by the
human visual system (Mordohai and Medioni, 2006). Tensor voting is par-
ticularly useful because it can be applied to a wide range of applications and
data types. Moreover, it can be performed in any number of dimensions to
segment input tokens, such as points in a point cloud, into distinct structures.
For example, in two dimensions, input can be grouped into curve-like struc-
tures (which have an associated direction) and regions or junctions (which
have no associated direction). Similarly, in three dimensions, input can be
grouped into surfaces (which have two associated directions), curves (with
one preferred direction), and directionless points or regions (characteristic of
noise or volumes). Curve elements can be found at the intersection of two
surfaces, which, for example, proves extremely useful for classifying step-like
obstacles in the environment of a climbing robot like MagneBike.

As mentioned, in three dimensions, there are the three fundamental types
of structures: surfaces, curves, and unoriented points. Information needed
for voting and segmenting into these fundamental structures is encoded as
3D symmetric tensors of degree 2. This can be conceptualized as a 3 × 3
matrix, or alternatively as an ellipsoid where the eigenvectors of the matrix
represent the axes of the ellipsoid, and the eigenvalues represent the size of
the ellipsoid in each corresponding direction. There are therefore also three
fundamental types of tensors—“stick”, “plate”, and “ball” tensors—signifying
the three aforementioned structures, as shown in Figure 3.1. These tensors
are aligned with the normal space of the corresponding surface. Therefore,
surface elements are represented by a 1D stick tensor, aligned with the surface
normal. Curves or edges, on the other hand, are given by 2D plate tensors,
where the tangent direction is given by the third eigenvector, which has
a corresponding null eigenvalue. Tokens with no associated direction are



38 3. MATHEMATICAL METHODS

surface

curve

point / region

stick

plate

ball

Structure Tensor Tensor Field

Figure 3.1: Tensor voting in three dimensions. The fundamental types of struc-
tures are shown in the left-most column. The second column shows the form of the
representative 3D tensors, with their eigenvalues λi, i = {1, 2, 3}. The last column
shows the form of the voting fields cast by each fundamental structure. The vectors
representing the structures’ normal spaces are illustrated in each column as well.
(Adapted from Mordohai and Medioni (2006).)

encoded as unoriented 3D symmetric ball tensors. In general, the magnitudes
of the eigenvalues designate the associated saliency, and any arbitrary tensor
can be decomposed into its ball, plate and stick components in order to
evaluate the dominance of each type of structure at that location. In three
dimensions, the decomposition is achieved in accordance with Mordohai and
Medioni (2006) by

T = λ1 êx,W êT
x,W + λ2 êy,W êT

y,W + λ3 êz,W êT
z,W (3.13a)

= (λ1 − λ2) êx,W êT
x,W + (stick component)

(λ2 − λ3)
(
êx,W êT

x,W + êy,W êT
y,W
)

+ (plate component)
λ3
(
êx,W êT

x,W + êy,W êT
y,W + êz,W êT

z,W
)

(ball component)
(3.13b)

with λi, i ∈ {1, 2, 3}, representing the eigenvalues in order of decreasing
magnitude, and êx,W , êy,W , êz,W ∈ R3 representing the corresponding eigen-
vectors with respect to the world frame W .

Through voting, each component of the tensor is able to propagate its
information according to specific voting fields. The idea is for votes to convey



3.4. STRUCTURE INFERENCE 39

their apparent structure as if they were smoothly continued to the location
where a vote takes place. The strength of the vote is based on the likely
prevalence of the hypothetical structure at that location. Votes are cast by
every input token, e.g., points in a point cloud, and collected using simple
tensor addition. Ball tensors have no preferred orientation, and therefore
propagate uniformly in all directions, with a ball shaped tensor field. Plate
tensors, which represent curve elements, have a roughly stick shaped tensor
field, as the structure is likely to continue only along the tangent directions.
Stick tensors, on the other hand, vote with a plate shaped tensor field in order
to continue the surface-like structure. An illustration of the various tensor
field forms is included in Figure 3.1. The scale of these voting fields, denoted
by the voting scale parameter σ, can be chosen based on the approximate
feature size.

The general framework of the tensor voting algorithm, as proposed by
Medioni et al. (2000), is shown in Figure 3.2 on the left. To start, the sparse
input tokens are transformed into tensors, which encode any known saliency
or directionality. If no preliminary structural information is known, the input
tokens are simply encoded as unit ball tensors. Once the sparse tensors are
initialized, they are refined through a round of sparse voting. During sparse
voting, all input tokens cast votes only at the locations of all other input
tokens. The decomposed components of the sparse tensors are then used
to densify the information through another round of voting, so-called dense
voting, where votes are cast by all input tokens throughout the entire space,
e.g., represented by a 3D grid2. Once the final votes have been collected
and added up, the components of the tensors can be used to analyze the
underlying structures.

3.4.2 Tensor Voting Applied to Point Clouds
When originally described by Medioni et al. (2000), tensor voting was in-
tended for computer vision applications, where everything is usually in two
dimensions, dense and uniformly distributed. The framework could therefore
benefit from a few modifications when applied to different types of applica-
tions, such as inference from LIDAR point clouds. A few changes in the ten-
sor voting framework are discussed, which were suggested by Mordohai and
Medioni (2010) and King (2008). The first change is related to an analytic
formulation of the voting fields, the second change proposes a different vote
decay function, and the third change addresses methods of token reduction.

2Note that, as depicted in Figure 3.2 on the left, ball components will not vote in this
round in our case, as our analysis is focused on surfaces and edges rather than regions.



40 3. MATHEMATICAL METHODS

Figure 3.2: Tensor voting framework. Left: Sequence of sparse and dense voting,
as well as tensor splitting, decomposing the tensor into its structural components.
(Adapted from Medioni et al. (2000).) Right: Formulation of the stick vote in three
dimensions. The osculating spheres represent where the plate shaped tensor field
spreads from the voter. The vectors at the votees (locations where the votes are
cast) show the directions of the votes, which are normal to the osculating spheres.

Calculation of Voting Fields

A vote cast by a tensor is meant to impart its contained structure, as if
the structure was continued smoothly toward the location of the vote. For
a stick vote, the assumption is made that the smoothest continuation of a
surface is described by an arc of constant curvature which runs tangent to
the surface at the voter’s location, or in other words, an osculating sphere.
Therefore, a vote cast by a stick voter is also a stick, with the direction that
is normal to the osculating sphere at that location (see Figure 3.2, right).
In the original implementations of tensor voting, the plate and ball fields



3.4. STRUCTURE INFERENCE 41

were created by integrating the stick field as it is rotated about one or two
of its axes, respectively. These integrals unfortunately have no closed form
solution, and so the integration is typically done numerically by rotating the
stick tensor by fixed steps and adding the results from each position. The
resulting field is then normalized, such that its energy is equivalent to that
from the stick field. The results are stored in a look-up table at the desired
resolution, and then during the voting procedure, values are obtained by
interpolating between fields in the look-up table.

Calculation of votes using these precomputed look-up tables can be com-
putationally costly and inaccurate, especially when the number of dimensions
is increased. New analytic formulations for the voting fields can be found in
the works of Mordohai and Medioni (2010) and King (2008), which lead to
improvements in the generation and storage of voting fields for three and
higher dimensions in particular.

Vote Decay Function

In general, the magnitude of a vote is modulated based on how likely the
continuation of the hypothetical structure is. This can be evaluated based
on two of the Gestalt principles, which are proximity and smooth continu-
ation (Mordohai and Medioni, 2006). Therefore, the vote weighting can be
represented as a function of distance for proximity and curvature for smooth
continuation. Typically, saliency decays exponentially with distance squared.
As a result, two tokens placed at almost the exact same location will produce
extremely strong votes for each other, despite supplying very little new in-
formation regarding the local structure. This can easily lead to amplification
of small-scale noise, as well as introduce large effects from density variations.
In addition, the commonly used curvature decay function was designed for
computer vision applications, and therefore exhibits strange behavior when
distances are not defined in pixels. For example, the shape of the decay
function changes drastically as the voting scale parameter σ is varied, and is
completely invalid for σ values less than one.

A new weighting function for votes was derived by King (2008), which
solves the aforementioned issues. The intuition used in the derivation of the
new decay function is that tokens should have the strongest votes at a distance
of σ, as this is the expected feature scale. Any votes much closer or much
farther than σ will receive a lower weighting. Additionally, the curvature
decay function and the distance decay function are decoupled, eliminating
unwanted side effects caused by the choice of σ. This new way of choosing the
decay function has also been shown to provide smoother and more accurate
results (King, 2008).



42 3. MATHEMATICAL METHODS

Token Reduction

Typically, LIDAR point clouds contain a large number of points, with sizable
density variations. These density variations can skew the saliency results from
tensor voting in favor of densely sampled regions. Although there should be
some preference for detecting structures at denser regions, the emphasis on
these areas is usually too strong, preventing any structure inference at the
less dense regions. The input tokens are therefore subsampled in order to
unify the density and reduce the computation time. This is achieved in the
work of King (2008) by a multi-scale tensor voting method. We present an
adapted and simplified method for token reduction in Section 8.2.2.

3.5 Control Theory
Finally, this section summarizes some relevant concepts from control theory,
which are helpful for the understanding of the following chapters. We mainly
adhere to the terminology found in the books on robot motion planning
and control by Laumond (1998), on planning algorithms by LaValle (2006),
on optimal control by Bertsekas (2005), on cooperative control by Shamma
(2008) and on distributed control of robotic networks by Bullo et al. (2009),
where the interested reader will find further detail.

3.5.1 System Models
The general system model we use to describe a robot is given as the state
transition equation

ẋ(t) = f(x(t), u(t)) , (3.14)

with state x ∈ X and control input u ∈ U .
The motion of a robot is then expressed as the sequence of states, which

results in a path or trajectory.

Definition 3.3. A trajectory σ : X ×U ×R→ X relates the control input
u(t) through a system model f(x(t), u(t)) to the state x(t) evolving over
time t, where x0 = x(0) is the initial state of the system,

σ(x0, u, t) =
∫ t

0
f(x(τ), u(τ)) dτ + x0 . (3.15)

Note that a trajectory with the state space X limited to the position
subspace, e.g., given by the (x, y, z)-coordinates in the 3D workspace, defines
a path. Moreover, the trajectory limited to the 6D state space, resulting from



3.5. CONTROL THEORY 43

the full pose in the 3D workspace, which includes the (x, y, z)-coordinates of
the position and pitch, roll and yaw angles of the orientation, will be called
a 6-DoF path throughout this thesis.

The goal of path or motion planning is to generate a path or trajectory
for a robot, such that it is collision-free or feasible and preferably optimal,
i.e., feasible while also complying with some quality criteria.

Definition 3.4. A feasible path is a path γ : [0, 1]→ Ω, for the free space
Ω, such that γ(0) = p0 is the start position and γ(1) = g is the goal position
of the robot.

Definition 3.5. An optimal path is a path γ∗ = argmin
γ∈Γ

F(γ) for a given

cost function F : Γ → R≥0 and the set of all paths Γ, such that γ and thus
γ∗ are feasible.

Global path planning focuses on the planning of a global path from a
start to a goal region through the environment, i.e., a path which is of low
resolution and may even consist of a sequence of discrete path segments.
In contrast, local path planning generates a local path, i.e., a path along a
subpart or segment of the global path, and focuses on collision avoidance and
the actual motion planning of the robot.

A path planning algorithm is complete if it is able to determine, for any
input, if a feasible path for the robot exists (LaValle, 2006).

In robot systems, continuous and discrete or logical processes are often
to be combined. Hybrid systems offer a system model to describe the inter-
actions between continuous and discrete dynamics. In the broader sense, we
will refer to hybrid systems when describing coverage algorithms in Chap-
ter 4; our coverage algorithms combine different dynamics and switch between
different coverage states.

Unicycles and Differential-Drives, Bicycles and Car-Like Robots

For the methods presented in the following chapters it is sufficient to capture
the robots’ kinematics and model the systems by kinematic models.

A holonomic point robot can be modeled by a single integrator,

ẋ(t) = u(t) , (3.16)

where x = p. We use the single integrator model in our coverage solutions
at the high level of the system architecture.



44 3. MATHEMATICAL METHODS

The e-puck as well as the MagneBike robots (see Chapter 2.2) are nonholo-
nomic, i.e., the admissible motions are subject to nonholonomic constraints,
caused by the “rolling without slipping” condition between the wheels and
the ground (Laumond, 1998). In addition, both robot platforms are able
to move backward and to turn on the spot, which can come in useful if a
robot has to maneuver in narrow spaces or faces a dead end. Turning on
the spot furthermore allows for the implementation of bang-bang control-like
behaviors.

The e-puck robot can be modeled as a unicycle or differential-drive vehicle
in 2D workspace through the state transition equation

ẋ(t) =

cos (θ(t)) 0
sin (θ(t)) 0

0 1

 u(t) , (3.17)

with state x(t) =
[
x(t) y(t) θ(t)

]T ∈ R2 × S1, and control input u(t) =[
v(t) ω(t)

]T ∈ R2 set to the linear and angular velocity input. The (x, y)-
coordinates denote the position of a reference point of the robot in 2D
workspace with respect to a Cartesian world frameW , and the heading angle
θ is defined as the angle enclosed by the positive x-axes of the world frame
W and the local robot body frame B.

The MagneBike robot can be approximated by a simplified bicycle or car-
like model, i.e., there is a single front and rear wheel attached to the midpoint
of the front and rear axle of the robot and only the front wheel can be steered.
In case of MagneBike, both the front and the rear wheel are actively driven
but the wheel units are coupled by a deformation controller, which matches
the velocities of the front and the rear wheel3. As a consequence of this,
the MagneBike robot can be modeled as front-wheel-drive bicycle or rear-
wheel-drive bicycle, depending on what is beneficial for a given application
or controller design.

In case of rear-wheel driving, the system model is defined by

ẋ(t) =


cos (θ(t)) 0
sin (θ(t)) 0

tan (φ(t))/L 0
0 1

 u(t) , (3.18)

with state x(t) =
[
x(t) y(t) θ(t) φ(t)

]T ∈ R2 × (S1)2 describing the
position of the rear wheel, heading of the robot body as well as steering angle

3For further details of the robot’s low-level controllers, refer to Tâche (2010).



3.5. CONTROL THEORY 45

of the front wheel, and control input u(t) =
[
vrear(t) ς(t)

]T ∈ R2, given as
the rear wheel’s driving velocity and the front wheel’s steering velocity input.
L denotes the distance between the front and the rear wheel.

If the robot is modeled with front-wheel driving, we get instead

ẋ(t) =


cos (φ(t)) cos (θ(t)) 0
cos (φ(t)) sin (θ(t)) 0

sin (φ(t))/L 0
0 1

 u(t) , (3.19)

where the control input u(t) =
[
vfront(t) ς(t)

]T ∈ R2 now is given as the
front wheel’s driving and steering velocity input. The front-wheel-drive model
from Equation (3.19) is equivalent to the kinematic model of a differential-
drive robot pulling a trailer, which represents the rear wheel unit of the
car. Alternatively, the same equation can be expressed in the simpler form of
Equation (3.17) as a differential-drive robot if the direction of the front wheels
are not explicitly considered and the control input u2 is directly assumed as
φ(t) instead of ς(t) = φ̇(t). For Equation (3.17), the velocity of the reference
point on the rear wheel, vrear(t), and the angular velocity around the rear
wheel, ω(t), are obtained by an input transformation as the new control
inputs of the system. The original control input u(t) =

[
vfront(t) φ(t)

]T ∈
R2 is related to vrear(t) and ω(t) through

φ(t) = cot(ω(t) L/ vrear(t)) , (3.20a)
vfront(t) = vrear(t) / cos (φ(t)) . (3.20b)

The main difference of the reformulation of a front-wheel-drive as a differen-
tial-drive model in comparison to the real differential-drive robot is in the
admissible controls, i.e., the feasible paths of the modeled bicycle robot are
bound in curvature by a maximum value of 1/L (Laumond, 1998).

3.5.2 Gradient Descent Controller
A control law or controller of a robot applies control inputs from the con-
trol space U to the system model of Equation (3.14). For real applications,
open-loop control is often not satisfactory due to unmodeled disturbances in
the robot’s motion or environment, and due to noise in the robot’s sensing.
A state-feedback controller observes the state of the system and can track
a trajectory during execution. Feedback control defines the control policy
π : X → U .



46 3. MATHEMATICAL METHODS

The gradient descent method is defined by the iterative algorithm xk+1 =
xk − ck ∇f(xk)T, with f : RN → R and positive step size ck (Luenberger
and Ye, 2008).

A gradient descent controller can be defined for positive gain k1 as

u(t) = π(x(t)) = − k1 ∇F(x(t))T
, (3.21)

with the cost function F : X → R defined over the state space. This is directly
related to potential functions and navigation functions (LaValle, 2006). We
can also write more generally for the positive control gains k1 and k2

u(t) = k1 z(t) = k2 ẑ(t) , (3.22)

where z is given as a function of the negative gradient, −∇F .

3.5.3 Cooperative Control
Shamma (2008) describes cooperative control concisely as the control of an
overall system that is comprised of “a collection of decision-making com-
ponents with limited processing capabilities, locally sensed information, and
limited inter-component communication, all seeking to achieve a collective
objective”. Throughout this thesis we will come across several systems and
algorithms which fall into the category of cooperative control, all exhibiting
a subset of these characteristic properties.

Voronoi Coverage

A common objective in the coordination of multiple robots is the coopera-
tive deployment and coverage of an environment. Cortés et al. (2004) in-
troduced a motion coordination method for coverage control with mobile
sensor networks, which builds on aggregate objective functions from loca-
tional optimization. As a direct consequence, the method exhibits strong
links to centroidal Voronoi tessellations, and we refer to Section 3.3.1 repeat-
edly throughout this section. We revisit the most important concepts of the
coverage method by Cortés et al. (2004) in the following, since it lays the
foundation for a large part of the developments in this thesis. We will refer
to the method as Voronoi coverage from now on.

The problem of deploying multiple robots and covering an environment
can be formulated as the optimization of the aggregate objective function
H(P). The objective function is defined over the free space Ω ⊂ RN and
depends on the robot positions P ∈ Ωn, with a total of n robots ri in the
network.



3.5. CONTROL THEORY 47

The domain Ω is assumed to be a convex polytope. Further, let h : R≥0 →
R be a performance function to measure the degradation of the coverage per-
formance with distance, e.g., the degrading performance of sensor measure-
ments when distance increases, and d : Ω2 → R≥0 be the function to measure
distance between locations q and robot positions pi in Ω. d(q, pi) may define
a metric in Ω but that is no necessary requirement. The function h shall be
strictly increasing over the image of d. Finally, given a (distribution) density
function ρ : Ω→ R≥0, the objective function is

H(P) =
∫

Ω
min

i∈{1, ..., n}
h(d(q, pi))ρ(q)dF (q) = EΩ, ρ

[
min

i∈{1, ..., n}
h(d(q, pi))

]
.

(3.23)
EΩ, ρ is the expected value of the degradation in coverage performance, which
we aim to minimize.

One of the key concepts of the coordination method is that each robot ri
takes responsibility for a region Yi, which we call the region of dominance of
the robot. This results in a tessellation or partition of Ω, consisting of the
collection of n regions, Y = {Yi}ni=1, with disjoint interiors and

⋃n
i=1 Yi = Ω.

The aggregate objective function can be rewritten as the coverage functional
or coverage cost

H(P, Y) =
n∑
i=1

h(pi, Yi) =
n∑
i=1

∫
Yi

h(d(q, pi)) ρ(q) dF (q) . (3.24)

The coverage cost of Equation (3.24) must be minimized with respect to the
robot positions P as well as the partition of space Y.

Equation (3.23) and Equation (3.24) represent the classical facility loca-
tion problem or continuous p-median problem (Okabe et al., 2000). As we
have seen in Section 3.3.1, for fixed robot positions, the optimal partition Y is
the Voronoi tessellation. In similar fashion, we define the generalized Voronoi
tessellation V(P) = {Vi}ni=1, with respect to the distance function d(q, pi)
and generators located at the positions of the robots P. The coverage cost
becomes

HV(P) =
n∑
i=1

h(pi, Vi) =
n∑
i=1

∫
Vi

h(d(q, pi)) ρ(q) dF (q) , (3.25)

and the Voronoi regions Vi are given as

Vi = {q ∈ Ω | d(q, pi) ≤ d(q, pj), ∀j ∈ {1, ... , n} , j 6= i} . (3.26)

A minimizer of HV(P) is found at the CVT, where each generator p∗i is
located at the centroid cVi of its Voronoi region Vi. For the general functions



48 3. MATHEMATICAL METHODS

h and d, a generalized centroid is computed as

cVi = p∗i = argmin
pi∈Vi

∫
Vi

h(d(q, pi)) ρ(q) dF (q) . (3.27)

The coverage cost in Equation (3.25) is now minimized by continuously mov-
ing each of the robots ri toward the generalized centroid cVi of its Voronoi
region Vi, while the partition V(P) is updated simultaneously. This com-
plies with the theory on Voronoi tessellations introduced in Section 3.3.1.
Note that the original Voronoi tessellation and CVT after Definition 3.1 and
Definition 3.2 are recovered for the Euclidean distance function, d(q, pi) =
‖q − pi‖2. Figure 3.3 provides an illustration.

A robot ri and a robot rj are said to be Voronoi neighbors if their Voronoi
regions Vi and Vj are adjacent. The neighborhood of a robot ri is then
specified by Ni, the set of indices of all the |Ni| Voronoi neighbors rj of ri.

Now, we are interested in finding local minima of the coverage cost,

min
P,Y
H(P, Y) = min

P
HV(P, V(P)) = min

P
HV(P) . (3.28)

The Voronoi tessellation V(P) minimizes the cost for given P and does no
longer need to be included explicitly. As shown by Du et al. (1999) and Pi-
menta et al. (2008), a necessary condition in order to minimize HV(P) is

∇piHV(P) = ∇pih(pi, Vi) =
∫
Vi

∇pih(d(q, pi)) ρ(q) dF (q) = 0T .

(3.29)
Note that the computation of the cost h(pi, Vi) as well as the partial deriva-
tives with respect to the position of the robot ri,∇piHV(P) and∇pih(pi, Vi),
respectively, only depend on the robot position pi and the positions of its Vo-
ronoi neighbors given by Ni. The partial derivatives can thus be distributed,
and one can say they are “decentralized in the sense of Voronoi” (Cortés
et al., 2004). See also Figure 3.4 on the left for further description of the
distributed computation of the CVT.

The configuration of a multi-robot system whose robots ri act as genera-
tors, and have optimized the coverage cost of Equation (3.25) by converging
to a final configuration that corresponds to a CVT, is called a centroidal
Voronoi configuration. As discussed in Section 3.3.1 and shown in the works
by Du et al. (1999), Cortés et al. (2004), and Pimenta et al. (2008), the Lloyd’s
algorithm can be used for implementing such a behavior. The multi-robot
system is typically modeled by the kinematic model of the single integrator
after Equation (3.16) and the gradient descent controller of Equation (3.21)



3.5. CONTROL THEORY 49

Figure 3.3: CVT and Voronoi coverage. A group of n robots ri covers the bounded
domain Ω ⊂ R2, which is a subset of the workspace W. The robots act as genera-
tor points of the Voronoi tessellation; they deploy and optimize the coverage cost
HV(P), where the robot positions are given by P = [pi]ni=1 ∈ Ωn.

Figure 3.4: Distributed computation and gradient descent. Left: The computa-
tion of the CVT is “decentralized in the sense of Voronoi”, i.e., each Voronoi region
only depends on the robot position pi and the positions of its Voronoi neighbors,
which are contained within twice the maximum distance from the robot to a point
at the boundary of the Voronoi region (solid red line). Right: The cost HV(P)
results from the integration of the distances from the robots at pi to each point q
in their Voronoi regions Vi. The Lloyd’s algorithm leads to a minimization of the
cost and implements a gradient control law that moves each robot toward the mass
center cVi of its Voronoi region.

is a common choice for the control (see Figure 3.4, right). We would like to
point out that the first-order dynamics of the model can generally be enforced
by a low-level controller that makes the robots behave like single integrators.



50 3. MATHEMATICAL METHODS

The choices for functions h and d depend a lot on the problem at hand.
For this thesis, the following choices are of relevance. We consider perfor-
mance functions h(d(q, pi)) = d(q, pi)p. For measuring distance, we look at
functions d(q, pi) =

∑m
l=1 ‖vl − vl−1‖p, i.e., the sum of distances along the

sequence of segments Sv0,vm = {v0v1, v1v2, ..., vm−1vm}, with v0 = q and
vm = pi. ‖x‖p defines the p-norm. Two common setups are:

• Setup 1: Euclidean distance. For p = 2 andm = 1, we get h(d(q, pi)) =
d(q, pi)2 and d(q, pi) = ‖pi − q‖2. The Euclidean distance is a stan-
dard choice for open space and convex domains.

• Setup 2: shortest path distance. For arbitrary p, we get the length of
the shortest path from q to pi defined over m segments, such that the
entire path is contained in Ω. For infinitesimal segment lengths, the
shortest path approximates the shortest geodesic. The shortest path
distance is used in the context of curved spaces and nonconvexities.

Let us in the following consider the specific case of setup 1 with h(d(q, pi)) =
d(q, pi)2 in more detail. The coverage cost of Equation (3.7) for Y = V
and Equation (3.25) become equivalent and each of the summands can be
reinterpreted as the polar moment of inertia of the Voronoi region Vi at
position pi,

JVi,pi =
∫
Vi

‖pi − q‖22 ρ(q) dF (q) ,

= JVi, cVi + MVi ‖pi − cVi‖22 . (3.30)

Here, the last equality follows directly from the parallel axis theorem known
from mechanics, and JVi, cVi defines the polar moment of inertia of the Voro-
noi region Vi with respect to its centroid cVi . The parallel axis theorem after
Huygens-Steiner is stated in the book by Semat and Katz (1958) as follows.

Theorem 3.1. (Parallel Axis Theorem) If the moment of inertia of a body
about an axis through its center of mass is known, the moment of inertia of
the body about any axis parallel to the first is given by the moment of inertia
about the axis through the center of mass plus the product of the mass of the
body by the square of the perpendicular distance between the two axes.

Using Equation (3.25) and Equation (3.30), the coverage cost can be
expressed by

HV(P) =
n∑
i=1

JVi, cVi +
n∑
i=1

MVi ‖pi − cVi‖22 , (3.31)



3.5. CONTROL THEORY 51

and the partial derivatives are calculated as

∇piHV(P)T = ∇pih(pi, Vi)T = − 2MVi (cVi − pi) . (3.32)

From this equation together with the condition ∇piHV(P) = 0T we find
again that the centroids cVi are critical points p∗i of HV(P). Moreover, it
becomes apparent that Equation (3.32) indeed corresponds to the gradient
descent method from optimization. The control law can be implemented
accordingly as the linear proportional gradient descent controller given by
Equation (3.21),

ui = − k1, i ∇pih(pi, Vi)T = k2, i (cVi − pi) , (3.33)

with positive control gains k1, i and k2, i.
Finally, we turn toward the analysis of the convergence of the Lloyd’s

algorithm. Cortés et al. (2004) distinguishes the continuous-time from the
discrete-time Lloyd’s algorithm. Lloyd’s algorithm, as it is introduced in Sec-
tion 3.3.1 and originally formulated by Lloyd (1982), represents the discrete-
time version. A continuous-time version, where both robot positions as well
as partitions change in continuous time, is particularly relevant for robotics.
The following two propositions are taken and adjusted from Cortés et al.
(2004). They show the algorithm’s completeness and asymptotic convergence
to a local minimum.

Proposition 3.2. (Convergence of Discrete-Time Lloyd’s Algorithm)
Let L be a continuous mapping L : Ωn → Ωn with the following properties:

(1) ‖Li(P)− cVi‖ ≤ ‖pi − cVi‖ , ∀i ∈ {1, ... , n} and Li the ith-component
of L, i.e., the distance to a centroid is not increasing.

(2) If pi 6= cVi , ∀i ∈ {1, ... , n}, then there exists a j, such that∥∥Lj(P)− cVj
∥∥ < ∥∥pj − cVj

∥∥, i.e., at least one robot moves toward its
centroid at each iteration.

With P0 the vector of initial robot positions, the sequence
{
Lk(P0) | k ∈ N

}
converges to the set of centroidal Voronoi configurations. If this set is finite,
then the sequence

{
Lk(P0) | k ∈ N

}
converges to a single centroidal Voronoi

configuration.

Proof. Convergence follows from the proofs by Cortés et al. (2004) and Du
et al. (1999).



52 3. MATHEMATICAL METHODS

Proposition 3.3. (Convergence of Continuous-Time Lloyd’s Algorithm)
Under feedback control, the robot positions P = [pi]ni=1 converge asymptoti-
cally to the set of critical points [p∗i ]

n
i=1 of the coverage cost HV(P), i.e., the

set of centroidal Voronoi configurations on Ω. If this set is finite, the robot
positions converge to a single centroidal Voronoi configuration.

Proof. Convergence follows from the proof by Cortés et al. (2004).

3.6 Summary
This chapter presents the mathematical background and theoretical concepts
which are central to this thesis. The used notation and terminology is de-
fined. We provide basics in differential geometry, which are used to describe
the geometry of curved surfaces. Voronoi tessellations from computational ge-
ometry are introduced. The tensor voting framework is presented as method
for structure inference from point cloud data. Furthermore, concepts related
to control theory, such as system models, the planning of feasible and opti-
mal paths, as well as the Voronoi coverage method for the control of multiple
robots, are described.



Chapter 4

The Concept of Hybrid
Coverage

Coverage of workspace is an elementary task, which arises in multi-robot sys-
tems. Multi-robot coverage methods describe how multiple robots coordinate
and partition their work load and workspace among each other. Depending
on the tasks, which a group of robots has to accomplish, robot coverage
can have different meaning: coverage equally involves static and dynamic
robot distributions, and notions of sensing as well as actuation. Robot loca-
tions in mobile sensor networks for instance are optimized to provide good
communication and sensor coverage of the environment (Bullo et al., 2009).
Similar approaches lead to robot deployments that guarantee fair distribu-
tion of work loads among robots or short response times when providing
services to allocated sites (Pavone et al., 2009). Another class of coverage
tasks requires more permanent movements. In order to continuously monitor
an environment, to inspect complex structures, or to apply tools to a surface
in manufacturing, the robots perform coverage by sweeping through their
workspaces (Choset, 2001).

In view of these different notions of coverage, we formulate the concept
of hybrid coverage. The hybrid coverage concept will provide us with a ba-
sic formulation for the coverage by multiple robots throughout this thesis.
Hybrid coverage combines deployment and sweeping motion by performing
one after the other. Depending on the particular setup and algorithms used,
either deployment follows sweeping, sweeping follows deployment, or both
are interleaved.

The hybrid coverage concept is motivated by the multi-robot inspection
task, which is to search for cracks in industrial environments with groups of

53



54 4. THE CONCEPT OF HYBRID COVERAGE

climbing robots, as outlined in the introductory chapters above. The central
objective is to find weak points in the structure of an installation. In order
to guarantee that a structure is safe and free of defects, a search must allow
for complete coverage. Coverage in this context may just require to monitor
an area from a certain distance by means of an imaging sensor but can also
include visiting every surface location with a contact sensor. The use of
multiple climbing robots and moving sensor probes along a surface eventually
leads to deployment and sweeping. The concept of hybrid coverage looks at
ways to combine deployment and sweeping with respect to the multi-robot
inspection task in particular. However, the hybrid coverage concept is flexible
enough, and, as will be shown below, can also describe tasks of multi-robot
systems that are different from inspection.

We make use of the hybrid coverage concept to develop hybrid cover-
age solutions; such methods may build on and combine well-known coverage
concepts from robotics literature. Moreover, the concept of hybrid coverage
helps us to (re)think about coverage problems in a more unified way.

The hybrid coverage concept has first been mentioned at the Interna-
tional Conference on Autonomous Agents and Multiagent Systems (Breiten-
moser et al., 2010c). Our work presented at the International Symposium
on Distributed Autonomous Robotic Systems describes a specific implemen-
tation under the hybrid coverage concept for the inspection of curved sur-
faces (Breitenmoser et al., 2012). Related concepts are found again in our
work on multi-robot pattern formation for robotic image and animation dis-
plays (Alonso-Mora et al., 2011, 2012b,c; Hauri et al., 2012).

We start in Section 4.1 with an overview on related coverage methods,
which are useful components for the development of hybrid coverage methods.
A definition of the hybrid coverage concept in Section 4.2 is followed by
several exemplary variants of hybrid coverage in Section 4.3. Some of these
variants are further evaluated by simulations and discussed with regard to
their application to the MagneBike robots and the inspection scenario in
Section 4.4. The summary in Section 4.5 concludes the chapter.

4.1 Related Work
Gage (1992) distinguishes three coverage behaviors in his considerations on
how to command and control a many-robot system for the use in military
applications: barrier, sweep and blanket coverage. Barrier coverage has the
overall objective of clearance, and can be thought of, e.g., in a context of
pursuit-evasion, as arranging robots on a barrier, such that the probability
of penetration is minimized. Sweep coverage aims at moving multiple robots



4.1. RELATED WORK 55

across an area, such that the number of detections of targets per time is max-
imized and the number of missed detections per area is minimized. Finally,
blanket coverage deals with the deployment of a group of robots into a static
final robot configuration over an area, such that the detection rate of events
appearing in this area is maximized. Among the three, sweep and blanket
coverage are particularly important for us, since they reflect two substan-
tially different behaviors1. Whereas blanket coverage focuses on the spatial
deployment of a group of robots, sweep coverage involves the dynamic cov-
ering of space, where the robots visit varying locations for servicing. Gage
(1992) further recognizes the importance of commanding a group of robots
as a whole, which is also relevant for coverage; abstractions on groups have
been studied by Belta and Kumar (2004) and Ayanian and Kumar (2010),
among others.

A prominent example for blanket coverage is the deployment of a mobile
sensor network (Cortés et al., 2004), as outlined in Section 3.5.3. Closely
related are techniques for surveillance and monitoring (Ganguli et al., 2007),
or environmental monitoring and sampling (Schwager et al., 2006) with net-
worked robots, which originate from applications in static wireless sensor
networks. Examples for sweep coverage, or so-called coverage path planning,
are reviewed in the survey by Choset (2001), and find applications in cleaning
and painting, mowing and harvesting in agriculture, or industrial inspection
and humanitarian demining.

Choset and Pignon (1997), Atkar et al. (2001, 2005) and Rekleitis et al.
(2004) introduce coverage algorithms that work for single and multiple robots
as well as in planar environments and on surfaces embedded in 3D space.
These coverage algorithms are based on the Boustrophedon decomposition.
The robots’ free space is decomposed into cells which can be covered with
simple back-and-forth sweeping motions. The cells are created by sweeping
a (virtual) vertical line through the environment; when the line is broken
due to obstacles, a critical point is generated and new cells are formed. The
robots then visit one cell after the other, and coverage of all the cells finally
results in complete coverage of the free space. An alternative is to construct
a covering spanning tree over an area (Agmon et al., 2006). Online and
offline algorithms for single and multiple robots exist for the tree generation.
By moving along the spanning tree, the robots cover the area, which finally
results again in complete coverage.

1According to Gage (1992), formation control, deployment and recovery are seen as
independent behaviors besides coverage; in our interpretation of the concepts proposed
by Gage (1992), instead, we view coverage as a superior task, which may be composed in
parts of deployment or formation subtasks.



56 4. THE CONCEPT OF HYBRID COVERAGE

Completely different approaches, which lead to alternative solutions to
coverage problems, are found in swarm-based methods, which use either bio-
inspired techniques like flocking and foraging, or physics-inspired techniques
like particle systems. Among the methods for modeling flocks, we would like
to mention the fundamental work by Reynolds (1987), and its reinterpreta-
tion under control theoretical aspects by Olfati-Saber (2006). Both describe
flocking by the three fundamental steering behaviors of coherence, separation
and alignment. Wagner et al. (1999) considers coverage of terrain by robots
which leave traces that evaporate over time, mimicking stigmergy, i.e., the
coordination by pheromones in nature. Another approach to swarm-based
solutions results from so-called physicomimetics (Spears et al., 2006); robots
are modeled and controlled as particles in a fluid or gas, following kinetic
theory. The robots move dynamically in space and coverage conforms to
stochastic predictions.

4.2 Hybrid Coverage Solutions
The hybrid coverage concept approaches the multi-robot coverage task by
combining deployment with sweeping motion, or in other words, by the com-
bination of blanket and sweep coverage. A hybrid coverage solution consists
of two stages and is realized in one of the following two ways.

Definition 4.1. Hybrid coverage of the first type (type 1) conceptualizes a
coverage method where, in the first stage, the robots spread out locally to
cover an area while interaction keeps them in formation. In the second stage,
the entire robot formation moves along distinct regions of the environment
on the high level.

Definition 4.2. Hybrid coverage of the second type (type 2) conceptualizes
a coverage method where, in the first stage, the robots deploy cooperatively
within communication range and assign regions of operation to each other,
which results in a partition of the given area. In the second stage, each of
the robots takes care of its assigned region and sweeps over it locally.

The basic concept of hybrid coverage is described by two states, each
representing one of the two stages, and three loops, as shown in Figure 4.1
and Algorithm 2. Two of the loops, one per stage, keep the algorithm in the
current state, whereas the third loop represents a switch between the two
stages, which results in the transition from one state to the other. Figure 4.2
illustrates both the hybrid coverage of the first type and the hybrid coverage
of the second type.



4.3. VARIANTS OF HYBRID COVERAGE 57

deploy sweep

deploy

sweep

Figure 4.1: Concept of hybrid coverage. Top: Hybrid system for coverage, based
on the two states of deployment and sweeping motion. Bottom: Deployment motion
or blanket coverage (left) and sweeping motion or sweep coverage (right) by multiple
robots (black disks).

Algorithm 2 Hybrid Coverage Algorithm
Require: Set of n robots, provided with modules for sensing, localization,

environment modeling, communication and planning, as specified in Sec-
tion 3.1. Subroutines that implement the two stages of deployment and
sweeping for the required type of hybrid coverage.

1: loop {Coverage Main Loop}
2: if (state == DEPLOY) then
3: Deploy(type) // “blanket coverage”
4: end if
5: if (state == SWEEP) then
6: Sweep(type) // “sweep coverage”
7: end if
8: end loop

4.3 Variants of Hybrid Coverage
Next, we present several variants of the hybrid coverage concept, both for
type 1 as well as type 2. Our goal in the following is to provide some demon-
strative examples, which explain the rather general and abstract hybrid cov-
erage formulation given in the definitions of the previous section.



58 4. THE CONCEPT OF HYBRID COVERAGE

sweep

deploy

sweepdeploy

sweep

sweep

sweep

sweep

Figure 4.2: Two types of hybrid coverage. Left: Hybrid coverage of the first type
(type 1). Right: Hybrid coverage of the second type (type 2).

4.3.1 Examples for Hybrid Coverage of Type 1
Concerning the hybrid coverage concept of type 1, the combination of mul-
tiple robots into groups, i.e., the abstractions on groups of robots, plays a
central role (Ayanian and Kumar, 2010; Belta and Kumar, 2004). While the
individual robots spread out and sweep a local area, the robots coordinate
their motion and stay in a group. The group of robots is directed on the
high level along a sweeping pattern through the environment. Thereby, the
group of robots can be organized by general methods of multi-robot forma-
tion control. This leads to a tight coupling and coordination of the robots
within the group. In the following two examples, we use flocking behaviors
and elements from Voronoi coverage together with the abstraction on groups.

Coverage by Flocking and Sweeping

This first example shows a straightforward realization of the hybrid coverage
concept of type 1 (see Figure 4.2 on the left, and Figure 4.4 for the realiza-
tion of the concept). The coverage solution builds on a reactive approach,
which is inspired by Koenig and Liu (2001) and is in line with the steer-
ing behaviors of Reynolds (1987); alternatively, the steering behaviors could
be implemented by the consensus-based approach suggested by Olfati-Saber
(2006).

Multiple robots are required to search an area as a group. The group
of robots is controlled at high level by a main sweep direction, which forces
the robots to move in the same direction and follow a common sweeping
path. The individual robots map locations which they have already covered,
using a grid representation. They scan the grid map continuously in order to
determine their optimal moving direction. Each robot calculates the number
of uncovered cells in each direction, 360◦ around its current position, within



4.3. VARIANTS OF HYBRID COVERAGE 59

a maximum scan radius2. This gives a basic direction count, which is stored
in an angular histogram (see also Figure 4.4, right). Typically, uncovered
cells near the robot get higher priority and are counted several times (this is
a first contribution of the enhancement rule, one of the used behavioral rules
described in the following). Accordingly, a robot always tries to move over
uncovered cells to reduce redundant coverage. A set of simple behavioral
rules describes the utility of each direction for the robot. The following set
of behavioral rules is used in our solution:
• Attraction. The attraction rule accounts for cohesion. The robots must
stay in a group in order to maintain communication. Therefore, single
robots which are positioned farther away than a critical distance from
the group’s center are attracted back to the center. In addition, direc-
tions pointing away from the center are valued lower than directions
toward the center.

• Repulsion. The repulsion rule achieves separation. In order to avoid
collisions, directions that lead to collisions are devalued.

• Enhancement. The enhancement rule includes alignment. Changing
the moving direction is costly in general. Directions close to the current
moving direction are weighted higher and a robot’s need for frequent
turning is decreased. In addition, directions aligned with the main
sweep direction are enhanced.

According to these behavioral rules, the direction count is weighted. For
each rule, the directions in the angular histogram are scaled by multiplying
with a Gaussian distribution. The distribution is centered around a desired
moving direction, which represents the behavioral rule. The distribution’s
standard deviation encodes the strengths of the weighting factors into the
different directions. After the direction count has been calculated and scaled
by all the behavioral rules in sequence, the robots choose their final moving
direction to be the direction with the highest resulting direction count.

The main sweep direction can either be given externally from a higher-
level controller or human input, or is determined by the robots themselves.
For a regular update of the main sweep direction, the robots record the
uncovered cells in every direction over a certain time period, and finally
agree on a new main sweep direction. The new main sweep direction is the
direction with most uncovered cells, resulting from the cumulated direction
counts of all the interacting robots in the group.

2Note that the robots must consider the number of times a cell in their map has been
covered, and not only count the number of uncovered cells, if the complete coverage of an
area needs to be guaranteed.



60 4. THE CONCEPT OF HYBRID COVERAGE

Shape- and Goal-Based Pattern Formation

Pattern formation is—even though less apparent—another example that can
be viewed as a variant of the hybrid coverage method of type 1. Let us assume
a group of robots is locally distributed to represent a given pattern, such as
an input image in our case. The input image is preprocessed by segmentation
and the image areas that need to be represented by the robots are selected.
The representation of a selected image area with a group of robots can be
reinterpreted as a multi-robot coverage problem: multiple robots are to be
deployed locally in order to cover the projection of the selected image area in
their workspace. This relates to the first stage of the hybrid coverage concept.
Now, if we are furthermore interested in moving patterns, such as image areas
evolving over a sequence of input images in an animation or video, the entire
robot formation will move over the workspace in order to represent a moving
pattern. And we notice that this just complies with the second stage of the
hybrid coverage concept.

In the following, we present a brief overview of our shape-based as well as
goal-based pattern formation algorithms for animation display. As pattern
formation is not the topic of this thesis, however, we will not go into all the
details. For a thorough discussion of the topic, the reader is referred to Hauri
et al. (2012) regarding shape-based pattern formation and to Alonso-Mora
et al. (2011, 2012b,c) regarding goal-based pattern formation. We here limit
ourselves to a consideration of the algorithms in light of the hybrid coverage
concept.

The shape-based pattern formation algorithm again relies on flocking af-
ter Reynolds (1987) but is now implemented by the consensus-based approach
of Olfati-Saber (2006). The original steering behaviors are complemented
with an additional shape-steering rule that constantly drives the robots to-
ward the interior of a selected image area. Robots outside the image area
are attracted toward the area and robots located on the contour of the image
area are pulled inside. Robots that reside in the interior of the image area are
no longer influenced by the shape-steering rule. They deploy locally under
the original steering behaviors of coherence, separation and alignment, and
eventually adopt the shape of the image area. The algorithm makes use of
different types of α-, β- and γ-agents to model the steering behaviors (Olfati-
Saber, 2006). For each robot, a disk which is centered at the current robot
position is intersected with the image area. The shape-steering rule is then
implemented by additional γ-agents, which appear in one of two configura-
tions: a robot on the outside is attracted by a γ-agent located on the contour
within shortest Euclidean distance, whereas a robot in the inside is attracted



4.3. VARIANTS OF HYBRID COVERAGE 61

by a γ-agent which is positioned at the centroid of the area that results from
the intersection of the disk with the image area.

The image area may be transformed from frame to frame in the anima-
tion, and thus the robot formation is dragged along by the moving shape,
which realizes shaped flocking.

An alternative approach is to explicitly determine the goal positions of
individual robots within the selected image area, which leads to a goal-based
representation of the image. The goal positions are distributed over the
selected image area by computing a CVT, which bears similarities to Voronoi
coverage. At each frame, the set of goal positions is updated and reassigned
to the set of robots using an auction algorithm. The robots move to their
assigned goal positions while avoiding collisions locally, which results in a
robot formation. The selected image area may again be moved through a
sequence of input images. The goal positions need to be updated in this
case. An estimate for the translation of the goal positions is obtained from
the translation of the centroid of the image area between two subsequent
frames. The rotation of the goal positions is estimated by matching the
contour of the current with the previous image area. From these estimates,
the new goal positions can be initialized, and they finally result from the
computation of the CVT. The initialization reduces computation time and
disparities between subsequent goal sets. The robots track the new goal
positions and the formation moves again along a sweeping path at the high
level.

4.3.2 Examples for Hybrid Coverage of Type 2

The hybrid coverage concept of type 2 is essentially based on the classical
principles of cell decomposition (Choset and Pignon, 1997; LaValle, 2006).
The decomposition of an environment may depend on the environment ge-
ometry, on the robot configuration, or on both of them. A group of robots
deploys and collaboratively partitions the environment. Once the environ-
ment is decomposed, the robots allocate regions of the environment among
each other. The allocation process can be implemented by standard task
assignment methods. After decomposition, each robot starts to cover its as-
signed region. If the regions need to be swept completely, the robots generate
sweeping patterns or space filling curves within their regions. The cell de-
composition of the first stage leads to loose robot coordination. In the second
stage, the robots may fulfill their coverage tasks independently, being only
loosely coupled, or even decoupled for limited time periods.



62 4. THE CONCEPT OF HYBRID COVERAGE

Coverage by a Robotic Band

This is a first example for a hybrid coverage method of type 2. The coverage
solution generates an exact cellular decomposition similar to the approach
of Rekleitis et al. (2004) and achieves spatial coverage according to Spears
et al. (2006). At start, a group of robots forms a robotic band (see Figure 4.5).
Two robots limit the operation area of the entire band on the left and on the
right side perpendicular to a main sweep direction. If the operation area is
bounded, the two robots follow the boundary of the environment. All the
other robots line up in-between. The main sweep direction is either preset or
determined by the robots collectively. The robots move in parallel formation
and deploy on the search for critical points in the main sweep direction. Crit-
ical points define boundaries of adjacent cells in the decomposition. Linked
to each critical point is a cell as well as a new open task to accomplish (e.g.,
a coverage task). When a critical point is detected by the robotic band, one
of the robots from inside the band is assigned to the cell and left behind to
sweep the cell. By leaving robots behind for coverage, as the robotic band
advances, a robot network is established across the area, over which infor-
mation can be communicated among the deployed robots. In particular, this
network is used to assign open tasks to idle robots.

We distinguish five different types of critical points:

• START critical point. The START critical point is set at the initial posi-
tion of the robots.

• IN critical point. The IN critical point is instantiated when the robotic
band is separated by an obstacle and line-of-sight between robots in
the band is lost.

• MIDDLE critical point. The MIDDLE critical point occurs (1) when the
distance to the previous critical point exceeds a given maximum dis-
tance, or (2) when the spanned cell area becomes equal in size to the
area of previously created cells. In the first case, the robots retain the
possibility of relative localization among each other and prevent loss of
communication. In the second case, the robots realize equal cell sizes
for a balanced partition of the environment.

• OUT critical point. The OUT critical point terminates an obstacle. It
is set by a robot after following an obstacle boundary and suddenly
finding itself moving against the main sweep direction.



4.3. VARIANTS OF HYBRID COVERAGE 63

• END critical point. The END critical point results when two robots follow
the boundary of the environment or the specified operation area, and
finally meet each other.

For the representation of the critical points and the cells through which they
are connected, we use a so-called Reeb graph (Rekleitis et al., 2004). The
Reeb graph GR = {VR, ER} keeps track of the set of critical points, which
are the graph’s vertices v ∈ VR, and the cells connecting them, which are the
graph’s edges e ∈ ER. The Reeb graph additionally stores information on
the status of the cells, e.g., if a cell has been covered. Each robot constructs
its own Reeb graph of the environment and updates the Reeb graph as soon
as a new critical point is detected.

There are many possibilities of how to handle critical points and their
related tasks. For example, if an IN critical point is detected shortly after
a MIDDLE critical point, a cell with small area is created. The robotic band
may not leave a robot behind for covering the cell but instead adds the
coverage task to a task protocol. As soon as a previously deployed robot has
completely covered its cell, it inherits the task of covering this nearby cell
with small area.

If an IN critical point is detected at an obstacle, the robotic band separates
into two groups, which both continue the deployment, one on each side of the
obstacle. At the point where only two robots are left, as all the other robots
have already been deployed, the robots issue a new open task for the one side
of the obstacle and continue deploying on the other side. The remaining two
robots move forward until three additional critical points have been created.
The first two critical points indicate the robots’ upcoming coverage work and
the third critical point serves as a starting point for a new task, at which
robots can gather after completion of their previous tasks.

Hybrid Voronoi Coverage

In the last example, we present yet another method that corresponds to the
hybrid coverage concept of type 2. The coverage solution combines Voro-
noi coverage, as described in Section 3.5.3, with subsequent sweeping of the
constructed Voronoi regions. It is similar to the previous example—just that
now the cell decomposition depends on the robot positions rather than on the
positions of detected critical points along the obstacle or environment bound-
aries. The method first spreads the robots into disjoint regions of dominance,
applying the Voronoi coverage method. Once the robots are deployed, each
robot takes care of its assigned Voronoi region and sweeps the region along a
covering path. Here, basically any space filling curve can be used, as long as



64 4. THE CONCEPT OF HYBRID COVERAGE

the kinematic constraints of the robots are met. Examples are swaths simi-
lar to those used in the Boustrophedon decomposition on planar and curved
surfaces (Atkar et al., 2001; Choset and Pignon, 1997).

Related concepts are found in multi-robot exploration (Haumann et al.,
2011; Solanas and Garcia, 2004). A CVT is computed to partition an un-
known environment and deploy one robot per region in a first stage. Each
robot becomes responsible for the exploration of its assigned region in a sec-
ond stage. The Voronoi regions can be static or may change dynamically as
the robots move through the environment.

4.3.3 Combination of Type 1 and Type 2
Moreover, hybrid coverage of type 1 and type 2 can be combined, which
leads to countless further variations. Typical combinations of hybrid cover-
age methods can be obtained by varying the scope and involving different
hierarchical levels. Figure 4.3 shows three examples.

In the first example, a hybrid coverage method of type 2 is combined with
a hybrid coverage method of type 1 on the low level by grouping several robots
together, which then sweep a decomposed cell (Figure 4.3, top left). Second,
a hybrid coverage method of type 2 is extended by hybrid coverage of type 1
on the high level. A group of robots deploys and covers a part of an area
under the hybrid coverage method of type 2. The robots then relocate and
redistribute to cover a next part of the area, again under the hybrid coverage
method of type 2. By iterating the hybrid coverage of type 2, the group of
robots moves along a sweeping path and in fact implements a hybrid coverage
method of type 1 (Figure 4.3, top right; see also Section 6.4.2). Another
example of hierarchical composition results from combining several hybrid
coverage methods of type 2 at different levels (Figure 4.3, bottom center). A
group of robots deploys into different regions, and in each region, a subgroup
redeploys into subregions, which finally leads to a subdivision of space. Such
hierarchical compositions also relate further to ideas of multi-resolution or
iterative deepening.

4.4 Results
So far, several hybrid coverage solutions have been proposed and existing cov-
erage methods have been reconstructed under the hybrid coverage concept.
In this section, we further evaluate three variants of hybrid coverage from
Section 4.3.1 and Section 4.3.2: “coverage by flocking and sweeping” (here-
after, denoted as variant 1), “coverage by a robotic band” (variant 2), and



4.4. RESULTS 65

sweep

sweep

sweep

sweep
deploy

deploy
deploy

sweep

deploy

deploy

deploy

deploy

deploy

Figure 4.3: Combinations of hybrid coverage. Top left: Hybrid coverage of type 2
combined with hybrid coverage of type 1 on the low level. Top right: Hybrid
coverage of type 2 combined with hybrid coverage of type 1 on the high level.
Bottom center: Combining several hybrid coverage methods of type 2 at different
levels.

“hybrid Voronoi coverage” (variant 3). We first present results from Matlab
simulations, and then discuss how the algorithms apply to the inspection task
and the MagneBike robots.

4.4.1 Comparison of Hybrid Coverage Algorithms
We analyze the algorithms on the basis of two polygonal 2D environments
with overall dimension of 3 m × 5 m: a free rectangular area (see Figure 4.4)
and a nonconvex area with a single triangular obstacle in the center (see
Figure 4.5). The number of robots is varied from 4 to 10. The robots move
with a fixed speed of 5 cm/s and their sensor footprint covers a circle with
radius 3 cm. The environments have a grid overlaid and the percentage of
coverage is computed from the number of covered cells at a given point in
time. The robots are assumed to be point robots; thus there is no strict
collision avoidance included in the simulations3. The robots are modeled
as single integrators and able to move in any direction. The simulations

3For implementations on real systems, local collision avoidance can either be embedded
directly into the coverage algorithms or be conferred to a controller on a lower level.



66 4. THE CONCEPT OF HYBRID COVERAGE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

5

6

  2.5

  5

30

210

60

240

90

270

120

300

150

330

180 0

  2.5

  5

30

210

60

240

90

270

120

300

150

330

180 0

  2.5

  5

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4.4: Coverage by flocking and sweeping. Coverage sequence of variant 1.
Left and center: A group of robots covers the free rectangular area. Right: The
angular histograms are shown for three robots while they are covering the area.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.5: Coverage by a robotic band. Coverage sequence of variant 2. A group
of robots covers the nonconvex area with a single triangular obstacle in the center.

are ideal in that no noise or physics, e.g., friction, are included and perfect
localization is assumed. The focus of the evaluation is on the resulting overall
robot behavior and the generated coverage paths.

A simple random coverage algorithm is included as an additional bench-
mark; each robot changes its direction at random whenever a boundary is
reached or another robot comes too close. Matlab’s uniformly distributed
pseudorandom numbers are used for generating the new angle of a direc-
tion update. The result for the random coverage algorithm in Figure 4.7
represents the average value over ten simulation runs.

Variant 1 weights the direction count depending on several behavioral
rules and thus needs a fair amount of tuning. The maximum distance a
robot is allowed to move away from the group’s center, all the Gaussian
distributions for scaling the direction counts, as well as the update frequency
of the main sweep direction must be adjusted. In contrast, variant 2 and
variant 3 require less tuning. The sweeping pattern needs to be defined



4.4. RESULTS 67

Figure 4.6: Hybrid Voronoi coverage. Coverage sequences of variant 3. A group
of robots deploys (top) and covers the free rectangular area by using either back-
and-forth (bottom left) or spiraling sweeping patterns (bottom right).

for both variants; the distance between back-and-forth motions is set to a
bit less than twice the robot’s sensor radius. For variant 2, we need to
specify the maximal cell size. In the simulations, we set the maximum cell
size to the optimal value with respect to the environment and number of
robots. Variant 3 requires a choice of performance and distance functions,
as well as of a density distribution; we use setup 1 from Section 3.5.3 and
a uniform density in the simulations. Typical sequences from coverage runs
with variant 1, variant 2 and variant 3 are shown in Figure 4.4, Figure 4.5
and Figure 4.6.

Simple Environments. Figure 4.7 presents the coverage over time, which
results from simulation runs with the three coverage algorithms for the free
rectangular area and varying group sizes. Clearly, we can say that a larger
group of robots reaches a specific percentage of coverage faster compared to a
smaller group. However, doubling the number of robots does not result in half
the coverage time in general. Effects of redundant coverage and coordination
overhead get noticeable.

All three variants outperform the random coverage algorithm; the random
coverage algorithm generally requires more than twice as much time to reach
95 % of coverage. Probabilistic or random coverage algorithms become only
competitive when the sensing tool is noisy, such that the increased redun-



68 4. THE CONCEPT OF HYBRID COVERAGE

0
500

1000
1500

2000

4

6

8

10
0  

20 

40 

60 

80 

100

 

Time [s]
Number of robots

 

Co
ve

ra
ge

 [%
]

Variant 1
Variant 2
Variant 3
Random

Figure 4.7: Comparison of hybrid coverage variants. Coverage over time for a
group of 4, 6, 8 and 10 robots in the free rectangular area for variant 1, variant 2,
variant 3 and the random coverage benchmark.

dancy in coverage resulting from the randomized solution can pay off (Gage,
1992; Pugh and Martinoli, 2007).

For this simulation, variant 1 uses a limited scan radius and only consid-
ers if a cell has been covered or not in the direction count, i.e., not counting
the number of times a cell has been covered. Thus, as seen from Figure 4.7,
complete coverage is not guaranteed; however, a final percentage of roughly
90 % of coverage is still reached in most cases. Note that the extension men-
tioned in the footnote of Section 4.3.1 can resolve this issue. Variant 1 slows
down after around 50 % of the environment is covered, since it becomes more
difficult to find uncovered cells and redundant coverage of cells is increasing.
Variant 2 and variant 3 are slower at the beginning, since the robots first
need to deploy; this in addition leads to redundant coverage. The methodi-
cal coverage of variant 2 and variant 3 finally pays off when the last 20 % of
the area to cover are reached. Variant 2 and variant 3 perform equally well
and achieve complete coverage of the free rectangular area.



4.4. RESULTS 69

More Complex Environments. Although variant 2 and variant 3 cover
environments of simple geometries well, they highly depend on the complexity
of the environment. Obstacles in the environment are not so much a problem
for variant 1, however, unequal cell sizes and idle times result for variant 2.
Moreover, nonconvex environments present a general challenge for variant 3,
as Voronoi coverage has originally been designed for convex environments
only. This is an issue which we will be concerned with in the upcoming
chapters. As can be seen from Figure 4.5 on the left in the case of variant 2,
obstacles introduce additional critical points, which leads to a higher number
of cells and split up robot bands. More critical points, cells and split-up
groups of robots mean an increased overall complexity of the system. Actions
to take at a critical point depend on the critical point’s type and the number
of robots available. The risk of missing robots for fulfilling a task increases,
and finally constrains robot subgroups to halt and wait for additional robots
to help.

Sweeping Patterns. Variant 2 and variant 3 require the robots to sweep
cells. Figure 4.6 shows several phases of variant 3 for six robots in the free
rectangular area, once using back-and-forth motion and once spiraling motion
for sweeping. As we assume constant speed in our simulation, the length of a
robot’s path grows linearly and is equal for both sweeping patterns. However,
depending on the pattern, the accumulated turn angle and the percentage of
coverage change over time. Turns are costly as a real robot has to slow down
or consider them in its trajectory. Therefore it is important to adequately
adjust cell shapes and available sweeping patterns under consideration of the
environment.

Search for Defects. With regard to the inspection task, we further inves-
tigated the search for defects in the environment. In our simulation, ten line
segments of varying length, which represent cracks, are randomly distributed
over the area. As soon as a robot moves over such a crack, the defect is con-
sidered to be detected. We find that the random coverage algorithm locates
the first defects faster than the three other coverage solutions, which is due
to the fact that the random coverage algorithm distributes the robots faster
over the whole environment. However, in each experiment the three coverage
solutions find the last of the ten cracks faster than the random coverage al-
gorithm. In an environment with many defects, a random sampling strategy
might be superior; however, under the assumption that the occurrence of a
defect is the exception, complete coverage is key to provide any guarantees.



70 4. THE CONCEPT OF HYBRID COVERAGE

4.4.2 Application of Hybrid Coverage to Inspection
Next, we discuss the three variants regarding their applicability to the in-
spection task and the MagneBike robots. As described in Section 2.2.1, the
MagneBike robots have a size of 18.5 cm × 14.3 cm × 17.0 cm, and a typical
NDT sensor probe has a diameter of around 3.0 cm. Therefore, due to the
substantial difference in the size of MagneBike and the size of the sensor foot-
prints, it is not possible to seamlessly cover the surface with all the robots
in side by side formation. The coverage solution of variant 1 adjusts the
distance between the robots by setting up attraction and repulsion appropri-
ately, whereas variant 2 and variant 3 assign every robot its own region to
provide for enough space. For all three variants it is possible that the robots
always stay connected in a group; communication and relative localization
between neighboring robots are enabled. The robots may localize themselves
independently with respect to the workspace, or estimate their global posi-
tions through relative localization to their neighbors (see also Chapter 9).

Robustness and Efficiency. Variant 1 is robust to single robot failure; if
a robot fails it is not included in the group anymore, and the remaining robots
rearrange. However, variant 1 does not optimize travel distance. Generated
paths traverse the environment repeatedly and from different directions and
positions. Even though MagneBike is able to negotiate diverse geometries,
certain maneuvers are more risky and time-consuming than others, and thus
should be greatly avoided.

Variant 2 is prone to failures of single robots, since robots in the band
formation depend on each other. Failure of a robot may lead to disconnec-
tion of a band. However, shorter paths compared to variant 1 are sufficient
to deploy the robots in the environment. Especially structures with preferred
directions, such as an axis of symmetry, or rotationally symmetric structures
like cylindrical tubes, can be covered efficiently. This motivates an implemen-
tation of variant 2 on the MagneBike robots, and to use it for the coverage
of the widespread symmetric and less complex industrial structures, with
potentially a priori known geometry.

Variant 3 falls between the first two variants. It combines benefits from
both sides, and applies more generally. Being mathematically well-defined,
complete and robust but less dependent on the environment geometry, which
is particularly useful for applications in a priori unknown environments,
makes variant 3 a meaningful candidate for the potential application to an in-
spection task, as outlined in Chapter 1. However, issues in handling obstacles
and curved surfaces exist, which need further study.



4.4. RESULTS 71

(a) (b)
Figure 4.8: Expert knowledge and user guidance. Left: A dense robot configura-
tion is induced around locations where a defect is expected. Right: Once a defect
(red line) has been detected, the robots can be commanded to align for collaborative
inspection or maintenance.

Expert Knowledge and User Guidance. The inspection task requires
the MagneBike robots to search for defects in the surface of the industrial
structures. For such a process, it is essential that robots are able to incor-
porate existing prior knowledge or expert knowledge. For instance, a human
expert or experienced inspector may indicate critical areas of a structure be-
forehand, and the robots must intensify their investigation near those areas
during inspection. Alternatively, an inspector may be given the possibility
to assist and influence the group of robots in order to adjust the coverage
process during runtime.

Variant 1 and variant 2 include a main sweep direction, which controls the
overall motion of the group of robots. The main sweep direction enables an
inspector to direct the robots to different areas of interest in an environment.
In addition, the inspection of specific areas can be intensified by influencing
the direction count of variant 1, or the cell size and lateral width of back-
and-forth motions in variant 2.

Variant 3 features a similar functionality. The density function ρ of the
Voronoi coverage method (refer to Section 3.5.3) can be used to gather robots
at areas of special interest. During inspection, an inspector can increase the
density values for the areas in the structure which are experienced to fail more
likely. The Voronoi regions get smaller and the robots get more time to spend;
a robot can inspect a critical area more thoroughly, or cover the area several
times, which increases robustness through redundancy (see Figure 4.8, left).



72 4. THE CONCEPT OF HYBRID COVERAGE

Besides, the density function allows for formation control. Multiple robots
can be controlled to form up along a defect for collaborative inspection or
maintenance (see Figure 4.8, right).

4.5 Summary
In this chapter, we propose the concept of hybrid coverage. The concept
combines methods from blanket and sweep coverage to design new hybrid
coverage solutions. We show two types of realization, which differ in the or-
der and scope deployment and sweeping motions are combined. The hybrid
coverage concept furthermore offers an alternative perspective to look at cov-
erage problems. Several variants of hybrid coverage have been demonstrated
by examples, and three hybrid coverage methods were evaluated for their use
in the inspection scenario.

A hybrid Voronoi coverage solution, which is a realization under type 2,
showed particularly interesting properties with respect to inspection. The
coverage solution deploys the robots by Voronoi coverage in the first stage.
Each robot is assigned to one Voronoi region, which provides enough space
for a single robot to maneuver. The robots sweep their assigned Voronoi
regions in the second stage.

In addition, the solution allows for extensions by a hybrid coverage method
of type 1, creating a hierarchical coverage solution. The solution can be ex-
tended on the lower level by grouping several robots together; instead of
single robots, several groups of robots now deploy and each group operates
in one of the Voronoi regions. Or, the solution is extended on the upper
level by repeated execution; once the Voronoi regions are swept, the robots
relocate and deploy again, which leads to incremental coverage of an area by
a growing sequence of bounded Voronoi tessellations along a sweeping path.

However, there remains an open question: How can Voronoi coverage be
adjusted to cope with more realistic environments? This includes the oper-
ation under constraints. For inspection tasks in geometrically complex envi-
ronments, this includes concretely the operation under constraints imposed
by the environment’s geometry, such as nonconvexity and curved spaces. Vo-
ronoi coverage for such constrained environments will be our subject for the
next two chapters.



Chapter 5

Multi-Robot Coverage
under Constraints

In this chapter we show that complications occur when the original Voronoi
coverage method is applied to deploy a group of robots in nonconvex environ-
ments. Many approaches in multi-robot coverage assume environments that
are known, planar and convex, and use robots that are unconstrained. How-
ever, real-world applications impose various constraints on the robots. An
environment might be unknown a priori and the geometry of the environment
might be arbitrarily complex. Visibility of the robots’ sensors might be re-
stricted by occlusions. Moreover, the communication among robots and their
energy budgets might be limited. These constraints need to be taken into
consideration when designing algorithms for the control of multiple robots.

In our work, we focus on constraints given by the geometric complexity
of an environment. Motivated by realistic applications, we study multi-robot
coverage in known and unknown nonconvex environments, including areas
with free-standing obstacles and areas with nonconvex boundaries. In such
nonconvex environments, two points cannot be connected by a straight line
that is fully contained in the environment anymore, which complicates the
robot coverage. If an environment is also unknown, the environment needs
to be explored by the robots before or during the coverage process.

In the following, we present a coverage solution formulated for continuous
space that builds on the Lloyd’s algorithm and a path planning algorithm.
The two algorithms are executed consecutively on an upper and lower level
in the hierarchical system. We implement a local path planner using the
TangentBug algorithm. The coverage solution spreads the robots over the
environment while taking care of the nonconvexities by the built-in obstacle

73



74 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

avoidance behavior. The robots explore obstacle boundaries and apply a goal
projection procedure to constrain outlying goal positions back onto the acces-
sible free space. The interaction between the two algorithms results in global
convergence of the robots to a final constrained centroidal Voronoi configu-
ration. In addition, an exploration solution related to Voronoi coverage is
proposed, which controls multiple robots to explore an unknown nonconvex
environment prior to coverage.

Portions of the research presented in this chapter appeared in the Interna-
tional Conferences on Robotics and Automation (Breitenmoser et al., 2010b;
Haumann et al., 2011). Section 5.1 starts with a discussion of related work
on Voronoi coverage that considers different types of constraints. In Sec-
tion 5.2, an overview of the TangentBug algorithm is provided. Section 5.3
describes our nonconvex coverage algorithm and its properties. Then, Sec-
tion 5.4 briefly explains the transformation to star-shaped domains, which
offers an alternative to handle nonconvexities. The nonconvex coverage algo-
rithm is tested in simulations and experiments with a group of e-puck robots
in Section 5.5. The chapter concludes with a summary in Section 5.6.

5.1 Related Work
A multi-robot coverage approach that has attracted considerable attention
in recent years is Voronoi coverage (Cortés et al., 2004). The reader refers to
Chapter 3, Section 3.5.3, for an introduction to Voronoi coverage. We limit
our literature review of coverage methods to Voronoi coverage methods and
their modifications to satisfy additional constraints. Constraints are typically
introduced when multiple objectives must be achieved.

The seminal work by Cortés et al. (2004) includes a demonstration of the
Voronoi coverage method for robots with nonholonomic constraints, such as
the unicycle model. Pimenta et al. (2008) shows how to constrain the Voronoi
regions to deal with robots of finite size.

Another constraint is due to the lack of knowledge of the density function
ρ in the Voronoi coverage method. Whereas Cortés et al. (2004) assumes
that ρ is known, Schwager et al. (2006, 2009) iteratively estimates ρ from
sensor measurements while adjusting the robot configuration accordingly.
The methods presented by Cortés et al. (2005) introduce a limited sensor or
communication range, which constrains each Voronoi region within a disk of
fixed radius centered at the robot’s position. In the work by Gusrialdi et al.
(2009), the sensor range is constrained by the robot orientation according to
an anisotropic sensor model.



5.2. PRELIMINARIES 75

Additional constraints may also aim at keeping the robots safe during the
coverage procedure. The objectives of providing coverage and maintaining a
desired energy level of the individual robots can be achieved by allowing the
robots to return to a charging station when they run low on energy (Derenick
et al., 2011). The work by Carpin (2012) tries to protect the robots by
trading off coverage against covertness, i.e., minimizing exposure to multiple
adversarial observers.

Objectives of different priorities can alternatively be formulated with re-
spect to task space control. The method of Antonelli et al. (2011) handles
free-standing obstacles in a task-priority fashion by giving obstacle avoidance
priority over Voronoi coverage. An alternative method by Caicedo-Núñez
and Žefran (2008a) transforms a nonconvex environment through a diffeo-
morphism to a corresponding convex environment, in which regular Voronoi
coverage can be applied. The method is computationally expensive and leads
to solutions that generally differ from the optimal coverage solutions in the
original space. For convex environments with free-standing obstacles, some
of these issues have been resolved (Caicedo-Núñez and Žefran, 2008b). The
method of Pimenta et al. (2008) uses Voronoi coverage with the geodesic
distance to achieve coverage of environments with nonconvex boundaries.
Unfortunately, the exact computation of geodesic distances is computation-
ally rather costly.

The Voronoi coverage methods may deploy robots in unknown environ-
ments but do not explore the environment intentionally. A popular explo-
ration strategy is frontier-based exploration (Yamauchi, 1998). The method
of Burgard et al. (2005) selects goal points on the frontier between explored
and unexplored areas by simultaneously considering the utility of unexplored
areas and the cost for reaching these areas. The work by Solanas and Garcia
(2004) uses k-means clustering to ensure that multiple robots explore differ-
ent regions of the environment. Similar to Voronoi coverage, Haumann et al.
(2010) uses a Voronoi partition and optimizes an aggregate objective function
to explore an unknown convex environment with a group of robots.

5.2 Preliminaries
As our coverage solution combines multi-robot coverage and path planning in
a modular manner, there are various path planning algorithms which could
potentially be used. Vector field histograms, artificial potential fields and the
family of Bug algorithms are examples of sensor-based local path planners.
In the following sections, we will present an implementation of the cover-



76 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

Algorithm 3 TangentBug Algorithm
Require: Robot r at start position p = p0, provided with a range sensor, a

local reduced visibility graph Gvis = {V, E} and a goal position g.
1: loop {Main loop}
2: while no local minimum detected, ∃v ∈ V, d(v, g) < d(p, g) do
3: if goal reached then
4: return
5: end if
6: {p, Gvis} ← MoveTowardGoal(p, g, Gvis)
7: end while
8: while leave condition invalid, d(v, g) ≥ dmin(g), ∀v ∈ Gvis do
9: if goal reached or loop around obstacle completed then
10: return
11: end if
12: {p, Gvis, dmin(g)} ← FollowBoundary(Gvis)
13: end while
14: while d(p, g) ≥ dmin(g) do
15: {p, Gvis} ← PerformTransitionPhase()
16: end while
17: end loop

age solution that uses the TangentBug algorithm; therefore we include some
background information on the TangentBug algorithm in this section.

The TangentBug algorithm is a derivative of the family of Bug algo-
rithms (LaValle, 2006), and was originally introduced by Kamon et al. (1995,
1998). TangentBug is a simple but efficient sensor-based planner, capable
of handling unknown environments by using a range sensor. The range can
assume any value, from zero, i.e., the range sensor is reduced to a contact
sensor, to infinity, i.e., the entire visible domain can be seen at once. The
length of the robot’s path usually decreases with increasing range of the
sensor. TangentBug shows the two behaviors which are characteristic for
Bug algorithms: motion-toward-goal and boundary-following. A description
of the TangentBug algorithm is given in Algorithm 3 according to Kamon
et al. (1998). In every iteration step of the algorithm, the robot constructs
a local version Gvis = {V, E} of the reduced visibility graph (LaValle, 2006),
as if the robot’s local range information represented all the obstacles in the
environment. During the motion-toward-goal behavior, the robot moves in
the locally optimal direction along the shortest path in Gvis. The function



5.3. VORONOI COVERAGE IN NONCONVEX ENVIRONMENTS 77

d(v, g) measures the Euclidean distance of a vertex v from the goal g. While
the robot follows the boundary of an obstacle, it stores the minimal distance
dmin(g) to the goal, which it has observed so far along the explored part of
the obstacle boundary, in order to determine a leave point. The transition
phase ensures convergence of the robot to the goal.

Despite the algorithm’s simplicity, TangentBug provides for provable con-
vergence and completeness guarantees. An in-depth analysis of the algorith-
mic properties of the TangentBug algorithm can be found in Kamon et al.
(1995, 1998). Under the same assumptions of Kamon et al. (1995, 1998), we
restate the convergence of TangentBug in the following lemma.

Lemma 5.1. (Convergence of TangentBug Algorithm) The TangentBug al-
gorithm converges globally toward a reachable goal position inside a given
planar domain for a sensor of any range in a finite path.

Proof. Convergence directly follows from Theorem 1 and Theorem 2, proved
in the work by Kamon et al. (1995) for a contact sensor. The proof in case of
a non-zero range sensor follows the lines of the proofs for the contact sensor,
and it can similarly be shown that the robot reaches the goal in a finite path
if the goal’s reachability is given (refer to Theorem 1 and Theorem 2, as
formulated in the work by Kamon et al. (1998)).

5.3 Voronoi Coverage in Nonconvex Environ-
ments

In this section, a coverage solution is presented that extends Voronoi cover-
age to nonconvex environments with obstacles. The key idea is to combine
Voronoi coverage with path planning. The path planning algorithm in com-
bination with the Voronoi coverage algorithm let the robots converge to a
constrained centroidal Voronoi configuration, and thereby solve a constrained
optimization problem. Local path planning as well as global path planning
algorithms can be used. We provide a detailed study of an implementation
that uses a local path planner to compute the motion of the robots around
obstacles and corners of a nonconvex environment.

5.3.1 Problem Formulation
A group of n robots must be deployed in the workspace W ⊂ RN . The free
space of the environment, Ω ⊂ W, is bounded and can either be convex, i.e.,
forming a convex domain without any obstacles or holes in it, or it can be



78 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

nonconvex, i.e., shaped by free-standing obstacles or holes and areas with
nonconvex boundaries. Our focus is on nonconvex domains but a solution
must also always be applicable to convex domains.

The original Voronoi coverage method formulates an optimization prob-
lem with a nonconvex aggregate objective function on a convex domain Ω,
which is defined as a convex polytope (see Section 3.5.3). Here we restate
the optimization problem from Equation (3.28) as the minimization with n
set constraints,

min
P
HV(P) , s.t. pi ∈ Ω, ∀i = {1, ..., n} . (5.1)

Due to the specific form of the objective functionHV(P) and the fact that the
centroid of a convex polytope never falls outside the polytope, the function’s
critical points p∗i = cVi , ∀i = {1, ..., n}, are naturally contained in the feasi-
ble set Ω. Consequently, the set constraint is never active and the problem is
an unconstrained optimization problem in fact. The objective function could
now be changed, such that resulting gradients ∇HV(P) may point to the out-
side of the polytope as well. This would lead to a constrained optimization
problem on the convex domain Ω. For instance, such a modified objective
function is studied by Carpin (2012) for a method that combines the coverage
functional with a second additive term which—opposed to coverage—tries to
maximize covertness. If, instead of changing the objective function, non-
convex domains are considered for Ω, we obtain a constrained optimization
problem with nonconvex objective function on a nonconvex domain. The
problem has the form of Equation (5.1) and the set constraints now play a
much more important role.

Let us first directly apply the gradient descent controller from Equa-
tion (3.33), as it is used for the original Voronoi coverage method with Eu-
clidean distance in convex domains, to the constrained problem. Each robot
ri drives on a straight line to its goal position gi, which is the centroid cVi
of its Voronoi region Vi. We are confronted with two types of critical con-
figurations: (1) the robot position temporarily leaves the domain Ω during
motion, i.e., the path goes through an obstacle, and (2) the final goal position
gi = cVi lies outside the domain in an obstacle and cannot be reached.

In order to resolve these situations, an obstacle avoidance behavior is re-
quired, which guarantees that the robots circumnavigate the obstacles safely.
With regard to the constrained optimization problem, that means that the
set constraints must be activated.



5.3. VORONOI COVERAGE IN NONCONVEX ENVIRONMENTS 79

5.3.2 Gradient Projection Controller
The method of gradient descent is inherent in the CVT and leads to the
gradient descent controller for Voronoi coverage. Hence, the logical choice is
to introduce the gradient projection method from optimization (refer to Lu-
enberger and Ye (2008) for details). The gradient projection method finds
a feasible direction of motion by projecting the negative gradient −∇HV(P)
in each iteration onto the constraint surface, which is defined by the active
constraints.

The n set constraints pi ∈ Ω in nN dimensions can be written explicitly
as nM inequality constraints, which gives us

min
P
HV(P) , s.t. G(P) ≤ 0 . (5.2)

If the domain Ω has arbitrary shape, it is bounded by a set of nM arbitrary
nonlinear functions G(P) = [Gj(P)]nMj=1, and the inequality constraints are
G(P) ≤ 0. In polygonal environments, the domain Ω is represented as a
nonconvex polytope and the inequality constraints are all linear. By set-
ting G(P) = A P − b, we get the inequality constraints A P ≤ b, with
the nM ×nN matrix A, where each row defines a hyperplane and associated
half-space, aji, 1pi, 1 + ... + aji, N pi, N ≤ b

j
i , with i ∈ {1, ..., n}, j ∈ {1, ..., M},

and b a vector of appropriate offsets. The active constraints are the subset of
Mα inequality constraints for which strict equality holds, i.e., Gα(P) = 0 or
Aα P = bα, respectively. It defines a constraint surface Sα ⊂ ∂Ω, on which
to move in order to find a lower cost solution. This constraint surface is de-
scribed at a regular point P by the (nN−Mα)-dimensional tangent subspace,
which can be represented in nN dimensions by the set Q = [qi]ni=1 ∈ RnN ,
such that ∇Gα(P) Q = 0.

In the following, we apply an active set method and, at all times, only
consider the working set, i.e., the subset of constraints that are currently
active. At each iteration during optimization the constraints are checked.
Constraints which become active are included and constraints which have
become inactive are excluded from the set of constraints. The working set
is updated and the dimension of the constraint surface might be lowered or
increased. By applying the gradient projection method, we seek a feasible
direction vector z that satisfies ∇HV(P) z < 0, such that a movement along
the direction of vector z decreases the coverage cost HV(P). The direction
vector z ∈ Q is obtained by projecting the negative gradient −∇HV(P)
onto the tangent subspace. Following the derivations by Luenberger and Ye
(2008), one obtains the nN × nN projection matrices as

Mproj = I − ∇Gα(P)T (∇Gα(P)∇Gα(P)T)
−1
∇Gα(P) (5.3)



80 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

for general nonlinear constraints, and

Mproj = I − Aα
T (Aα Aα

T)−1 Aα (5.4)

for polygonal environments with linear constraints. The direction vector is
then computed as

z = −Mproj ∇HV(P)T
. (5.5)

If z 6= 0, a feasible direction is directly obtained for the case with linear
constraints, and the robots ri move along zi = [zi, 1, ..., zi, N ] according to
the gradient descent controller of Equation (3.22), ui = k ẑi. In the case
with nonlinear constraints, the found point on the tangent subspace must
first be projected back in perpendicular direction onto the constraint surface
Sα, such that Gα(P) = 0, and the robots follow the constraint surface to
reach the projected goal point.

After Luenberger and Ye (2008), if the projected gradient becomes zero
and thus z = 0, the Karush-Kuhn-Tucker criterion is satisfied, providing the
necessary condition for a local minimum, ∇HV(P) + λT∇Gα(P) = 0. The
evaluation of the Lagrange multipliers λ(P) = −(∇Gα(P)∇Gα(P)T)

−1

∇Gα(P)∇HV(P)T and λ(P) = −(Aα Aα
T)−1 Aα ∇HV(P)T, respectively,

reveals if a constrained local minimum is found. If λj ≥ 0, ∀j = {1, ..., Mα},
the method has indeed arrived at a minimum and terminates. Otherwise,
the active constraint which corresponds to the most negative multiplier λj is
relaxed and removed from the working set. The method continues with the
updated working set.

The gradient projection method converges like the original gradient de-
scent method in linear time. However, some additional computation is re-
quired. In the case with nonlinear constraints, the negative gradient results
from the projection to the tangent subspace. The projection matrix must be
recomputed at every new robot configuration P. The direction vector is then
projected from the tangent subspace onto the constraint surface. A search
along the curve on the constraint surface into the direction of the projected
negative gradient must be conducted. For the polygonal environment, the
projection onto the tangent subspace is sufficient. It is further possible to
avoid the full recomputation of the projection matrix by updating the matrix
from the previous one (Luenberger and Ye, 2008).

As recognized by Carpin (2012), the projection matrix Mproj is a block
diagonal matrix with n blocks Mproj, i of dimension N × N . The projec-
tion matrix can be decomposed and the computation of the gradient projec-
tion distributed among n robots. Each robot ri computes its own feasible



5.3. VORONOI COVERAGE IN NONCONVEX ENVIRONMENTS 81

direction vector
zi = −Mproj, i ∇pih(pi, Vi)T

. (5.6)

This leads together with Equation (3.22) to a gradient projection controller,
i.e., the gradient projection method, similar to the method of gradient de-
scent, results in a distributed coordination strategy.

The extension of the Voronoi coverage method to nonconvex domains as
outlined above follows closely the gradient projection method from optimiza-
tion. For the application in robotics, however, we found a loose interpretation
to be more meaningful. One difficulty is to model the boundary of a domain as
function constraints G(P). Many constraints may be required, which would
slow down the problem solving process. In the case of nonlinear constraints,
a feasible point has to be searched and a robot needs to be guided along
the constraint surface. This requires some sort of search or path planning
method. Moreover, as now both the objective function and the constraints
are nonconvex, there are additional local minima introduced. Even though
the gradient projection method finds the constrained local minima, such min-
ima, as a direct result of the added constraints, might be arbitrarily far away
from the global minimum.

Based on these considerations, our coverage solution implements the basic
idea of the gradient projection controller but introduces a path planner in
order to complement the Voronoi coverage method. The path planner moves
a robot along a constraint surface if constraints are active and moves it away
once the constraints become inactive. The next section presents the idea in
more detail, and describes a specific implementation based on a local path
planning algorithm.

5.3.3 Combining Voronoi Coverage with Path Planning
Our solution for Voronoi coverage of a nonconvex environment builds on
the Lloyd’s algorithm (see Section 3.3.1, Algorithm 1) and a path planning
algorithm. The coverage solution is composed of two layers of abstraction:
on the upper layer (level 1 ), Lloyd’s algorithm provides goal updates based
on the successive computation of Voronoi regions and their centroids, which
become the new goal positions, while, on the lower layer (level 2 ), the path
planning algorithm generates the robot’s path to the next goal position and
is moving the robot toward the goal. This can be formulated as a continuing
sequence of two loops, loop 1 and loop 2, on level 1 and level 2, executed in
a distributed fashion on each of the robots.

The modularity of the coverage solution basically allows for the use of
any path planner. The difference lies in the provided capability and re-



82 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

quired knowledge of an individual planner. Local path planners are mainly
concerned with navigating a robot to a close next waypoint and avoiding
collisions on the way going there; they typically support sensor-based navi-
gation, and only need a local map or no map at all. Global path planners
are able to plan longer and more optimized paths but come with additional
cost, such as the cost of maintaining and sharing a map of the environment.

In the remainder of this section, we focus on a simple local path planning
algorithm, which provides us with the desired obstacle avoidance behavior.
We use the TangentBug algorithm, as described in Algorithm 3, to extend
the original Voronoi coverage method. As we will see shortly, TangentBug
is in principle nothing other than an implementation of the gradient projec-
tion method. The TangentBug algorithm serves as path planner on level 2.
TangentBug assumes that the environment is 2D and represented by poly-
gons. Therefore, we look exclusively at polygonal planar environments in the
following. Although TangentBug only needs local knowledge of the obsta-
cles, note that global knowledge of the density function ρ is assumed for the
execution of Lloyd’s algorithm throughout the presented approach.

A description of the proposed coverage solution is detailed in Algorithm 4
and Algorithm 5. The UpdateNeighborhood function updates, depending
on the input argument (SENS or COM), the robot’s own position based on
the sensed environment, or the positions of the Voronoi neighbors in the
neighborhood Ni via communication. The nonconvex coverage algorithm in
Algorithm 4 then computes the Voronoi region and its centroid, and calls
the path planning algorithm in Algorithm 5 as subroutine. Each algorithm
implements one of the two loops of the coverage solution.

For the specific description of the algorithm we need to introduce some
new terminology. We take inspiration from Pavone et al. (2008), and in-
troduce the concept of virtual robots to navigation and path planning. We
distinguish for each robot ri between real generators at position preal

i and
virtual generators at position pvirt

i as well as real goals at position greal
i and

virtual goals at position gvirt
i . preal

i represents the actual robot position pi,
whereas pvirt

i is the desired virtual robot position in disregard of the obstacles
in the environment, as if we were dealing with a convex environment. gvirt

i

is the ideal goal position, which corresponds to the centroid of the Voronoi
region V virt

i that has been computed from pvirt
i at the last update of loop 1.

greal
i finally designates the actual goal position, which corresponds to the

projected position g′i, obtained from projecting goal position gvirt
i back onto

the constraint surface, i.e., back to the closest position in the feasible domain
Ω. A constrained Voronoi region is defined as the subset of all the Voronoi
regions V virt

i for which the condition, V virt
i ∩ ∂Ω 6= ∅ ∧ gvirt

i /∈ Ω, applies. It



5.3. VORONOI COVERAGE IN NONCONVEX ENVIRONMENTS 83

Algorithm 4 Nonconvex Coverage Algorithm
Require: Set of n robots ri, each at initial position p0

i in Ω. Each robot
ri is provided with modules for localization, communication, obstacle
detection or environment modeling, and path planning, as specified in
Chapter 3. Some prior knowledge of ρ(q) over Ω (or W) is available.
Initialization of generators at time ti = 0: preal

i ← p0
i , pvirt

i ← p0
i .

1: loop {Loop 1}
2: preal

i ← UpdateNeighborhood(SENS)
3:

{
Ni,

{
pvirt
j

}|Ni|
j=1

}
← UpdateNeighborhood(COM)

4: V virt
i ← ComputeVoronoiRegion(pvirt

i ,
{

pvirt
j

}|Ni|
j=1)

5: cV virt
i
← UpdateGoal(V virt

i )
⇒ update virtual goal position: gvirt

i ← cV virt
i

6: pvirt
i ← PlanPath(preal

i , gvirt
i , V virt

i , algorithm1)
7: end loop
8: Vi ← ComputeVoronoiRegion(preal

i ,
{

preal
j

}|Ni|
j=1)

1 algorithm is a convergent standard navigation algorithm with local or global path
planning capability. In our case, the TangentBug algorithm is used.

is part of the constrained minimization problem, and is used as condition to
determine if the inequality constraints from Equation (5.2), imposed by the
boundary of Ω, are active in a region V virt

i .
The proposed nonconvex coverage algorithm executes Lloyd’s algorithm

using the virtual generators, i.e., the Voronoi regions and their centroids are
computed based on the virtual generators, and the virtual goal positions gvirt

i

are updated. The virtual goals may be contained inside obstacles and the
virtual generators are able to freely pass through obstacles and occlusions.
The robots attempt to reach the virtual goals by moving toward the real
goal positions greal

i . Throughout execution of loop 2, the virtual generators
are moving toward the virtual goals (pvirt

i → gvirt
i ) in a simulated virtual

environment representation where obstacles and nonconvex segments of the
boundary do not exist. In parallel, the robots approach the real goal positions
in the real environment taking obstacles into account, i.e., the real generators
are moving toward the real goals (preal

i → greal
i ).

Each robot computes the next virtual and real goal positions upon arrival
at the current real goal position. The neighbors of each robot pretend to be
on track for an ideal convex case and communicate their simulated virtual



84 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

Algorithm 5 Path Planning Algorithm
Require: Robot ri provided with sensor readings (local planner) or envi-

ronment models (global planner), which enable the obstacle avoidance
behavior. The virtual goal gvirt

i is required as goal position for the path
planner. Initialization of variable v: v← gvirt

i .
1: loop {Loop 2}
2: if V virt

i is a constrained Voronoi region then
3: Project gvirt

i to point g′i onto ∂Ω and set v← g′i // goal projection
4: end if

⇒ update real goal position: greal
i ← v

5: Execute next motion step toward real goal greal
i by

applying obstacle avoidance to drive to next position pi
⇒ update real generator position: preal

i ← pi
6: Simulate next motion step toward virtual goal gvirt

i

⇒ update virtual generator position pvirt
i

7: end loop
8: return virtual generator position pvirt

i

generator positions to the robot. That leads to a situation where the robots
update their own Voronoi region, centroid and thus their next goal based
on the virtual positions pvirt

i of their neighbors, while each of the robots is
trying to reach its objective and get as close as possible to the specified ideal
goal position gvirt

i .
The virtual generators and goals allow for the implementation of Lloyd’s

algorithm in the presence of nonconvexity, and maintain convergence of the
Voronoi coverage method. If the robots’ real positions preal

i were used for
the computation of the Voronoi tessellation in turn, or if the points were
continuously projected onto the boundary during ongoing execution of the
navigation algorithm (pvirt

i = preal
i and gvirt

i = greal
i ), Lloyd’s algorithm

could be massively perturbed depending on the shape of an obstacle and
cause unfavorable behavior (e.g., overly long paths) or undetermined robot
configurations (e.g., oscillations). Therefore, we design the algorithm in a
way such that the real and virtual positions remain loosely coupled until the
end.

Once the robots have converged to a final configuration of a local min-
imum, a last Voronoi tessellation is computed before the nonconvex cover-
age algorithm terminates. This last step is required because there might
be several active constraints remaining, which is a consequence of the goal



5.3. VORONOI COVERAGE IN NONCONVEX ENVIRONMENTS 85

projection procedure. In this case, all the robots whose Voronoi region is a
constrained Voronoi region are not located at the positions of their Voronoi
regions’ centroids. A final computation of the Voronoi tessellation improves
the overall partition and guarantees that each region of dominance assigned
to a robot is at least a Voronoi region with respect to the robot positions
pi = preal

i . Whenever the position of robot ri in the final configuration lies
in the free space away from an obstacle, the robot finally succeeds in reaching
its specified goal position, and preal

i = greal
i = gvirt

i = pvirt
i holds.

If, during the coverage procedure, a virtual goal position remains inside
Ω, i.e., gvirt

i = greal
i , and there is no obstacle in-between preal

i and greal
i , the

virtual and real generators coincide, preal
i = pvirt

i , no projection is needed,
i.e., Mproj, i = I2, and robot ri follows the unmodified gradient descent direc-
tion, which corresponds to zi = −∇pih(pi, Vi)T. In the case of an entirely
convex environment, the virtual and real positions simply reduce to single
real positions at all times, and the algorithm results in exactly the same be-
havior as for Voronoi coverage of convex environments, i.e., the constraints
are not active.

Regarding the gradient projection method introduced earlier, greal
i = g′i

relates to the new improved position found from the projection of the negative
gradient −∇pih(pi, Vi) onto the constraint surface Sα. In contrast to the
gradient projection method, now g′i is no longer limited to the current local
working set and, more generally, can be located anywhere along the boundary
of the set constraint, ∂Ω. Therefore, the projected position g′i ∈ ∂Ω ⊂ Ω is
the position that is globally closest to the unconstrained position, gvirt

i . This
leads to the goal projection procedure

g′i = argminq∈Ω ‖q − gvirt
i ‖2 . (5.7)

Under application of the goal projection, the centroidal Voronoi tessellation
becomes a CCVT, and the centroids are the constrained mass centers, as
defined in Section 3.3.1. The robots are said to converge to a constrained
centroidal Voronoi configuration.

The goal projection procedure emerges from Bug algorithms like Tangent-
Bug in a natural way (see Section 5.2). The motion-toward-goal behavior is
a form of gradient descent. If there are no obstacles on a robot’s way, it just
follows the gradient descent direction. The boundary-following behavior on
the other hand is a form of exploration of obstacle boundaries, which realizes
a search for a new improved position along the constraining boundary. Both
behaviors together implement locally a gradient projection method, and ad-
ditionally guarantee the robot’s global convergence to a goal position. In
particular, consider the case when the final goal is contained in an obstacle;



86 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

TangentBug comes with a reachability test, where reachability is determined
during the boundary-following behavior by just circling around the obstacle.
If the exploration of the obstacle boundary is completed after one full circle
without having found a leave point, the goal will be unreachable. In this
case, according to step 3 in Algorithm 5, the goal position must be projected
onto the obstacle boundary in an optimal way. In order to implement this
goal projection procedure, TangentBug can be extended, such that the robots
check boundary positions for optimality during the boundary-following be-
havior. The optimal position along the boundary is continuously updated
and stored in memory by updating Equation (5.7). Finally, projecting the
virtual goal position gvirt

i to the obstacle boundary ∂Ω in an optimal way,
for the robot simply means to drive directly to the recorded position g′i.

5.3.4 Properties of the Nonconvex Coverage Algorithm
Let us start the analysis of the coverage solution, presented in Algorithm 4
and Algorithm 5, by restating our assumptions. The robots are assumed to
be point robots that move in free space Ω ⊂ RnN . Ω is bounded, and both Ω
and the set of obstacles O are polygonal. Furthermore, both the perimeter
of the obstacles and the number of obstacles are finite. The density function
ρ is defined over Ω and is a priori known. Finally, we operate under setup 1
with regard to Section 3.5.3, i.e., the function to measure distance is the
Euclidean distance, d(q, pi) = ‖pi − q‖2, q, pi ∈ Ω.

Convergence

We prove convergence of the coverage solution for the implementation based
on the Lloyd’s algorithm and the TangentBug algorithm, and for the case
of a planar environment, i.e., the environment is represented by free space
Ω ⊂ R2 and workspaceW ⊂ R2. Similar proofs can be given for the coverage
solution for other dimensions N 6= 2, and cases where variations on the
Lloyd’s algorithm or a local path planner other than TangentBug1 are used.

Proposition 5.2. (Convergence of Nonconvex Coverage Algorithm) For a
nonconvex domain Ω ⊂ R2, Algorithm 4 and Algorithm 5, based on the
Lloyd’s algorithm and the TangentBug algorithm, cause the robots to con-
verge to a constrained centroidal Voronoi configuration.

1If the coverage solution uses other Bug-like algorithms on level 2, such as Bug1 or
Bug2 (LaValle, 2006), similar plans result and the proofs only deviate slightly. The Tan-
gentBug algorithm is designed for R2; however, a direct extension to R3 exists (Kamon
et al., 1999). Other more abstract planners work even in N dimensions.



5.3. VORONOI COVERAGE IN NONCONVEX ENVIRONMENTS 87

Proof. We give a proof by contradiction. Suppose that the robots do not
converge to a constrained centroidal Voronoi configuration. That must be a
result of: (1) the TangentBug algorithm does not converge, or (2) the Lloyd’s
algorithm does not converge. (1) By Lemma 5.1, if TangentBug does not con-
verge, some goal point is not reachable. But that contradicts the projection
properties of the coverage solution in Algorithm 4 and Algorithm 5—namely,
that a projection of positions to Ω always exists. (2) By Lemma 3.2 and
Lemma 3.3, respectively, if Lloyd’s algorithm does not converge, an iteration
takes infinite time. But that implies (1), which, as we have already shown,
leads to a contradiction—namely, that TangentBug always converges to a
fixed and reachable goal position.

Optimality

When a goal position lies outside the domain, gvirt
i /∈ Ω, as soon as the

corresponding virtual generator also leaves the environment, pvirt
i /∈ Ω, the

real position of the robot must be constrained to the domain’s boundary
∂Ω. Let us now see how the points can be projected to the boundary in the
following.

Given the coverage solution in Algorithm 4 and Algorithm 5, and that
n robots converge to the fixed points p∗i = argminpi∈Ω ‖pi − gvirt

i ‖2, ∀i ∈
{1, ..., n}, in the domain Ω, which are projections of the optimal goal po-
sitions gvirt

i /∈ Ω, with gvirt
i = cV virt

i
, in the Euclidean sense. Define the

final configuration vector P∗ = [p∗i ]
n
i=1 ∈ Ωn. We show in the proposi-

tion below that P∗ minimizes the high dimensional optimization problem
minP∈Ωn ‖P −G‖, where G =

[
gvirt
i

]n
i=1. Furthermore, we show that this

implies that P∗ locally minimizes a constrained optimization problem closely
related to Equation (5.1).

Proposition 5.3. (Optimality of Nonconvex Coverage Algorithm) The final
configuration of the robots has the following properties:

(1) The position P∗ is closest to G in RnN in the Euclidean sense, given
the projection of gvirt

i to its closest constrained point p∗i in RN , ∀i ∈
{1, ..., n}.

(2) The final step of the coverage solution in Algorithm 4 and Algorithm 5,
which is the goal projection, solves the constrained optimization problem
of minimizing the coverage cost HV(P) for the resulting final Voronoi
partition V =

{
V virt
i

}n
i=1 with gvirt

i as generators.



88 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

Proof. First, we prove (1) by contradiction. From the projection of the goal
positions results that ‖pi − gvirt

i ‖2 is minimized at p∗i , ∀i ∈ {1, ..., n}. Sup-
pose that ‖P∗ −G‖2 is not minimized. Then there exists a ‖P̃ −G‖2 such
that ‖P̃−G‖2 < ‖P∗−G‖2, that is (‖p̃1−gvirt

1 ‖22 + ... + ‖p̃n−gvirt
n ‖22)1/2 <

(‖p∗1−gvirt
1 ‖22 + ... + ‖p∗n−gvirt

n ‖22)1/2. Substituting all ‖p̃i−gvirt
i ‖2 but one

by ‖p∗i − gvirt
i ‖2 leads to (‖p∗1 − gvirt

1 ‖22 + ... + ‖p̃i − gvirt
i ‖22 + ... + ‖p∗n −

gvirt
n ‖22)1/2 < (‖p∗1 − gvirt

1 ‖22 + ... + ‖p∗i − gvirt
i ‖22 + ... + ‖p∗n − gvirt

n ‖22)1/2.
From that it follows that ‖p̃i−gvirt

i ‖22 < ‖p∗i −gvirt
i ‖22, ∀i ∈ {1, ..., n}, which

is a contradiction.
Now we prove (2). We can rewrite the coverage cost using the parallel
axis theorem, as given by Equation (3.31), HV(P) =

∑n
i=1 JV virt

i
, cV virt

i

+∑n
i=1MV virt

i
‖pi − cV virt

i
‖22. The first term on the right side of the equation

is constant for a fixed area V virt
i and the mass MV virt

i
is also constant. Since

cV virt
i

= gvirt
i , argminPHV(P) = argminP

∑n
i=1MV virt

i
‖pi − cV virt

i
‖22 =

argminP
∑n
i=1 ‖pi − cV virt

i
‖22 , which is implied by the projection.

5.4 Voronoi Coverage in Unknown Environ-
ments

We limit ourselves in this section to a brief description of the transformation
of nonconvex environments to star-shaped domains, which can be seen as a
reformulation of the idea presented by Pimenta et al. (2008) as a robot-centric
transformation. We provide a geometric as well as a mathematical interpre-
tation of the transformation. The transformation provides a general way of
dealing with nonconvex environments, and has successfully been applied in
our work to extend the DisCoverage exploration algorithm of Haumann et al.
(2010) to nonconvex environments, as presented by Haumann et al. (2011).

5.4.1 DisCoverage and Star-Shaped Domains
The reader refers to Haumann et al. (2010, 2011) for a presentation of the
DisCoverage algorithm for multi-robot exploration and coverage. In addition,
Haumann et al. (2011) includes simulations and experiments with e-puck
robots that demonstrate the exploration of nonconvex environments under
the transformation to star-shaped domains.



5.4. VORONOI COVERAGE IN UNKNOWN ENVIRONMENTS 89

Figure 5.1: Transformation to star-shaped domain. Left: Nonconvex polygonal
environment with explored domain Si. Right: Transformation Tpi , generating the
star-shaped domain S∗i .

The idea is to find a transformation with the property that all points
q ∈ S are visible from the robot position pi ∈ S. This property holds for
star-shaped domains. The transformation that maps any connected domain
S to a star-shaped domain S∗ is defined for robot ri as follows.

Definition 5.1. Let Si ⊂ R2 and S∗i ⊂ R2. Let d(pi,q) be the geodesic
distance, or shortest path distance, from the robot position pi to q, pi, q ∈
Si. Let ŵ be the unit vector pointing into the direction of the first path
segment of the geodesic path from pi to q. Then, the transformation is given
by Tpi : Si → S∗i , q 7→ q∗ = Tpi(q) = pi + d(pi,q) ŵ.

The map Tpi transforms any connected set to a star-shaped domain with
respect to pi. The map Tpi can be interpreted as a straightening or unwrap-
ping of the geodesic path. Note that Tpi is not bijective, i.e., it may map
arbitrarily many elements from Si to only one element in S∗i . A geometric
interpretation is provided by the illustration in Figure 5.1.

A significant property of Tpi is that elements q ∈ Si which are visible from
pi remain unchanged, i.e., if it holds for the closed segment that piq ⊂ Si,
it immediately follows that Tpi(q) = q. This is due to the fact that the
geodesic path reduces to the shortest path in the Euclidean sense for convex
environments.

Furthermore, the star-shaped environment S∗i , shown in Figure 5.1 on
the right, is not necessarily a subset of the original environment Si, shown
in Figure 5.1 on the left, since there exists no upper bound for the length of
the geodesic distance.

As we will see in Chapter 6, this transformation also applies in discrete
space and on graph representations of the environment. On a graph, the
vector ŵil, which points into the direction of the first path segment of the



90 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

geodesic path, connects a vertex vi with one of its neighboring vertices vnil
in the one ring neighborhood N ring. This can be considered as the discrete
equivalent of the continuous case above with ŵ pointing along the first seg-
ment toward a reflex vertex at a corner of a polygonal domain. A graph can
even be imagined—as a thought experiment—to be realized by a heavily con-
strained continuous polygonal environment, where obstacles reduce the free
space to a combination of lines (equivalents of edges) and intersection points
(equivalents of vertices) only. Hence, following an analogous consideration as
in this section, discrete domains on a graph can be transformed.

5.5 Results
For the simulations and experiments, we implemented the nonconvex cover-
age algorithm of Algorithm 4 and Algorithm 5 in Matlab. Algorithm 5 is
implemented as the TangentBug algorithm after Kamon et al. (1998). The
range sensors of the robots, which are a requirement of the TangentBug algo-
rithm, are simulated, or emulated for the robots respectively, in software. In
the following simulations and experiments, we use range sensors with infinite
sensor range (the range is visualized by green rays), i.e., the sensors cover the
whole visible area. For the sake of clarity in presentation, a uniform density
function ρ is used. The density function is assumed to be known.

5.5.1 Evaluation of the Nonconvex Coverage Algorithm

Simulation Results

We present simulations in 2D and 3D environments. The robots are modeled
as holonomic point robots.

2D Environment with Nonconvex Boundary. Figure 5.2 shows the
deployment of five robots in a U-shaped environment. The robots cover
the environment and converge to a final configuration, which is a centroidal
Voronoi configuration in this case. The TangentBug algorithm implements
the obstacle avoidance behavior and guides the robots around the corners of
the obstacles.

Figure 5.3 presents the total coverage cost HV for the robot configuration.
The cost is once computed for the Voronoi tessellation constructed from the
real generators and once for the Voronoi tessellation constructed from the
virtual generators. It is interesting to see how the cost for the real gener-
ators approaches the cost for the virtual generators over time. The virtual



5.5. RESULTS 91

[m][m] [m] [m]

[m] [m] [m]

Figure 5.2: Voronoi coverage in a U-shaped environment. From left to right:
five robots (blue circles) start from an initial position and move along the shown
trajectories (dashed blue lines) to the next real goal position (red crosses) until they
converge to a final configuration. Two of the trajectories of the virtual generators
(green solid lines) intersect the obstacle’s corners, which indicates that an obstacle
avoidance behavior is required for successful coverage of the environment.

Figure 5.3: Cost for covering the U-shaped environment. The coverage costHV for
the configurations of the virtual and real generators in the U-shaped environment
from Figure 5.2 is shown over time.

generators are updated by the classical Lloyd’s algorithm, i.e., the virtual
generators are directly set to the positions of the newly computed centroids.
As soon as a robot reaches its real goal position, the Voronoi region, the vir-
tual goal and the virtual generator are updated, and the cost for the virtual
generators falls off.



92 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

Figure 5.4: Voronoi coverage in an environment with narrow passage. From left
to right: Five robots start in the small room on the left, three of the five robots
move through the passage and deploy in the right larger room.

In a second experiment, five robots cover an environment that is divided
by a narrow passage (see Figure 5.4). All the robots start from one side.
During the coverage procedure, three of the five robots transition through
the passage and deploy in the right side of the environment. This simula-
tion demonstrates that environments with narrow passages can be covered
successfully by the proposed coverage solution. However, we note that the
robots’ initial positions influence the coverage result. The nonconvex coverage
algorithm, similar to the original Voronoi coverage method, is not guaranteed
to generate equitable partitions (Pavone et al., 2008).

2D Environment with Free-Standing Obstacles. Five robots cover an
area with two free-standing obstacles in Figure 5.5. The virtual generator
and the virtual goal of one of the robots are contained in an obstacle. The
robot explores the obstacle and updates the goal projection continuously.
After the robot has completed one full cycle, it drives to the position on the
obstacle boundary that is closest to the virtual goal position. At convergence,
a constrained centroidal Voronoi configuration is reached. A last Voronoi
tessellation is computed in order to improve the final partition and reduce
the resulting cost this way once more.

Another example of an environment with free-standing obstacle is shown
in Figure 5.6. Here, the obstacle is itself nonconvex. Different from the
previous simulation, where the virtual goal remained inside the obstacle at
the end, the virtual generators and virtual goals of two of the five robots
are contained inside the obstacle temporarily during deployment but have
returned to the free space when the final robot configuration is reached.

Nonconvex 3D Environment. The proposed nonconvex coverage algo-
rithm does, similar to the original Voronoi coverage method, also extend to
three and even higher dimensions. This is based on the fact that Lloyd’s



5.5. RESULTS 93

[m] [m] [m]

[m] [m] [m]

Figure 5.5: Voronoi coverage in an environment with two free-standing obstacles.
The virtual generator and goal of one robot lie inside an obstacle. The robot tries to
reach them and starts circling around the obstacle. Finally, the goal is projected to
the closest point on the obstacle’s boundary (yellow cross). The centroidal Voronoi
tessellation (solid yellow lines) results from the virtual generators at the virtual
goal positions, whereas the Voronoi diagram in blue represents the last improved
partition computed by the robots in a final step.

Figure 5.6: Voronoi coverage in an environment with one nonconvex free-standing
obstacle. From left to right: Five robots start to cover the environment. The virtual
goals of two robots are contained inside the obstacle. Therefore the robots circle
the obstacle to explore its boundary and find the best projection of their virtual
goals. By updating the Voronoi partition, the two virtual goals return to the free
space and the robots converge to a centroidal Voronoi configuration.

algorithm as well as standard path planning algorithms can be applied in
three and higher dimensions.

Even though a full 3D version of the TangentBug algorithm can be im-
plemented, we once more use the 2D version, and limit ourselves to a demon-
stration of the coverage solution in a 3D environment which is free of non-
convexities in one dimension. Figure 5.7 shows five flying robots that cover
a 3D U-shaped environment.



94 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

Figure 5.7: Voronoi coverage in a 3D nonconvex environment. Five flying robots
take off and deploy in 3D space, which is convex in the vertical direction.

Experimental Results
The coverage solution for nonconvex environments is demonstrated in the fol-
lowing experiments with five e-puck robots. We used the planar test setup, as
presented in Section 2.1.2, and localized the robots with an overhead camera.
The obstacles and environment boundaries were overlaid on the ground plane
as virtual obstacles and boundaries and the occurrence of collisions between
robots and obstacles were checked through computer vision. In contrast to
simulated robots, the e-puck robots have a finite physical size and are non-
holonomic. We checked the direction of a robot movement for collisions and
dilated the detected obstacle and environment boundaries by the size of a ro-
bot’s radius. The experiments show the robustness of the coverage solution
in asynchronous operation and against communication delays.



5.5. RESULTS 95

Figure 5.8: Voronoi coverage in an L-shaped environment. From left to right: five
e-pucks start from the bottom and gradually spread over the free-space by avoiding
the corner. A centroidal Voronoi configuration results at convergence.

[m]

[m]

Figure 5.9: Voronoi coverage in a U-shaped environment. From left to right:
five e-pucks avoid the obstacle and cover the nonconvex environment. The plot on
the right shows the initial and final configurations over the seven test runs. Ideal
simulated positions in black (cross: initial position, dot: final position) and real
experimental positions in color (cross: initial positions, circle: final positions). The
magenta circle inside the obstacle shows a failed experimental run where the tracker
lost the marker of one robot.

Nonconvex 2D Environment. Figure 5.8 and Figure 5.9 show exper-
imental runs in an L-shaped and U-shaped environment with five e-puck
robots. The robots succeed in both cases to cover the nonconvex environ-
ment. For the U-shaped environment, the initial robot positions and the final
configuration are given in Figure 5.9; we ran seven experimental trials with
the robots for the given initial positions in the U-shaped environment. The
experimental results match with the simulations. While hardware noise and
tracking errors only cause small deviations, a main difference in the trajec-
tories comes from adjustments in the algorithm to account for the non-zero
size of the real robots by a safety margin along the boundary. The average



96 5. MULTI-ROBOT COVERAGE UNDER CONSTRAINTS

position error over the robots and the experimental runs is 5.42 cm. The
duration of one experimental run is 4.56 min in average. Though the conver-
gence of the robots toward the final configuration was limited by the update
rate of the tracking system rather than by the robot platform or the control
strategy itself.

5.6 Summary
In this chapter, we present a coverage solution to provide Voronoi coverage in
nonconvex environments. Our nonconvex coverage algorithm combines the
Lloyd’s algorithm with a path planning algorithm: Lloyd’s algorithm updates
the Voronoi partition and the current goal position, while the path planner
computes a feasible path around obstacles and corners to the goal. This
addresses both objectives of coverage and obstacle avoidance at the same
time.

We prove convergence and optimality of the proposed coverage solution by
applying the concept of virtual robots to multi-robot path planning. Through
virtual generators and goal positions, a way for decoupling the robot positions
and the Voronoi partitions is introduced.

The nonconvex coverage algorithm is evaluated in simulations and phys-
ical experiments with a group of e-puck robots. We use the TangentBug
algorithm, a derivative of the family of Bug algorithms, as path planner in
our implementation and show that TangentBug realizes a gradient projection
method. The projection procedure constrains goal positions to the free space
of the environment; the projected positions are solutions to the constrained
optimization problem of finding a (constrained) centroidal Voronoi configura-
tion in the nonconvex environment. Constrained optimization more generally
allows for covering environments of mixed dimensions, where robots move
partly unconstrained and partly constrained to a lower dimensional space.
An example would be a robot that flies freely, and then lands and climbs a
surface.

An alternative method to handle nonconvexity in Voronoi coverage is the
use of a geodesic distance function. We use such a distance for the trans-
formation to a star-shaped domain, which unwraps the shortest path to the
points in a Voronoi region hidden behind corners and obstacles. In particular,
based on this transformation, we designed an exploration algorithm which is
closely linked to Voronoi coverage.

The approaches of this chapter are focused on the continuous space. The
next chapter will study discrete representations. Global graph-based path
planners, such as the A* search, will be used in place of the TangentBug
algorithm in combination with Voronoi coverage.



Chapter 6

Multi-Robot Coverage on
Curved Surfaces

We extend the Voronoi coverage method to curved surfaces in this chapter.
Our coverage solutions use a discrete representation of the environment. The
presented coverage algorithms deploy multiple robots into discrete partitions
over the curved surfaces by operating on a graph. We describe an implemen-
tation that embeds the graph into 3D space and uses a triangle mesh, which
represents a standard technique to model surfaces and 3D objects in com-
puter graphics. As a discrete representation of the environment is used for
computation, it is a reasonable question to ask what we could gain from an
explicit formulation and direct study of the discrete problem. In Chapter 5,
we have seen the relation between graph-based representations and heavily
constrained continuous workspaces. A graph, such as a triangle mesh, can
but does not necessarily need to include the obstacles and nonconvexities of
a workspace in the representation. If obstacles are not modeled and left out,
they are handled implicitly, since a robot is always driven along a sequence
of vertices, faces or edges contained within the graph. Another positive side
effect of the graph-based representation is that it offers a direct link to com-
putational geometry and computer graphics, which provide a great variety of
useful concepts and algorithms for geometric problems, such as robot surface
coverage.

We present two distributed adaptive coverage algorithms for Voronoi cov-
erage on curved surfaces, as they are typically found in inspection applications
for tanks and tubes (see also Chapter 1 and Section 2.1 in Chapter 2). The al-
gorithms are executed directly on the graph and represent discretized versions
of the continuous formulations in Section 3.5.3 of Chapter 3 and Chapter 5.

97



98 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

Findings from the previous chapter, such as the shortest path distance and
the related transformation to star-shaped domains, or the concept of virtual
generators and goal positions, will come up again. The first coverage algo-
rithm computes shortest path distances and propagates a discrete wavefront
on the graph to obtain a centroidal graph Voronoi tessellation. The second
coverage algorithm approximates distances on the surface through the Eu-
clidean distance in the ambient space and locally exchanges mesh elements
between adjacent Voronoi regions to create a final centroidal Voronoi con-
figuration. In the generalized adaptive versions of the algorithms, a metric
tensor field is additionally computed locally on the surface; it is used to shape
the Voronoi regions in position, size, orientation and aspect ratio according
to the present anisotropy. Both algorithms are compared and evaluated in
simulations on different mesh models and in experiments with five e-puck
robots on a curved surface.

Some of the concepts and results in this chapter have been presented
at the International Conference on Intelligent Robots and Systems (Breit-
enmoser et al., 2010a) and at the International Symposium on Distributed
Autonomous Robotic Systems (Breitenmoser et al., 2012). We start with
Section 6.1 on related work. Information about the graph-based representa-
tion is provided by Section 6.2. Section 6.3 presents the problem formulation
and the two proposed coverage solutions. We then discuss the extensions of
the algorithms to adaptive and hybrid coverage control in Section 6.4. Re-
sults from simulations and experiments are described in Section 6.5, and final
conclusions are drawn in Section 6.6.

6.1 Related Work
In mobile robotics, the robots’ environment is commonly represented by a
planar grid or elevation map with the strong underlying assumption of a 2D
or 2.5D world (Hebert et al., 1989). Although this is a valid assumption for
many of the practical applications, there are environments, including outdoor
rough terrain, urban areas or industrial structures, which require true 3D
representations. A polygonal mesh, as it is used in computer graphics for
modeling of 3D objects, is a good candidate; the works by Rusu et al. (2009)
and Gingras et al. (2010) are examples for the use of triangle meshes for
environment representation in robotics.

A mesh can be seen as a graph. Graphs have widely been used in ro-
bot path planning on grid maps or for topological representations, e.g., in
roadmaps and communication or pose graphs, but have not that often been
applied in the context of triangle meshes.



6.1. RELATED WORK 99

The recent works by Bhattacharya et al. (2012), Durham et al. (2012),
and Yun and Rus (2012), all use graph-based representations for multi-robot
control, and are closely related to Voronoi coverage and our own work. The
multi-robot coverage method of Bhattacharya et al. (2012) extends the work
by Pimenta et al. (2008) to anisotropic metrics and non-Euclidean metric
spaces. Such spaces, for example, result from charting a curved paramet-
ric surface. The CVT constructed in the coordinate chart accounts for the
surface curvature, and mapping the tessellation back to the original surface
finally results in a proper centroidal Voronoi configuration on the curved sur-
face. This approach and our first coverage algorithm are similar in the way
that both rely on a shortest path distance, as used by Pimenta et al. (2008),
and propagate a wavefront on the graph. However, our focus is on curved
surfaces of arbitrary geometry embedded in 3D space; our representations
are triangle meshes and our algorithm runs directly on the mesh.

The coverage methods of Durham et al. (2012) and Yun and Rus (2012)
are related to our second coverage algorithm. They mainly differ from our
solution in the way how two adjacent Voronoi regions are updated. Besides,
they primarily address the coverage of planar environments. Durham et al.
(2012) implements a discrete Voronoi coverage method that works with un-
reliable pairwise communication. A pairwise partitioning rule updates two
adjacent Voronoi regions by trying to achieve an optimal pairwise partition
at each update step using exhaustive search. Yun and Rus (2012) applies a
vertex substitution algorithm for the update. This considers information of
the neighbors as well as the neighbors’ neighbors of a robot, i.e., a two-hop
communication is used, which achieves locally optimal configurations.

In computational geometry and computer graphics, CVTs are often ap-
plied for mesh generation and remeshing. The work by Du et al. (2002)
generates a CCVT on curved surfaces by projecting the mass centers of the
Voronoi regions onto the surface in each iteration step. The approach as-
sumes knowledge of a parametrization of the surface and is thus limited
in its application to simple standard surface geometries, for which such a
parametrization is known. The method of Peyré and Cohen (2004) seg-
ments meshes based on the computation of CVTs and shortest geodesics;
here, the shortest path distances are computed by fast marching methods.
The method of Valette et al. (2008) approximates the CVT by using the
Euclidean distance metric; the computed CVT is then applied to remeshing
of 3D mesh models. Peyré and Cohen (2004) and Valette et al. (2008) both
present centralized methods—nevertheless, we have taken some inspiration
from these works with regard to decentralized multi-robot coverage. Du and
Wang (2005b) represents a somewhat complementary approach compared to



100 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

the previous approach of Du et al. (2002). Instead of projecting the mass
centers from the ambient space onto the surface, an ACVT is computed in
a coordinate chart and mapped to the parametric surface, much like in the
work by Bhattacharya et al. (2012).

Besides, the concept of anisotropy has been used in the method of Gus-
rialdi et al. (2009) to model anisotropic sensors for Voronoi coverage. How-
ever, the anisotropy is formulated with respect to the robot positions and
not with respect to points in the environment. Cortés et al. (2004) suggests
to use the density function ρ from the CVT formulation as isotropic weight.
The density influences the centroidal Voronoi configuration and allows for
formation control and robot guidance. Finally, Pavone et al. (2009) creates
fat- and skinny-shaped equitable partitions by using power diagrams, with
applications to vehicle routing and optimal workload sharing.

6.2 Preliminaries
The surface is approximated by a triangle mesh M , which enables a graph-
based representation of the surface. There are different approaches for gener-
ating the triangle mesh (see Section 7.2.2 for examples), and several methods
for creating a graph and its embedding from the triangle mesh. We use the fol-
lowing two methods to create the graph in our work. In the first method, the
mesh itself directly forms the embedded graph. The graph Gmesh = {V, E}
consists of vertices V , which are the vertices or corners of the triangles of
the mesh, and edges E, which are the edges of the triangles. The second
method creates the dual graph G∗mesh = {V ∗, E∗} of Gmesh from the triangle
mesh M . The vertices V ∗ are the centroids of the triangles of the mesh and
the edges E∗ connect two such centroids whenever the two corresponding
triangles share a common edge. Figure 6.1 provides an illustration.

For some of the derivations below, the area associated to a single vertex of
the graphs Gmesh and G∗mesh is required. These areas are obtained for graph
Gmesh (or G∗mesh) as the areas of the faces of the dual graph G∗mesh (or Gmesh).
Under the first method, the area A(v) of Gmesh is computed as the area of
the corresponding face in graph G∗mesh enclosing v. In the case of a planar
mesh, this face can be viewed as the Voronoi region around v obtained from
the Voronoi diagram with generator set V , i.e., the vertices of Gmesh, which
are also the mesh vertices, act as the generators. In case of graph G∗mesh, the
area A(v∗) is simply given by the area of the triangle in which v∗ is located.

In the following, if not otherwise stated, we will not distinguish between
graphs Gmesh and G∗mesh, and refer to either of them by GM . Note that, as
a practical triangle mesh M is always finite, GM is a finite graph. Having



6.3. VORONOI COVERAGE ON CURVED SURFACES 101

A(v)

ekl

ekl*

vk

vlvk* vl*
A(v*)

M

Gmesh

G*mesh

v

v*

Figure 6.1: Graph-based representation. The graph GM is created from the
triangle mesh M , either as graph Gmesh or its dual graph G∗mesh.

n robots ri, in particular, it holds that Mi ⊂ M , GMi ⊂ GM and Gi ⊂ G.
Mi denotes a robot’s mesh map and GMi is the graph-based representation
associated to Mi. If the mesh maps of two robot neighbors overlap, the
meshes are merged, Mi ←Mi ∪Mj and Mj ←Mi ∪Mj . Gi is the connected
subgraph whose vertices form the robot’s Voronoi region VGi . The graph G
is partitioned according to a DCVT, G(VG) = {VGi}

n
i=1. G is a subgraph

of GM , G ⊂ GM , and the Voronoi tessellation spreads over a subset of the
overall known mesh M .

6.3 Voronoi Coverage on Curved Surfaces
Covering a curved surface embedded in 3D space is no straightforward exten-
sion of the planar case to higher dimensions. In this section, we present two
different approaches on how to realize Voronoi coverage on curved surfaces,
which will result in two coverage algorithms. Curved surfaces are of practical
importance regarding the inspection task. Moreover, they are examples of
curved spaces and, as such, they represent on their own an interesting object
of research.

6.3.1 Problem Formulation
Given the workspace W ⊂ R3 and a connected orientable curved surface
S ⊂ W, which is a 2D Riemannian manifold with the Riemannian metric
induced by the Euclidean scalar product, a group of n robots with positions



102 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

pi ∈ S is to be deployed over S to cover the surface. The deployment must
be in accordance with Voronoi coverage, i.e., the robots are distributed over
a CVT of S, which partitions the surface into n Voronoi regions Vi ⊂ S,
each containing one of the robots. That is the group of robots deploys and
converges to a centroidal Voronoi configuration on the curved surface.

With respect to Equation (3.25), we consider the performance function
h(d(q, pi)) = d pq,pi , with q ∈ S, and define the distance in S by

dq,pi = inf
γ : [0, 1]→S

γ(0) = q, γ(1) = pi

∫ 1

0

∥∥Bγ(t) γ̇(t)
∥∥
p
dt . (6.1)

This is the usual geodesic distance of the Finsler manifold, which is given by
S together with the Finsler function F : TS → R≥0, such that at position
x ∈ S, Fx(z) = ‖Bx z‖p. Bx is called the Finsler tensor field in the fol-
lowing. Bx is a symmetric positive definite matrix smoothly depending on
x, which describes the local anisotropy. Such anisotropy might reflect the
distribution of curvature of the surface S along different directions, or the
varying importance of covering a certain direction on S.

To determine the distance dG(v, vpi) for a given graph GMi , the integral
in Equation (6.1) is discretized and approximated by the total length of a
sequence of segments. The length is computed from the sum of distances,

dv,vpi
=

m∑
l=1

dvl−1,vl '
m∑
l=1

∥∥∥B̃vl−1 (vl − vl−1)
∥∥∥
p

= dG(v, vpi) , (6.2)

along the sequence of m segments Sv0,vm = {v0v1, v1v2, ... , vm−1vm}, with
v0 = v and vm = vpi . The distance of each single segment is evaluated by
applying the directional distance from Section 3.3.1 for arbitrary p-norms.

Although S is a 2D manifold, it is not sufficient in the discrete version
to define Bv on the 2D tangent spaces of S because the distance vectors
(vl−vl−1) are not restricted to the tangent spaces Tvl−1S at vl−1. So, how-
ever we choose the matrix Bv on the tangent spaces, it must be extended to
a 3× 3 matrix B̃v. This matrix can be constructed from the desired matrix
Bv given in a basis of TvS, e.g., such that, in the local basis extended by the
normal vector of the oriented surface, it looks like B̃v =

(Bv 0
0 1

)
.

The coverage cost for the group of n robots, computed over the trian-
gle mesh M represented by graph GM , is now derived. In line with Equa-



6.3. VORONOI COVERAGE ON CURVED SURFACES 103

tion (3.25) and Equation (6.1) we can write

HV(P) =
n∑
i=1

∑
v∈VGi

∫
A(v)

d pq,pi ρ(q) dF (q) . (6.3)

Under the approximation that B̃v and the density function ρ are constant
over a given vertex area A(v), i.e., MA(v) =

∫
A(v) ρ(q) dF (q) = A(v) ρG(v),

and in addition, constraining the robot positions P to PG on the graph, the
coverage cost can be rewritten as

HG(PG) =
n∑
i=1

∑
v∈VGi

dG(v, vpi)pMA(v) , (6.4)

where dG(v, vpi) is the shortest path distance on the graph, as defined in
Equation (6.2).

In order to minimize the coverage cost HG and thereby deploy the robots
on the curved surface, we once more start from the Lloyd’s algorithm (see
Section 3.3.1, Algorithm 1). Lloyd’s algorithm consists of the two steps of
computing the CVT and updating the generator positions. Each of the two
steps poses a subproblem that needs to be solved to arrive at a coverage so-
lution. Both of our two approaches will eventually lead to coverage solutions
which solve the two steps in the Lloyd’s algorithm. In both of the approaches
we rely on the triangle meshM and the graph-based representations GM , and
work with variants of DCVTs on the graph. The surface coverage algorithm
in Algorithm 6 provides the overall framework of the coverage solutions. The
surface coverage algorithm is divided into a coordination and a moving ac-
tion. The coverage algorithms of the two approaches under consideration
are called by the Coordinate function on line 3. In each iteration, after the
coordination action has computed the Voronoi region and updated the goal
direction or goal position, respectively, a robot moves toward the updated
goal under the moving action. The UpdateNeighborhood function accesses
information from the environment in a robot’s neighborhood N and provides
an update on the robot positions and mesh maps. At the end of each itera-
tion, the UpdateState function is called to update the state and action that
are to be performed in the next iteration.



104 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

Algorithm 6 Surface Coverage Algorithm
Require: Set of n robots ri, each at initial position p0

i on S in the con-
tinuous domain. The corresponding discrete position v0

pi on the initial
graph G0

Mi
, with G0

Mi
the graph associated to the initial mesh M0

i , and
initial regions G0

i ⊂ G0
Mi

. Each robot ri is provided with modules for
localization, communication, environment modeling and path planning,
as specified in Section 3.1.

1: while state == DEPLOY do
2: if action == COORDINATE then
3: vgi ← Coordinate(approach) // (1) “wavefront propagation”, or

// (2) “vertex exchange”
4: end if
5: if action == MOVE then
6: {pi, Mi} ← UpdateNeighborhood(SENS)
7: Ti ← PlanPath(vpi , vgi , GMi , Mi)
8: pi ← MoveToGoal(pi, Ti)
9: UpdateState()
10: end if
11: end while

6.3.2 Surface Coverage with Shortest Path Distance
Our first approach is the more straightforward of the two. We use the triangle
mesh as a graph, and let the robots construct a DCVT directly on the graph
in a distributed fashion. This leads to a coverage solution that is intrinsic in
its very nature and only depends on the local surface geometry and graph
connectivity.

In our two approaches to the problem of covering a curved surface, we use
different distance computation. We vary the manner the sequence of vertices
vl is chosen in defining dv,vpi

after Equation (6.2). For this first approach,
dv,vpi

is computed for arbitrary p-norms as the discrete geodesic distance
or shortest path distance on the graph, dG(v, vpi). The distance segments
correspond to the edges along a shortest path that connects v and vpi on the
graph GMi . This corresponds to setup 2 in Section 3.5.3, and represents a
natural way to measure distance over a curved surface (see also Section 3.2.1).

In the following, the coverage solution under the first approach is pre-
sented. Derivations and implementation details for solving both of the two
steps of computing the CVT and updating the generator positions in the
Lloyd’s algorithm are described.



6.3. VORONOI COVERAGE ON CURVED SURFACES 105

Gradient Descent Controller for Curved Spaces

We first look at the update of the robot positions P, and postpone the com-
putation of the DCVT on the graph to the next section. In principle, we
want to use the gradient descent controller from Equation (3.21) to move
each robot toward the centroid of its Voronoi region, as we have done before.
Now dealing with curved spaces, one needs to be cautious, since the gradi-
ent of the aggregate objective function for a robot ri, ∇pih(pi, Vi), does not
represent the vector that points directly into the direction of the minimum
of the coverage cost h(pi, Vi) in general (see also Equation (3.24) and Equa-
tion (3.29)). We assume in the following the existence of only one shortest
geodesic. The direct direction to the cost minimum corresponds to the direc-
tion of the shortest geodesic, which is in fact the shortest path connecting the
robot position with the centroid of the Voronoi region of the current Voronoi
tessellation. Equivalence between the gradient direction and the direction
along the shortest geodesic only holds for the special case of Euclidean space.

This can better be seen from the following considerations. We look for
a vector y in the direction in which the coverage cost h(pi, Vi) for robot ri
increases fastest, and then move into the opposite direction along vector z.
Each robot has its own Riemannian robot motion metric Rpi , which is again
extended to R̃pi , a measure which captures the cost for a robot of moving in
a certain direction. We now write

max
y
∇pih(pi, Vi) y , s.t.

√
yT R̃pi y = 1 , (6.5)

which is solved under the requirement of y 6= 0 by

∇pih(pi, Vi)
∂

∂y

 y√
yT R̃pi y

 = 0T . (6.6)

We then get as result for the final vector z

z = − y , with y = ci R̃−1
pi ∇pih(pi, Vi)T

, (6.7)

where ci is a constant. There are two solutions, a maximum and a minimum
value, with either coefficient ci = ci, 1 or ci = ci, 2. As R̃pi is positive definite,
the maximum is obtained for the coefficient which satisfies ci > 0. By se-
lecting this ci, we are able to design a gradient descent controller in the very
same manner as before according to Equation (3.22), ui = k ẑ, with positive
gain k. The included correction term R̃−1

pi in Equation (6.7) accounts for the
influence of the local anisotropy on the robot ri caused by the curved space.



106 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

Above findings, however, do not alter the basic requirement of computing
the gradient of the coverage cost, ∇pih(pi, Vi), which is finally needed to
provide an update of the robot position. In the following, we describe two
possible methods for the computation of such a gradient.

Explicit Gradient Computation. A first method is to compute the gra-
dient∇pih(pi, Vi) at each robot position pi explicitly. In the discrete setting,
robot positions are represented by graph vertices vpi , and differences between
coverage cost terms at neighboring vertices on the graph can be computed,

∆hil := h(vnil , VGi) − h(vpi , VGi)
‖vpi,nil‖2

, (6.8)

with vpi,nil = vnil − vpi . The term h(vpi , VGi) denotes the coverage cost
for a robot at position pi, indicated by vertex vpi , and h(vnil , VGi) is the
coverage cost for the unchanged DCVT on the graph, G(VG), except that the
robot position and the associated vertex vpi have moved to a position that
is represented by the neighboring vertex vnil . Given m neighboring vertices
vnil of vertex vpi , a possible solution is to approximate the gradient vec-
tor by least squares fitting, using the m vectors v̂pi,nil as data points. The
resulting gradient vector follows from the overdetermined system of equa-
tions, W hi = y, in usual manner, as the best fit h∗i = W+ y. W+ is the
pseudoinverse

(
WT W

)−1 WT, where W is the m × 3 matrix with the m
vectors v̂T

pi,nil in its rows, and the m-dimensional vector y is composed of
the m coverage cost differences ∆hil. This solution provides only a rough
approximation, since the gradient computation is increasingly degraded with
growing irregularity of the triangle mesh M . Irregularities arise when many
edges in the mesh, or graph GM respectively, point into the same direction,
whereas other directions are left without any edges. Alternative solutions
for gradient estimation are studied in literature. Most of the works assume
regular grids; among others, a study on linear gradient estimation methods
for unstructured meshes can be found in the work by Correa et al. (2011).

The resulting gradient vector h∗i is then corrected according to Equa-
tion (6.7) to obtain z = − ci R̃−1

vpi
h∗i . As we are on a graph or mesh,

respectively, the vector z is finally restricted to the closest graph edge or
mesh face.

Gradient Computation by Shortest Geodesics. Alternatively, the ro-
bot position can be updated from the tangent directions of the shortest
geodesics from the current robot position pi to points q in the robot’s Vo-
ronoi region. From the gradient of the coverage cost in Equation (3.29), we



6.3. VORONOI COVERAGE ON CURVED SURFACES 107

see that the partial derivative of the performance function h(d(q, pi)) needs
to be computed. With h(d(q, pi)) = d(q, pi)p, we get ∇pih(d(q, pi)) =
pd(q, pi)p−1∇pid(q, pi), and the only part missing to determine the gradient
∇pih(pi, Vi) is the partial derivative of the distance function, ∇pid(q, pi).

Next, we derive ∇pid(q, pi) for the general continuous case, and for arbi-
trary p-norms. We denote the negative gradient of the shortest path distance
d(q, pi) = dq,pi with di := −∇pid(q, pi) in the following. We now look at
the shortest geodesic γ∗(t) from γ∗(0) = q to γ∗(1) = pi. The negative tan-
gent vector of the geodesic at point pi is oriented toward γ∗(0) and is denoted
as w, i.e., w := −γ̇∗(1). We observe that the absolute change |di| in the dis-
tance of the shortest geodesic along the tangent direction w must be maximal;
it results in a maximum decline. If the decline of the shortest geodesic dis-
tance was maximal in a different direction than the tangent direction w, this
would immediately lead to a new shortest geodesic from this direction, which
is a direct consequence of the principle of optimality (LaValle, 2006). But
this is in contradiction with the fact that the shortest geodesic leads along
w, and di indeed results in a maximal decline along the tangent direction w.
Therefore, we can write in a similar way to Equation (6.5) above,

max
w

di w , s.t. ‖B̃pi w‖p = 1 . (6.9)

Requiring w 6= 0, we solve the equation

di
∂

∂w

(
w

‖B̃pi w‖p

)
= 0T , (6.10)

and finally find the direction of the negative gradient di,

di = C
(
|B̃pi w|p−1 . sgn(B̃pi w)

)T
B̃pi , (6.11)

with a positive constant C. Note that the absolute value, the exponentiation
and the “.”-operator for multiplication in

(
|B̃pi w|p−1 . sgn(B̃pi w)

)
all are

applied component-wise to the vectors. In order to get not only the direction
but also the value of di, we look at an infinitesimal change in the distance of
Equation (6.1). From the first order Taylor approximation, we can see that
it must hold

dq,pi + di w ' dq,pi + ‖B̃pi w‖p . (6.12)
We finally arrive at the partial derivative of the distance function

∇pid(q, pi) = −

(
|B̃pi w|p−1 . sgn(B̃pi w)

)T
B̃pi

‖B̃pi w‖p−1
p

. (6.13)



108 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

For the common choice of p = 2, we get with K̃pi := B̃T
pi B̃pi ,

∇pid(q, pi)T = − K̃pi w√
wT K̃pi w

. (6.14)

In the discrete case on the graph, matrices B̃pi and K̃pi are given for the
discrete positions at the graph vertices, and the tangent vectors w are ex-
changed for the vectors wil along the first segments of the shortest path
distances from vpi to vertices v on the graph, i.e., along the graph edges
connecting the vertex of robot position vpi with the corresponding vertices
vnil of its one ring neighborhood N ring

i . This is clearly an approximation of
the continuous case, since vectors wil—different from vectors w at pi—are
not anymore contained in the tangent space TpiS.

The vector z in direction of the cost minimum can now be calculated
for the continuous and discrete versions, and for arbitrary p-norms, by us-
ing Equation (6.7) and the relation in Equation (3.29) with h(d(q, pi)) =
d(q, pi)p,

zcont = − ci p R̃−1
pi

∫
Vi

d(q, pi)p−1 ∇pid(q, pi)T
ρ(q) dF (q) ,

zdisc = − ci p R̃−1
vpi

∑
v∈VGi

d(v, vpi)p−1 ∇pid(v, vpi)
T
MA(v) , (6.15)

where ∇pid(q, pi) is obtained from Equation (6.13) and d(q, pi) is given
by dq,pi after Equation (6.1). In the discrete case, the tangent vectors w
are replaced by wil, the distance d(v,vpi) is given by dG(v, vpi) after Equa-
tion (6.2) and the density defined over the vertex areaA(v) is again contracted
to a single value per vertex. Furthermore, the resulting vector zdisc of the
discrete version needs to be projected onto the graph.

Even in the case p = 2, the two matrices R̃x and K̃x are not equal in
general. Whereas R̃x is the robot motion metric, K̃x describes how distance
along different directions is measured in the construction of the CVT. In the
special case where the matrices are equal, R̃x and K̃x cancel each other out
in the numerator of Equation (6.14). K̃x only remains in the denominator
and implicitly within the distance function d(q, pi).

Let us assume p = 2, cancelation of R̃vpi
and K̃vpi

, and uniform metric
tensor fields everywhere, i.e., Kv = I2 and K̃v = I3, respectively. We obtain



6.3. VORONOI COVERAGE ON CURVED SURFACES 109

as the basic form of the discrete version of Equation (6.15),

zdisc = 2 ci
∑
v∈VGi

dG(v, vpi) ŵil MA(v) , (6.16)

which is consistent with the results by Cortés et al. (2004) for Voronoi cover-
age in 2D convex environments (refer also to Section 3.5.3), by Pimenta et al.
(2008) for generalized Voronoi coverage in 2D nonconvex environments and
by Bhattacharya et al. (2012) for higher dimensional non-Euclidean spaces.

We would like to elaborate on one simple approximative way of updating
the robot positions in the following. Under the assumptions that the met-
ric is isotropic and the triangle mesh M and graph GM are fairly regular,
the evaluation by summing over the direction vectors in Equation (6.15) or
Equation (6.16) can be substituted for summing over weights of the vertices
vnil in the one ring neighborhood of vpi instead. The weight of each vnil is
computed by counting the number of times a shortest path leaves from vpi to
a vertex v in the graph while passing over vnil , and accumulating the lengths
computed for these paths for each vnil . The accumulated path lengths are
the sums

∑
(v∈VGi | vnil∈Svpi ,v

)D(v). Svpi,v
is the sequence of vertices in the

shortest path from vpi to v, and D(v) denotes a robot’s distance map, which
holds the lengths of the shortest path from each v to the robot position vpi ,
dG(v, vpi). The new goal position vgi results as the position of the vertex v∗nil
in the one ring neighborhood with maximum accumulated path length. vgi
is the vertex in the one ring neighborhood the robot encounters first on the
shortest path to the intrinsic center of mass of the current Voronoi region.

A permanent decrease in the local coverage cost h(vpi , VGi) through tran-
sitions from vpi to vgi is assured by requiring h(vgi , VGi) < h(vpi , VGi). The
permanently decreasing coverage cost is important to guarantee the conver-
gence of the coverage procedure. If several vertices vnil in the one ring neigh-
borhood with maximum accumulated path lengths result, possible solutions
are to select one by random or to compare their coverage cost and to select
the one that results in the highest decrease of cost. When a resulting vgi
does not lead to a decrease in the coverage cost, we conclude that the robot
is currently located at the centroid of its discrete Voronoi region, and the
robot is not moved in the current iteration.

In the case of a strictly regular grid, such as a planar rectangular or
hexagonal grid map, the new goal vertex can alternatively be obtained by
only counting the number of times a path passes a vertex v∗nil when leaving
form vpi . In addition, the calculation can be done for each of the directions
independently (e.g., for a rectangular 4-connected grid, in horizontal and



110 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

vertical directions). The new goal vertex is then found by comparing all the
counts that resulted for each of the independent grid directions.

Before we continue with the next section, we want to put the two possible
methods for gradient computation in relation to each other. The explicit
gradient computation is more intuitive at first glance, however, it is compu-
tationally costly and good estimates of the gradient directions are not easy to
compute for unstructured irregular meshes. In contrast, the gradient compu-
tation by shortest geodesics is appealing as most of the work for computing
the shortest path distances has already been completed for constructing a
DCVT on the graph (see the following section). Therefore, this gradient
computation nearly comes for free. Furthermore, as just seen above, the gra-
dient directions can even be computed intrinsically on the graph for given
approximations, without the need for any additional geometric information
from the graph embedding.

Coordination by Wavefront Propagation

We now describe the computation of the DCVT on the graph under the first
approach. We show how the DCVT computation, together with the update
of the generator positions from the previous section, composes the first cov-
erage algorithm for Voronoi coverage on the surface. An overview of the first
coverage algorithm is given in Algorithm 7, which is called by Algorithm 6.
Each robot first communicates with its neighboring robots to update the
neighborhood information; positions and mesh maps are exchanged.

The PropagateWavefront function computes discrete geodesic distances
between vertices by propagating wavefronts over the graph. During runtime,
each robot ri keeps track of the vertices in the graph GMi by using the
following data structures: a priority queue with a sorted candidate list Lfront
of the vertices at the propagating wavefront, a distance map D with the
lengths of the shortest path from each vertex v to the robot position on the
graph, an identity map I with the identity of the robot closest to v and a
map from each vertex v to the vertex in the one ring neighborhood N ring

i of
the closest robot which lies on the shortest path assigned to vertex v. Hence,
for each vertex v in a Voronoi region VGi , the shortest path distance from
vpi to v, the first vertex vnil of N

ring
i on the shortest path passing from vpi

to v, as well as the identity i of the assigned Voronoi region are stored.
Under the coordination action, a robot begins the execution of one iter-

ation of the Lloyd’s algorithm. The robot considers the positions vpj of the
neighboring robots on the graph one after the other by initiating a wavefront
propagation that proceeds until the wavefront reaches a neighboring robot
(Figure 6.2, left). For the wavefront propagation, a label correcting method



6.3. VORONOI COVERAGE ON CURVED SURFACES 111

Figure 6.2: Wavefront propagation. Left: A wavefront propagation is initiated
by robot ri from vertex vpi on the mesh. Right: After a neighboring robot rj has
been reached, a back propagation is started from vertex vpj . The back propagation
stops when the reverse wavefront becomes closer to robot ri than to robot rj again;
by appropriate label correction, the Voronoi region VGi and its graph Gi of robot
ri are incrementally constructed.

Algorithm 7 Coordination by Wavefront Propagation
Require: Voronoi region Gi, graph GMi and mesh Mi.

1:
{
Ni,

{
vpj
}|Ni|
j=1 , GMi , Mi

}
← UpdateNeighborhood(COM)

2: Gi ← PropagateWavefront(Ni,
{
vpj
}|Ni|
j=1 , Gi, GMi , Mi)

3: vgi ← UpdateGoalDirection(Gi)
4: UpdateState()

based on the Dijkstra’s algorithm is used (see Section 3.3.2). Thereby, D and
I are initially generated. At the point of reaching a neighbor robot rj , the
propagation is paused and a back propagation starts on the visited vertices.
The back propagation terminates when the vertices at the reverse wavefront
are going to be closer to robot ri than to its neighbor rj again (Figure 6.2,
right). This is verified by simply checking against D(v). All the vertices
which are closer to the neighbor robot are then reassigned to the neighbor
robot, which corrects the labeling of the identity map I. After the back prop-
agation ends, the wavefront propagation continues until the next neighbor of
robot ri is reached, where another back propagation starts. Or, the algo-
rithm terminates as the priority queue Lfront is empty, i.e., D(v) has been
calculated for all remaining vertices in the graph. Alternatively, termination
is triggered through an abort criterion. Our abort criterion is based on the
technique introduced by Cortés et al. (2004), where the ball around robot



112 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

ri is iteratively enlarged up to the minimal size that enables to compute the
Voronoi region completely. In the discrete setting, the abort criterion for
robot ri on the graph GMi is

D(vL)
2 ≥ max

v∈GMi ,
I(v) = I(vpi )

dG(v, vpi) , ∀ vL ∈ Lfront . (6.17)

In the second step of the Lloyd’s algorithm, the robot positions are updated
by closely following the concepts of the previous section. Once the Voronoi
region VGi has been constructed, the shortest path distances from the robot’s
position vpi to all the vertices v contained in the robot’s Voronoi region are
available. The coverage cost of Equation (6.3), or Equation (6.4) respectively,
can then be evaluated by a summation of these distance values. The new goal
vertex vgi is selected among the vertices of the one ring neighborhood N ring

i

with the help of Equation (6.15) or Equation (6.16), respectively. The vector
z is projected onto the graph. The robot then switches to the moving action
in Algorithm 6. A gradient descent controller after Section 3.5.2 moves the
robot to vgi , and closer toward the centroid of its Voronoi region. The robot
position on the graph and the Voronoi regions are updated in each iteration
and a permanent decrease in the coverage cost HG results through the robot
movements.

6.3.3 Surface Coverage with Approximative Euclidean
Distance

The second approach presents a coverage solution that follows an approx-
imative approach, which has relations to clustering. Neighboring robots
exchange vertices of their Voronoi regions VGi among each other and de-
ploy into an optimal centroidal Voronoi configuration on the curved surface.
From the viewpoint of a multi-robot system, this implements a distributed
coordination. With regard to Voronoi tessellations, a DCVT with Euclidean
distance metric is constructed by this second approach. The path distance
dv,vpi

from Equation (6.2) is approximated by the length of a single seg-
ment, which connects v and vpi along the direct shortcut through R3, us-
ing the 2-norm. We arrive this way at the directional distance dv,vpi

'∥∥∥B̃v (vpi − v)
∥∥∥

2
=
√

(vpi − v)T K̃v (vpi − v), where K̃v := B̃T
v B̃v, as in-

troduced in Section 3.3.1, and similar to setup 1 under Section 3.5.3. This
distance is a usual anisotropic quadratic distance in R3.

Including the ambient space explicitly for the computation of the Voronoi
tessellation has several implications. The computed centroids may be con-



6.3. VORONOI COVERAGE ON CURVED SURFACES 113

tained in the ambient space and need to be restricted onto the surface S and
the graph GM . From this perspective, the approach resembles the procedures
of Chapter 5 for computing CCVTs, where the virtual generators and goal
positions must be projected back onto the feasible set. As the ambient space
is an integral part of the approach, the coverage solution inevitably depends
on the graph embedding. In addition, the approach builds on several ap-
proximations; the approximations affect the solution’s accuracy but have the
potential for an overall speed up in computation when compared with the
coverage solution of the first approach.

The starting point into the discussion of the second approach is a detailed
explanation of the approximative DCVT formulation described in the next
section. It is followed by the presentation of the second coverage algorithm,
which again addresses the two aforementioned steps of CVT computation
and updating the generator positions in the Lloyd’s algorithm.

Approximative DCVT for Curved Spaces

We look at Equation (6.3) and want to simplify the expression with the
overall objective of reducing the computational effort which is needed for
recomputing the CVT at every iteration of Lloyd’s algorithm. First, let us
revisit the parallel axis theorem stated in Theorem 3.1 and formally given
in Equation (3.30). For general non-Euclidean metrics, we can write under
setup 1

JA(v),pi =
∫
A(v)
‖B̃q (pi − q) ‖22 ρ(q) dF (q)

= JA(v), c(v) +
∫
A(v)
‖B̃q (pi − c(v)) ‖22 ρ(q) dF (q) (6.18a)

' JA(v), c(v) + MA(v) ‖B̃c(v) (pi − c(v)) ‖22 , (6.18b)

where the total mass over the area A(v) and the area’s mass center are given
by

MA(v) =
∫
A(v)

ρ(q) dF (q) , and (6.19a)

c(v) =
(∫

A(v)
K̃q ρ(q) dF (q)

)−1 ∫
A(v)

K̃q q ρ(q) dF (q) . (6.19b)

Setting d pq,pi in Equation (6.3) to ‖B̃q (pi − q) ‖22 = (pi − q)T K̃q (pi − q)
and using Equation (6.18b) under the approximation that the metric tensor



114 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

remains constant over a given vertex area, K̃q = K̃v, leads to

HG(PG) =
n∑
i=1

∑
v∈VGi

[
JA(v), c(v) + MA(v) (vpi − c(v))T K̃v (vpi − c(v))

]
.

(6.20)
Expanding the expression (vpi − c(v))T K̃v (vpi − c(v)) gives us

c(v)T K̃v c(v) + vpi
T K̃v vpi − 2 vpi

T K̃v c(v) ,

and by substituting we get from Equation (6.20)

HG(PG) =
n∑
i=1

 ∑
v∈VGi

JA(v), c(v) +
∑
v∈VGi

MA(v)

(
c(v)T K̃v c(v)

)
+

vpi
T

 ∑
v∈VGi

MA(v) K̃v

 vpi − 2 vpi
T

 ∑
v∈VGi

MA(v) K̃v c(v)

 .

(6.21)

From Equation (6.21) follows that it is sufficient to minimize for the last
two terms, since the first two terms do not depend on a particular choice of
positions PG and remain unchanged with respect to the partition G. The
generator positions PG can now be chosen freely. Similar to Chapter 5,
the generators can represent the real robot positions or the positions of vir-
tual robots. If we use virtual generators and select the generators PG in
Equation (6.21) to always be the centroids of the Voronoi regions, which is
in accordance with the definition of a CVT, the last two terms in Equa-
tion (6.21) can be further simplified. The anisotropic centroids on the graph
are obtained as

vci =

 ∑
v∈VGi

MA(v) K̃v

−1  ∑
v∈VGi

MA(v) K̃v c(v)

 , (6.22)

which are the minimizers of the coverage cost. Substituting the real robot
positions vpi by the virtual generator positions vci for the last two terms of
Equation (6.21) results in the partial coverage cost

HG∗aniso(PG) =
n∑
i=1

− vci
T

 ∑
v∈VGi

MA(v) K̃v c(v)

 , (6.23)



6.3. VORONOI COVERAGE ON CURVED SURFACES 115

which does not explicitly depend on the robot positions vpi anymore. In the
isotropic case, the centroids are given by

vci =
∑
v∈VGi

MA(v) c(v)∑
v∈VGi

MA(v)
, (6.24)

and Equation (6.23) can be reduced to

HG∗iso(PG) =
n∑
i=1

−
∥∥∥∑v∈VGi

MA(v) c(v)
∥∥∥2

2∑
v∈VGi

MA(v)

 . (6.25)

The original problem of distributing n robots ri over the surface S can now be
solved by simply minimizing Equation (6.23), or Equation (6.25) respectively,
and letting the robots at positions pi approach the virtual generators at
positions vci over time. As we will see in the following section, the partial cost
HG∗aniso(PG) and HG∗iso(PG) are minimized in an efficient way by exchanging
vertices between adjacent Voronoi regions, which only requires updates of
the sums

∑
MA(v) K̃v c(v) and

∑
MA(v) K̃v, or

∑
MA(v) c(v) and

∑
MA(v)

respectively.

Coordination by Vertex Exchange

The second coverage solution computes an approximative DCVT on the graph
and minimizes the coverage cost by exchanging boundary vertices iteratively
across the boundaries of adjacent Voronoi regions. This local vertex exchange
can be seen as a sequence of local optimization steps on the vertices at the
boundaries of the Voronoi regions. Algorithm 8 describes the coverage algo-
rithm of this second approach.

For each vertex vA that lies at a boundary in a Voronoi region VGi , a
local test is executed. If a vertex at the boundary next to vA has not yet
been assigned to a Voronoi region, i.e., the vertex is free, it is incorporated
directly into VGi without any calculation of cost. If there exists at least
one neighboring vertex vB ∈ VGj , the change in the coverage cost HG(PG) is
calculated for the following three cases: (1) vA is added to VGj , (2) vB is added
to VGi , or (3) no vertex is exchanged across the boundary (see Figure 6.3).
The case resulting in the highest reduction of coverage cost is selected and
the Voronoi regions are updated accordingly. This way, the Voronoi regions
grow into areas of unassigned vertices while the ongoing exchange of vertices
with other Voronoi regions helps to minimize the overall coverage cost.



116 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

Figure 6.3: Vertex exchange. Left: Vertex vA is added to the Voronoi region VGj
(case (1)). Center: Vertex vB is added to the Voronoi region VGi (case (2)). Right:
No vertex is exchanged across the boundary of the Voronoi regions (case (3)).

Algorithm 8 Coordination by Vertex Exchange
Require: Voronoi region Gi, graph GMi and mesh Mi; kR rounds of vertex

exchange.
1: {Ni, GMi , Mi} ← UpdateNeighborhood(COM)
2: Gi ← AssignFreeVertices(Gi, GMi)
3: for all rj with j ∈ Ni do
4: ExchangeVertices(Gi, Gj , kR)
5: end for
6: vgi ← UpdateGoal(Gi)
7: UpdateState()

Each robot ri stores information about the vertices of its Voronoi region,
such as the set of boundary vertices and the identity of the adjacent vertices
outside the own Voronoi region, in memory. The update of the Voronoi
regions and the DCVT can be realized efficiently through repeated evaluation
and update of the sums in Equation (6.23) and Equation (6.25), respectively.
Only a few addition and subtraction operations are required to correct the
sums for the partial cost of an exchanged vertex.

If a vertex exchange leads to a disconnected region, the third case applies
and the respective vertex will not be exchanged. Note that the third case
does not affect the convergence of the overall algorithm; the coverage cost
is not minimized but remains unchanged in this iteration step. However,
over subsequent iterations, the pairwise optimization by the vertex exchanges
among adjacent Voronoi regions minimizes the overall cost.

The underlying structure of the second coverage algorithm is similar to
the one of the first coverage algorithm and builds on Algorithm 6. The robots



6.3. VORONOI COVERAGE ON CURVED SURFACES 117

execute either a coordination or a moving action. Under the coordination ac-
tion, first all the boundary vertices in VGi adjacent to free vertices in the
graph GMi are updated. Robot ri synchronizes its boundaries by requesting
the identities of the boundary vertices of the neighboring robots. If the free
vertices have not been occupied by another robot since last coordination, the
vertices are added to VGi and its boundary is adjusted appropriately. The
vertices that belong to a neighbor robot and adjoin VGi undergo the proce-
dure of local vertex exchange. Robot ri updates the information about the
vertices according to the assignment and communicates these changes to the
other robots. Hence, robot ri requests data to perform the local optimiza-
tion and sends the result back to each neighbor. While this bidirectional
communication takes place, both robots are not allowed to answer another
request.

kR rounds of vertex exchange are performed by the ExchangeVertices
function. With kR chosen large enough, a robot will not enter a local ver-
tex exchange with another robot neighbor before a partition with optimal
cost between its own and the current neighboring region is obtained. Pro-
vided that a vertex exchange procedure can find the global optimum for the
two regions, this leads to pairwise optimal partitions, similar to the method
of Durham et al. (2012).

In situations, where a boundary vertex vA of a Voronoi region VGi is con-
nected to three or more vertices, which belong to Voronoi regions of different
neighboring robots, additional communication is required. The local vertex
exchange of vertices vA and vB between two adjacent robots and their Vo-
ronoi regions VGi and VGj does not influence a third robot’s Voronoi region
VGk ; but the set of boundary vertices stored by the third robot rk needs to
be adjusted when vertex vA or vertex vB changes the Voronoi region.

6.3.4 Properties of the Surface Coverage Algorithms
In the following, we further discuss some of the properties of the two presented
coverage solutions.

Coupling of Coordination and Moving Actions

In the original Voronoi coverage method of Cortés et al. (2004), the robots act
as the generators and converge to the mass centers of their Voronoi regions.
However, this is no longer a necessary condition in our case, as the Voro-
noi regions are generated either by wavefront propagation between vertices
or by local vertex exchanges of boundary vertices on the underlying graphs.
The coordination and path planning actions are only loosely coupled. The



118 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

dependence is given through the communication and environment update.
The robot positions finally determine which robot neighbors are in commu-
nication range and what the robots will perceive from their environment and
incorporate into their mesh maps.

Similar to the differentiation between real and virtual generators and real
and virtual goals in Chapter 5, we can introduce virtual and real positions into
the mesh maps. The decoupling of the two actions allows to place the robots’
goal positions temporarily at different locations in the Voronoi regions, which
may improve the overall performance of the algorithms. Finally, the robots
will converge to a CVT again. Depending on the task the robots need to
perform, additional freedom in the goal placement can lead to lower cost paths
and better accessibility of the goal positions, or better sensor coverage by
adjusting the partition to local environment properties (Valette et al., 2008).
Placing goals, or waypoints on the path toward a goal respectively, closer to
the boundary of a Voronoi region can increase the explorative behavior of
the basic coverage algorithms for example.

Related to the above discussion is how the two actions of coordination
and moving are executed in relation to each other. Algorithm 6 can run
in different variants: synchronous or asynchronous, sequentially or in par-
allel, or offline. In synchronous mode, the robots synchronize, wait until
each robot has reached its centroid and update their Voronoi regions and re-
gions’ centroid all together. Asynchronous mode, as opposed to synchronous
mode, means that the robots do not wait for the other robots at arrival at
their centroid, and update their Voronoi regions and regions’ centroids asyn-
chronously. If the algorithm runs sequentially, the coordination and moving
actions alternate. This particularly applies to a synchronized version of the
algorithm. For increased efficiency, the algorithm is executed in parallel.
The robots move and coordinate at the same time, which can still be realized
as a synchronous or asynchronous process. If the robots are well informed,
e.g., when the environment is known at start, the algorithm can run with
a precomputed DCVT on the known graph, i.e., the coordination action is
performed offline. In this case, each action is entered once: first the optimal
partition is computed, then the robots deploy to their final goals at the mass
centers of the Voronoi regions to form the centroidal Voronoi configuration.

Convergence of the Coverage Algorithms

In the following, we assume a finite environment and prove convergence of
the two coverage algorithms in the case of known environments.

The proofs for a priori unknown environments are extensions, relying on
the fact that each subgraph GMi , representing the mesh map Mi of robot ri,



6.3. VORONOI COVERAGE ON CURVED SURFACES 119

changes only for a finite number of times given the underlying finite graph
GM . Convergence then results from the concatenation of a finite number of
sequences. Changes in a subgraphGMi only occur at the switch of a sequence.
During a sequence, the subgraphs remain unchanged and Proposition 6.1 for
known environments applies.

Proposition 6.1. (Convergence of Wavefront Propagation) A group of n
robots ri covers a graph GM and converges to a centroidal Voronoi con-
figuration with a local minimum in the coverage cost of Equation (6.4) by
performing Algorithm 7.

Proof. The shortest path distance dG(v, vpi) is strictly increasing on Sv,vpi
,

which is the vertex sequence given by the shortest path from v to vpi on
the graph GM . Therefore, the graph Voronoi partition G minimizes HG(PG)
for any fixed robot configuration PG = [vpi ]

n
i=1, i.e., HG(PG, G(PG)) ≤

HG(PG, Y), where Y is an arbitrary partition of the graph. Let T be the
mapping from vertices PG to goal vertices P∗G =

[
v∗pi
]n
i=1, which is the vector

formed by the positions of the neighboring vertices vnil of vpi that lie on the
shortest paths to the centroids vci , with i ∈ {1, ... , n}, l ∈ N>0. We get in
synchronous mode T : [vp1 , ... , vpi , ... , vpn ] 7→

[
v∗p1

, ... , v∗pi , ... , v∗pn
]
, and

in asynchronous mode T : [vp1 , ... , vpi , ... , vpn ] 7→
[
vp1 , ... , v∗pi , ... , vpn

]
.

The mapping T has the property HG(T (PG), Y) ≤ HG(PG, Y), which is
guaranteed by Algorithm 7, which requires h(v∗pi , VGi) < h(vpi , VGi) for
each robot ri. Inequality HG(T (PG), G(T (PG))) ≤ HG(T (PG), G(PG)) fol-
lows directly from the optimality of the Voronoi tessellation for a fixed set of
points. Since the property of T holds for an arbitrary tessellation Y, we fi-
nally get with Y = G(PG): HG(T (PG), G(T (PG))) ≤ HG(T (PG), G(PG)) ≤
HG(PG, G(P)), and thus the cost is minimized in each iteration step of Al-
gorithm 7.

Proposition 6.2. (Convergence of Vertex Exchange) Given the connectivity
of the vertices of the single Voronoi regions VGi , a group of n robots ri covers
a graph GM and converges to a centroidal Voronoi configuration with a local
minimum in the coverage cost of Equation (6.20) by performing Algorithm 8.

Proof. The Voronoi regions VGi grow to cover the free vertices of graph GM
until full coverage of the graph is reached, i.e., HG(PG) increases constantly.
An upper bound in the cost is however given by the finite size of GM . No
other increase of the cost is induced. In order to maintain the connectivity of
the Voronoi regions, vertices may not be exchanged, i.e., further minimiza-
tion is suppressed but the coverage cost is not increased either. HG(PG) is a



120 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

positive value and permanent exchanges of vertices across the boundaries of
VGi reduce the cost locally in each iteration step, in synchronous as well as
asynchronous mode. A point is reached where no vertices can be exchanged
to further decrease the cost and Algorithm 8 has converged to a configura-
tion of local minimum cost. As each robot ri is moved continuously to the
centroid of its Voronoi region by Algorithm 8, and the minimization of Equa-
tion (6.20) implies a Voronoi tessellation, convergence to a centroidal Voronoi
configuration follows.

The two coverage solutions converge to a centroidal Voronoi configuration,
and convergence can be used as criterion to stop the deployment state. In
the context of hybrid coverage (see also Chapter 4 and Section 6.4 below),
convergence triggers the switch to the sweeping state of the second stage.

Arbitrary p-Norms for the Second Approach (Algorithm 8)

The p-norm only applies to the first approach, which computes geodesic dis-
tances. Note that the second approach with approximate distance computa-
tion, as presented here, requires the 2-norm and does not hold for p-norms in
general. This is inherent to above derivation from Equation (6.3) to Equa-
tion (6.21), which is based on the parallel axis theorem. The parallel axis
theorem relies on specific properties of the 2-norm and does not in general
apply for arbitrary p-norms. We refer to Appendix A for a formal proof.

We further observe that, by a variation of the transformation that leads to
Equation (6.21), i.e., by using the polynomial from Proposition A.1 instead
of the parallel axis theorem, we can obtain a new (more complex) expression,
which replaces Equation (6.21). This allows again for efficient cost compu-
tation and cost update in a similar way to Equation (6.21). Furthermore, a
similar transformation could alternatively be derived by using a generaliza-
tion of the parallel axis theorem to arbitrary p-norms that is different from
the generalization assumed by Corollary A.2.

6.4 Extensions to Adaptive and Hybrid
Coverage Control

In this section, we present two extensions of the proposed surface coverage
algorithms. By making use of the metric tensor field, which is included in
the distance computation of the two coverage algorithms, we can incorporate
additional adaptivity and user guidance into the coverage solutions. Another



6.4. EXTENSIONS TO ADAPTIVE AND HYBRID COVERAGE CONTROL 121

extension applies the coverage algorithms under the hybrid coverage con-
cept of Chapter 4 for incremental surface area coverage, using hierarchical
composition.

6.4.1 Adaptive Surface Coverage

Voronoi coverage methods partition the environment and assign robots to
Voronoi regions. Each robot typically completes a task within its region. For
example, the robots monitor their regions, provide services to locations within
their regions, or sweep the areas of their regions entirely. The size, position
and shape of a Voronoi region influences the robot’s efficiency in completing
such a task. The added adaptivity in the surface coverage algorithms can
help to shape the robots’ regions with respect to the environment and tasks
to be performed by the robots.

The Voronoi regions adapt to local anisotropy, which is defined by a met-
ric tensor field on the curved surface. The metric tensor field allows for
controlling shape, density and size, as well as orientation and aspect ratio of
the Voronoi regions. This new adaptivity may improve multi-robot coverage
in several ways. First, adapting the size and orientation of the Voronoi re-
gions according to environment characteristics like surface curvature, salient
features or representation uncertainty makes robot movements during task
completion in a region on the surface safer and more efficient. Second, adapt-
ing the density, orientation or aspect ratio of the Voronoi regions by an input
tensor field enables user guidance of the robot configuration. Finally, adapt-
ing the shape and size of the Voronoi regions allows to match the region to
a sweeping pattern, which is executed by a robot in the region. This corre-
sponds to the second stage in the hybrid coverage concept (see Section 4.2
and Section 6.4.2 below).

The Finsler tensor field given by Bv offers several ways to adapt the
partition over the surface S (see Figure 6.9 for an example). The orientation
of the Voronoi regions is influenced by the directions of the eigenvectors of
Bv. The aspect ratio of the regions is given by the ratios of the eigenvalues of
Bv, measuring the strength of directionality. The size of the regions can be
changed by the weighting factor or mass density ρ. In addition, the distance
in the coverage cost can assume the general p-norm for the first approach.
Depending on the selection of p, the p-norm results in a more circular or
square-shaped distance field, which leads to additional modifications in the
shape of the partitions.



122 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

6.4.2 Application to Hybrid Coverage
Next we discuss how the surface coverage algorithms with added adaptivity
can be applied within the hybrid coverage concept of Chapter 4 to achieve
area coverage on a curved surface. The hybrid area coverage method is out-
lined in Figure 6.4 and Algorithm 9. The idea behind hybrid coverage is to
combine robot deployment and sweeping motions. The method starts with
the robots spreading out on the surface. The robots cooperatively partition
the surface and get their assigned areas of operation. In this first stage, the
surface coverage algorithms from Section 6.3, extended with adaptivity as
mentioned above, are applied to realize an effective deployment and adaptive
decomposition of the surface. The included adaptivity can be actively used
to shape the Voronoi regions and simplify the coverage of the area, e.g., lead-
ing to compact or more elongated shapes that support circular spiraling or
rectangular back-and-forth sweeping patterns. Upon convergence, the robots
switch to the second stage, where each robot sweeps its assigned region locally
to search the area.

Depending on the size of the environment to be covered and the range of
coverage of the single robots, the two stages of deployment and sweeping are
iterated. This corresponds to the hierarchical coverage solution suggested in
Chapter 4. The robots relocate and redistribute outside the already covered
area by applying the hybrid coverage subroutines AdaptiveSurfaceCoverage
and SweepSurfaceCoverage again. By iterating the process, the complete
surface is finally covered by the robots.

Once a Voronoi region is covered, it is marked as covered in the robot’s
mesh map Mi and is locked; the robot communicates the status to its neigh-
bors, which update their mesh maps accordingly. As the surface coverage
algorithms deploy the robots by generating a Voronoi tessellation, a dual De-
launay graph is established simultaneously (see Figure 6.9, Figure 6.10 and
Figure 6.11 for examples). The graph connects the Voronoi regions, repre-
sents the surface topology and gives a simplified low resolution representa-
tion of the environment. This representation remains valid and may serve as
roadmap for future relocation and redistribution phases of the robots. The
covered regions are known to the robots, since they have swept and explored
these areas before. Hence, robot paths transferring from one location on the
surface to another are preferably planned through the known and safe area
of the regions along the Delaunay graph.

Besides covering and locking of regions, many more operations on the
regions are possible. A robot can leave its region uncovered and reassign it
to other robots for coverage, or ask other robots for support. Regions can
be deleted cooperatively if a robot fails or relocates. Furthermore, a new



6.5. RESULTS 123

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x
x

x

Figure 6.4: Hybrid surface area coverage. Left: Robot deployment. Center:
Sweeping motions. Right: Relocation and redistribution. The dual Delaunay graph,
which is visualized in red, is created simultaneously during the coverage process.

Algorithm 9 Hybrid Surface Area Coverage
Require: Set of n robots ri, with sensing and communication capabilities.

Subroutines for the two stages of deployment and sweeping motion.
1: loop
2: AdaptiveSurfaceCoverage(state) // state == DEPLOY
3: SweepSurfaceCoverage(state) // state == SWEEP
4: RelocateAndRestart()
5: end loop

region is instantiated whenever a robot joins during deployment, or a region
is created inside already covered area in order to initiate redundant coverage.

6.5 Results
We have tested both of the proposed coverage solutions thoroughly. Simula-
tions on different synthetic 3D mesh models with varying numbers of robots
verify basic as well as extended functionalities of the two surface coverage
algorithms. Experiments with a group of five e-puck robots were conducted
on a test setup with curved surface to further evaluate the applicability of
the solutions to real robot platforms.

We assume that the triangle mesh has been generated in advance and
is available as input to the coverage algorithms. We investigate the algo-
rithms under two variable assumptions: the robots operate in synchronous
or asynchronous mode, and the environment may be known or unknown to
the robots. If the environment is known, the robots know the entire mesh
model a priori. In an unknown environment, the robots are able to sense
the surface and discover mesh vertices within a sensor range of Rsens as they
move along the triangle mesh. For each robot ri, the detected vertices are



124 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

added to the already discovered subgraph GMi ⊂ GM . The robots exchange
information among each other within a communication range Rcom. If two
robots are within Rcom and share at least one common vertex, i.e., their
subgraphs GMi and GMj are connected, the vertices are exchanged and the
subgraphs merged.

6.5.1 Comparison of Surface Coverage Algorithms
We first present simulations and experiments which analyze the basic oper-
ation of the two surface coverage algorithms. The surfaces are represented
by regular triangle meshes of varying resolution. For the algorithm compar-
ison, we use the 2-norm and uniform metrics in the algorithms. The first
coverage solution is an implementation of Algorithm 6 and Algorithm 7 with
the UpdateGoalDirection function implemented after Equation (6.16). As
graph-based representation, we use the graph GM = Gmesh. The second cov-
erage solution implements Algorithm 6 and Algorithm 8 with kR = 1 rounds
and the ExchangeVertices function realized after Equation (6.25). Here,
the mesh is represented by the dual graph, GM = G∗mesh.

Simulation Results

We use Matlab as simulation environment. The two coverage solutions were
tested on different standard 3D mesh models from computer graphics. In
addition, the triangle mesh from the bumpy slope test setup was used for
simulations. The robots are holonomic point robots.

Varying Geometric Complexity. Simulations on standard 3D mesh mod-
els, such as the Stanford Bunny (see Figure 7.2 for the model), or basic geo-
metric shapes like torus and sphere, demonstrate that the coverage solutions
can cover arbitrary curved surfaces in 3D space. The resulting robot deploy-
ments were evaluated qualitatively. The evaluations included variations of
the robots’ initial positions for a given mesh model and tests with all four
combinations of the algorithm settings: synchronous vs. asynchronous mode,
known vs. unknown underlying mesh model.

Varying Number of Robots. Simulations were run for different numbers
of robots. 20 simulation runs were executed per group, with group sizes of 5,
10 and 20 robots. The mesh of the bumpy slope with 50 mm edge length was
used. The algorithms were set to synchronous mode and the environment was
known. The initial configuration of the robots on the mesh was selected for
each run from the entire mesh uniformly at random. Thus, the simulations
converged to different local minima. The graphs with the plots of all 20



6.5. RESULTS 125

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

Simulation time [s]

Co
st

 

 

best possible cost
average cost: + 18.8%
average convergence time: 6.5 s

0 5 10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

4
x 10

7

Simulation time [s]

Co
st

 

 

best possible cost
average cost: + 6.5%
average convergence time: 24.8 s

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

Simulation time [s]

Co
st

 

 

best possible cost
average cost: + 18.8%
average convergence time: 6.5 s

Figure 6.5: Simulations on a curved surface. A group of 10 robots covers the
surface mesh of the bumpy slope. The best final centroidal Voronoi configurations
(left column) and the cost from 20 simulation runs (right column) are shown for
Algorithm 7 (top row) and Algorithm 8 (bottom row). The best possible cost,
average final cost and average convergence time are indicated in the plots.

simulations (black lines) with their final values (blue squares) are visualized
for the group with 10 robots for both coverage solutions in Figure 6.5. The
average convergence time is 6.5 s for the first solution and 24.8 s for second
solution (red dashed line). The average final coverage cost (blue dashed line)
for the first solution is 18.8 % and for the second solution 6.5 % above the
best possible final coverage cost (black dashed line). The best possible final
coverage cost approximates the global minimum of HG and is computed as an
upper bound by the Lagrangean relaxation heuristics according to Beasley
(1993).



126 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

The best possible coverage cost at final configuration decreases due to
the summation over smaller and smaller distances with increasing number of
robots—for 5 robots: 2.23 107, 10 robots: 1.45 107, 20 robots: 0.52 107. On
the other hand, we found that the average deviation in coverage cost increases
approximately linear in the number of robots. A reason for this effect is the
increasing robot density on the graph, which causes the robots to block each
other when badly initialized.

Note that the cost functions of the first and second coverage algorithms
cannot be compared directly, since the coverage cost in Equation (6.25) is
partial and approximative, and the Voronoi regions initially grow during
execution of the second algorithm. Therefore the cost of the second algorithm
is recalculated for evaluation purposes based on the latest robot positions in
each time step by using Equation (6.4), which is similar to the way it is done
in the first algorithm.

Experimental Results

We use five e-puck robots and the bumpy slope test setup, with and without
additional obstacle, for the experiments. Further details about the robots
and the test setup are provided in Chapter 2.

Mesh Resolution. The performance of the first and second coverage so-
lution is analyzed for different sizes of the triangles in the mesh. Meshes
with triangles of edge lengths of 50 mm, 100 mm and 200 mm are tested.
Meshes with edge lengths of 200 mm are too coarse for the first solution, and
the robots get stuck in a suboptimal local minimum. The second solution
is more robust against varying triangle sizes and also works for edge lengths
of 200 mm meshes. Basically, coarser meshes have the advantage of faster
convergence as the number of vertices, and thus the computational cost, are
greatly reduced. Additionally, the robots move over longer distances along an
edge or face until they reach a next coordination action where they reorient
before driving straight again. The reduction in required coordination actions
and thus in robot rotations saves additional time. Convergence time grows
roughly by a factor of 1.5 at each transition, from a mesh with 200 mm edge
length to a mesh with 100 mm edge length, and from a mesh with 100 mm
edge length to a mesh with 50 mm edge length. For our setup, the mesh
with 100 mm edge length resulted in fast convergence to a well-balanced cen-
troidal Voronoi configuration in simulation as well as in experiments. The
number of vertices is ideally as low as possible but without losing details of
the structure due to a low mesh resolution.



6.5. RESULTS 127

Figure 6.6: Experiments on a curved surface. A group of five e-pucks deploys
according to Algorithm 7 (left) and Algorithm 8 (right) for asynchronous mode
and unknown environment. The views from the overhead camera show for both
algorithms the initial, intermediate and final configurations during coverage of the
surface (the views are overlaid with the surface mesh and the Voronoi partition;
Voronoi regions are visualized in the colors of the robots).

Coupling of Actions: Synchronous vs. Asynchronous Mode. Ex-
periments confirm that the robots converge faster to the final configuration
in asynchronous mode than in synchronous mode. As expected, the robots
do not have to wait for the other robots when computing their next goal po-
sitions, which speeds up the robot deployment. The time difference is more
distinct for the second coverage solution, since the robots drive along several
triangle centroids until they reach their next goal positions, i.e., a sequence
of the moving action may take longer than for the first coverage solution.
This results in longer waiting times in the synchronous mode.

Convergence and Repeatability. In total, we ran over 50 experiments
on the bumpy slope test setup for each of the two coverage solutions. Thereof,
25 experimental runs were performed in asynchronous mode and for unknown
environment, which is the setting that is the most desirable for real applica-
tions. A triangle mesh with 100 mm edge length was used. The sensor range
Rsens was set to 0.5 m and the communication range Rcom was kept infinite.
A sequence from an experimental run is shown in Figure 6.6 for both of the



128 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

Figure 6.7: Statistical evaluation. 25 experimental runs are evaluated on the
curved surface with Algorithm 7 (top row) and Algorithm 8 (bottom row) for the
group of five e-pucks in asynchronous mode and unknown environment. Left: Tra-
jectories of the robots from 25 deployments on the surface mesh. Right: Coverage
cost for the whole group, plotted over the running time. The best possible cost,
average final cost and average convergence time are indicated in the plots.

two solutions. The initial configuration of the five robots is shown in the top
row of the figure.

Over the 25 experimental runs, the first solution results in an average
convergence time of 137 s with a standard deviation of 28.6 s (Figure 6.7, top
right). The second solution takes longer to converge than the first solution,
and evaluations show an average convergence time of 303 s with standard
deviation of 55.8 s (Figure 6.7, bottom right). The lower convergence rate is
in accordance with the simulation results. There are two main reasons. First,
in our implementation the robots move from triangle centroid to triangle
centroid on straight lines, which leads to zig-zag paths and the robots rotate
more often than for the first solution. Second and more interestingly, as the



6.5. RESULTS 129

Figure 6.8: Additional nonconvexity. Left: Initial robot configuration on a curved
surface with a hole. Center: Suboptimal distribution of the five e-pucks under
Algorithm 7. The robots get stuck in a suboptimal local minimum when starting
from the initial configuration. Right: Under Algorithm 8, the five e-puck robots
succeed in covering the surface with the hole.

Voronoi regions grow vertex by vertex, they are created slower compared to
the first solution.

The first solution mostly converges to the same final configuration over
the 25 experimental runs for asynchronous mode and unknown environment
(Figure 6.7, top left). The final configuration for the first solution, however,
strongly depends on the initial configuration. Results from experiments with
the second solution show that the robots distribute into different final con-
figurations (Figure 6.7, bottom left). The order in which the boundaries of
the Voronoi regions are updated influences the vertex exchanges and the Vo-
ronoi regions evolve differently from run to run. Thereby the second solution
reaches slightly lower values in coverage cost compared to the first solution.
The average cost of the final configuration for the second solution lies 10.4 %
above the best possible coverage cost, whereas the average cost of the first
solution is 12.8 % above. Besides, the final coverage cost of the second solu-
tion varies in a larger range since different minima of the cost are reached by
the final configurations.



130 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

Additional Nonconvexity. We also tested the two coverage algorithms
for different test setups. In this experiment, the middle part was removed
to add a hole obstacle to the curved surface. The algorithms now must deal
with an additional nonconvexity. The resulting coverage of the surface is
shown in Figure 6.8 on a mesh with 100 mm edge length for both coverage
solutions. The algorithms are set to asynchronous mode and the environment
is unknown. Whereas the second solution generates well-balanced Voronoi
regions, the first solution converges to a local minimum with suboptimal dis-
tribution of the robots on the surface. A reason for the suboptimal coverage
is the first solution’s strong dependence on the initial configuration. In this
particular case all the robots are lined up one after the other on the narrow
branch. The unfavorable start positions lead to the suboptimal coverage.
Tests on a mesh with 50 mm edge length showed that the use of a denser
mesh improves the final partition. Besides, additional weights in the graphs
can further improve the partitions.

6.5.2 Extensions of Surface Coverage Algorithms
The adaptive versions of the surface coverage algorithms and the algorithm
for hybrid surface area coverage were tested in simulation for different surfa-
ces. The algorithms are implemented in C++ and ROS. The surface models
vary in complexity and consist of purely synthetic meshes as well as meshes
obtained by surface reconstruction from real laser point clouds.

Adaptive Surface Coverage

We give two examples for adaptive surface coverage in the following. We
use the second coverage algorithm with the ExchangeVertices function now
implemented after Equation (6.23), and operate on the graph GM = Gmesh
instead of using the dual graph.

The first experiment demonstrates the adaptivity added to the Voronoi
coverage. Figure 6.9 shows the deployment of four robots on a sphere under
varying user guidance. The metric tensor field for controlling the adaptivity
is specified directly by the user. The first deployment is uniform, which
sets equal weights to all vertices and directions. The second deployment is
isotropic and directs the robots onto a great circle of the sphere. The metric
tensor field for the first two deployments is of the form K̃v = I3, andMA(v) is
constant for the uniform deployment and varies over the sphere as a function
of location for the isotropic deployment. The third and fourth deployments
use an anisotropic metric. The Voronoi partitions point along the horizontal
and vertical directions.



6.5. RESULTS 131

Figure 6.9: Adaptive surface coverage of a sphere. Adaptive deployment of four
robots (blue balls) on a sphere. From left to right: Uniform, isotropic (weights
placed toward the great circle) and anisotropic (horizontal and vertical) metric
tensor fields provided by the user guidance. The dual Delaunay graph (blue lines),
which connects the Voronoi regions, is simultaneously created.

Figure 6.10: Adaptive surface coverage of a torus. Adaptive deployment of 10
robots (red cubes), starting from their initial configuration (blue cubes), using an
isotropic curvature metric. The principal curvature directions estimated for the
torus are shown on the bottom left. The dual Delaunay graph (red lines) on the
torus at convergence is visualized in the center.

In the second experiment, 10 robots are distributed on the synthetic mesh
model of a torus (Figure 6.10). The deployment on the torus is again isotropic
but the matrix K̃v is now constructed from the local curvature of the surface,
given by the weights ρ(v) = 1 +

√
k2

v, 1 + k2
v, 2, the principal curvatures kv, 1

and kv, 2 , and the principal directions. The principal curvatures and prin-
cipal directions are estimated from the mesh model following the approach
by Meyer et al. (2002), and are shown in Figure 6.10 on the bottom left.



132 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

Figure 6.11: Hybrid surface area coverage of a steam chest. Top left: 3D laser
point cloud and reconstructed triangle mesh of a steam chest tube. Top right: Voro-
noi partition resulting from the deployment of five robots (colored balls). Bottom
left: Transitioning triangle strip path and vector field generated along the strip
for controlling a robot toward the centroid of its Voronoi region. Bottom right:
Covering triangle strip paths, defining a sweeping pattern for each of the Voronoi
regions.

Hybrid Surface Area Coverage for Multi-Robot Inspection

In this last simulation experiment, the inner surface of the steam chest (see
Section 2.1) is covered by five robots, applying the hybrid coverage concept.
Figure 6.11 shows one iteration of the hybrid surface area coverage algorithm
according to Algorithm 9. The input is a 3D point cloud, which was recorded
with the rotating Hokuyo URG-04LX laser range finder (Figure 6.11, top



6.6. SUMMARY 133

left). From the point cloud, a triangle mesh is reconstructed. Five robots are
deployed over the mesh in a first stage, using the adaptive surface coverage
algorithm (Figure 6.11, top right). In a second stage, each robot covers its
Voronoi region with a sweeping motion (Figure 6.11, bottom right). The path
planner computes transitioning as well as sweeping paths. Paths to transfer
a robot to a goal position are planned by an A* search, which generates a
triangle strip path on the mesh. The sweeping paths to cover the surface area
result from a covering strip planner and the robots are controlled by smooth
vector fields generated along the strip (the mesh-based path planners are the
topic of the following Chapter 7).

6.6 Summary
The focus of this chapter is on the deployment of multiple robots to achieve
Voronoi coverage on curved surfaces. The robot deployment can be seen as
the first stage of a two-tired hybrid surface area coverage method. In this
context, it is particularly important to provide an effective partitioning of the
surface in the first stage, since each robot is required to sweep the entire area
of its assigned Voronoi region in the subsequent second stage. Distributed
multi-robot coverage of curved surfaces is useful for a broad class of real-
world applications, such as collaborative operations in rough terrain or in
inspection scenarios for industrial structures.

We present two adaptive surface coverage algorithms which deploy a group
of robots on a graph and allow for adapting the size, positions and shapes of
Voronoi regions by a metric tensor field defined on the surface. The tensor
field can be computed from local surface properties or is controlled externally
by user guidance. The first coverage solution propagates a discrete wavefront
to construct a DCVT on the graph and computes gradients of the coverage
cost locally to update the robots’ goal directions. The second coverage solu-
tion constructs the DCVT by a local exchange of graph vertices and projects
the computed goal positions from the ambient space back onto the graph.
The two coverage solutions have been tested successfully in simulations and
in experiments with real robots on different synthetic as well as more real-
istic mesh models. The analysis reveals some complementary trends in the
characteristics of the two solutions, which provide interesting directions for
future research.

The two coverage solutions build on a discrete environment representa-
tion. A graph is an abstract representation that provides a good choice.
We use a triangle mesh to represent the curved surface in our implementa-
tion. However, a graph can be implemented more generally by any polygonal



134 6. MULTI-ROBOT COVERAGE ON CURVED SURFACES

mesh or grid, and works on surfaces as well as in full 2D, 3D or higher di-
mensional spaces. Coverage on a graph results in approximative solutions
but resolves problems arising from nonconvexity or topological constraints,
which are hard to handle otherwise. For example, the coverage problem of
Chapter 5, where geometric constraints are imposed by a nonconvex planar
environment, can alternatively be solved by the two coverage algorithms pre-
sented in this chapter. The advantage of a graph-based representation is
that a graph may only model the feasible set, which is intrinsically uncon-
strained. Handling free-standing obstacles and moving on a curved surface
then become related problems.

Furthermore, a discrete representation may not need to be a graph. Point
clouds present an interesting alternative. The first coverage solution could
operate on a neighborhood graph that is constructed locally from the point
cloud (Mémoli and Sapiro, 2005; Tenenbaum et al., 2000). The second cov-
erage solution even extends to point clouds without using any underlying
explicit graph. Single points instead of vertices are exchanged locally across
the Voronoi regions; only a neighborhood relation, e.g., given by an efficient
nearest neighbor search, is required to maintain connectivity. This bears
further interesting relations to the clustering of data points (Du et al., 1999).



Chapter 7

Mesh-Based Path Planning
on Curved Surfaces

The motivation behind this and the next chapter is to provide navigation
solutions for moving mobile robots on curved surfaces. The last chapter
has proposed multi-robot coverage solutions that deploy robots on triangle
meshes. For this method to work, an efficient implementation of the moving
action is needed, such that the robots transition from their current state to
the next goal state along feasible and preferably optimal trajectories on the
surface. We present in the following a hierarchical navigation solution that
plans a discrete triangle strip path on the mesh representation and applies
continuous feedback control to guide a robot smoothly along the triangle strip
to the goal regions on the surface.

Our key idea is to make use of triangle strips. First, triangle strips are
related to computer graphics, where the stripification of a triangle mesh into
single triangle strips is popular for data compression and efficient render-
ing of mesh models. In this context, many methods were developed which
provide a solid basis for further studies. Second, such stripification can be
seen as discrete path planning on the mesh. Triangle strips are extracted
and the mesh is reduced this way to a representation that contains all the
relevant information for path planning and robot control. Third, concerning
multi-robot coverage, triangle strip planning allows not only to plan transi-
tioning but also covering triangle strip paths, which define complete sweeping
patterns over a surface. Finally, triangle strip planning relates to feedback
motion planning and the composition of funnels paradigm (LaValle, 2006).
The individual triangles of the triangle strips represent basic cells that cover
the surface; navigation functions and vector fields can now be designed within

135



136 7. MESH-BASED PATH PLANNING ON CURVED SURFACES

each triangle of the strip in order to move a robot from triangle to triangle,
i.e., the states transition from funnel to funnel.

We implement a version of the triangle strip planner for navigation on
curved surfaces, using and combining existing concepts from surface recon-
struction and path planning. The chapter mainly contributes by investigating
the potential applicability of these concepts within the realistic scenario of
robotic inspection with climbing robots like MagneBike.

The navigation solution for mesh-based path planning with application to
robotic inspection on curved surfaces of industrial structures has been pre-
sented at the International Conference on Applied Robotics for the Power
Industry (Breitenmoser and Siegwart, 2012). We give an overview of related
methods from surface reconstruction and graph-based path planning in Sec-
tion 7.1. Section 7.2 describes the navigation solution, including environment
representation, triangle strip planning and feedback control. An evaluation
and discussion of the solution is presented in Section 7.3. A final summary
concludes the chapter in Section 7.4.

7.1 Related Work
Our navigation solution relies on 3D point clouds recorded by a rotating laser
range finder for the reconstruction of a navigable triangle mesh. Environment
modeling from LIDAR data as well as path planning and control using recon-
structed triangle meshes present a challenging problem. We review related
work that addresses some of these challenges.

Typical robotic mapping methods are designed for the construction of grid
maps of 2D and 2.5D terrains (Hebert et al., 1989; Moravec, 1996; Triebel
et al., 2006). We are however interested in curved surfaces and full 3D en-
vironments and focus on the environment representation by triangle meshes
in the following. Triangle meshes can be of advantage for several reasons: a
mesh provides a compact data structure and represents a graph in 3D space,
which can conveniently be used as representation for graph-based path plan-
ning algorithms. Furthermore, with respect to the inspection task, meshes
can be used to map defects found during coverage of the surface, for logging
already covered trajectories, or for visualization purposes in the interaction
with human inspectors.

There exists a great variety of surface reconstruction methods in com-
puter graphics literature (Alexa et al., 2001; Amenta et al., 2001; Carr et al.,
2001; Dey and Goswami, 2004; Gopi and Krishnan, 2002; Hoppe et al., 1992;
Kazhdan et al., 2006). However, it is often not clear which among those can
be expected to perform well in a given environment or application. Another



7.1. RELATED WORK 137

challenge is due to the fact that surface reconstruction methods are gener-
ally developed for computer graphics applications with their main focus on
the user-guided generation of high accuracy meshes for 3D modeling. Often
less attention has been paid in the mesh generation to aspects important
for mobile robotics like full automation, robustness against noise, dynamic
mesh updates, real-time processing of sensor inputs, or limited resources (e.g.,
memory and computational power). In contrast, there are approaches emerg-
ing from robotics and graphics to close these gaps (Gingras et al., 2010; Mar-
ton et al., 2009; Newcombe et al., 2011).

Stripification of triangle meshes is another broad topic in computer graph-
ics because of its importance for 3D rendering. Our main interest is in single-
strip representations. Diaz-Gutierrez et al. (2005) generates single trian-
gle strips that satisfy additional constraints for high performance rendering.
Gopi (2004) grows a single triangle strip incrementally without the need for
preprocessing. The work by Speckmann and Snoeyink (2001) suggests the
generation of triangle strips with the help of spanning trees. As shown by
these works, the stripification of a triangle mesh relates to spanning trees (Ag-
mon et al., 2006; LaValle, 2006) and space filling curves or trees (Kuffner and
LaValle, 2011), which result in the complete coverage of a surface area.

Our original intention is path planning and coverage path planning on
triangle meshes. In this context, the stripification can be seen as nothing
else but the planning of discrete paths over a triangle mesh. Alternative
approaches for graph-based path planning on the mesh involve classical graph
search methods like A* or Dijkstra’s algorithms. Enhanced algorithms, such
as the methods of Koenig and Likhachev (2002) and Ferguson and Stentz
(2006), offer additional properties like efficient replanning or improved path
continuity.

A specific approach of feedback motion planning for navigating a robot
in a planar polygonal environment is to first plan a discrete path and then
to construct a vector field along the path that leads toward the goal (Belta
et al., 2005; Conner et al., 2003; Lindemann and LaValle, 2005). The meth-
ods presented by Pimenta et al. (2007) and Pereira et al. (2009) use planar
triangular regions and extend the approach to the generation of guaranteed
continuous vector fields and planning in multi-terrain environments. We rely
on their method and extend it further to work with general triangle meshes
that represent curved surfaces embedded in 3D space.



138 7. MESH-BASED PATH PLANNING ON CURVED SURFACES

7.2 Triangle Strip Planning
The method of triangle strip planning reconstructs the environment from 3D
point cloud data and generates a triangle mesh of the surface. The path
is extracted as triangle strip, connecting the start to the goal pose on the
mesh. A vector field is computed within each triangle of the triangle strip,
such that a smooth path over the mesh is obtained by following the vector
field. We first state the problem formulation and then describe the different
components of this navigation solution.

7.2.1 Problem Formulation
The navigation solution should generate a feasible and preferably optimal
path along a curved surface S, in accordance with Definition (3.4) and Def-
inition (3.5), by using a triangle mesh as environment representation. The
triangle mesh might be given or must be generated from a 3D point cloud.

The triangle strip planner typically acts on an intermediate level in the
system architecture. This works under the assumption that there is a human
operator or some higher level planner, giving general guidelines on where
the robot needs to go. Goal poses requested from a higher level layer can
be selected according to an arbitrary coordination policy. In the context
of robotic inspection, typical policies set out goal poses for exploration and
coverage of the structure.

7.2.2 Environment Representation
3D point clouds provide our basic measurement data for robot localization
and mapping, modeling and visualization of the environment. Here our focus
is on the representation of the environment; refer to Chapter 2, and to the
work of Tâche (2010); Tâche et al. (2011), for a description of a possible
robot localization procedure based on scan matching.

Point Cloud Preprocessing

After a 3D point cloud is captured with a LIDAR, the point cloud is filtered
and augmented in a preprocessing step prior to the mesh generation. Differ-
ent filters are applied to improve the point clouds, including equalization of
varying point densities, removal of outlier points, and subsampling and trim-
ming in order to reduce the point cloud data. Further methods for smoothing
and point cloud simplification, as well as estimation of surface curvature from
the point cloud data, are described by Pauly et al. (2002). The tensor voting



7.2. TRIANGLE STRIP PLANNING 139

framework (see Section 3.4 and Section 8.2.2) can furthermore be applied for
augmenting a point cloud. Saliency and structural information are inferred
and orientations are estimated.

Augmenting the point cloud by point normals is a common requirement
for many mesh generation techniques. Especially implicit surface reconstruc-
tion methods rely on robust normal estimation for computing signed distance
functions. Besides tensor voting, an alternative method for estimating point
normals is the fitting of local planes to the point neighborhoods. A princi-
pal component analysis (PCA) on the scatter matrix of the point neighbors
estimates the point normal as the eigenvector of the scatter matrix with the
smallest corresponding eigenvalue. The resulting normal estimates need to be
adjusted to obtain consistent normal orientations among neighboring points.
Single point clouds recorded from rotating laser range finders include some
inherent additional information about the organization of the point cloud.
The points must be visible for the sensor, the point cloud origin coincides
with the sensor position, and the recorded data is associated with a particu-
lar position of the moving sensor. The point normals can be oriented by using
viewpoint information in this case. Alternatively, for multiple point clouds
and no available additional sensor information, globally consistent orienta-
tions of the normals are obtained by propagating the normal orientations
over a minimum spanning tree (Hoppe et al., 1992).

Mesh Reconstruction and Postprocessing

We selected local sensor-centric as well as global, explicit as well as implicit
state-of-the-art surface reconstruction methods for our investigation. Some
implementations follow the selected method closely, some are implemented
with minor modifications.

Irregular Triangular Meshes. The first evaluated surface reconstruc-
tion method is the irregular triangular mesh generation method (ITM). The
method is based on the ideas of Gingras et al. (2010) for mesh generation for
robots in rough terrain. ITM is a local explicit approach; it is sensor-centric,
i.e., it works on a single laser scan with additional viewpoint information.
Points are explicitly connected by triangles through Delaunay triangulation
(see also Section 3.3.1). First, the 3D point cloud is transformed into spheri-
cal coordinates and a 2D Delaunay triangulation is applied to the two angular
coordinates φ and θ, omitting the range component. The connectivity among
the points is established in this first step. The resulting triangles are close
to equilateral as the Delaunay triangulation maximizes the minimal angle of



140 7. MESH-BASED PATH PLANNING ON CURVED SURFACES

each triangle. In a second step, range information is added back to generate
the final triangle mesh in 3D space. The established connectivity from the
first step remains valid. The periodicity in the angle of the spherical coordi-
nates is retained in the generated mesh by duplication and identification of
(φ, θ) coordinate pairs when the 2D Delaunay triangulation is performed.

ITM interpolates the point cloud, i.e., it keeps the original points of the
point cloud as vertices of the mesh and thus exactly represents the real input
data. The mesh generation works for non-uniform point densities but is
sensitive to noisy data. Typically, the generated meshes contain holes and
artifacts, such as incorrect triangle connections at the point cloud boundary
or at occluded regions. Meshes obtained by ITM require postprocessing in
order to be usable for robot navigation. We implemented a mesh filter after
suggestions by Gingras et al. (2010) for the removal of incorrect artifact
triangles.

Fast Triangulated Surfaces. The fast triangulation mesh generation
method (FTM) implements the explicit surface reconstruction method pre-
sented by Marton et al. (2009). The method is based on a greedy algorithm
that works under the principle of incremental surface growing: a start tri-
angle is created and new triangles are formed and added explicitly until all
points in the point cloud are included in triangles in the mesh, or no more
valid triangles can be constructed. The triangulation method partially re-
lies on the triangulation algorithm of Gopi and Krishnan (2002). First, the
k-nearest neighbors of a single point in the point cloud are selected. In a sec-
ond step, the points in this neighborhood are projected onto a plane, which
is fitted to the points in the neighborhood. Finally, new triangles are built
by connecting the points through edges, while visibility and maximum and
minimum angle criteria set constraints on the triangle creation. FTM, similar
to ITM, is a fast surface reconstruction method that works for non-uniform
point densities and provides near real-time performance. It offers improved
robustness against noise but still results in much rougher meshes than the im-
plicit methods. The incremental nature of FTM promises the straightforward
dynamic extension of a mesh by point clouds from new laser scans.

Meshing with RBF- andMLS-Based Distance Functions. The meth-
ods we describe next are global implicit surface reconstruction methods based
on differently defined signed distance functions. The extended marching
cubes mesh generation method (ECM) implements two common choices of
signed distance functions: the radial basis function (RBF) (Carr et al., 2001)
and moving least-squares (MLS) (Alexa et al., 2001). Once the distance



7.2. TRIANGLE STRIP PLANNING 141

function computation has completed, the triangle mesh is retrieved by the
marching cubes algorithm. We use an extended marching cubes implementa-
tion (Kobbelt et al., 2001), together with triharmonic or piecewise polynomial
RBFs and MLS kernels with Gaussian or Wendland weight functions, in our
ECM method.

In contrast to explicit methods, implicit methods generate a triangle mesh
as a global approximation of an input point cloud. Whereas RBF-based meth-
ods compute an approximation globally, MLS-based methods achieve the ap-
proximation by local computation. Different selections of the kernel functions
differ in their local or global support, and determine the overall smoothness
of the resulting signed distance function and the generated triangle mesh.
Implicit methods reconstruct watertight or closed surfaces. In the context of
robot navigation, this is advantage as well as disadvantage: noisy regions of
the point cloud, regions of highly irregular density or with missed parts can
widely be recovered, but the approximation may incorrectly fill in a hole or
opening that is truly present in the real surface. Therefore, implicit methods
as well require postprocessing of the generated triangle mesh. Mesh filters
can use prior knowledge of the surface and additional information extracted
from the augmented point cloud or the generated mesh. The mesh could be
segmented by fitting characteristic geometric shapes (Schnabel et al., 2007;
Vaskevicius et al., 2010) and each of the segmented parts could be checked
against the point cloud. Alternatively, one or several regions of connected
triangles may be grown and removed from the mesh for areas with missing
underlying point cloud data.

Poisson Surface Reconstruction. The Poisson surface mesh genera-
tion method (PSM) represents a global implicit method, which is based on
the Poisson surface reconstruction algorithm introduced by Kazhdan et al.
(2006). The Poisson surface reconstruction algorithm is one of the most
recent and best performing surface reconstruction algorithms in computer
graphics literature to date.

The formulation of PSM relies on the indicator function, a function that
distinguishes inside from outside space in a 3D point cloud recorded from
a surface of an object. The gradient of such an indicator function can be
considered as a vector field that takes non-zero values solely in the proximity
of the real surface. The indicator function is found as the function whose
gradient approximates the vector field computed from the sample points.
By applying the divergence operator, a Poisson equation results, which can
be solved efficiently by conventional Poisson solvers (Kazhdan et al., 2006).
PSM’s basis functions are compactly supported and the implicit function is



142 7. MESH-BASED PATH PLANNING ON CURVED SURFACES

inherently constrained at all spatial points without addition of off-surface
constraints. Similar to ECM methods, the PSM method depends on aug-
mented point clouds with consistently oriented point normals, is apart from
that robust against noisy data, and results in the generation of watertight
meshes, including all the associated benefits and drawbacks discussed above.

When a triangle mesh has been generated, the mesh usually needs to be
further processed by mesh filters to improve the mesh’s navigability prior to
path planning. For the postprocessing, we use the QSlim mesh simplification
algorithm (Garland and Heckbert, 1997). Other mesh simplification methods
could alternatively be used. In the mesh simplification step, the mesh is
remeshed and the triangles of the mesh are reasonably scaled for navigation.

7.2.3 Path Planner and Robot Control

Planning Triangle Strip Paths

The input to the path planner consists of the 6D robot pose, the desired
goal pose and the previously generated and processed triangle mesh. There
are different ways to create a graph or roadmap from the triangle mesh (see
also Section 6.2 in Chapter 6); we construct the graph by either using the
triangle centroids or the edge centers of adjacent triangles as vertices. The
implemented triangle strip planner then uses the classical A* algorithm to
connect the triangles to a strip, and hence generate an initial discrete global
path from the start to the goal pose. Weights of traversing cost can further
be derived from local mesh properties and are added to the graph in order to
optimize the geometry of the triangle strip subject to environment and robot
characteristics. Robot kinematics and structural constraints could addition-
ally be considered on the discrete level of the triangle strip planning, in a
similar way as it is done for point-based path planning in Chapter 8.

Controlling Robots along Smooth Paths

Graph-based planners, as the ones described above, perform well in terms of
finding an optimal global path. However, the resulting paths are discrete,
and it is desired to have more continuous paths or trajectories and control
laws that are directly applicable to the actual robot. We use a vector field
controller which generates vector fields within the planned triangle strip to
steer a robot toward the goal pose, which is contained in the terminating goal
triangle.



7.2. TRIANGLE STRIP PLANNING 143

Figure 7.1: Triangle strip path and vector field generation. The combination of
vectors wj , wk and wl generates the vector field u(pi) for controlling a robot ri at
position pi on the triangle strip from the start at p0

i to the goal at gi.

In our case of vector field generation for surfaces S ⊂ R3, we first un-
wrap the extracted triangle strip and transform it to R2. This unwrapping
is inspired by the manifold representation of Howard et al. (2006), has some
similarities to the transformation to star-shaped domains of Chapter 5, and
corresponds to a transformation of a kinematic chain formed by the triangles
of the strip. The m triangles in the strip, with locally defined frames Ti
and T ′i , i ∈ {1, ... , m}, are the links of the chain; the edges of two adjacent
triangles are the revolute joints. The geometry of the triangles defines the
relative translation vectors tTiT ′i and rotation matrices RTiT ′i

for each tri-
angle, and the angles between two adjacent triangle faces give the rotation
matrices RTi+1T ′i

. The transformed 2D triangle strip can then be further
processed using the continuous vector field generation method from Pimenta
et al. (2007) and Pereira et al. (2009). The generated vector field is fully
continuous in the triangle strip unfolded to the common plane, and only ex-
hibits discontinuities in the relative orientation of adjacent triangle faces in
3D space. This discontinuities are inherent to the piecewise linear approxi-
mation of the continuous curved surface by the triangle mesh. Possibilities
to achieve continuity in orientation could be found by studying interpolation
schemes for interpolating between the orientations of two adjacent triangle
faces.

We restate the basics of the vector field generation in the following; for
details and a mathematical analysis refer to the work of Pimenta et al. (2007)
and Pereira et al. (2009). The vector field is computed by interpolation
within each triangle face. For each triangle with triangle vertices vj , vk
and vl, a set of three base vectors, wj ,wk and wl, is chosen, such that the



144 7. MESH-BASED PATH PLANNING ON CURVED SURFACES

vectors are guaranteed to always point along the triangle strip toward the
goal without having positive projections to the lateral outward normals of
the strip (see Figure 7.1). It is further possible to adjust the single base
vectors by additional triangle split operations, such that a fully continuous
vector field over the whole triangle sequence is always guaranteed. Given the
partial triangle areas Aj , Ak and Al, we can create the vector field

u(pi) = Aj wj + Ak wk + Al wl

Aj + Ak + Al
, (7.1)

for each triangle of the triangle strip from the start to the goal. For a holo-
nomic point robot modeled after Equation (3.16), a gradient descent con-
troller can then be obtained by setting ṗi = u(pi).

7.2.4 Extensions
There are several interesting extensions possible with respect to triangle strip
planning. Currently, our mesh generator and triangle strip planner are both
static. Incremental meshing (Newcombe et al., 2011) and replanning algo-
rithms (Koenig and Likhachev, 2002) provide solutions for more dynamic
computations, e.g., to handle dynamically changing environments more effi-
ciently. Another future direction of research is toward obstacle negotiation
and avoidance, including 3D collision checking against the triangle mesh. A
triangle strip passing a step obstacle could furthermore be aligned with the
edges of the step. The vector field could be designed to point into direc-
tions perpendicular to the edge tangents, or perpendicular to the edges of
the triangles (Lindemann and LaValle, 2005), which would offer a possibility
to meet the constraints of a climbing robot for obstacle negotiation (refer to
the specifications of the MagneBike robot in Chapter 2, and the inclusion of
such constraints under the navigation solution proposed in Chapter 8). The
following extensions have been realized so far.

Nonholonomic Vehicles. The case of nonholonomic robots, such as Mag-
neBike, is handled in the triangle strip planner by feedback linearization (Lau-
mond, 1998; Pereira et al., 2009). Defining a reference point different from
the robot’s center of mass allows to control a nonholonomic robot similar to
a holonomic robot via the vector field of Equation (7.1) as control input.

Covering Triangle Strip Paths. Coverage path planning is included in
the navigation solution by an incremental single triangle strip generation
method, based on the method of Gopi (2004). Examples of planned covering



7.3. RESULTS 145

triangle strip paths are shown in Figure 6.11 of Chapter 6 on the bottom
right.

7.3 Results
In the following, we show representative examples for generated triangle
meshes and triangle strip paths. The navigation solution was tested in sim-
ulations using synthetic 3D mesh models as well as real 3D point clouds
recorded with the Hokuyo URG-04LX and Hokuyo UTM-30LX laser range
finders. The navigation solution is implemented in C++ and can also be
interfaced from ROS (see Section 2.1.2 for further details on the test envi-
ronments). The results here presented are qualitative and are intended to
demonstrate the navigation solution’s general applicability.

7.3.1 Evaluation of Triangle Strip Planning

Synthetic 3D Mesh Models. The triangle strip planner and continuous
vector field controller have been tested for mesh models of varying complexity.
First, the triangle strips are planned and the vector field is generated along
the strip; then the continuous robot trajectories are simulated. Figure 7.2
shows a triangle strip path and a vector field generated on the Stanford Bunny
mesh model.

LIDAR Scans of Real Steam Chest. We used 3D point clouds recorded
from the steam chest environment and steam chest mock-up (see also Fig-
ure 2.1 and Figure 2.4 in Chapter 2), and generated triangle meshes with
the different mesh generation methods of Section 7.2.2 above. Some typi-
cal characteristics of the evaluated mesh generation methods are shown by
the examples of generated triangle meshes in Figure 7.3. ITM may generate
a highly irregular mesh, which must be improved by artifact removal and
remeshing. ECM leads to a much more uniform mesh but may suffer from
spurious surfaces caused by failures in the normal estimation at points of
outliers or abrupt density changes. FTM generates the surface accurately
but may need substantial postprocessing to render the mesh navigable. PSM
robustly generates a watertight mesh. However, the loss of tube openings
must be considered in navigation. The point clouds were trimmed and down-
sampled to 10’000 points, and normals were estimated where needed but no
additional preprocessing was applied. Further preprocessing or tuning of the
individual mesh generation methods may improve the results.



146 7. MESH-BASED PATH PLANNING ON CURVED SURFACES

Figure 7.2: Triangle strip path and vector field on Stanford Bunny. Left: Stanford
Bunny mesh model and planned global triangle strip path. Right: Extracted tri-
angle strip and discrete path (blue); generated vector field (green) and continuous
robot trajectory (red).

Figure 7.3: Generated triangle meshes of industrial structures. Left: Triangle
meshes for a pipe, generated by ITM (top left) and ECM (bottom left). Right:
Triangle meshes for the steam chest environment, generated by FTM (top right) and
PSM (bottom right). Note the loss of the steam chest’s openings in the generated
mesh.



7.4. SUMMARY 147

Figure 7.4: Simplified triangle mesh and planned triangle strip paths. Left: Orig-
inal and simplified triangle meshes for the steam chest. The mesh is reduced from
25′000 to 1′000 faces by QSlim. Right: Six transitioning triangle strips are planned
from the original scan location to different goal regions on the structure.

The generated triangle meshes were simplified by QSlim (Garland and
Heckbert, 1997). Figure 7.4 on the left shows a triangle mesh before and
after simplification; on the right, six transitioning triangle strip paths, all
starting at the original robot position, where the underlying point cloud was
recorded, and leading to different goal regions on the mesh, are shown. A
critical parameter for the navigation solution is the mesh resolution. The
optimal resolution depends on the size of the robot as well as the maximum
surface curvatures encountered in an environment. Limitations are given for
curvatures that are large with respect to a robot’s size. The resolution must
always be adjusted for a given environment.

Another example of a transitioning triangle strip path and several covering
triangle strip paths for the generation of sweeping patterns are shown in
Figure 6.11 of Chapter 6.

7.4 Summary
This chapter presents a solution using mesh-based path planning for navi-
gating mobile robots on curved surfaces. Mesh generation methods model
the curved surface as triangle mesh and the triangle strip planner plans dis-
crete paths from start to goal regions as a sequence of triangles. Feedback
control is directly added to the planning procedure in constructing a contin-
uous vector field. The hybrid approach seems promising as it incorporates
several favorable elements for robot navigation on uneven terrain in general



148 7. MESH-BASED PATH PLANNING ON CURVED SURFACES

and for robotic inspection in particular, such as mesh representation, efficient
discrete planners, and robustness through integrated feedback control.

Several state-of-the-art surface reconstruction methods have been applied
to 3D point clouds recorded from industrial tube-like structures, including
the steam chest environment. Whereas explicit methods require effective
filtering and outlier removal methods in order to create a navigable mesh,
implicit methods rely on robust normal estimation and means for detecting
missed real features because of too strong approximation and smoothing.

Tasks of an inspection robot are versatile: they span from exploration
and mapping to surface coverage and search for defects, to the analysis and
repair of defects at specific points in the structure. The underlying problem
is always to plan a path on the surface. Depending on which of the tasks
needs to be performed, the focus is either on planning a transitioning path to
a goal region or on planning a covering path that moves the robot over the
complete area. We address both of the problems by planning triangle strip
paths over the surface.



Chapter 8

Point-Based Path Planning
on Curved Surfaces

In Chapter 7 we introduced a navigation solution for curved surfaces in 3D
space which relies on the generation of a triangle mesh from point cloud data
and subsequent path planning on the mesh. In this chapter we address the
question of how to plan paths more directly on the 3D point cloud without
the additional need for an intermediate mesh representation.

Point clouds represent a common input to a mobile robot system. 3D
point clouds of several hundred thousand points are recorded by single scans
of laser range finders, such as rotating Hokuyo, SICK or Velodyne laser
range finders. During the acquisition process, scans are typically aligned
and merged to build an overall 3D point cloud representation; methods like
Iterative Closest Point (ICP) are used (Besl and McKay, 1992). The point
clouds provide samples of the real 3D environment, and as such, they contain
noise and distortions as well as sampling irregularities. Generating a mesh
representation from such a point cloud raises additional computational ex-
penses. When operating on point clouds which are affected by heavy noise
or distortion, further challenges involve the risk of breaking the topology at
mesh generation or building in inconsistencies during the following process of
mesh management, i.e., while updating an existing mesh with a new partial
mesh by alignment and merging.

Path planning is always dependent on the representation of the workspace
in which the planning is performed, and thus the quality of the representa-
tion has direct influence on the planning performance. Non-degenerate point

149



150 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

clouds1 can be processed in similar ways to meshes for many operations (e.g.,
simplification, normal estimation) and must be considered as an alternative
for environment representation.

We present two navigation solutions which investigate point-based path
planning. Point clouds, unlike mesh-based representations, intrinsically do
not provide connectivity information. As connectivity is inherently central to
path planning, ways for establishing connectivity throughout the point cloud
need to be found.

Both approaches build on a tool originating from computer vision known
as tensor voting (refer also to Section 3.4 in Chapter 3). Tensor voting infers
underlying structure, and estimates saliency and orientation of curves and
surfaces. The resulting augmented point clouds form the basis for connecting
or grouping points, or for outlier rejection and detection of discontinuities,
such as holes or edges, in the surface.

The first navigation solution assumes a dense or densified point cloud.
Dense point cloud planning establishes connectivity by subdividing the aug-
mented point cloud into a regular grid structure and constructing a graph
incrementally. A specialized graph-based planner connects the successive dis-
cretized robot poses along the surface into a 6-DoF path, considering kine-
matic as well as geometric constraints. The 6-DoF path is then transformed
from 3D space into 2D space by projecting movements into local tangent
planes of the surface, which makes 2D trajectory tracking for robot control
possible.

The second navigation solution is designed to work for sparser point
clouds. Sparse point cloud planning uses surface patches which are fit to
the point cloud and provide an analytic continuous description of the local
surface. By fitting surface patches, connectivity is established locally within
the range of validity of a fit, without the absolute requirement of global con-
sistency. Given a discrete path through the point cloud, the surface patches
bridge the gap between subsequent way points. By developing and expanding
motion primitives on the surface patches, the robot is finally controlled on
the surface.

We have presented the first navigation solution for dense point cloud
planning in the International Journal of Robotics Research (Stumm et al.,
2012). Section 8.1 describes related work in environment modeling on point
cloud data and relevant path planning techniques. Section 8.2 gives a detailed

1By non-degenerate, we mean point clouds that meet some minimum requirements of
being sufficiently dense, e.g., such that they remain connected under a given neighborhood
relation, that regions with voids and regions with low sampling density are distinguishable,
or that variations through noise are significantly lower than variations introduced by real
features.



8.1. RELATED WORK 151

description of the first navigation solution. The second navigation solution
for sparse point cloud planning is outlined in Section 8.3; it is still subject
to ongoing research and we will limit our discussion herein to a brief method
overview. Section 8.4 summarizes the main results from tests of the first
navigation solution in simulations and experiments. The chapter is concluded
by the summary in Section 8.5.

8.1 Related Work
In computer graphics, the graphics pipeline has been reconsidered in the past
decade and points have been rediscovered as powerful graphics primitive.
Graphics concepts of modeling, processing and rendering were transferred
from polygonal meshes to points, leading to what is called point-based graph-
ics (Gross and Pfister, 2007). Pauly et al. (2002), for example, demonstrates
simplification methods for point-sampled surfaces, which prove equal in per-
formance to more conventional mesh-based methods. Meshes are supported
by current graphics hardware and model the connectivity and topology of a
surface explicitly. In contrast, point-based representations reduce the com-
plexity that arises from maintaining this connectivity, and are more robust
against noise, sampling non-uniformity or sampling incompleteness. We have
taken inspiration from point-based graphics in our undertaking of studying
point-based planning.

Smith et al. (2011) proposes an alternative point-based representation,
which predicts the underlying surface by Gaussian process regression. This
probabilistic formulation uses beam-space parametrization to achieve a non-
functional representation; modeling of arbitrary 3D surfaces and adaptive
compression of the point cloud become possible. The method demonstrates
how point clouds can be sampled actively and reduced upfront by remov-
ing redundant data, thereby speeding up computation and lowering memory
requirements. Selecting relevant points from the point cloud can also be real-
ized by the fundamentally different approach of tensor voting. Tensor voting
is a local and data-driven method, which is based on the Gestalt principles
for perceptual organization (Medioni et al., 2000; Mordohai and Medioni,
2006). By exploiting proximity and continuation information, structural sa-
liency and orientation discontinuity in a point cloud are inferred, and points
are organized into coherent groups. King (2008) extends tensor voting for the
specific application to 3D point clouds and the modeling of 3D environments.

A common approach in robotics is to represent an environment in a reg-
ular grid structure (Moravec, 1996). However, memory limitations restrict
full grid structures in size and resolution, which becomes more pronounced
for voxel grids in three dimensions. Recent approaches use tree-based rep-



152 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

resentations, such as octrees (Wurm et al., 2010), and offer increased com-
pactness and flexibility regarding multi-resolution and dynamic extensions
of the representation. The advantage of regular grid structures is that they
directly allow for graph search planning techniques like Dijkstra’s algorithm
and heuristic and incremental extensions thereof (see also Section 3.3.2 and
Chapter 7). When surfaces in 3D space are modeled with grids, it is partic-
ularly desirable that planned paths follow the surface closely. This can be
achieved by relaxing the constraint of being restricted to the grid’s vertices
and edges (Carsten et al., 2006; Nash et al., 2010). As valid paths must lie
on the surface, it is sufficient to consider a narrow offset band in the ambient
space around the surface for path generation. The offset band contains the
subset of points from the point cloud that tightly surrounds the underlying
surface, and can again be modeled by a regular grid—this time defined within
the offset band only. Mémoli and Sapiro (2001, 2005) approximates distance
functions and geodesics on point clouds with bounded error by using a fast
marching algorithm within an offset band.

An alternative way of establishing connectivity over the point cloud is
to build a neighborhood graph, connecting neighboring points of the point
cloud directly. Popular methods from manifold learning, for instance, build
up connectivity and compute shortest paths between data points on the
manifold for following dimensionality reduction, e.g., by multidimensional
scaling (Tenenbaum et al., 2000). Likewise, neighborhood graphs can be
constructed in incremental fashion. Acting on the point cloud, sampling-
based planners seem to be a perfect tool to this task. Rapidly-exploring
random trees (RRT) (LaValle and Kuffner Jr., 2001) and their asymptoti-
cally optimal variant RRT* (Karaman and Frazzoli, 2011) grow a tree from
a start to a goal point through space by repeated point sampling and tree
extension steps. Extensions to RRT exist that control the Voronoi bias and
adapt RRT’s sampling domain (Yershova and LaValle, 2009), which means
sampling within a limited space around the surface in our context. In par-
ticular, various RRT-based algorithms, such as the constrained bidirectional
RRT (Berenson et al., 2009) and AtlasRRT or AtlasRRT* (Jaillet and Porta,
2012), have been proposed in the field of manipulation planning.

All of the above planning techniques approximate geodesic shortest paths.
Another important aspect in path planning for mobile robots is the considera-
tion of the vehicle kinematics and nonholonomic constraints. Sampling-based
planners like RRTs offer the possibility to incorporate such constraints via
steering methods or motion primitives in the tree extension step (Frazzoli
et al., 2005; LaValle, 2006). Steering methods and motion primitives, by
construction, guarantee motions that are feasible for the given system.



8.2. DENSE POINT CLOUD PLANNING 153

Continuing with the point cloud as our main representation, fitting of geo-
metric primitives offers an option to provide local surface representations that
support the generation of motion primitives. Schnabel et al. (2007) extracts
basic geometric shapes from a point cloud and reassembles the underlying
surface from a predefined set of shape primitives, including planes, spheres,
cylinders, cones and tori. Thrun et al. (2004a) recovers multiple flat surfa-
ces from a point cloud solely by fitting planar shape primitives. Modeling
with shape primitives results in compact abstractions that are mainly used
for the visualization of man-made environments. However, even man-made
structures are not entirely composed of these primitives either. Inaccuracies
in the surface approximation due to local deviations bear the risk of planning
failure when relying on such shape primitives for moving on the surface. The
relevance of the chosen set of shape primitives and the committed approxi-
mation errors both decrease as the shape primitives become more local and
general in scope. For instance, shape primitives that apply more generally
result from local fitting of polynomials (Cazals and Pouget, 2005) or quadric
surfaces (Vona and Kanoulas, 2011).

8.2 Dense Point Cloud Planning
We first formulate the problem before delving deeper into the individual
building blocks of the first navigation solution.

8.2.1 Problem Formulation
Our main objective for point-based path planning is to generate feasible and
preferably optimal paths along a curved surface S by using a 3D point cloud as
environment representation. The first navigation solution primarily focuses
on the local scale2; the dense point cloud planner must connect the current
robot pose via a 6-DoF path to a nearby goal pose on the robot’s visible
surrounding surface, which is represented by point samples.

As defined by Definition 3.4, feasibility implies that the resultant paths
remain feasible with respect to environment geometry and vehicle kinematics.
The paths must be constrained to the perceived surface, and unknown or
uncertain areas of low saliency must be avoided. In addition, limits on the
path curvatures are to be considered, such that planned paths are sufficiently

2As the experiments of Section 8.4.2 will demonstrate, the first navigation solution
is also capable of generating longer and more complex 6-DoF paths throughout large and
noisy point clouds at a global scale—thus acting, in fact, as a more global planner, although
not primarily designed for this purpose.



154 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

smooth to be tracked by a nonholonomic vehicle; the vehicle is modeled
according to the state transition equation of Equation (3.14) and obeys the
control inputs u(t). Optimality additionally aims at minimum travel time
and increased safety, in minimizing the path length and overall risk of a path.
Optimality can be included according to Definition 3.5 by an appropriate cost
function.

With respect to the inspection scenario and the MagneBike robots, this
means avoiding unknown areas as well as reducing the attack angle when
traversing high curvature regions. Sharp bends, including the negotiation of
step transitions, are only safe if the curvature lies in the robot’s x-z sagittal
plane, thus maintaining proper contact between the wheels and the surface
(refer to Chapter 2 for specifications of the environments and the robots).
These criteria must be satisfied by the path planning algorithm in order to
achieve practical results.

8.2.2 Environment Representation
Raw 3D point clouds generated from laser range finders provide sparse un-
oriented input tokens, whereas for our application dense oriented data is
required for navigation and control.

A point cloud is filtered initially by the same point cloud filters as applied
in Chapter 7 for mesh-based path planning. The subsampled and trimmed
point cloud is then further processed by tensor voting (see also Section 3.4).
Rounds of token reduction and sparse voting produce an augmented point
cloud, which serves as a starting point for the navigation solution.

Dense point cloud planning next performs tensor splitting and another
round of dense voting in order to densify the point cloud. Tensor voting
achieves this densification through voting performed by each input token at
every location in a predefined grid structure, essentially providing information
at any desired resolution. In addition, the orientation of any directional
feature is estimated by tensor voting simultaneously.

Densification and splitting the tensors one more time into their stick, plate
and ball components generate dense and regular structural information. The
resulting tensors are stored as 3× 3 matrices in a 3D voxel grid, which leads
to so-called environmental feature maps, including surface saliency, surface
normal, edge saliency, edge tangent and binary edge maps. The feature maps
represent the final augmented point cloud.



8.2. DENSE POINT CLOUD PLANNING 155

Figure 8.1: Token reduction of LIDAR point cloud. Left: Anisotropic input
point cloud. Center: Selected tokens (blue) and a few examples of the subsampling
disks, with their radius defined by the masking parameter β and the voting scale
parameter σ. Right: Uniform reduced output point cloud.

Token Reduction of LIDAR Point Clouds

As introduced in Section 3.4, token reduction can be applied after the first
round of sparse voting has been performed. The point cloud is filtered and re-
duced, which leads to computational savings in the further process of tensor
voting. Thereby it is important not to throw out a lot of pertinent infor-
mation, compromising the feature extraction. Under the assumption that
relevant features, i.e., the strongest votes, occur on the scale of the voting
scale parameter σ, the subsampling of tokens should be related to σ as well.
Once tokens become too sparse, and the inter-token distance exceeds σ, the
saliencies resulting from the tensor voting should reflect a low confidence in
these areas. In contrast, in any dense regions where the inter-token distance
drops below σ the resulting saliencies should be considerably higher but less
dependent on the local density.

Our approach iteratively selects tokens based on highest saliency after
sparse voting, and then removes any nearby tokens within a given radius,
taken as a fraction of the voting scale, β σ, where the masking parameter β is
a positive fraction in the interval [0, 1]. As a result, in high density regions,
the remaining tokens are spaced such that the inter-token distance is roughly
equal to this radius, whereas in low-density regions, the inter-token distance
remains the same as before (see Figure 8.1).

Structure Inference for Path Planning

The tensors that result from the final round of dense voting can be decom-
posed again using Equation (3.13b), which produces dense structural infor-
mation for each underlying dimension. The final decomposed tensors are
defined at every cell over a 3D grid of chosen resolution; they are used to cre-



156 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

Figure 8.2: Environmental feature maps. Saliency maps and edge maps are
extracted from a 3D augmented point cloud for modeling the environment. The
augmented point cloud results from tensor voting, including rounds of sparse and
dense voting. Left to right: Input tokens of the point cloud, representing an L-
shaped metal structure; the original 3D point cloud was recorded with a rotating
laser range finder. Cross section of the surface saliency map. Cross section of the
surface normal map, scaled by saliency. Cross section of the edge saliency map with
an overlay of the binary edge map.

ate a set of environmental feature maps, which serve the dense point cloud
planning algorithm for cost computation and navigation.

During tensor decomposition, each structure type has an associated sa-
liency and directionality. For our application of planning on curved surfaces,
the environment is expected to consist of only surfaces and edges, therefore
limiting our analysis to the final stick and plate tensors. The surface saliency
and surface normal maps store surface saliencies and surface normals, which
are given by the largest magnitude eigenvalue and eigenvector of the stick
tensors, obtained from their 3× 3 matrix representations.

Edge information, on the other hand, is first thresholded, and only clas-
sified as an edge if the plate saliency is high enough, above a preset edge
threshold λedge. This edge information is stored in an edge saliency map.
Any of the map’s cells will be treated as a form of obstacle, and so the sa-
liency value is no longer important to us with respect to path planning. A
binary edge map is constructed, which distinguishes each grid cell to be either
an edge or not. The edge tangent, given by the lowest magnitude eigenvalue
and eigenvector of the plate tensors, is relevant for the edge traversals of the
robots, and is thus stored in an associated edge tangent map.

The robots are treated as point robots for path planning. In order to
avoid collisions and guarantee safe edge traversal, edge obstacles are inflated
by a radius, which is chosen to suit the respective robot specifications. Edge
inflation is implemented by labeling all the neighboring grid cells of an edge
cell in the binary edge map as edge cells as well, i.e., setting their binary



8.2. DENSE POINT CLOUD PLANNING 157

values to “true”. The corresponding tangents are further given by averaging
all the tangents from the nearby grid cells that contain the original edge.
Figure 8.2 shows an example of the environmental feature maps produced
from a real 3D point cloud of an L-shaped structure.

8.2.3 Path Planner
The dense voting in the tensor voting process creates a 3D grid-based en-
vironment representation, and path planning utilizes this grid structure in
connecting a series of cells throughout the grid to the goal. The connections
define a graph G = {V, E} over the grid, with nodes vi ∈ V representing the
grid cells and edges eij ∈ E representing feasible transitions to a neighboring
node vj . Each node vi has an associated node state xi ∈ X , with state space
X , which contains information about the position of a cell in the 3D grid,
given by its coordinates (x, y, z) with respect to the world frame W . The
best discrete path toward the goal pose can be found by graph search. We use
a specialized graph-based path planner which takes constraints into consider-
ation and uses the A* algorithm for search on the graph G, thereby inheriting
desirable properties of optimality and resolution completeness guarantees.

The definition of the graph structure G is not straightforward under con-
sideration of constraints. When establishing connectivity between nodes,
edge transitions and edge transition costs must be chosen in such a way
as to satisfy constraints imposed by the environment geometry and vehicle
kinematics. In the following, further details of the graph construction are
discussed.

Graph Connectivity

Each grid cell has associated structural information, and now the question
arises of how this information can be used to connect the nodes locally in order
to build a graph structure, while supporting kinematically feasible movements
between cells.

Our specialized graph-based planner performs a lazy grid search on a 6D
state space and searches for edge transitions to neighboring nodes with the
help of a discrete control set with predefined movement vectors mB , given
in the robot’s local body frame B. These movement vectors account for
structural as well as vehicle constraints, as they restrict the path segments
to directions that have high probability of being tracked successfully by the
robot. The planner exhibits notable parallels to constrained path planning in
state lattices, where states are arranged regularly and connected by feasible
motion primitives (Pivtoraiko and Kelly, 2005).



158 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

Robot mobility is directly linked to the local surface properties, therefore
our path planning algorithm must be cognizant of both the robot’s and the
structure’s orientations. To achieve this, besides the position of a cell, the
node state xi must also include orientation information; this leads to a 6D
state space, X ⊂ R6. In our discretized state space, orientation is defined as
a discretized heading vector ĥW with respect to the global frame W . Thus
each cell in the 3D grid is actually represented by a set of mdir nodes, where
each node vi has equal position but varying orientation in the state vector xi,
which correspond to the set of mdir discretized heading vectors at a certain
cell position. The node states are illustrated in Figure 8.3; note that for
ease of illustration only mdir = 6 different heading vectors are shown here,
as opposed to the mdir = 98 in our actual implementation.

The fact that robot motion is constrained to a surface S ⊂ R3, which is
a 2D manifold embedded in the 3D workspace W ⊂ R3, reduces the number
of nodes to be searched, and only the cells in a narrow offset band in close
proximity of the estimated surface need to be considered. Using this, node
connectivity is established on the fly by restricting transitions to those neigh-
boring nodes, i.e., cell locations and orientations, deemed physically reachable
(see Figure 8.3 for further illustration of the concept). This lazy evaluation
allows for the direct inclusion of some kinematic constraints while limiting
the search space to tangential movements along the estimated surface.

The connections between nodes are established as the nodes are expanded.
The connectivity for each node is dependent on the environmental feature
maps provided by tensor voting and the discrete control set, along with the
robot orientation in the world frame W . There are essentially two different
scenarios—either the current node belongs to an edge structure or it does
not. The case is determined using the binary edge map, and the planner
specifies which of the two control sets has to be applied in each case. Fig-
ure 8.4 shows the two discrete control sets and their movement vectors for
both scenarios. The selection from among variable control sets is further
related to on-demand and graduated fidelity concepts of planning in state
lattices (Pivtoraiko and Kelly, 2008).

The transformation between the body frame B and world frame W is
deduced using the robot’s heading vector ĥW and the local surface normal
n̂W . Once this transformation has been determined, the appropriate set
of movements Pmove, represented by mmove movement vectors mk,B , k ∈
{1, ... , mmove}, is transformed into the world frameW . Each movement mW

is discretized by snapping the vector to the position of the closest grid cell
whose associated node vj is a direct neighbor of the current node according to
the set of heading vectors. This neighbor node vj represents a possible child



8.2. DENSE POINT CLOUD PLANNING 159

Figure 8.3: Graph connectivity. Top row: The node state xi contains the 3D
location as well as the potential robot heading vector ĥW (here discretized into
mdir = 6 directions, shown by vectors drawn next to the cells). Each location has a
set of associated nodes, one for each (discretized) direction. Establishing movement
from one node (or cell) to another is aided by the structural information given
by the tensor voting framework, e.g., by local surface normal estimates. Bottom
row: Single nodes from each set of nodes are connected in a graph, taking given
constraints in the robot’s and surface’s orientations into account. According to
these constraints, paths may go through the same physical 3D location, i.e., the
same set of nodes, but with a different heading, and thus remain unconnected, i.e.,
at different nodes.

node, and the projected movement vector connecting to this candidate child
node is given by m′W . m′W is an element from the set of all possible heading
vectors, as illustrated in Figure 8.3. The full node state xj , i.e., position and
orientation, of the candidate child node vj is determined accordingly.

Next the surface saliencies are compared to a threshold λsurf . Connections
to candidate child nodes with low surface saliency are rejected, and only
connections to nodes with strong surface values are permitted. Then the



160 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

heading
vector

subsequent
movementssurface

normal subsequent
movements

heading
vector

edge
tangent

Figure 8.4: Discrete control set. A set of possible movement vectors Pmove =
{mk,B}mmove

k=1 , with respect to the robot’s local body frame B, is given for two
possible cases. Left: Regular moves on the surface, where the current node is not
nearby an edge. Right: Special moves over an edge, where the current node is near
an edge of the environment.

turn angle θ is calculated by projecting the movements into the local surface
plane (see also Equation (8.3) further below), and the graph connectivity
is only established for turns smaller than a threshold λturn. Finally, the
cost of this connection is evaluated to determine whether the node will be
added to the priority queue for expansion. The complete procedure for graph
connectivity construction is summarized by Algorithm 10.

The realized graph connectivity ensures perpendicular traversal of edges
in the environment, limited turn angles, and staying within the close neigh-
borhood of the best surface estimate. Once a valid connection between two
nodes is established, costs based on the risk of traversing a connection are
assigned to the graph edge eij in order to meet the remaining requirements
of path planning.

Cost Functions and Heuristics

After a node’s children have been found using the process described above
and the node has been expanded and removed from the priority queue, the
edge transition cost of traveling to each child node needs to be evaluated
in order to determine if this child node should eventually be added to the
priority queue. The choices of cost functions for the edge transition cost vary
by applications.



8.2. DENSE POINT CLOUD PLANNING 161

Algorithm 10 Graph Connectivity Construction
Require: Graph G, to be updated by establishing new connectivities eij

between the current node vi and potential neighboring nodes vj . Node
vi has node state xi with position pi ∈ R3 and orientation ĥW , given
with respect to the world frame W 1. Further inputs are the predefined
sets of movements Pmove, and estimates of surface normals n̂W and edge
tangents t̂edge,W within a neighborhood of vi, e.g., as a result of tensor
voting.

1: if movement == SURFACE then
2: b̂z,W ← current surface normal n̂W
3: b̂x,W ← current heading vector ĥW
4: b̂y,W ← b̂z,W × b̂x,W
5: Set of moves Pmove ← regular moves on surface (Figure 8.4, left)
6: else if movement == EDGE then
7: b̂z,W ← current surface normal n̂W
8: b̂y,W ← current edge tangent t̂edge,W

9: b̂x,W ← b̂y,W × b̂z,W
10: Set of moves Pmove ← special moves over edge (Figure 8.4, right)
11: end if
12: Compose rotation matrix RWB =

[
b̂x,W b̂y,W b̂z,W

]
13: for all possible moves mB ∈ Pmove do
14: Transform movement into world frame, mW = RWB mB

15: m′W ← mW “snapped” to the closest grid cell by projection
16: Possible child node vj at position pj ← pi + m′W
17: if surface saliency > λsurf and turn angle < λturn then
18: Establish edge connectivity eij
19: Expand current node by evaluating the cost of transition m′W
20: end if
21: end for

1 The robot’s body frame B is defined by the unit vectors along the coordinate axes
b̂x,W , b̂y,W and b̂z,W , represented in coordinates of the world frame W .



162 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

For the inspection scenario and the MagneBike robots we determined the
following four contributions to the edge transition cost between two nodes:
• cost function wdist, rating the distance (or step size)

• cost function wsurf , rating the surface saliency

• cost function wturn, rating the turn angle

• cost function wcurv, rating the relative surface curvature
The overall edge transition cost is then given by the total cost function

wtotal = k1 wdist + k2 wsurf wdist + k3
wturn

wdist
+ k4 wcurv , (8.1)

where each individual cost function is weighted appropriately by the scalars
k1, k2, k3 and k4.

The rationale behind each contribution to the total cost function is de-
scribed next, with the exception of the distance cost, which is simply given
by the Euclidean distance between the position of a node and its child node,
approximating the edge length by the distance along a straight line. The
heuristic for the cost-to-go in the A* algorithm is similarly given by the Eu-
clidean distance from the position of a current node to the position of the
goal node in the 3D workspace W.

Surface Saliency. In practice, when using a LIDAR point cloud, the sur-
face saliencies s(pi) ∈ R at positions pi of node vi vary substantially through-
out the point cloud and saliencies with values above a relatively low threshold
typically correspond to positions pi close to the actual surface S. High sa-
liency regions usually result from dense sampling in these areas. The token
reduction strategy described in Section 8.2.2 helps to reduce this saliency vari-
ation but does not eliminate it completely. Higher saliency regions should
have some preference, however not so much that the path meanders unnec-
essarily in order to traverse densely sampled areas. Therefore the relative
surface saliency is raised to an exponent (tuned empirically to n = 4 in our
experiments), penalizing low saliency regions much more than high saliency
regions, which leads to the cost function

wsurf =
(
smax − s(pi)

smax

)n
, (8.2)

with n ∈ N>0, and maximum surface saliency given by the maximum value
smax found in the grid structure. Note that the surface cost is multiplied by
the cost of the step size in the total cost calculations, since longer steps over
low confidence areas should have a higher penalty than shorter steps.



8.2. DENSE POINT CLOUD PLANNING 163

Turn Angle. Turn angles are calculated by projecting the movement vector
mW and heading vector ĥW into a local surface plane, leading to mavg

W =
mW − n̂avg

W (mW n̂avg
W ) and havg

W = ĥW − n̂avg
W (ĥW n̂avg

W ). The local surface
plane is given by the normal vector n̂avg

W , which results from averaging the
surface normals located at the parent node n̂i,W and its child nodes n̂j,W
respectively, which gives navg

W = (n̂i,W + n̂j,W ) /2, with i 6= j, i, j ∈ N.
This local surface plane can be thought of as the tangent plane Tpavg

ij
S, with

pavg
ij representing an intermediate position on the surface S where the surface

normal just assumes n̂avg
W . The cost function is then obtained by taking the

absolute value of the angle between the two projected vectors

∆θ = cos−1
(

mavg
W

|mavg
W |

havg
W

|havg
W |

)
= cos−1

(
m̂avg
W ĥavg

W

)
,

wturn = |∆θ|2 .
(8.3)

Similar to the surface cost calculation, the resulting angle is squared, such
that two smaller turns are preferred over one larger turn. In addition, the
turn cost is divided by the step size in the total cost calculations, in order to
prefer more gradual turns.

Relative Surface Curvature. The MagneBike robots are capable of travers-
ing curved surfaces, however, areas of high curvature can be problematic if
approached at the wrong angle. Therefore the angle between the plane of
curvature and the x-z plane of the robot’s local body frame B should be
minimized in areas of high curvature (see Figure 8.6, left). The curvature
cost results from the product of the magnitude of change in the surface nor-
mal, ∆n̂W , and the approach angle α, and is given by the cost function

wcurv = |∆n̂W | |α|

= cos−1 (n̂i,W n̂j,W ) cos−1
(

n̂i,W × n̂j,W
|n̂i,W × n̂j,W |

b̂y,W

)
,

(8.4)

where n̂i,W and n̂j,W denote again the surface normals at the positions of
the parent and child nodes, and b̂y,W is the y-axis of the robot’s local body
frame, represented in the coordinates of the world frame. Intuitively, the
change in surface normal is inversely weighted by the step size, however
the overall curvature cost is directly weighted by the step size, therefore
eventually canceling out any dependence on the step size in the total cost
calculations.



164 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

8.2.4 Robot Control
Once a feasible 6-DoF path on the surface has been generated by the path
planner, a control strategy is required to steer the robot from the start to the
goal pose. Path following or trajectory tracking on curved surfaces, and in
constrained environments in general, is no simple task. Next we describe a
method that transforms way points of the 6-DoF path, which are given by a
sequence of connected nodes, into R2 with respect to a fixed 2D control frame.
The basic idea here is that the robot can be modeled in two dimensions, which
allows for the use of standard and more widely studied 2D control schemes.
A trajectory tracking controller based on nonlinear feedback design is then
used together with a front-wheel-drive bicycle model to demonstrate how the
computed trajectories can be tracked in the case of the MagneBike robots.
Note the similarity to Chapter 7 where the triangle strip path is flattened by
transforming it to the plane in order to generate the controlling vector field.

Path Dimensionality Reduction

Although the robot motion is in 3D space, the robot is always constrained to
travel on a 2D manifold. Therefore, similar to the idea by Furgale and Barfoot
(2010), the path generated by the A* algorithm can be transformed into a
lower dimensional space before a control strategy is applied. This is done by
iteratively projecting the two movement vectors m′i,W and m′j,W of a parent
and its child node at positions pi and pj in the grid onto their local surface
plane, i.e., onto the associated tangent plane Tpavg

ij
S. The tangent plane is

found by averaging the surface normals of the corresponding parent and child
nodes as described under Section 8.2.3 above. The relative turn angle ∆θ
between the two movement vectors is calculated according to Equation (8.3).
The 2D coordinates of the ith-way point in the path sequence, (xi, yi), are
then iteratively given by the 2D coordinates (xi−1, yi−1) of the previous way
point and the projected 2D movement vector mi, rotated by ∆θi with respect
to the previous movement vector. This formulation is shown in Figure 8.5 on
the left, and further described by[

xi
yi

]
=
[
xi−1
yi−1

]
+ |mi|

[
cos(θi)
sin(θi)

]
,

θk = θi−1 + ∆θi ,

(8.5)

with i ∈ N>0. At start, the coordinates (x0, y0) of the path sequence are
initialized at the origin of the 2D control frame and θ0 is initialized to zero.



8.2. DENSE POINT CLOUD PLANNING 165

Figure 8.5: Robot control. Left: Iterative computation of 2D way points based
on the projected 3D movement vectors and the corresponding turn angles. Right:
Tracking a virtual reference bike through nonlinear feedback of the pose error.

The alignment of the 2D movements based on the relative yaw angles be-
tween them essentially leads to unwrapping the path from the surface. An
illustration of this transformation can be seen in Figure 8.6 on the right.

Now that the trajectory has been mapped into 2D space, the system
model can be treated in two dimensions as well. The MagneBike robot is ap-
proximated by a simple front-wheel-drive bicycle, with control inputs given
by the speed vfront(t) and steering angle φ(t) of the front wheel. The kine-
matic models for bicycle and car-like robots were introduced in Section 3.5.1
of Chapter 3. One possible method of control, using state feedback to track
a parametrized trajectory, is outlined in the following.

Trajectory Tracking

In order to control the robot along the given trajectory, a set of nonlinear
feedback controls for trajectory tracking are applied. This is realized for Mag-
neBike by using the kinematic model in Equation (3.17) with control inputs
given by Equation (3.20b), and following a virtual reference bike with known
state along the path as suggested by Samson and Ait-Abderrahim (1991).
To establish the state of the reference bike for all time, a B-spline is fitted
through the 2D way points, creating a continuous parametrized path from
which the state of the virtual reference bike can be inferred. For simplicity,
the reference bike will be assumed to follow the spline at a chosen constant
velocity vref . Once the state of the reference bike has been determined, a
nonlinear feedback law can be used to stabilize the position and orientation
error of the MagneBike robot, relative to the reference bike, to zero. Po-
sition and orientation feedback are assumed to be provided by the robot’s



166 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

Figure 8.6: Paths on curved surfaces. Left: Traveling at large angles with respect
to the curvature plane is penalized with higher costs. Right: Transforming a 6-DoF
path on a curved surface from R3 to R2 by projecting each movement vector m′W
into its associated tangent plane Tpavg

ij
S.

localization system (see also Chapter 2). The state vector of the system for
trajectory tracking is now given by xtrack =

[
εx εy εθ

]T, where εx and
εy represent the relative position of the reference bike in MagneBike’s local
frame B, and εθ = θ−θref , where θ and θref denote the respective orientations
of the bike and reference bike in the 2D control frame (see Figure 8.5, right).
The feedback control laws follow from Samson and Ait-Abderrahim (1991)
as

ω = ωref −
k3

k2
εθ + k6

k2
εx

− k1

k2

(
δx ωref

cos (εθ)− 1
εθ

− vref
sin (εθ)
εθ

)
(εy + δx εθ) ,

v = vref + k3 k5 εx

+
[
2 k3 k4 +

(
vref

cos (εθ)− 1
εθ

+ δx ωref
sin (εθ)
εθ

)
+ k6

]
εθ

+ [(1− k1) εy − k1 δx εθ] ω ,

(8.6)

where vref and ωref are the linear and angular velocities of the reference bike,
and δx is the control point offset given by the distance along the local x-axis
from the rear wheel. In addition, the control gains can be tuned empirically
under the following conditions: k1 and k2 are positive real numbers, k3, k4
and k5 are positive scalars assumed to be constant, 0 ≤ k4

2 < k5, and k6 is
any real scalar. The state vector xtrack is guaranteed to converge to zero, so



8.3. SPARSE POINT CLOUD PLANNING 167

long as vref and ωref are differentiable for all t ≥ 0, these derivatives remain
bounded, and the reference bike does not stop moving.

Since a 2D control strategy is used, any 3D pose feedback needs first to
be transformed into the control frame in R2 before it can be utilized. This is
done by finding the nearest way points at positions pi and pj in the 6-DoF
path in R3, and then using their corresponding surface normals to project the
position and orientation vectors into the associated tangent plane Tpavg

ij
S, in

order to find the approximate offsets or offset estimates
[
ε̃x ε̃y ε̃θ

]T.
8.3 Sparse Point Cloud Planning
The main objective of the second navigation solution again is to generate
feasible and preferably optimal paths between two given poses on a curved
surface from an input point cloud, but now relaxing the requirements for
the point cloud’s regularity and density. The dense point cloud planning
method avoids the additional cost of mesh generation, however still relies
on a dense and rather uniform representation of the point cloud. We have
used token reduction and densification by dense voting in the tensor voting
framework above to construct regular environmental feature maps. Sparse
point cloud planning aims at removing the equalizing and densification steps
from the planning method, and instead plans paths by more directly using
sparse point clouds.

We preprocess the input point cloud by sparse voting. However, instead
of dense voting and the generation of environmental feature maps, quadric
surface patches are fitted to the augmented point cloud. We developed our
own quadric fitter, which can account for additional information, such as
sensor pose or robot geometry (for an example, see Figure 8.7, left). Related
approaches for fitting quadrics to point clouds can be found in the works
by Vaskevicius et al. (2010); Vona and Kanoulas (2011). The second naviga-
tion solution can now be realized according to one of two different schemes:
in a two-step sequential or an incremental manner.

Under the sequential planning scheme, first an initial discrete path is
planned based on the point cloud only, by making strong use of nearest
neighbor queries. We apply an adapted RRT* algorithm, which connects
discrete poses within a well-specified ball radius, and hence plans paths inside
a narrow band around the surface (for an example, see Figure 8.7, center).
The original RRT* algorithm is described by Karaman and Frazzoli (2011);
alternative related methods like the algorithms presented by Mémoli and
Sapiro (2001, 2005) could be applied instead. After initial path generation,



168 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

Figure 8.7: Sparse point cloud planning. Left: Fitting a quadric surface (yellow)
to a noisy input point cloud (blue points) for locally modeling the underlying curved
surface (blue). Center: Planning a discrete path (green) with RRT* from a start
region (dark gray) to a goal region (blue) by sampling from the input point cloud
(blue points). The expanded edges of the tree are shown in red. Right: Developing
motion primitives on a quadric, in order to connect waypoints along the path with
feasible motions. The robot positions are shown in black and the robot’s heading
vector in green; blue is the projection of the trajectories to the 2D plane.

the discrete poses are connected by fitting quadrics to the point cloud and
extending motion primitives on these quadrics, as we move along the surface
(for an example, see Figure 8.7, right). Note that motion primitives have
mostly been designed for systems with workspaces of R2 or R3. Generating
motion primitives for a robot moving on a curved surface is more evolved; not
only a model of the robot but also a suitable representation of the underlying
surface is required.

Under the incremental planning scheme, fitting of quadrics and extension
of motion primitives are executed incrementally, i.e., a quadric is fitted, the
robot moves on the quadric by tracking a developed motion primitive and
repeats the procedure as soon as it reaches the boundary of the validity area
of the quadric. Our currently developed incremental path planning algorithm
relies on the ARAE* algorithm (Gonzalez and Likhachev, 2011), which uses
equivalence classes to eliminate the dependence on regular grids, and thus
allows for sparse edge expansion; the number of extended motion primitives
is controlled via the equivalence classes and the paths are driven toward the
goal pose via a search heuristic.



8.4. RESULTS 169

The point clouds are obtained from measurements with a laser range
finder. Hence, points of the point cloud represent real points in the envi-
ronment, which are distributed around the exact physical surface according
to sensing noise and the sensor characteristics. If a sampling-based planner
like the RRT* is used, points can be sampled by the planner either as new
points, without direct physical meaning, from the neighborhood of the set of
measured points or from the set of measured points themselves. In the later
case, it is interesting to think of the laser range finder being in the role of the
planner’s sampling routine; the laser range finder is a physical sampling unit
with strong bias to sample from the underlying curved surface. The plan-
ner then just subsamples or selects best samples from the input point cloud.
By adding structural information of saliency and surface normal direction to
the points, the point clouds are augmented with weights in order to further
improve the generated paths.

The quadrics are fitted locally, i.e., they have a limited validity area. The
error of a fit can be used as a measure of the environment representation’s
quality for the following path planning. At the boundary of a surface patch,
a new surface patch is fitted; this does not preserve global continuity but
allows to establish a connection across subsequent surface patches.

The sparse point cloud planning method is still under ongoing develop-
ment; current challenges include the reliable fitting of surface patches, the
robust construction of discrete paths along a curved surface in the presence
of noise in the input point clouds, as well as the efficient generation and
tracking of motion primitives on the fitted surface patches.

8.4 Results

The proposed navigation solution is evaluated through a series of simula-
tions and experiments with the MagneBike robot. The results are based on
both synthetic, i.e., simulated and computer-generated, point cloud data, as
well as 3D point clouds recorded with the rotating Hokuyo URG-04LX and
Hokuyo UTM-30LX laser range finders from the real tube-like environments
of Chapter 2. We first show that tensor voting is sufficiently robust to density
and noise variations when applied to real point cloud data. Furthermore, we
find that the planning and control algorithms for dense point cloud planning
are capable of providing feasible and low-cost paths over curved surfaces. In-
sights into the influence of parameters, and how they can be assigned, are
provided.



170 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

8.4.1 Evaluation of Tensor Voting
LIDAR point clouds suffer from noise as well as irregular and anisotropic
density distributions. These characteristics have a negative influence on the
tensor voting outcome, and therefore need to be investigated to ensure that
meaningful results can still be obtained using LIDAR point clouds.

Identification of the Scale Parameter. Tensor voting mainly depends
on a single parameter, the scale parameter σ. The scale at which the tensor
voting is performed determines what types of features are detected. If σ is
too large, structures will be smoothed too much and small steps or holes
might be overlooked. Alternatively, if σ is too small, then noise in the point
cloud, could be detected as features. Before tensor voting can be applied,
an appropriate value for σ must be determined. Intuition would say that
relevant features with respect to locomotion will likely occur at similar scale
as the robot’s wheel size. Therefore, in our case, a good starting guess for the
scale parameter σ is the wheel diameter of the MagneBike robot, σ = 6 cm.
In order to determine σ experimentally, tensor voting was performed on a
step feature of roughly the same height as the wheel diameter—and therefore
about the scale where features become relevant to MagneBike. The edge
saliencies for various σ values were analyzed. Smaller scale voting at 2 cm
causes noise to trigger high edge saliencies, and large scale voting at 10 cm
causes the step to be blurred over a large distance. We can see that choosing σ
in the expected range of 6 cm indeed results in good performance of structure
inference, and therefore a σ value of 6 cm was chosen for all the experiments
presented in the following.

Robustness against Variation in Point Density. First, robustness
against the variation in point density is investigated. The evaluation is car-
ried out on two different shapes, a cylindrical tube structure and an L-shape
structure, which provide examples of basic structural forms for the inspection
scenario. The point clouds are computer-generated by randomly distributing
points over the structures’ surface. We use the deviation in estimated surface
orientations as a measure for the robustness of tensor voting. The effects of
density variation can be seen in Figure 8.8, where the error in surface ori-
entation is plotted versus the average distance between points, expressed as
the relative average distance dσ = d/σ. The error values were determined by
calculating the angle between the estimated and actual orientation vectors
at 6’000 sample locations on the structures. When evaluating orientation
vectors, deviations in surface normals were checked where the stick saliency



8.4. RESULTS 171

0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

Average Distance Between Points [in factors of   σ ]

O
ri

en
ta

ti
o

n
 E

rr
o

r 
[d

eg
]

0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

Average Distance Between Points [in factors of   σ ]

O
ri

en
ta

ti
o

n
 E

rr
o

r 
[d

eg
]

Figure 8.8: Robustness against variation in point density. The error in estimated
orientations is predicted from tensor voting performed on a tube structure (left)
and an L-shape structure (right) as density is varied. The results are shown in
terms of relative average distance, dσ = d/σ. A few samples of the point clouds
that were used in the evaluation are shown on the top.

was dominant, i.e., not near an edge, and deviations in edge tangents where
the plate saliency was dominant, i.e., at edges. It can be concluded from
these plots that the error remains well behaved, even when point density
drops so low that the shape is hardly recognizable. Note that, because each
sample density is plotted in terms of the distance between points, the actual
size of the point cloud decreases by the square of these values. We observed
that typical values for the density of real LIDAR point clouds generally fall
within the first two samples of highest density in the plots, with an inter-
point distance d less than 2 cm, or 0.33 σ respectively. Areas with much
higher inter-point distances will result in low saliency values and will thus be
handled implicitly as unsafe regions by the path planner.

In addition, the effects of the masking parameter β were analyzed. Point
clouds with varying density were created, again using the tube and L-shape
structures. These point clouds can be seen in Figure 8.9, along with graph-
ical results of the error values, and computation time, as β is increased.



172 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

0

2

4

6

8

10

Masking Parameter β

O
ri

en
ta

ti
o
n

 E
rr

o
r 

[d
eg

]

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

0

100

200

300

400

C
o
m

p
u

ta
ti

o
n

 T
im

e 
[s

]

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

0

5

10

15

20

25

Masking Parameter β

O
ri

en
ta

ti
o
n

 E
rr

o
r 

[d
eg

]

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

0

100

200

300

400

C
o
m

p
u

ta
ti

o
n

 T
im

e 
[s

]

Figure 8.9: Variation of masking parameter β. The error in estimated orientations
is predicted from tensor voting performed on a tube structure (left) and an L-shape
structure (right). The computation time is shown as the masking parameter β is
varied. Both point clouds of varying density contain 24’000 points, and are shown
on the top.

These plots show that computation time of dense voting can be drastically
decreased, without compromising the outcome of tensor voting. For all the
tensor voting carried out in the following simulations and experiments, β is
set to 0.5, due to the fact that higher values of β show little further impact
on time. As stated in Section 8.2.2, this method of token reduction also uni-
fies the point density, resulting in more uniform saliency distributions, and
therefore a better representation of the actual surface.

Robustness against Variation in Noise. Next, robustness against noise
variation is evaluated, using the same techniques as for the point density
evaluation above. The tests are conducted on the same tube and L-shape
structures, this time as noise levels are increased. The results are plotted in
Figure 8.10, showing the error in surface orientation in relation to the stan-
dard deviation of the Gaussian noise distribution. The graphs illustrate the
extent of noise variation used in the evaluation. In real applications, the noise
depend on the sensor used and the type of reflecting surfaces. Characteriza-
tion of the Hokuyo URG-04LX and the UTM-30LX laser range finders over
different metal surfaces shows that the standard deviation on depth mea-



8.4. RESULTS 173

0 0.01 0.02 0.03 0.04 0.05

0

5

10

15

20

Standard Deviation of the Noise Distribution [m]

O
ri

en
ta

ti
o

n
 E

rr
o

r 
[d

eg
]

0 0.01 0.02 0.03 0.04 0.05

0

5

10

15

20

Standard Deviation of the Noise Distribution [m]

O
ri

en
ta

ti
o

n
 E

rr
o

r 
[d

eg
]

Figure 8.10: Robustness against variation in noise. The error in estimated ori-
entations is predicted from tensor voting performed on a tube structure (left) and
an L-shape structure (right) as noise is varied. The results are shown in relation
to the standard deviation of the Gaussian noise distribution, which was used to
generate the point clouds. A few samples of the point clouds that were used in the
evaluation are shown on the top. All point clouds contain 12’000 points.

surement is 0.028 m and 0.018 m, respectively (Pomerleau et al., 2012). One
can see that with the given range of noise, the orientation errors in structure
inference from tensor voting remain below approximately 2.5◦.

8.4.2 Evaluation of Dense Point Cloud Planning
Now that the validity of the tensor voting procedure has been established, the
results can be used to evaluate the dense point cloud planning algorithms.
In this section, we demonstrate that the generated 6-DoF paths are able
to satisfy the mobility requirements of the MagneBike or similar inspection
robots, namely the ability to climb on complex curved surfaces, overcome
step obstacles in a perpendicular direction, and avoid impassable obstacles.



174 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

All the planned paths in this section are the result of processing a single
point cloud, which is either a point cloud obtained from a single laser scan
or assembled from several registered laser scans.

Simulation Results

Impact of Cost Functions. To start, the impact of the different cost
functions is illustrated. Figure 8.11 on the left shows several paths on a
tube which has a hole-type obstacle on the top part of the surface. A path
must be planned from one side of the hole to the other. The cost function
of Equation (8.1) with non-zero weights is used for the generation of all
the four paths shown; each path emphasizes the effect of the different cost
function weights. One path represents a search with high turn cost, therefore
traveling through unsafe areas near the hole. Another path demonstrates the
significance of the relative curvature cost; the path always prefers to travel in
the plane of curvature, or in a direction where there is no curvature. A third
path shows a preference for remaining on highly salient areas of the surface,
avoiding the low-saliency obstacle. The weighting of these cost functions can
be tuned to suit the design of the robot, nature of the environment, and the
safety requirements. An example of this is shown in a path which balances
the effects of each weight in order to get a safe yet efficient path.

Perpendicular Edge Traversal. An important capability of the Mag-
neBike robots is that they are able to negotiate step-like obstacles if ap-
proached in a perpendicular direction. However, if not approached perpen-
dicularly, proper adhesion between the magnetic wheels and the surfaces can
be lost, causing MagneBike to detach from the surface. Through experiments
documented by Tâche et al. (2009), the maximum angle of attack for con-
vex steps was found to be 14◦ and the maximum angle of attack for concave
edges is 23◦. Thus, if presented with any obstacles, the MagneBike robots
can either avoid or traverse them. The ability of safe edge traversal is eval-
uated and the results are shown in Figure 8.11 on the right. The analysis is
performed on an L-shape structure, and the image shows the detected edge
feature, as well as several paths traversing the edge perpendicularly. Each
path was obtained using a different inflation radius for the binary edge map.
The three paths correspond to increasing radii of 0 cm, 10 cm, and 20 cm.
This demonstrates that, depending on the safety requirements and the size
of the robot, edges can be approached from a safe distance in order to ensure
successful step traversal.



8.4. RESULTS 175

Figure 8.11: Obstacle avoidance and negotiation. Surface shading represents rel-
ative surface saliency. Left: Paths resulting from different cost weights, planned
over a pipe structure with a circular hole on its upper side. The four paths were
obtained for different settings of the cost function weights: One path emphasizes
curvature cost, one turn cost, one surfaceness cost, and one shows a practical bal-
ance between the different weights. Right: Paths resulting from varying the edge
inflation radius. The paths show 0 cm, 10 cm, and 20 cm inflations. The detected
edge of the L-shape structure is highlighted in red.

Planning Paths on Geometrically Complex Surface. An example on
a more complex surface with edge obstacle highlights the full abilities of the
navigation solution. Figure 8.12 shows the input point cloud, the results from
structure inference and feature detection, as well as the generated 3D and
2D paths. The 2D path results from the path dimensionality reduction. The
robot is asked to cross to the other side of the plate safely. The navigation
solution successfully generates a trajectory that steers the robot perpendic-
ularly over the detected edge, around in the tube, mostly traveling in the
plane of curvature, and again perpendicularly over the next edge.

Planning Paths through the Steam Chest. To evaluate the robustness
of the path generation against real sensor noise, we use a point cloud recorded
in the real steam chest environment (see Figure 2.1 in Chapter 2). This
global point cloud of the steam chest highlights several challenges that a real
inspection procedure may create. The exit points have a lower density than
the core of the steam chest. The long middle section of the steam chest reveals
the noise which is created by deformed scans and registration errors. Finally,
the lower part of the middle section has a very low point density due to the
scanner position and robot self-occlusion during the point cloud acquisition
process. Figure 8.13 on the top presents a cut view of the same point cloud
after augmentation through dense tensor voting. The lighter shades represent



176 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

Figure 8.12: Path planning on geometrically complex surface. The input point
cloud, several views of the surface with detected edge obstacle (red) and planned
path (white), as well as the unwrapped 2D path are shown. The edges are crossed
perpendicularly when entering and exiting the tube section.

high saliency surface regions. Note that the regions of low density are still
represented but obtain a much lower saliency. The observation holds for the
exit points of the steam chest as well as for the lower part of the middle
section, which is less salient when compared to its upper part. Finally, the
noise present in the middle section is minimized, as we can observe from the
fact that the main saliency defines the shape of the pipe—even in the middle
section—properly.

For the path planning, we use five of the exit points as final goals with the
large opening of the steam chest as starting point. Figure 8.13 presents the
resulting global paths through the steam chest. The starting point is marked
with an “S”, and the five goal poses with their respective path number. The
paths are properly contained within the surface, even in presence of noise and
variable density. Path 1 follows the high saliency zone of the middle section
on half of its length before leaving with a smooth turn to finish in the opposite
orientation. Path 2 and path 3 present almost symmetric trajectories, even
though the goal positions are not set to the same height. This supports that
the planning is repeatable under steady environment conditions.

Figure 8.14 shows the allocation of computation time for each of the paths
shown in Figure 8.13. The entire computation time is within about 30 s,
which is of the same order of magnitude as the time it takes for MagneBike
to record a single 3D point cloud (about 50 s). This can be considered a
very usable result. The point cloud contained 32′000 points, which explains
why the sparse tensor voting accounts for the majority of the computation



8.4. RESULTS 177

Figure 8.13: Path planning in the steam chest. Top: Saliency map after dense
voting. Grid cells with very low saliency were removed for better visualization.
Center and bottom: Side and top view of the five generated paths. The starting
position of the robot is at the large opening of the steam chest, the goal poses are
placed at five of the exit points. The global map is faded for better visualization of
the planned paths.

time. After sparse voting, the number of tokens is reduced to 8′000 using
token reduction (see Section 8.2.2). This drastically reduces the computa-
tion time of dense voting, despite having dense grid information at a reso-
lution of up to 880′000 voxels with 3.5 cm side lengths. Further savings in
computation time can be achieved by using an approximate range-limited
nearest neighbor search in the sparse voting, and beyond that, substan-
tial speed-ups are possible through GPU implementations of tensor voting.



178 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

Time Allocation - Tensor Voting and Path Planning

Time Taken [s]

S
te

a
m

 C
h

e
s
t 

P
a
th

Sparse Voting & Token Masking Dense Voting Path Planning

14.1 s

14.1 s

14.1 s

14.0 s

14.0 s

6.4 s

6.4 s

6.4 s

6.4 s

6.4 s

12.9 s

9.8 s

9.4 s

5.8 s

10.7 s

Figure 8.14: Computation times for navigation with dense point cloud planning.
A breakdown of the computation times, corresponding to the individual components
of the navigation solution and the paths displayed in Figure 8.13, is shown.

This experiment shows positive results in view of planning complex paths
in three dimensions based on a full size, real inspection environment. Not
only local paths but also paths at a more global scale can be generated
successfully.

Experimental Results

In order to enhance the observations gained and further validate the feasi-
bility of the planned paths for the execution by real robots, we performed
several experiments with MagneBike in the steam chest mock-up. MagneBike
plans local paths in the mock-up; obstacle avoidance and perpendicular edge
traversal are demonstrated in the following.

Avoiding a Hole Obstacle. In the first experiment, the MagneBike robot
is set up to navigate around a hole obstacle, similarly to Figure 8.4.2 on the
left. If the hole was not there, then a simpler direct path could be chosen,
which runs diagonally through the tube. As can be seen in Figure 8.15,



8.4. RESULTS 179

Figure 8.15: MagneBike avoiding a hole obstacle. An image sequence of the
experiment is shown, followed by visualizations of the point clouds and trajectories
below. The planned path is shown on the left, and the actual executed 6-DoF path
is visualized on the right. The 3D point cloud contained 40′000 points.



180 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

Figure 8.16: MagneBike negotiating an edge obstacle. An image sequence of the
experiment is shown, followed by visualizations of the point clouds and trajectories
below. The planned path is shown on the left, and the actual executed 6-DoF path
is visualized on the right. The 3D point cloud contained 20′000 points.



8.5. SUMMARY 181

MagneBike successfully circumvents the obstacle. The point cloud used for
this experiment was recorded beforehand with a Hokuyo UTM-30LX laser
range finder.

Negotiating an Edge Obstacle. The second experiment requires Mag-
neBike to maneuver from the main pipe section of the mock-up into the
small section branching off, demonstrating its ability to follow more complex
trajectories with additional constraints. To be successful, the edge at the
junction of the two tubes must be detected, and MagneBike must cross it
perpendicularly. Figure 8.16 shows the successful result. The point cloud
was again recorded with a Hokuyo UTM-30LX laser range finder.

In summary, the test results confirm the navigation solution’s capability of
environment representation, 3D path planning and robot control, while avoid-
ing or overcoming obstacles as necessary.

8.5 Summary
This chapter proposes two navigation solutions for point-based path planning
on curved surfaces. In contrast to the mesh-based path planning of Chapter 7,
point-based path planning allows us to forgo the additional and non-trivial
processing step of mesh generation. We apply the tensor voting framework
from computer vision to infer structure and geometric connectivity within
the underlying point cloud. Surfaces and edges of obstacles, such as steps
and holes, are successfully identified and their orientation is estimated.

Navigating a robot toward a specified goal pose requires the generation
of feasible and safe paths on the surface, as well as a control method for
steering the robot along the generated path. As a result of dense voting
in the tensor voting process, environmental feature maps are obtained. A
specialized A* graph-based planner represents the cells of the maps as a set
of oriented nodes; it establishes the graph connectivity and weights of nodes
in the graph incrementally, in such a way that the mobility requirements
imposed by the robot and its environment are satisfied. The generated 6-
DoF paths are then transformed from 3D space to 2D paths, by projecting
movements into local surface planes—in a sense unwrapping the path from
the curved 3D surface. A trajectory tracking controller, designed for the
given kinematics of the robot, can then simply be applied in two dimensions.



182 8. POINT-BASED PATH PLANNING ON CURVED SURFACES

As opposed to dense point cloud planning, sparse point cloud planning is
concerned with planning paths more directly based on sparse point clouds. A
specialized RRT* sampling-based planner incrementally samples robot states
from a neighborhood within the point cloud to establish graph connectivity.
Geometric surface patches, such as quadric surfaces, are fitted locally to the
point cloud, and a robot moves along the surface using the fitted surface
patches as local continuous representation of the environment.

The navigation solution for dense point cloud planning has successfully
been tested on various 3D point clouds, including point clouds of complex
curved surfaces. In addition, we demonstrated point-based path planning on
the MagneBike robot, driving on the inner casing of a tube-like structure.



Chapter 9

Relative Robot
Localization in 3D Space

A relative localization system is introduced in this chapter that allows for
full 6D relative robot localization in 3D space. The relative localization sys-
tem consists of two complementary modules: a monocular camera module
and a target module with four active or passive visual markers. The core
localization algorithm running on the camera module continuously detects
the marker positions in the camera image and derives the full relative ro-
bot pose in 3D space by solving the Perspective-Three-Point (P3P) problem.
The system is supported by a prediction mechanism based on regression. We
present results on real-world data captured by a quadrotor helicopter and
from experiments with a team of two e-puck robots performing a coverage
task.

Collaborative tasks in general require at least a minimum mutual ex-
change of data via communication or sensing. Often relative localization is
sufficient for the coordination of multiple robots and absolute positioning of
the robots in the world is not needed for the successful completion of a task.
Collision avoidance, pattern formation, coordinated manipulation or cover-
age are examples where the knowledge of the relative pose provides sufficient
information for planning the next actions. For instance, the hybrid coverage
methods presented in Chapter 4 largely rely on the relative robot poses in
order to deploy a group of robots in 2D and 3D environments.

Our relative localization system is motivated in particular by a lack of
existing solutions for relative on-board localization of mobile robots moving
in 3D space. Inspection robots like MagneBike, which climb walls and ceil-
ings and perform coordinated inspection tasks, or flying robots that monitor

183



184 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

a certain area or hover in place for landing need compact solutions for rel-
ative 6D localization. The relative localization system is based on a simple
geometric target and a monocular camera, and thus requires only a single
passive sensor. This results in a lightweight system with low complexity and
reduced system requirements, which enables its use on a wide range of mobile
robot platforms.

Relative localization leads back to global localization if a robot measures
its pose relative to a fixed landmark or another robot with known global
pose. In this context, the development of the relative localization system
must also be seen in close relation to vision-based test beds commonly used
for ground truth and localization in multi-robot systems. Over the recent
years, self-made camera-marker systems have transformed into commercial
motion capture systems, which are establishing as standard localization tools
in robotics.

The relative robot localization system described in this chapter has first
been presented at the International Conference on Intelligent Robots and Sys-
tems (Breitenmoser et al., 2011). Section 9.1 reviews related relative robot
localization systems, which are able to provide 1D up to 6D pose information.
Section 9.2 introduces the theoretical background used for the P3P algorithm
of our localization system. Section 9.3 presents the system’s main hardware
components and Section 9.4 describes the framework for continuous relative
robot localization. Results of the experiments are given in Section 9.5. Sec-
tion 9.6 summarizes the chapter.

9.1 Related Work
Rekleitis et al. (2002) distinguishes relative localization methods based on the
level of sensed information: some relative localization systems only measure
range or angle, i.e., bearing information, others the relative position, which
is range and bearing, or the full pose, which besides position also includes
the orientation of the observed device. Moreover, localization systems can
be classified into planar or spatial systems, depending on whether 2D or 3D
location information is measured.

To date still many relative localization systems assume a 2D workspace
and provide 2D information of the robot’s position. We include some char-
acteristic examples for 2D space in this section but mainly focus on systems
that achieve relative localization in 3D space in our review.

Navarro-Serment et al. (1999) uses beacons that emit RF and ultrasonic
pulses to measure distance information between robots located in the 2D
plane; three robots can jointly infer the 2D position of a fourth robot by tri-



9.1. RELATED WORK 185

lateration. Similarly, the Cricket indoor location system (Smith et al., 2004)
consists of several beacons that sense 3D position from RF and ultrasonic
pulses. Pugh and Martinoli (2006) describes a small-scale IR-based relative
localization module that measures 2D positions; Roberts et al. (2012) extends
the IR-based system to relative positioning in 3D space. The Wii remote,
as presented by Olufs and Vincze (2009), and its sensor bar counterpart can
be understood as localization modules that provide 4D information, i.e., 3D
position plus roll. Combined with the built-in accelerometer, full pose infor-
mation can be gained with the cost of an additional sensor.

Vision-based localization modules with single or multiple cameras are
oftentimes less specific to a certain platform and need less hardware develop-
ment, which results in increased flexibility for integration on existing robots.
Davison and Kita (2002) uses stereo vision to detect a single marker target
and measures 4D information, including the 3D position and the orientation
in the 2D plane, i.e., yaw. Stein et al. (2003) obtains the 1D information of
the relative distance to a target in one direction from a single camera based
on the known size of the target object. Spletzer et al. (2001) uses monocular
omnidirectional vision to build a localization system of similar functionality
as the one reported by Navarro-Serment et al. (1999). A single robot is able
to measure range and bearing information in the 2D plane. For three or more
robots, the joint 3D pose of the robot team is obtained up to a scale factor.

Feng et al. (2007) presents a multi-robot system that achieves 6D relative
localization. A minimum number of four heterogeneous robots is required,
from which one is a climbing robot, which climbs above the three ground
robots in order to track them. The ground robots themselves act as markers
and form a target, applying the relative localization method of Spletzer et al.
(2001). The relative pose of the climbing robot is determined by solving a
P3P problem. As the target is distributed among the ground robots, visibility
of the ground robots among each other and between the ground robots and
the climbing robot must be guaranteed. This poses problems in confined
spaces and environments with obstacles and occlusions, like the steam chest
environment (see Section 2.1.1), since planning of trajectories to maintain
visibility of all the robots is neither trivial nor very practical in these cases.
Such environments clearly favor relative localization systems with the ability
of direct robot-to-robot localization.

Eberli et al. (2011) presents a monocular vision approach that uses prior
information of a target and exploits target shape and orientation to estimate
up to 5 DoF of a MAV. Wenzel et al. (2011) and Masselli and Zell (2012)
demonstrate another relative localization system for autonomous take-off,
hovering, tracking and landing of MAVs. The system is similar in the idea to



186 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

ours, and is composed of a monocular camera and four markers. Whereas the
first version solves a simplified instance of the P3P problem and additionally
relies on IMU measurements for obtaining the pitch and roll angles (Wenzel
et al., 2011), the latest version also finds the full 6D pose from measurements
of a single camera only (Masselli and Zell, 2012).

QRTags, ARTags and the ARToolKit (Kato and Billinghurst, 1999) are al-
ternative marker-based concepts that allow for 6D relative localization. They
are primarily designed for applications in augmented reality but have been
applied successfully in robotics for localization and tracking, in particular
for robots moving in planar environments (also refer to the result sections of
Chapter 5 and Chapter 6 in this thesis, where ARToolKit has been used).
The ARToolKit provides accuracies that are comparable to the accuracies
achieved with our relative localization system for tags of similar size. How-
ever, ARToolKit and similar marker-based systems are—unlike our system—
not designed for omnidirectional localization in 3D space, i.e., for measuring
the relative pose from (almost) any direction.

6 DoF motion capturing systems like the Vicon localization system are
becoming more and more popular in the robotics community. Pintaric and
Kaufmann (2007, 2008) present a low-cost pose tracking system and a tar-
get design methodology, from which we found inspiration. However, motion
capturing systems are composed of multiple cameras which are installed in
a fixed configuration in the environment in order to provide multiple views
of the markers of the tracked targets and full coverage of the workspace.
The cameras are typically equipped with IR strobe lights to illuminate the
IR-reflective targets and the pose is determined from the projections to the
different views. In order to obtain complete 6D pose information, a minimum
number of three markers per target need to be detected in at least two cam-
eras. In contrast, our relative localization system requires only one camera
but at least four markers.

9.2 Preliminaries
The update of the camera pose in our relative localization system is computed
by solving the P3P problem. This section introduces the basic theoretic
concepts of the implemented solution approach to the P3P problem.

The P3P problem is the smallest instance of the Perspective-N -Point
problem, which appears in camera calibration and pose estimation when de-
termining the relative pose of a camera from N known correspondences be-
tween 2D image plane measurements and 3D world points. The P3P problem
uses three such 2D-3D point correspondences to determine the camera pose



9.2. PRELIMINARIES 187

Figure 9.1: The P3P problem. Left: The pose of a moving camera, given by the
sequence of camera frames

{
Ck−kR , ... , Ck

}
, is to be determined with respect to

the target and the target frame T . Right: Solution approach based on the trans-
formation between the intermediate camera frame C′ and the intermediate target
frame T ′, resulting from geometric relations in the plane Π. (Adapted from Kneip
et al. (2011).)

with respect to a given reference frame. This results in up to four solutions,
which can be disambiguated by a fourth point. Gao et al. (2003) represents
a state-of-the-art solution to the P3P problem and provides references to
further relevant works on the topic.

We make use of a novel method presented by Kneip et al. (2011), and
restate here the key insights. The objective is to find the pose of the camera
[RTC | tcam,T ]. The rotation matrix RTC describes the camera orientation
and the translation vector tcam,T describes the center position of the camera,
both with respect to the target frame T . The original target frame is given
by T and the current camera frame C by Ck, where k ∈ N denotes the
frame at discrete time. The target is given by the four marker points at
positions pi = ptari,T , with index i ∈ {1, ... , 4}. Under the assumption of
known intrinsic camera parameters, the four unitary vectors f̂i = f̂i,C , which
point from the camera frame toward the marker points of the target, are also
known. Any three of the four marker points can be used in order to solve the
P3P problem; we use the first three points p1, p2 and p3 for the description
in the following paragraphs. Figure 9.1 on the left illustrates the problem.



188 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

First we define a new intermediate camera frame C ′ by tcam,T and RCC′ ,
and a new intermediate target frame T ′ by p1 and RTT ′ . The rotation
matrices are given by the basis vectors as

RCC′ = [m̂x,C m̂y,C m̂z,C ] and RTT ′ = [n̂x,T n̂y,T n̂z,T ] , (9.1)

where

m̂x,C = f̂1 , m̂z,C = f̂1 × f̂2
||̂f1 × f̂2||2

, m̂y,C = m̂z,C × m̂x,C ,

n̂x,T = p12

||p12||2
, n̂z,T = n̂x,T × p13

||n̂x,T × p13||2
, n̂y,T = n̂z,T × n̂x,T ,

and pij = pj −pi. Now, the transformation between the new frames C ′ and
T ′ follows from the inclination of the plane Π and further geometric relations
in the plane Π, which is defined by the points p1, p2 and tcam,T as shown in
Figure 9.1 on the right. The translation vector from T ′ to C ′ is given by

tcam,T ′ = tcam,T ′(α, θ) =

 ||p12||2 cos(α) (sin(α) cot(β) + cos(α))
||p12||2 sin(α) cos(θ) (sin(α) cot(β) + cos(α))
||p12||2 sin(α) sin(θ) (sin(α) cot(β) + cos(α))

 ,

(9.2)
and the rotation matrix from T ′ to C ′ by

RC′T ′ = RC′T ′(α, θ) =

− cos(α) − sin(α) cos(θ) − sin(α) sin(θ)
sin(α) − cos(α) cos(θ) − cos(α) sin(θ)

0 − sin(θ) cos(θ)

 .
(9.3)

The angles α, β and θ are defined as indicated in Figure 9.1 on the right. β
is given by f̂1 and f̂2, and is known. The reader refers to Kneip et al. (2011)
for the detailed derivations. Transforming f̂3 into C ′, the third point p3 into
T ′ and further into C ′ and setting f̂3,C′ = p3,C′

||p3,C′ ||2
leads to two equations for

the determination of the angles α and θ. Angle θ is given by the polynomial
of degree four

a4 cos4(θ) + a3 cos3(θ) + a2 cos2(θ) + a1 cos(θ) + a0 = 0 , (9.4)

with the coefficients a4, ... , a0 as described by Kneip et al. (2011). Solving
for the roots of Equation (9.4) results in up to four values for cos(θ). Angle α
depends on cos(θ) and each value for θ leads to exactly one value for α. See
the work by Kneip et al. (2011) for details.



9.3. SYSTEM OVERVIEW 189

The overall transformation [RTC | tcam,T ] from C to T is finally given by
combining Equation (9.1), Equation (9.2) and Equation (9.3) as

RTC = RTT ′ RT ′C′ RC′C

= RTT ′ RT
C′T ′ RT

CC′ , and
tcam,T = p1 + RTT ′ tcam,T ′ .

(9.5)

We will use Equation (9.5) in Section 9.4 to find the relative pose between
both the camera and the target frames.

9.3 System Overview
The 6D relative localization system is vision-based and consists of a camera
and a target module. The modules are flexible and allow for customization
into many directions. The following two sections present the two complemen-
tary modules and their basic mode of operation, as well as the optimization
procedure of the target design.

9.3.1 Camera and Target Modules
The camera module detects the target module and computes the 6D relative
pose of the camera module with respect to the detected target. The cam-
era module is composed of a monocular camera and a computing device for
image processing and pose estimation. Basically, any calibrated camera can
be used with the camera module for target detection. However, for local-
ization in close to planar settings, omnidirectional catadioptric cameras are
the preferred choice due to their 360◦ FOV in the direction parallel to the
image plane. Fish-eye lenses with up to 190◦ FOV in the direction of the
camera principal axis in contrast are particularly suitable in full 3D scenar-
ios; here the target modules need to be localized when moved in free open
space, e.g., on hemispherical trajectories, around the camera module. The
camera is either color or monochrome, depending on the chosen target and
the application environment. Figure 9.2 shows our two realizations of the
camera module of the relative localization system: the module on the left
consists of an IDS uEye color camera1 with 752 × 480 resolution and 190◦
FOV fish-eye lens mounted on a tripod, the module on the right uses the
same camera with a 150◦ FOV fish-eye lens mounted on an e-puck robot.
The computed relative pose is the direct relative position and orientation of

1http://www.ids-imaging.de



190 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

the camera module expressed in the target frame in general. If two targets
were detected by the same camera module in the case of a total of three or
more modules, the indirect relative position and orientation between the two
target modules could alternatively be inferred.

The target module includes an optimized configuration of four spherical
markers, all identical in size and shape. The markers have a fixed arrange-
ment and form a target of known geometry, arranged in a tetrahedron, which
serves as visual landmark for the camera module. The markers of a target are
either active or passive. Active markers can be built from IR-LEDs or LEDs
of a specified color. Passive markers are colored or reflective balls. Figure 9.2
includes several implementations of the target module of the relative local-
ization system. The module on the left is mounted on a tripod and the first
module on the right on an e-puck robot; both targets have active markers
of diameter b = 1 cm, each made from three green SMD LEDs with 120◦
emission angle, integrated into a spherical diffuser for improving the uniform
appearance of the markers. On the right, we have another two targets with
passive painted markers, one of which is a smaller target with b = 1.5 cm
and one a larger target with b = 3 cm.

The camera and target modules are complementary. The 6D relative
pose detected by the camera module can be inverted and communicated
from the camera module to the target module. If no communication devices
are available with the modules, one camera and one target module must be
combined to provide for mutual relative localization. The target size and
geometry, the diameter of the markers as well as the camera resolution are
important system characteristics, which define the maximum distance over
which relative localization can still be performed in a reliable way. During the
design of the system, all three characteristics must be adjusted with respect
to the requirements of the final application.

9.3.2 Optimization of Target Geometries
The target has known geometry and the markers are all identical. Hence,
once the markers are detected in the camera image, the identities of the
markers within a target as well as the identities of several targets among
each other can only be resolved by the knowledge of the markers’ spatial
arrangement. The target geometry is essential for the relative localization.
A good design lowers the occurrence of occlusions and similarities among
different target views, and contributes to the overall robustness of the target
pose prediction.



9.3. SYSTEM OVERVIEW 191

Figure 9.2: Relative localization system. Left: Camera and target modules
mounted on two tripods, which can be deployed in a workspace. Right: Local-
ization modules installed on three e-puck robots. The robot climbing the metal
wall in the background is equipped with a camera module, the robot on the left
features a target module with active color LED markers, and the robot in the center
carries the passive version of the same target module. An additional target mod-
ule with a larger passive target of the same geometry (right) represents another
example of a target that can be deployed as a fixed landmark.

First, the self-similarity and symmetries in a single target must be mini-
mized, such that they appear different if observed from different directions.
This guarantees correct estimation of the target’s orientation in space. Sec-
ond, if multiple targets are present in the same system, similarity among
different targets must be minimized to restore the markers’ identities re-
liably. In addition, degenerate arrangements, such as configurations with
three collinear markers or flat tetrahedrons with four nearly coplanar mark-
ers, should be avoided.

We define the similarity of target geometries according to Pintaric and
Kaufmann (2008) as the smallest difference of the pairwise marker distances
over all markers and targets in the system. The objective of the target op-
timization is to find arrangements of minimum similarity to form n targets
withm markers each, i.e., the maximization of s∗, with s∗ = minSdiff , where
Sdiff =

⋃
i 6=j |di − dj | with di and dj the pairwise Euclidean marker distances

between all the markers i, j ∈ IM = {1, ... , n m}. The optimization proce-
dure follows the procedure explained in the work of Pintaric and Kaufmann
(2008) to a large part.

At the beginning, the targets are initialized by random sampling from a
predefined set of discrete positions and lengths. The initial set of markers is



192 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

then optimized iteratively by maximizing the cost function

F(P, w) =
{
w s∗ + (1− w) s, D1 ≤ di ≤ D2 ∧ hmin ≥ H
−G, otherwise (9.6)

where s denotes the average distance difference over Sdiff , w is a free weighting
parameter to balance worst-case and average target quality, D1 and D2 are
the lower and upper bounds of the allowed pairwise marker distances andH is
the minimum allowed height of the target faces. H introduces a collinearity
constraint, which prevents the target to turn out too flat. G is a positive
constant that penalizes violations of the constraints imposed by D1, D2 and
H. The dimensions of the larger target of Figure 9.2 on the right are given by
the tetrahedron with vertex set {(0.00, −16.51, 23.66), (0.00, 13.04, 18.45),
(6.26, −2.21, 5.39), (−8.02, 2.49, 6.21)}, and circumsphere of radius 15.2 (all
given in cm). It results from an optimization with parameters set to w = 2/3,
D1 = 15 cm, D2 = 30 cm and H = 4 b = 12 cm. The smaller passive and
active targets installed on the e-puck robots have the same proportions but
are scaled to half the size (see Figure 9.2, right).

The actual optimization was carried out with the Nelder-Mead simplex
algorithm (Lagarias et al., 1998). The optimization was repeated over 1000
runs and resulted in several best solutions due to the existence of local optima.
Especially, in the case of a single target, i.e., n = 1, many valuable solutions
remain. In order to select a final solution, the projection of the markers to the
support plane tangent to the robot base was considered in a last optimization
step. The target is rotated, such that the cost function in Equation (9.6) with
adjusted constraints D1, D2 and H is maximized. This leads to targets that
are most distinct when viewed from the top, which is particularly favorable
for robots climbing on opposite surfaces or flying robots that localize with
respect to the ground (like in our experiments of Section 9.5 for example).

9.4 6D Relative Localization
Our relative localization system is in line with classic work in visual servo-
ing (Wilson et al., 1996). It enables on-board relative robot localization in
3D space. We describe in this section step-by-step the processing pipeline of
the relative localization algorithm that runs on top of the localization system
hardware. We consider the case of a single camera with camera frame C and
one visible target with target frame T = Tl, where l ∈ Itar = {1, ... , n} with
n = 1 in our case. Figure 9.3 illustrates the sequence of operations of the
proposed method.



9.4. 6D RELATIVE LOCALIZATION 193

9.4.1 Pose and Marker Prediction
The relative localization system uses single cameras to determine poses in 3D
space. Poses can be predicted by tracking the markers in the image plane or
the relative camera pose in 3D space. We track the pose of the camera relative
to the target frame T . Pose prediction in 3D improves the robustness of the
algorithm as spatial information is retained. The 3D pose estimation resolves
situations with crossing marker trajectories in the image plane or markers
leaving the image plane for a certain fraction of time, and allows for direct
inclusion of the underlying relative motion model of the moving camera. It
also allows for the application of standard pose estimation methods, such as
Kalman filters.

In our implementation, we make use of a simplified approach for predict-
ing the image coordinates of the markers of the targets. The 6D camera
pose at discrete time k is estimated as

[
R̃k
TC | t̃kcam,T

]
based on the camera

pose history {
[
Rk−kR
TC | tk−kRcam,T

]
, ... ,

[
Rk−1
TC | t

k−1
cam,T

]
} relative to the target

frame T , where kR is the number of regression samples taken into account.
Linear regression with kR = 2 already results in an accurate prediction with
only slight overshooting at abrupt motion changes, as can be expected from
the linear motion model. Through the modular character of our algorithm,
more advanced pose estimators that take into account measurements from
additional sensors—as for instance inertial readings—can easily replace the
current pose prediction.

After the prediction of the 6D pose of the camera frame C relative to the
target frame T is obtained, the predicted marker positions Q̃k = {q̃ki }, ∀i ∈
IM, in the camera image plane follow from the projection of the target’s
marker positions Ptar,T = {pi}, ∀i ∈ IM. In the case of a pinhole camera
model for example, the predicted marker positions in the camera image plane
are given by q̃ki = K

[
R̃k
TC

T
| −R̃k

TC

T
t̃kcam,T

]
pi , where K defines the

intrinsic camera parameter matrix.

9.4.2 Blob Extraction
The predicted marker positions Q̃k allow for extracting a region of interest
(ROI) in the image up-front. Thus any image processing operations can be
constrained to the ROI, which leads to substantial increase in speed and
robustness. During the first kR runs of the initialization phase, where the
prediction is still inaccurate or unavailable, an adapted version of the blob
extraction is applied to the whole image. Besides, in the case of detection



194 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

Figure 9.3: 6D relative localization. Processing pipeline of the relative localization
algorithm running on the camera modules.

failure, blobs may be searched in the entire image for reinitialization.
The actual blob extraction mainly applies standard image processing

methods, which makes it simple to reimplement on other platforms. The blob
extraction for grayscale images works similarly for active and passive mark-
ers, only that the thresholds are computed inversely depending on whether
light or dark markers are used. First, the image foreground is extracted by
iterated thresholding and filtering (see Figure 9.4, left). A strategy based
on successive application of two adaptive thresholds has shown to be espe-
cially useful for initial blob detection over the entire image, or for scenes
with changing light. The first threshold λ1 is computed after Otsu’s criterion
and assumes that the image contains clear fore- and background. Whereas
threshold λ1 locates the blobs in the image, threshold λ2 refines their shape
and location by being less restrictive. λ2 exploits the fact that there are
much more background pixels than foreground pixels. A Gaussian is fitted
to the grayscale histogram of the image and λ2 is defined as a multiple of the
standard deviation. After thresholding with λ1, the extracted set of blobs is
filtered by executing the first round of outlier rejection: too small and too
large blobs as well as blobs with strong nonconvexity and excentricity are
removed. The window that encloses all the remaining blobs is subject to
threshold λ2, and a second round of outlier rejection is started.

If the number of blobs still exceeds the specified number of nm markers
in the system, the nearest neighbor of each blob is computed to subsequently
remove the blobs with farthest distance to all the remaining blobs, or to
merge the two closest blobs respectively. An alternative would be to make
use of the prediction of the blob position in the image to reject false positives.
On the other hand, if the number of detected markers is below nm, a cas-
cade of recovery methods with increasing complexity—from simple erosion
to circular Hough transform (applied to the unwrapped image for lenses of
high distortion)—is executed. Finally, the blob centers Qk = {qki },∀i ∈ IM,
result from the centroid calculation of the blob areas with subpixel precision.



9.4. 6D RELATIVE LOCALIZATION 195

Figure 9.4: Blob extraction from planar target. Left, clockwise: Four markers
of a planar target are tracked in a ROI. The image is thresholded and the blobs
are detected. The four labeled blobs result from the foreground extraction and the
blob centers are calculated. Right: Trajectory of the pose of a handheld camera
module moved above the planar target.

We noticed that passive markers sometimes are affected by shadows on
the bottom side, which has the unfavorable effect of cutting a segment of
the circular blob away when thresholding. In these cases, we suggest to
fit an ellipse to the (unwrapped) blob and determine the blobs’ centers by
intersection of the perpendicular bisectors of two chords. A circular Hough
transform could be used alternatively.

The use of color cameras in combination with colored markers rather sim-
plifies the blob extraction step. The foreground extraction as described above
for grayscale images is then replaced by thresholding the image in the YUV
color space, as proposed by Bruce et al. (2000). This adds robustness to the
blob detection because the relevant color information on the U and V dimen-
sions is decoupled from marker brightness. In naturally dark environments,
e.g., at night, in tunnels or pipelines, active targets are favorable. In man-
made environments of changing light conditions, e.g., in indoor hallways or
open industrial structures, passive color targets are most useful. A clear lim-
itation of the approach is shown in cluttered indoor or outdoor environments
of changing light and color.

9.4.3 Pose Update
After having found the marker positions Qk in the image plane, one still
needs to determine their correspondences to the 3D target points. In the
worst case, e.g., during initialization when no prediction exists, a maximum of
(nm)! = 4! = 24 permutations Snm, with σ : Xnm → Xnm, results for a single



196 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

target with four markers (n = 1, m = 4). After initialization, this number can
be strongly decreased by the pose prediction and the resulting distances of the
predicted (correspondence known) and extracted (correspondence unknown)
marker positions Q̃k and Qk in the image plane. Thus Snm is restricted
to a subset of permutations with high likelihood. However, there might be
ambiguous situations remaining, for instance when two of the markers are
close to each other.

Once all the possible permutations are determined, the final camera pose
with respect to the target frame

[
Rk
TC | tkcam,T

]
is to be computed. The iden-

tical problem of finding the pose of a camera given three points in the world
frame (and their corresponding points in the image plane) is well-known in
computer vision as the P3P problem. We make use of the closed-form solu-
tion introduced in Section 9.2, which derives translation tkcam,T and rotation
Rk
TC of the camera with respect to the target frame T directly, i.e., without

further need for intermediate derivations of first the target point coordinates
in the camera frame C, and then the aligning transformation of two point
groups. Increased numerical stability and especially computational efficiency
is gained, which favors any lightweight implementation. As the geometry of
the target and the positions of the four markers Ptar,T are known, Equa-
tion (9.5) leads to four solutions for the camera position tkcam,T and orien-
tation Rk

TC with respect to T . The target pose with respect to the camera
frame C is inversely given by Rk

CT = Rk
TC

T and tktar,C = −Rk
CT tkcam,T .

In our case, the correspondences between the 2D points in the image plane
and the 3D world reference points are not predefined. Each of the permuta-
tions in Snm serves as starting point to solve the above P3P problem with
4! 4 = 96 solutions in the worst case. The reprojection of the fourth marker
position qk4 is then used for disambiguation; the candidate transformations
for which the fourth point does not fit are removed from the solution set. In
the initialization phase, multiple valid hypotheses may be maintained until
there is only one remaining. If not in the initialization mode, the unique
solution

[
Rk
TC | tkcam,T

]
is finally obtained by selecting the remaining candi-

date that is closest to the prediction
[
R̃k
TC | t̃kcam,T

]
. Alternatives for outlier

rejection and filtering are the inclusion of prior knowledge, such as the know-
ledge that a ground robot is always moving in the 2D plane, the use of robot
odometry information, or the inclusion of further predictions for the same
target by other camera modules.

Opposed to our assumption, markers could also be distinct. By means of
different colors, color codes or varying emission frequencies of pulsed active



9.5. RESULTS 197

markers, the identities are assigned to the markers statically, independent of
any 3D information. Even though 2D-3D point correspondences can be coded
with the help of distinct markers, staying with the more general problem
formulation of having identical markers per target leaves the possibility to
use colors or emission patterns for the differentiation among multiple targets.
In summary, target modules with distinct markers improve the robustness
of the relative localization by simplifying the marker identification process,
increasing the stability when searching for 2D-3D point correspondences and
reducing the importance of optimality in the target design.

9.5 Results
The relative localization system is evaluated by three experiments: a hand-
held camera module is moved over a target module placed as fixed landmark
on the ground, a flying robot is localized against the same landmark, and
relative localization between a ground and a climbing robot is established for
a coverage task.

9.5.1 Localization of a Handheld Module
The first experiment characterizes the relative localization system and ana-
lyzes its accuracy. A camera module with a Point Grey Firefly MV mono-
chrome camera2 with 752 × 480 resolution and 90◦ FOV lens is moved above
the larger target with white passive markers (Figure 9.2, right), which is po-
sitioned as a fixed landmark on the ground. The experiment is carried out
in a laboratory room with a Vicon motion capture system installed, which
provides the ground truth of the camera module’s trajectory.

The module is moved over the target by hand to produce rich and well-
controlled trajectories. The ground truth and the measured pose obtained
from our relative localization system, as well as the corresponding localization
errors, are shown in Figure 9.5. The system achieves following accuracy: the
position error is between 0.1 cm and 12.2 cm with a mean of 1.5 cm and
standard deviation of 0.7 cm; the orientation error lies between 0.1◦ and 4.5◦
with a mean of 1.2◦ and standard deviation of 0.4◦. The distance from the
camera of the camera module to the target module varied between 67.7 cm
and 174.1 cm during the experiment. The bias in the errors may originate
from small inaccuracies in the initial calibration against the ground truth or
from slight deviations of the actual target geometry.

2http://www.ptgrey.com



198 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

Figure 9.5: Relative localization of a handheld module. A camera module is
moved manually over a fixed target module. The 6D pose, i.e., position and angles,
measured from the localization system (blue), the ground truth (red), and the
corresponding errors with respect to the ground truth are shown.



9.5. RESULTS 199

9.5.2 Aerial Vehicle Localization
We mounted the camera module from the first experiment on the bottom
of an AscTec Hummingbird quadrotor3, pointing toward the ground. The
quadrotor was flown over the target up to a height of 3 m. At this distance,
the localization accuracy is 2.2 cm and 1.0◦ in average. The position error is
between 0.1 cm and 19.5 cm with a mean of 2.6 cm and standard deviation
of 1.9 cm; the orientation error lies between 0.1◦ and 5.2◦ with a mean of
1.0◦ and standard deviation of 0.4◦. The distance from the camera on the
quadrotor to the target module varied between 89.5 cm and 302.1 cm over
the experimental run. The 3D trajectory of the flying quadrotor is visualized
in Figure 9.6.

In both, the first and this second experiment, we observed only a minor
increase in the localization error when the distance between the camera and
target module was increased to the maximum range. However, the relation
of the distance between modules, the target and marker sizes as well as the
camera resolution define limitations of the relative localization system. For
example, at a distance of 3 m, the size of the detected markers is reduced to
only a few pixels for the used target and camera with 752 × 480 resolution.

In the experiments, several situations occurred where only two or three
of the four markers were visible in the camera for a certain duration. The lo-
calization algorithm proved to be robust and recovered from these situations,
even though the accuracy is affected. The maximum errors of 12.2 cm and
4.5◦ from the first experiment, for instance, are both caused by situations
with only three markers visible in the camera image.

9.5.3 Relative Localization for Multiple Robots
The third experiment tests the relative localization modules for their appli-
cation in a multi-robot system. The experimental setup comprises an active
and passive target module as well as two camera modules. The first camera
module consists of a Point Grey Flea2 color camera with 1280 × 960 resolu-
tion installed overhead at a height of 230 cm. It remains static throughout
the duration of the experiment and can be thought of as representing a ro-
bot, which is aware of its absolute position at the ceiling (e.g., it might have
means for climbing and performing global localization). The passive or active
target module, respectively, is fitted to robot r1, an e-puck robot that sweeps
the surface on the ground with a back-and-forth sweeping pattern of dimen-

3http://www.asctec.de



200 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

Figure 9.6: Relative localization of a flying quadrotor. Left: Tracked landmark
in the quadrotor’s view. Right: The ground truth (red) and measured (blue) tra-
jectories are visualized (positions given in cm).

sions 30 cm × 42 cm. The second camera module uses an IDS uEye color
camera with 752 × 480 resolution and 150◦ FOV lens, which is mounted on a
second e-puck robot, robot r2 (see also Figure 9.2, right). Robot r2 is further
augmented with magnets in the structure, such that it can climb the wall
and sweep the inclined surface by a back-and-forth sweeping pattern with
dimensions 25 cm × 21 cm.

Figure 9.7 shows the two e-puck robots during the coverage task and the
views of the camera modules, as well as the view from an additional external
camera recording the experiment. The ground truth coverage paths and the
actual coverage paths are projected into the image planes. The measured
paths deviate from the ground truth by a few centimeters. The localization
accuracy of the target module however varies significantly between robot
r1 and robot r2. The average and maximum position errors are 1.0 cm and
3.3 cm for robot r1 and 1.7 cm and 7.8 cm for robot r2. Whereas the overhead
camera features a higher resolution and remains completely static during the
experiment, robot r2 carries a camera with lower resolution and moves itself
while detecting the moving target module on robot r1. Furthermore, the
trajectory of robot r2 is transformed via robot r1 into the frames of the
overhead camera and the external camera, which results in an addition of
localization errors. The same setup was tested for robot r1 equipped with



9.6. SUMMARY 201

Figure 9.7: Relative localization of multiple robots (ground truth paths in red,
measured paths in blue, robot orientations in black; note that the measured paths
are unfiltered and represent the raw data including outliers.). Top row: View
from the overhead camera and view from robot r2, which is climbing the wall (the
trajectory in violet is obtained from projecting the robot position to the image
plane over the entire experiment, applying the momentary transformation of each
time step). Bottom row: View from the external camera for robot r1 equipped with
the passive and active target modules.

the active target in a dimmed room with similar results (see Figure 9.7,
bottom right).

9.6 Summary
This chapter addresses the problem of localizing the 6D poses of robots that
move in full 3D space, such as flying and climbing robots, which involves
vertical positions and upside down orientations. The proposed relative local-
ization system is composed of a target and a camera module, which offer a
simple, lightweight and portable solution, relying on monocular vision, with



202 9. RELATIVE ROBOT LOCALIZATION IN 3D SPACE

the potential to perform relative localization in real-time. The position and
orientation information between target and camera modules is determined
from continuously detecting the markers in the camera image and solving
a P3P problem. The relative localization system was successfully tested in
physical experiments and the evaluation of the measured poses resulted in
centimeter/degree accuracies, which is sufficient for most robot applications.

Regarding multi-robot systems, the relative localization system can be
applied and extended in many ways. The relative localization system sup-
ports the coordination between robots and provides the relative pose as it
is assumed in the coverage solutions presented in Chapter 5 and Chapter 6.
The coverage algorithm of Chapter 5 requires the relative position of neigh-
boring robots, the coverage algorithms of Chapter 6 need the relative 6D
pose for sharing and merging the robots’ mesh maps. Moreover, relative
poses are required for multi-robot collision avoidance; the relative localiza-
tion system could be used in combination with reciprocal collision avoidance
methods (Alonso-Mora et al., 2012a, 2013). The relative localization system
can further be used to study cooperative localization and distributed pose
estimation techniques (Rekleitis et al., 2002).

The relative localization system allows for multiple targets and cameras.
However, especially the case with multiple target modules seen by one camera
module needs further investigation. It would be interesting to see for how
many different targets with identical markers the correspondence problem
can still be solved to disambiguate the targets. Results by Pintaric and
Kaufmann (2008) are promising. Otherwise, alternatives with more than
four markers per target or color coding of different targets could help.

The relative localization module has also been developed with respect to
applications of the inspection scenario. Industrial structures do typically not
include rich visual features and the environments are not illuminated. Target
modules with colored or active markers could offer a practical solution.



Chapter 10

Conclusion

In this thesis we have studied multi-robot coverage and path planning for the
inspection of curved surfaces.

The challenges of an inspection scenario are diverse: robots navigate in full
3D environments and are constrained through various obstacles and curved
surfaces of arbitrary geometries. Curved surfaces can more generally be seen
as examples of curved spaces in differential geometry. The inspection task is
a high-level task, which comprises many of the core tasks in mobile robotics:
an inspected environment must be explored and mapped, searched for single
defects or covered completely, and afterwards be revisited and monitored
periodically. Coverage and path planning are key components for a single
mobile robot as well as for a multi-robot system on the way to achieve this
task.

The developed coverage and navigation solutions apply generally. The
coverage solutions deploy a group of robots in an environment with obstacles
or on a curved surface. The robots collectively partition the environment and
each robot is responsible for a region to fulfill a task. For example, the robots
cover their assigned region completely by a sweeping pattern in the search
for defects in the surface. The navigation solutions support the coverage
solutions on a lower level. They plan transitioning as well as covering paths
for the individual robots, such that the robots reach their next waypoint on
the curved surfaces during deployment or sweeping.

In the remainder of this chapter, we first discuss our objectives and con-
tributions in Section 10.1 and finally conclude in Section 10.2 with an outlook
on future work.

203



204 10. CONCLUSION

10.1 Discussion of Contributions
In the introductory chapter, we have formulated one long-term vision and
two more specific short-term goals. Our overall vision is to work toward
autonomous mobile robots that serve as assistive inspection tools for robotic
inspection of infrastructures. On the route to this goal, we agreed that the
planning and coordination of actions are, besides localization and mapping,
key components to enable the reliable, efficient and flexible inspection by a
mobile robot system.

Path Planning for Complex Environments. We developed two naviga-
tion solutions, which are based on two different environment representations
and both enable a mobile robot, in particular a climbing robot, to move on
uneven terrain or arbitrary curved surfaces of a realistic 3D environment. The
navigation solutions include environment modeling, path planning and robot
control. The first solution is mesh-based. A triangle mesh is generated, the
triangle strip planner plans 6-DoF transitioning and covering paths on the
mesh, and the vector field controller steers the robot along the triangle strip
path. The second solution is point-based. A point cloud is augmented by
tensor voting, the dense or sparse point cloud planner plans a 6-DoF tran-
sitioning path along the point cloud, and the robot is controlled to follow
the discrete path. Additional constraints, such as perpendicular approaching
of an obstacle for obstacle negotiation, are considered by the planner. The
navigation solutions were implemented and tested in simulations and exper-
iments. Several mesh generation methods were evaluated and the tensor
voting framework was applied to robot path planning.

Follow-up work includes the testing of the first navigation solution for
mesh-based path planning with the MagneBike robots as well as the com-
pletion of the sparse point cloud planning method. Section 10.2 points to
further directions of future work.

Toward Multi-Robot Coverage and Inspection. We used the hybrid
coverage concept for the design of several multi-robot coverage algorithms,
such as the hybrid surface area coverage. By combining the original Voronoi
coverage method with path planning, nonconvexities in the environment can
be considered. We developed two coverage solutions to perform Voronoi
coverage on discrete representations. Multiple robots were deployed into
discrete partitions over a curved surface, which is modeled by a triangle
mesh. The robot deployment can furthermore adapt to local anisotropy,
which can be defined by surface curvature or from user input. Once the



10.1. DISCUSSION OF CONTRIBUTIONS 205

robots are deployed, each robot sweeps its Voronoi region along a covering
path and thereby inspects the area of the region. The procedure can then be
iterated to incrementally cover a larger environment. We designed coverage
concepts and algorithms, derived theoretical formulations, and implemented
and tested the coverage solutions in simulations and experiments.

As localization is important for the success of both robotic inspection as
well as multi-robot coordination and coverage, we additionally investigated
methods to achieve relative robot localization. We developed a 6D relative
localization system which particularly takes environment characteristics, as
they are typical for environments in robotic inspection tasks, into account.

The coverage solutions have been tested with e-puck robots; in future
work, similar tests must be conducted with two or three MagneBikes. The
discrete Voronoi coverage algorithms, which are currently based on triangle
meshes, are further to be extended to work on point clouds as well. This
is the equivalent to point-based planning and would perfect the study on
point-based representations. See also Section 10.2 for a discussion of future
works.

Assistive Inspection Tools. Regarding our vision of increased autonomy
for assistive inspection tools, the proposed navigation and coverage solutions
address several of the initially postulated desirable requirements of an assis-
tive inspection tool. The navigation solutions lead to automated trajectory
generation and improved repeatability of inspection paths, which offers bene-
fits for periodic inspection. Some robustness is built in the Voronoi coverage
method; coverage continues even if single robots fail. The navigation and
coverage solutions allow for autonomous robot behaviors. A human opera-
tor would therefore only be required to provide the high-level control inputs.
The Voronoi coverage and path planning can be adjusted by the user through
weighting parameters. Thus expert knowledge, experience of critical loca-
tions, or partial knowledge of the environment geometry can be included in
the automated inspection. By the use of multiple robots in the coverage pro-
cedure, inspection time can be reduced. Augmented point clouds and triangle
meshes are standard data structures, which improve the visualization during
inspection. Methods for environment modeling can support the interaction
between a human operator and the inspection tool in cases where the tool is
not visible or accessible.

In conclusion, we can say that we put in place some basic elements for
the multi-robot coverage and path planning on curved surfaces and in other
environments of challenging geometry, which we hope will prove beneficial
for future works in robotic inspection and beyond.



206 10. CONCLUSION

10.2 Outlook on Future Work
Following extensions of our work represent interesting future research direc-
tions and/or need to be solved on the path toward more autonomous robotic
inspection.

Extensions of Navigation Solutions

Incremental Mesh Generation and Path Planning. Our mesh-based
and point-based path planning is rather static. An existing triangle mesh
or point cloud must be extended in real-time. This ideally requires a dense
SLAM framework. Dynamic point cloud updates may be achieved by ICP-
based methods (Besl and McKay, 1992; Pomerleau et al., 2011; Tâche et al.,
2009). Dynamic mesh updates result from incremental meshing and partial
remeshing (Marton et al., 2009; Newcombe et al., 2011). The discrete paths
are then updated by replanning (Koenig and Likhachev, 2002; Stentz, 1995).

Combined Mesh Generation and Path Planning. The mesh-based
planning currently takes a full triangle mesh as input and then extracts a
triangle strip path. It would be interesting to investigate in how far mesh
generation and triangle strip planning can be combined, such that a mesh is
only generated where the robot plans to go. That would lead to simultaneous
incremental meshing and planning. In addition, kinematic and structural
constraints could again be included at the level of discrete planning.

Sparse Point Cloud Planning. The sparse point cloud planning of Chap-
ter 8 has not yet been completed. The single components, such as fitting
of quadrics to 3D point clouds, sampling-based path planning on 3D point
clouds, and construction of motion primitives on the quadric fits, have been
developed. Next, they need to be put together and tested in simulations and
experiments.

Collision Detection and Avoidance. The current navigation solutions
assume enough clearance and do not focus on collision detection against the
3D environment. Particularly for motions of climbing robots in confined
spaces like narrow pipes, collision detection needs to be added to the navi-
gation solutions. In this context, if the path planning is used in combination
with multi-robot systems, additional reciprocal collision avoidance needs to
be included. Reciprocal collision avoidance of robots constrained to curved



10.2. OUTLOOK ON FUTURE WORK 207

surfaces presents an interesting topic. Our methods for the 2D case may
serve as a starting point (Alonso-Mora et al., 2012a, 2013).

Extensions of Coverage Solutions

Voronoi Coverage and Multi-Robot SLAM. We assumed that the
localization of the robots was given by a localization module. To incorpo-
rate multi-robot localization, Voronoi coverage is to be combined with a full
multi-robot SLAM framework. In combination with our coverage solution
of Chapter 6, which operates on triangle meshes, this also includes afore-
mentioned extension to incremental mesh generation and path planning for
a single robot.

Task Allocation and High-Level Task Planning. In the context of
hybrid coverage methods, such as hybrid Voronoi coverage, it is interesting
to further study schemes of the relocation of robots, the redistribution of
regions and the assignment of tasks. Tasks are assigned to be completed
by a robot in a region. Regions might be connected by a roadmap, such
as a Delaunay graph in the case of Voronoi coverage, and the roadmap,
regions and tasks can be subject to task planning and topological planning.
Alternatively, region and task allocation among heterogeneous robots is a
further interesting related problem.

Adaptivity, Optimality and Robot Metrics. Concerning the adaptive
Voronoi coverage of Chapter 6, the combination and usage of the robot motion
metric and the metric to construct the anisotropic Voronoi tessellation could
be further analyzed. Moreover, the adaption and control of the partitions by
user guidance can be further explored.

Point-Based Voronoi Coverage. As mentioned above (and previously
motivated at the end of Chapter 6), discrete Voronoi coverage can be extended
to work on point clouds. The point-based path planners of Chapter 8 are then
used in combination with Voronoi coverage, and the mesh generation step
could be avoided. In this context, the relations to clustering and probabilistic
Voronoi diagrams might be investigated.



208 10. CONCLUSION

Extensions of the Relative Localization System

Disambiguation of Multiple Targets. The optimization and disam-
biguation of multiple targets in the same relative localization system, as well
as the combination of the relative localization system with cooperative local-
ization approaches, such as the methods suggested by Rekleitis et al. (2002),
require further investigations.

Combination of Relative and Absolute Localization. Another inter-
esting direction is the combination of the 6D relative localization system with
global localization. This could lead to a heterogeneous multi-robot system,
where several robots localize themselves relative to a leading robot, which
is equipped with more powerful sensors that achieve reliable global localiza-
tion, finally resulting in global localization information for the entire group of
robots. For example, with respect to our inspection scenario, a MagneBike
robot with heavy payload and equipped with a rotating laser range finder
might provide the global reference for other MagneBike robots that carry
only a relative localization module and a NDT sensor to cover the surface
area.

Extensions toward Assistive Inspection Tools

Integration of Solutions. Even though a multi-robot SLAM framework
has not directly been developed yet, many of the basic components are avail-
able. Localization, environment modeling, path planning and coverage meth-
ods need to be combined in a consistent framework and integrated on an
inspection robot, such as MagneBike, in a next step.

Extended Field Testing. Once the integration of the combined solution
is completed, the MagneBike robots or similar inspection robots, respec-
tively, need to be tested extensively through field tests in realistic industrial
environments. Special attention must be given to robust operation, failure
recovery, integration of NDT sensors, tether handling and communication
among multiple robots.



Appendix A

Proofs

A.1 P-Norms and the Parallel Axis Theorem
We analyze the form of Equation (3.30) in more detail and give a proof that
the parallel axis theorem, Theorem 3.1, does not simply generalize for p 6= 2.

In the following, N ∈ N>0 is an arbitrary dimension and for a polynomial
P ({zi}Ni=1) in the components zi of z ∈ RN , we simply write P (z).

Proposition A.1. (Polynomial Form of p-Polar Moment) For p-norms with
p ∈ N>0 and a bounded m-dimensional submanifoldM⊂ RN , with ρ : M→
R≥0 and volume form dV , such that

∫
M ρ(q)dV (q) ∈ R>0 and a set Z ⊂ RN ,

the functional J : Z → R≥0,

J(z) =
∫
M
‖z− q‖pp ρ(q) dV (q) , (A.1)

is a multi-variate polynomial function of degree p in the components of z, if
one of the following conditions holds:

(1) p is even;

(2) p is odd and sgn(z − q) := [sgn(zi − qi)]Ni=i is constant and non-zero,
∀z ∈ Z and ∀q ∈M.

Proof. We first define for any vector c ∈ RN the polynomial Pc(x) :=∑N
i=1 ci x

p
i . Then, we look at the two cases independently. For case (1), as p

is even, it follows directly that ‖z− q‖pp =
∑N
i=1 |zi − qi|p = Pc(z− q), with

ci = 1, ∀i ∈ {1, ..., N}.

209



210 A. PROOFS

For case (2), we get ‖z−q‖pp =
∑N
i=1 |zi−qi|p =

∑N
i=1 [sgn(zi − qi) (zi − qi)]p

=
∑N
i=1 sgn(zi − qi) (zi − qi)p. From the assumption that sgn(z − q) is

constant, it follows that ‖z− q‖pp = Pc(z− q), with c = sgn(z− q). Having
‖z− q‖pp = Pc(z− q) for both cases we get

J(z) =
∫
M
‖z− q‖pp ρ(q) dV (q)

=
∫
M

N∑
i=1

ci (zi − qi)p ρ(q) dV (q)

=
∫
M

N∑
i=1

ci

p∑
k=0

(
p

k

)
zki (−qi)p−k ρ(q) dV (q)

=
N∑
i=1

p∑
k=0

[
ci

(
p

k

) ∫
M

(−qi)p−k ρ(q) dV (q)
]
zki . (A.2)

This proofs J to be a polynomial function in zi of degree ≤ p.
But the zi-monomials of degree p are

[
ci
∫
M ρ(q) dV (q)

]
zpi ; and by as-

sumption their coefficients ci
∫
M ρ(q) dV (q) are nonzero. So the degree is

actually exact p.
Finally, this results in polynomials of degree p in the components of z for

both cases.

From Proposition A.1, we are now able to draw the following conclusion.

Corollary A.2. (Bounds for a Generalization of the Parallel Axis Theorem
to p-Norms) The functional J from Proposition A.1, when p > 2 and m > 1,
and one of the two cases of Proposition A.1 applies, has the form

J(z) = J(0) + C ‖z‖pp (A.3)

on a set Z, where C ∈ R is a constant, only if

Z ⊆ ZC :=
{

z : RN |PJ(z)− (J(0) + C ‖z‖pp) = 0
}
, (A.4)

where PJ denotes the polynomial representation of J found in the proposition.
And the set ZC is piecewise polynomial with degree > 0.



A.1. P-NORMS AND THE PARALLEL AXIS THEOREM 211

Proof. We assume p > 2, m > 1, C ∈ R, such that Equation (A.3) holds on
Z, and one of the two conditions from Proposition A.1 fulfilled, i.e.,

(1) p is even;

(2) p is odd and sgn(z − q) = [sgn(zi − qi)]Ni=i is constant and non-zero,
∀z ∈ Z and ∀q ∈M.

Then from Proposition A.1 it follows that J is a polynomial function in the
coefficients of z given by PJ . By substituting PJ for J in Equation (A.3),
Equation (A.4) follows immediately.

To prove that ZC is piecewise polynomial, it is enough to show that
the functional S(z) := J(0) + C ‖z‖pp is piecewise polynomial. And this
is the case as J(0) is a constant and thus a monomial of degree ≤ 0 and
C ‖z‖pp = C Psgn(z)(z) is piecewise (pieces of constant sgn(z)) a sum of
monomials of degree p (or −∞, e.g., if C = 0) in the components of z, which
follows in analogy to the proof of Proposition A.1.

It is left to show that the piecewise degree of PJ −S is greater than zero.
We already found S to piecewise consist exclusively of monomials of degree
≤ 0 or p. It is thus enough to show that there exists a monomial in PJ of
degree k, with 0 < k < p. We choose k = p− 2, and get from Equation (A.2)
in the proof of Proposition A.1[

ci

(
p

p− 2

) ∫
M
q2
i ρ(q) dV (q)

]
zp−2
i (A.5)

as the only monomial candidates of degree p−2. Both ci and
(
p
p−2
)
have non-

zero values—the first per assumption, the latter per definition. Furthermore,
it follows from integral theory that∫

M
q2
i ρ(q) dV (q) > 0 , (A.6)

since q2
i ρ(q) > 0 holds dV -almost everywhere because m > 1.

So we have found monomials of degree p − 2 in PJ but none in S. And
that makes PJ −S piecewise polynomial with degree > 0 and thus ZC = {z :
RN |(PJ − S)(z) = 0} as well.

It is left to explain why Corollary (A.2) makes the generalization idea
given in Equation (A.3) unusable for our application. In our setting, M
corresponds to A(v) with v ∈ VGi , and Equation (A.3) (after translating v’s
mass center c(v) to 0) had to hold for every v (with one Cv each) and every
potential robot position z.



212 A. PROOFS

But Corollary (A.2) would then require any subset Z of the potential
robot positions to be contained in many different ZCv,v + c(v) (the ZC from
Corollary (A.2) after moving 0 back to c(v))—one for every vertex in VGi ,
for which the Proposition (A.1) applies with M = A(v), which are most of
the vertices, whose A(v) is disjoint from Z. And this is very unlikely as it
would, for example, mean for a robot position to be contained in the zero set
of a huge set of nontrivial polynomials (one per such vertex from VGi) hardly
containing a single point.

At this point, we are left with p = 1 or m = 1. In these cases, Equa-
tion (A.3) fits only for some very special pairs of Z and M (in fact, for
most M, the functional J is not polynomial when Proposition (A.1) does
not apply), what makes this generalization still unusable for most practical
applications. However, providing precise descriptions for those pairs would
be rather intricate; given that Corollary A.2 already rules out so many ap-
plication scenarios, such further study does not seem worth the effort.



Bibliography

N. Agmon, N. Hazon, and G. A. Kaminka. Constructing Spanning Trees
for Efficient Multi-Robot Coverage. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), pages 1698–1703, May
2006.

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva.
Point Set Surfaces. In Proc. of The IEEE Conference on Visualization,
2001.

J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beards-
ley. Multi-Robot System for Artistic Pattern Formation. In Proc. of
the IEEE International Conference on Robotics and Automation (ICRA),
pages 4512–4517, May 2011.

J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart. Reciprocal
Collision Avoidance for Multiple Car-Like Robots. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), pages 360–
366, May 2012a.

J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beardsley.
Image and Animation Display with Multiple Mobile Robots. The Interna-
tional Journal of Robotics Research, 31(6):753–773, 2012b.

J. Alonso-Mora, M. Schoch, A. Breitenmoser, R. Siegwart, and P. Beardsley.
Object and Animation Display with Multiple Aerial Vehicles. In Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct. 2012c.

J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart. Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic
Robots. In A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerst-
edt, M. A. Hsieh, L. E. Parker, and K. Støy, editors, Distributed Au-

213



214 BIBLIOGRAPHY

tonomous Robotic Systems, volume 83 of Springer Tracts in Advanced Ro-
botics (STAR), pages 203–216. Springer Berlin Heidelberg, 2013.

N. Amenta, S. Choi, and R. K. Kolluri. The Power Crust. In Proc. of the
ACM Symposium on Solid Modeling and Applications (SMA), pages 249–
266, 2001.

G. Antonelli, S. Chiaverini, and A. Marino. Decentralized Deployment with
Obstacle Avoidance for AUVs. In Proc. of the IFAC World Congress, pages
12807–12812, 2011.

P. N. Atkar, H. Choset, A. A. Rizzi, and E. U. Acar. Exact Cellular De-
composition of Closed Orientable Surfaces Embedded in R3. In Proc. of
the IEEE International Conference on Robotics and Automation (ICRA),
volume 1, pages 699–704, 2001.

P. N. Atkar, A. Greenfield, D. C. Conner, H. Choset, and A. A. Rizzi. Uniform
Coverage of Automotive Surface Patches. The International Journal of
Robotics Research, 24(11):883–898, 2005.

P. N. Atkar, D. C. Conner, A. Greenfield, H. Choset, and A. A. Rizzi. Hier-
archical Segmentation of Piecewise Pseudoextruded Surfaces for Uniform
Coverage. IEEE Transactions on Automation Science and Engineering, 6
(1):107–120, Jan. 2009.

N. Ayanian and V. Kumar. Abstractions and Controllers for Groups of
Robots in Environments with Obstacles. In Proc. of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3537–3542,
May 2010.

J. E. Beasley. Lagrangean Heuristics for Location Problems. European Jour-
nal of Operational Research, 65:383–399, 1993.

C. Belta and V. Kumar. Abstraction and Control for Groups of Robots. IEEE
Transactions on Robotics and Automation, 20(5):865–875, Oct. 2004.

C. Belta, V. Isler, and G. J. Pappas. Discrete Abstractions for Robot Motion
Planning and Control in Polygonal Environments. IEEE Transactions on
Robotics, 21(5):864–874, 2005.

D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner. Manipulation Plan-
ning on Constraint Manifolds. In Proc. of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 625–632, May 2009.



BIBLIOGRAPHY 215

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1.
Athena Scientific, 3rd edition, 2005.

P. J. Besl and H. D. McKay. A Method for Registration of 3-D Shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):
239–256, Feb. 1992.

S. Bhattacharya, R. Ghrist, and V. Kumar. Multi-Robot Coverage and Ex-
ploration in Non-Euclidean Metric Spaces. In Proc. of the International
Workshop on the Algorithmic Foundations of Robotics (WAFR), June 2012.

A. Breitenmoser and R. Siegwart. Surface Reconstruction and Path Planning
for Industrial Inspection with a Climbing Robot. In Proc. of the Interna-
tional Conference on Applied Robotics for the Power Industry (CARPI),
2012.

A. Breitenmoser, J.-C. Metzger, R. Siegwart, and D. Rus. Distributed Cov-
erage Control on Surfaces in 3D Space. In Proc. of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
5569–5576, Oct. 2010a.

A. Breitenmoser, M. Schwager, J.-C. Metzger, R. Siegwart, and D. Rus. Vo-
ronoi Coverage of Non-Convex Environments with a Group of Networked
Robots. In Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), pages 4982–4989, May 2010b.

A. Breitenmoser, F. Tâche, G. Caprari, R. Siegwart, and R. Moser. Mag-
neBike: Toward Multi Climbing Robots for Power Plant Inspection. In
Proc. of the International Conference on Autonomous Agents and Multia-
gent Systems: Industry track (AAMAS), pages 1713–1720, 2010c.

A. Breitenmoser, L. Kneip, and R. Siegwart. A Monocular Vision-Based
System for 6D Relative Robot Localization. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
79–85, Sept. 2011.

A. Breitenmoser, H. Sommer, and R. Siegwart. Adaptive Multi-Robot Cov-
erage of Curved Surfaces. In Proc. of the International Symposium on
Distributed Autonomous Robotic Systems (DARS), Nov. 2012.

J. Bruce, T. Balch, and M. Veloso. Fast and Inexpensive Color Image Seg-
mentation for Interactive Robots. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2061–2066,
2000.



216 BIBLIOGRAPHY

F. Bullo, J. Cortés, and S. Martínez. Distributed Control of Robotic Networks.
Applied Mathematics Series. Princeton University Press, 2009.

W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated
Multi-Robot Exploration. IEEE Transactions on Robotics, 21(3):376–386,
June 2005.

M. Burri, J. Nikolic, C. Hürzeler, J. Rehder, and R. Siegwart. Aerial Service
Robots for Visual Inspection of Thermal Power Plant Boiler Systems. In
Proc. of the International Conference on Applied Robotics for the Power
Industry (CARPI), 2012.

C. H. Caicedo-Núñez and M. Žefran. Performing Coverage on Nonconvex
Domains. In Proc. of the IEEE Multi-Conference on Systems and Control,
pages 1019–1024, 2008a.

C. H. Caicedo-Núñez and M. Žefran. A Coverage Algorithm for a Class of
Non-Convex Regions. In Proc. of the IEEE Conference on Decision and
Control (CDC), pages 4244–4249, Dec. 2008b.

G. Caprari, A. Breitenmoser, W. Fischer, C. Hürzeler, F. Tâche, R. Siegwart,
O. Nguyen, R. Moser, P. Schoeneich, and F. Mondada. Highly Compact
Robots for Inspection of Power Plants. Journal of Field Robotics, 29(1):
47–68, 2012.

S. Carpin. Distributed Coverage while Not Being Covered. In Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct. 2012.

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans. Reconstruction and Representation of 3D
Objects with Radial Basis Functions. In Proc. of SIGGRAPH, pages 67–
76, 2001.

J. Carsten, D. Ferguson, and A. Stentz. 3D Field D*: Improved Path Plan-
ning and Replanning in Three Dimensions. In Proc. of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
3381–3386, 2006.

F. Cazals and M. Pouget. Estimating Differential Quantities Using Polyno-
mial Fitting of Osculating Jets. Computer Aided Geometric Design, 22:
121–146, 2005.

H. Choset. Coverage for Robotics—A Survey of Recent Results. Annals of
Mathematics and Artificial Intelligence, 31(1–4):113–126, May 2001.



BIBLIOGRAPHY 217

H. Choset and P. Pignon. Coverage Path Planning: The Boustrophedon
Cellular Decomposition. In Proc. of the International Conference on Field
and Service Robotics (FSR), 1997.

D. C. Conner, A. A. Rizzi, and H. Choset. Composition of Local Poten-
tial Functions for Global Robot Control and Navigation. In Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3546–3551, 2003.

C. D. Correa, R. Hero, and K.-L. Ma. A Comparison of Gradient Estimation
Methods for Volume Rendering on Unstructured Meshes. IEEE Transac-
tions on Visualization and Computer Graphics, 17(3):305–319, May 2011.

N. Correll and A. Martinoli. Multirobot Inspection of Industrial Machinery.
IEEE Robotics & Automation Magazine, 16(1):103–112, March 2009.

J. Cortés, S. Martínez, T. Karatas, and F. Bullo. Coverage Control for Mobile
Sensing Networks. IEEE Transactions on Robotics and Automation, 20(2):
243–255, 2004.

J. Cortés, S. Martínez, and F. Bullo. Spatially-Distributed Coverage Opti-
mization and Control with Limited-Range Interactions. ESAIM: Control,
Optimisation and Calculus of Variations, 11:691–719, 2005.

A. J. Davison and N. Kita. Active Visual Localization for Multiple Inspection
Robots. Advanced Robotics, 16(3):281–295, 2002.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer-Verlag, 2nd
edition, 2000.

J. Derenick, N. Michael, and V. Kumar. Energy-Aware Coverage Control
with Docking for Robot Teams. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3667–3672,
Sept. 2011.

T. K. Dey and S. Goswami. Provable Surface Reconstruction from Noisy
Samples. In Proc. of the Annual Symposium on Computational Geometry
(SCG), pages 330–339, 2004.

P. Diaz-Gutierrez, A. Bhushan, M. Gopi, and R. Pajarola. Constrained Strip
Generation and Management for Efficient Interactive 3D Rendering. In
Proc. of the Computer Graphics International Conference, pages 115–121,
2005.



218 BIBLIOGRAPHY

E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik, 1(1):269–271, 1959.

G. Dobie, W. Galbraith, M. Friedrich, S. G. Pierce, and G. Hayward. Robotic
Based Reconfigurable Lamb Wave Scanner for Non-Destructive Evalua-
tion. In IEEE Ultrasonics Symposium, pages 1213–1216, Oct. 2007.

Q. Du and D. Wang. The Optimal Centroidal Voronoi Tessellations and
the Gersho’s Conjecture in the Three-Dimensional Space. Computers &
Mathematics with Applications, 49(9–10):1355–1373, May 2005a.

Q. Du and D. Wang. Anisotropic Centroidal Voronoi Tessellations and
Their Applications. SIAM Journal on Scientific Computing, 26(3):737–
761, March 2005b.

Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi Tessellations:
Applications and Algorithms. SIAM Review, 41(4):637–676, Dec. 1999.

Q. Du, M. D. Gunzburger, and L. Ju. Constrained Centroidal Voronoi Tessel-
lations for Surfaces. SIAM Journal on Scientific Computing, 24(5):1488–
1506, May 2002.

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete Partitioning and
Coverage Control for Gossiping Robots. IEEE Transactions on Robotics,
28(2):364–378, 2012.

D. Eberli, D. Scaramuzza, S. Weiss, and R. Siegwart. Vision Based Posi-
tion Control for MAVs Using One Single Circular Landmark. Journal of
Intelligent & Robotic Systems, 61(1–4):495–512, Jan. 2011.

B. Englot and F. Hover. Planning Complex Inspection Tasks Using Re-
dundant Roadmaps. In Proc. of the International Symposium of Robotics
Research (ISRR), 2011.

Y. Feng, Z. Zhu, and J. Xiao. Self-Localization of a Heterogeneous Multi-
Robot Team in Constrained 3D Space. In Proc. of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
1343–1350, Nov. 2007.

D. Ferguson and A. Stentz. Using Interpolation to Improve Path Planning:
The Field D* Algorithm. Journal of Field Robotics, 23(1):79–101, 2006.

W. Fischer. Design of Compact Climbing Robots for Power Plant Inspection.
PhD thesis, ETH Zurich, 2010. Nr. 18975.



BIBLIOGRAPHY 219

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-Based Motion Planning
for Nonlinear Systems with Symmetries. IEEE Transactions on Robotics,
21(6):1077–1091, Dec. 2005.

P. T. Furgale and T. D. Barfoot. Visual Path Following on a Manifold in Un-
structured Three-Dimensional Terrain. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), pages 534–539, 2010.

D. W. Gage. Command Control for Many-Robot Systems. In Proc. of the
Annual AUVS Technical Symposium (AUVS), volume 10, pages 28–34,
1992. Reprinted in: “Unmanned Systems Magazine”.

A. Ganguli, J. Cortés, and F. Bullo. Distributed Coverage of Nonconvex En-
vironments. In V. Saligrama, editor, Proc. of the NSF Workshop on Future
Directions in Systems Research for Networked Sensing, Lecture Notes in
Control and Information Sciences, pages 289–305. Springer, 2007.

X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete Solution Classi-
fication for the Perspective-Three-Point Problem. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(8):930–943, Aug. 2003.

M. Garland and P. S. Heckbert. Surface Simplification Using Quadric Error
Metrics. In Proc. of SIGGRAPH, pages 209–216, 1997.

D. Gingras, T. Lamarche, J.-L. Bedwani, and E. Dupuis. Rough Terrain
Reconstruction for Rover Motion Planning. In Proc. of the Canadian Con-
ference on Computer and Robot Vision (CRV), pages 191–198, 2010.

J. P. Gonzalez and M. Likhachev. Search-Based Planning with Provable
Suboptimality Bounds for Continuous State Spaces. In Proc. of the Annual
Symposium on Combinatorial Search (SOCS), 2011.

M. Gopi. Controllable Single-Strip Generation for Triangulated Surfaces. In
Proc. of the Pacific Conference on Computer Graphics and Applications,
pages 61–69, 2004.

M. Gopi and S. Krishnan. A Fast and Efficient Projection-Based Approach
for Surface Reconstruction. In Proc. of the Brazilian Symposium on Com-
puter Graphics and Image Processing, pages 179–186, 2002.

M. Gross and H. Pfister. Point-Based Graphics. Morgan Kaufmann Publish-
ers Inc., 2007.



220 BIBLIOGRAPHY

A. Gusrialdi, S. Hirche, D. Asikin, T. Hatanaka, and M. Fujita. Voronoi-
Based Coverage Control with Anisotropic Sensors and Experimental Case
Study. Intelligent Service Robotics, 2:195–204, 2009.

P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, July 1968.

D. Haumann, K. Listmann, and V. Willert. DisCoverage: A New Paradigm
for Multi-Robot Exploration. In Proc. of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 929–934, May 2010.

D. Haumann, A. Breitenmoser, V. Willert, K. Listmann, and R. Siegwart.
DisCoverage for Non-Convex Environments with Arbitrary Obstacles. In
Proc. of the IEEE International Conference on Robotics and Automation
(ICRA), pages 4486–4491, May 2011.

S. Hauri, J. Alonso-Mora, A. Breitenmoser, R. Siegwart, and P. Beardsley.
Multi-Robot Formation Control via a Real-Time Drawing Interface. In
Proc. of the International Conference on Field and Service Robotics (FSR),
July 2012.

G. Hayward, M. Friedrich, and W. Galbraith. Autonomous Mobile Robots
for Ultrasonic NDE. In Proc. of the IEEE Ultrasonics Symposium, pages
902–905, Oct. 2006.

M. Hebert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade. Terrain
Mapping for a Roving Planetary Explorer. In Proc. of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 997–1002,
1989.

H. Hoppe, T. DeRose, T. Duchamp, J. A. McDonald, and W. Stuetzle. Sur-
face Reconstruction from Unorganized Points. In Proc. of SIGGRAPH,
pages 71–78, 1992.

A. Howard, G. S. Sukhatme, and M. J. Mataric. Multirobot Simultaneous
Localization and Mapping Using Manifold Representations. Proceedings of
the IEEE, 94(7):1360–1369, July 2006.

T. M. Howard and A. Kelly. Optimal Rough Terrain Trajectory Genera-
tion for Wheeled Mobile Robots. The International Journal of Robotics
Research, 26:141–166, 2007.

L. Jaillet and J. M. Porta. Asymptotically-Optimal Path Planning on Man-
ifolds. In Proc. of the Robotics: Science and Systems VIII (RSS), 2012.



BIBLIOGRAPHY 221

I. Kamon, E. Rimon, and E. Rivlin. A New Range-Sensor Based Globally
Convergent Navigation Algorithm for Mobile Robots. Technical report,
CIS—Center of Intelligent Systems, Computer Science Dept., Technion,
Israel, 1995.

I. Kamon, E. Rimon, and E. Rivlin. Tangentbug: A Range-Sensor-Based
Navigation Algorithm. The International Journal of Robotics Research, 17
(9):934–953, Sept. 1998.

I. Kamon, E. Rimon, and E. Rivlin. Range-Sensor Based Navigation in Three
Dimensions. In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), volume 1, pages 163–169, 1999.

S. Karaman and E. Frazzoli. Sampling-Based Algorithms for Optimal Motion
Planning. The International Journal of Robotics Research, 30(7):846–894,
2011.

H. Kato and M. Billinghurst. Marker Tracking and HMD Calibration for
a Video-Based Augmented Reality Conferencing System. In Proc. of the
IEEE and ACM International Workshop on Augmented Reality (IWAR),
pages 85–94, 1999.

M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson Surface Reconstruction.
In Proc. of the Eurographics Symposium on Geometry Processing, pages
61–70, 2006.

R. Kimmel and J. A. Sethian. Computing Geodesic Paths on Manifolds.
In Proc. of the National Academy of Sciences (PNAS), pages 8431–8435,
1998.

B. J. King. Range Data Analysis by Free-Space Modeling and Tensor Voting.
PhD thesis, Rensselaer Polytechnic Institute, Dec. 2008.

L. Kneip, D. Scaramuzza, and R. Siegwart. A Novel Parametrization of the
Perspective-Three-Point Problem for a Direct Computation of Absolute
Camera Position and Orientation. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2969–2976, June
2011.

L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature Sensitive
Surface Extraction from Volume Data. In Proc. of SIGGRAPH, pages
57–66, 2001.



222 BIBLIOGRAPHY

S. Koenig and M. Likhachev. Improved Fast Replanning for Robot Naviga-
tion in Unknown Terrain. In Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), pages 968–975, 2002.

S. Koenig and Y. Liu. Terrain Coverage with Ant Robots: A Simulation
Study. In Proc. of the International Conference on Autonomous Agents
(AGENTS), pages 600–607, 2001.

J. J. Kuffner and S. M. LaValle. Space-Filling Trees: A New Perspective
on Incremental Search for Motion Planning. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
2199–2206, Sept. 2011.

W. Kühnel. Differential Geometry: Curves–Surfaces–Manifolds. American
Mathematical Society, 2006.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM
Journal on Optimization, 9(1):112–147, 1998.

J.-P. Laumond, editor. Robot Motion Planning and Control. Springer-Verlag
New York, Inc., 1998.

S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

S. M. LaValle and J. J. Kuffner Jr. Randomized Kinodynamic Planning. The
International Journal of Robotics Research, 20(5):378–400, 2001.

S. R. Lindemann and S. M. LaValle. Smoothly Blending Vector Fields for
Global Robot Navigation. In Proc. of the IEEE Conference on Decision
and Control (CDC), pages 3553–3559, 2005.

S. P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129–137, Sept. 1982.

D. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 3rd
edition, 2008.

Z. C. Marton, R. B. Rusu, and M. Beetz. On Fast Surface Reconstruction
Methods for Large and Noisy Datasets. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3218–3223, 2009.

A. Masselli and A. Zell. A Novel Marker Based Tracking Method for Position
and Attitude Control of MAVs. In Proc. of the International Micro Air
Vehicle Conference and Flight Competition (IMAV), pages 1–6, 2012.



BIBLIOGRAPHY 223

G. Medioni, M.-S. Lee, and C.-K. Tang. A Computational Framework for
Segmentation and Grouping. Elsevier Science B.V., 2000.

F. Mémoli and G. Sapiro. Fast Computation of Weighted Distance Func-
tions and Geodesics on Implicit Hyper-Surfaces. Journal of Computational
Physics, 173(2):730–764, 2001.

F. Mémoli and G. Sapiro. Distance Functions and Geodesics on Submanifolds
of Rd and Point Clouds. SIAM Journal on Applied Mathematics, 65(4):
1227–1260, April 2005.

M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete Differential-
Geometry Operators for Triangulated 2-Manifolds. In Proc. of VisMath,
pages 35–57, 2002.

N. Michael, M. Schwager, and V. Kumar. Editorial. The International Jour-
nal of Robotics Research, 31(12):1347–1348, 2012.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Mag-
nenat, J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a Robot
Designed for Education in Engineering. In Proc. of the Conference on
Autonomous Robot Systems and Competitions, pages 59–65, 2009.

H. Moravec. Robot Spatial Perception by Stereoscopic Vision and 3D Ev-
idence Grids. Technical Report CMU–RI–TR–96–34, Robotics Institute,
Pittsburgh, USA, Sept. 1996.

P. Mordohai and G. Medioni. Tensor Voting: A Perceptual Organization
Approach to Computer Vision and Machine Learning. In A. C. Bovik,
editor, Modern Image Quality Assessment, Synthesis Lectures on Image,
Video, and Multimedia Processing. Morgan & Claypool Publishers, 2006.

P. Mordohai and G. Medioni. Dimensionality Estimation, Manifold Learn-
ing and Function Approximation Using Tensor Voting. The Journal of
Machine Learning Research, 11:411–450, March 2010.

R. Moser, C. Udell, and A. Montgomery. Automated Steam Turbine Straddle
Root Disc Head Inspection. In Proc. of the International Conference on
Field and Service Robotics (FSR), pages 513–520, 2007.

A. Nash, S. Koenig, and C. A. Tovey. Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. In Proc. of the AAAI Conference on
Artificial Intelligence, 2010.



224 BIBLIOGRAPHY

L. E. Navarro-Serment, C. J. J. Paredis, and P. K. Khosla. A Beacon System
for the Localization of Distributed Robotic Teams. In Proc. of the Inter-
national Conference on Field and Service Robotics (FSR), pages 232–237,
1999.

R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shot-
ton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon. KinectFusion:
Real-Time Dense Surface Mapping and Tracking. In Proc. of the IEEE In-
ternational Symposium on Mixed and Augmented Reality (ISMAR), pages
127–136, Oct. 2011.

A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial Tessellations: Con-
cepts and Applications of Voronoi Diagrams. Probability and Statistics.
Wiley & Sons, 2nd edition, 2000.

R. Olfati-Saber. Flocking for Multi-Agent Dynamic Systems: Algorithms and
Theory. IEEE Transactions on Automatic Control, 51(3):401–420, March
2006.

S. Olufs and M. Vincze. A Simple Inexpensive Interface for Robots Using
the Nintendo Wii Controller. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 473–479, Oct.
2009.

M. Pauly, M. Gross, and L. P. Kobbelt. Efficient Simplification of Point-
Sampled Surfaces. In Proc. of the Conference on Visualization (VIS), pages
163–170, 2002.

M. Pavone, E. Frazzoli, and F. Bullo. Distributed Policies for Equitable
Partitioning: Theory and Applications. In Proc. of the IEEE Conference
on Decision and Control (CDC), pages 4191–4197, Dec. 2008.

M. Pavone, K. Savla, and E. Frazzoli. Sharing the Load. IEEE Robotics
Automation Magazine, 16(2):52–61, June 2009.

G. A. S. Pereira, L. C. A. Pimenta, A. R. Fonseca, L. d. Q. Corrêa, R. C.
Mesquita, L. Chaimowicz, D. S. C. de Almeida, and M. F. M. Campos.
Robot Navigation in Multi-Terrain Outdoor Environments. The Interna-
tional Journal of Robotics Research, 28(6):685–700, 2009.

G. Peyré and L. Cohen. Surface Segmentation Using Geodesic Centroidal
Tesselation. In Proc. of the International Symposium on 3D Data Pro-
cessing, Visualization and Transmission (3DPVT), pages 995–1002, Sept.
2004.



BIBLIOGRAPHY 225

L. C. A. Pimenta, G. A. S. Pereira, and R. C. Mesquita. Fully Continuous
Vector Fields for Mobile Robot Navigation on Sequences of Discrete Trian-
gular Regions. In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1992–1997, 2007.

L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira. Sensing
and Coverage for a Network of Heterogeneous Robots. In Proc. of the IEEE
Conference on Decision and Control (CDC), pages 3947–3952, 2008.

T. Pintaric and H. Kaufmann. Affordable Infrared-Optical Pose-Tracking
for Virtual and Augmented Reality. In Proc. of the IEEE VR Workshop
on Trends and Issues in Tracking for Virtual Environments, pages 44–51,
2007.

T. Pintaric and H. Kaufmann. A Rigid-Body Target Design Methodology
for Optical Pose-Tracking Systems. In Proc. of the ACM Symposium on
Virtual Reality Software and Technology (VRST), pages 73–76, Oct. 2008.

M. Pivtoraiko and A. Kelly. Efficient Constrained Path Planning via Search
in State Lattices. In Proc. of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i-SAIRAS), 2005.

M. Pivtoraiko and A. Kelly. Differentially Constrained Motion Replanning
Using State Lattices with Graduated Fidelity. In Proc. of The IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
2611–2616, Sept. 2008.

F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart. Tracking
a Depth Camera: Parameter Exploration for Fast ICP. In Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3824–3829, Sept. 2011.

F. Pomerleau, A. Breitenmoser, M. Liu, F. Colas, and R. Siegwart. Noise
Characterization of Depth Sensors for Surface Inspections. In Proc. of
the International Conference on Applied Robotics for the Power Industry
(CARPI), 2012.

J. Pugh and A. Martinoli. Relative Localization and Communication Mod-
ule for Small-Scale Multi-Robot Systems. In Proc. of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 188–193,
May 2006.

J. Pugh and A. Martinoli. The Cost of Reality: Effects of Real-World Factors
on Multi-Robot Search. In Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), pages 397–404, April 2007.



226 BIBLIOGRAPHY

I. M. Rekleitis, G. Dudek, and E. E. Milios. Multi-Robot Cooperative Lo-
calization: A Study of Trade-Offs Between Efficiency and Accuracy. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 3, pages 2690–2695, 2002.

I. M. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset. Limited Com-
munication, Multi-Robot Team Based Coverage. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), volume 4,
pages 3462–3468, May 2004.

A. Renzaglia, L. Doitsidis, A. Martinelli, and E. B. Kosmatopoulos. Multi-
Robot Three-Dimensional Coverage of Unknown Areas. The International
Journal of Robotics Research, 31(6):738–752, 2012.

C. W. Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral
Model. In Computer Graphics, pages 25–34, 1987.

J. F. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano. 3-D Relative
Positioning Sensor for Indoor Flying Robots. Autonomous Robots, 33(1–
2):5–20, Aug. 2012.

R. B. Rusu, A. Sundaresan, B. Morisset, K. Hauser, M. Agrawal, J.-C.
Latombe, and M. Beetz. Leaving Flatland: Efficient Real-Time Three-
Dimensional Perception and Motion Planning. Journal of Field Robotics,
26(10):841–862, 2009.

C. Samson and K. Ait-Abderrahim. Feedback Control of a Nonholonomic
Wheeled Cart in Cartesian Space. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), volume 2, pages 1136–
1141, April 1991.

R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-Cloud
Shape Detection. Computer Graphics Forum, 26(2):214–226, 2007.

M. Schwager, J. McLurkin, and D. Rus. Distributed Coverage Control with
Sensory Feedback for Networked Robots. In Proc. of the Robotics: Science
and Systems II (RSS), Aug. 2006.

M. Schwager, D. Rus, and J.-J. E. Slotine. Decentralized, Adaptive Cover-
age Control for Networked Robots. The International Journal of Robotics
Research, 28(3):357–375, 2009.

M. Schwager, B. J. Julian, M. Angermann, and D. Rus. Eyes in the Sky:
Decentralized Control for the Deployment of Robotic Camera Networks.
Proceedings of the IEEE, 99(9):1541–1561, Sept. 2011. ISSN 0018-9219.



BIBLIOGRAPHY 227

H. Semat and R. Katz. Physics. Rinehart & Company, 1958.

J. S. Shamma, editor. Cooperative Control of Distributed Multi-Agent Sys-
tems. John Wiley & Sons, 2008.

A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha. Tracking Mov-
ing Devices with the Cricket Location System. In Proc. of the Inter-
national Conference on Mobile Systems, Applications, and Services (Mo-
biSys), pages 190–202, 2004.

M. Smith, I. Posner, and P. Newman. Adaptive Compression for 3D Laser
Data. The International Journal of Robotics Research, 30(7):914–935,
2011.

A. Solanas and M. A. Garcia. Coordinated Multi-Robot Exploration through
Unsupervised Clustering of Unknown Space. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
852–858, 2004.

D. Spears, W. Kerr, and W. Spears. Physics-Based Robot Swarms for Cov-
erage Problems. International Journal on Intelligent Control and Systems,
11(3), 2006.

B. Speckmann and J. Snoeyink. Easy Triangle Strips for TIN Terrain Model.
International Journal of Geographical Information Science, 15(4):379–386,
2001.

J. Spletzer, A. K. Das, R. Fierro, C. J. Taylor, V. Kumar, and J. P. Ostrowski.
Cooperative Localization and Control for Multi-Robot Manipulation. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 2, pages 631–636, 2001.

G. P. Stein, O. Mano, and A. Shashua. Vision-Based ACC with a Single
Camera: Bounds on Range and Range Rate Accuracy. In Proc. of the
IEEE Intelligent Vehicles Symposium, pages 120–125, June 2003.

A. Stentz. The Focussed D* Algorithm for Real-Time Replanning. In Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 1652–1659, 1995.

E. Stumm, A. Breitenmoser, F. Pomerleau, C. Pradalier, and R. Siegwart.
Tensor Voting-Based Navigation for Robotic Inspection of 3D Surfaces
Using Lidar Point Clouds. The International Journal of Robotics Research,
31(12):1465–1488, 2012.



228 BIBLIOGRAPHY

V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe. Fast
Exact and Approximate Geodesics on Meshes. In Proc. of SIGGRAPH,
pages 553–560, 2005.

F. Tâche. Robot Locomotion and Localization on 3D Complex-Shaped Struc-
tures. PhD thesis, ETH Zurich, 2010. Nr. 18888.

F. Tâche, W. Fischer, G. Caprari, R. Siegwart, R. Moser, and F. Mondada.
Magnebike: A Magnetic Wheeled Robot with High Mobility for Inspect-
ing Complex-Shaped Structures. Journal of Field Robotics, 26(5):453–476,
2009.

F. Tâche, F. Pomerleau, G. Caprari, R. Siegwart, M. Bosse, and R. Moser.
Three-Dimensional Localization for the MagneBike Inspection Robot.
Journal of Field Robotics, 28(2):180–203, 2011.

M. Tavakoli, C. Gonçalo, R. Faria, L. Marques, and A. de Almeida. Cooper-
ative Multi-Agent Mapping of Three-Dimensional Structures for Pipeline
Inspection Applications. The International Journal of Robotics Research,
31(12):1489–1503, 2012.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science, 290(5500):
2319–2323, 2000.

S. Thrun, C. Martin, Y. Liu, D. Hähnel, R. Emery-Montemerlo,
D. Chakrabarti, and W. Burgard. A Real-Time Expectation-Maximization
Algorithm for Acquiring Multiplanar Maps of Indoor Environments with
Mobile Robots. IEEE Transactions on Robotics and Automation, 20(3):
433–443, 2004a.

S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson,
D. Hahnel, D. Montemerlo, A. Morris, Z. Omohundro, C. Reverte, and
W. Whittaker. Autonomous Exploration and Mapping of Abandoned
Mines. IEEE Robotics & Automation Magazine, 11(4):79–91, 2004b.

R. Triebel, P. Pfaff, and W. Burgard. Multi-Level Surface Maps for Out-
door Terrain Mapping and Loop Closing. In Proc. of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
2276–2282, 2006.

S. Valette, J.-M. Chassery, and R. Prost. Generic Remeshing of 3D Triangular
Meshes with Metric-Dependent Discrete Voronoi Diagrams. IEEE Trans-
actions on Visualization and Computer Graphics, 14(2):369–381, 2008.



BIBLIOGRAPHY 229

N. Vaskevicius, K. Pathak, R. Pascanu, and A. Birk. Extraction of Quadrics
from Noisy Point-Clouds Using a Sensor Noise Model. In Proc. of the
IEEE International Conference on Robotics and Automation (ICRA),
pages 3466–3471, May 2010.

M. Vona and D. Kanoulas. Curved Surface Contact Patches with Quanti-
fied Uncertainty. In Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1439–1446, Sept. 2011.

I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed Covering
by Ant-Robots Using Evaporating Traces. IEEE Transactions on Robotics
and Automation, 15:918–933, 1999.

K. E. Wenzel, A. Masselli, and A. Zell. Automatic Take Off, Tracking and
Landing of a Miniature UAV on a Moving Carrier Vehicle. Journal of
Intelligent & Robotic Systems, 61:221–238, Jan. 2011.

D. Wettergreen, S. J. Moreland, K. Skonieczny, D. Jonak, D. Kohanbash,
and J. Teza. Design and Field Experimentation of a Prototype Lunar
Prospector. The International Journal of Robotics Research, 29(1):1550–
1564, 2010.

W. J. Wilson, C. C. Williams Hulls, and G. S. Bell. Relative End-Effector
Control Using Cartesian Position Based Visual Servoing. IEEE Transac-
tions on Robotics and Automation, 12(5):684–696, Oct. 1996.

K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: A Probabilistic, Flexible, and Compact 3D Map Representation
for Robotic Systems. In Proc. of the ICRA 2010 Workshop on Best Practice
in 3D Perception and Modeling for Mobile Manipulation, May 2010.

B. Yamauchi. Frontier-Based Exploration Using Multiple Robots. In Proc. of
the International Conference on Autonomous Agents (AGENTS), pages
47–53, 1998.

A. Yershova and S. M. LaValle. Motion Planning for Highly Constrained
Spaces. In K. Kozlowski, editor, Robot Motion and Control 2009, volume
396 of Lecture Notes in Control and Information Sciences, pages 297–306.
Springer Berlin/Heidelberg, 2009.

S. Yun and D. Rus. Distributed Coverage with Mobile Robots on a Graph:
Locational Optimization. In Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), pages 634–641, May 2012.



230 BIBLIOGRAPHY



Curriculum Vitae

Andreas Breitenmoser was born in Walenstadt, Switzerland, on May 12, 1983.
He received his Master of Science in Electrical Engineering and Information
Technology from ETH Zurich in April 2008. During his studies his interest
was first in the field of microsystems technology, where he was a visiting
student at the Scottish Microelectronics Centre in Edinburgh in 2006, under
the supervision of Prof. Rebecca Cheung. His focus shifted on the Master’s
level more toward embedded systems and robotics. He conducted his Mas-
ter’s thesis on wireless sensor networks and smart objects at the Electronics
Laboratory at ETH Zurich, under the supervision of Prof. Gerhard Tröster.
He is currently a PhD student at the Autonomous Systems Laboratory at
ETH Zurich, under the supervision of Prof. Roland Siegwart.

Andreas Breitenmoser’s present research interests include multi-robot sys-
tems, cooperative control, computer graphics and robot motion planning for
perception and actuation tasks. He is particularly interested in distributed
coverage and robotic inspection, mobile and static sensor networks, and re-
ciprocal decision making and interaction, with application in real 3D worlds.

His current research project is in collaboration with ALSTOM as indus-
trial partner and the Distributed Robotics Laboratory (DRL) of Prof. Daniela
Rus, at CSAIL, MIT. From 2009 to 2011, Andreas Breitenmoser spent three
research visits at DRL, where he worked on coverage and exploration algo-
rithms for wheeled and flying robots.

Andreas has been involved in the Swiss Confederation’s Commission for
Technology and Innovation (CTI) project “Highly Compact Robots for Power
Plants Inspections” that aimed at transferring innovations from robotics
to the power plant industry. Another research project was together with
Dr. Paul Beardsley and Disney Research Zurich with focus on robotic enter-
tainment and art.

Andreas is co-founder of Dacuda AG, a Swiss software company offering
digitization technology based on real-time image processing and computer
vision.

231



232 CURRICULUM VITAE

List of Publications
Journals (refereed)

• E. Stumm, A. Breitenmoser, F. Pomerleau, C. Pradalier and R. Sieg-
wart, “Tensor Voting Based Navigation for Robotic Inspection of 3D
Surfaces Using Lidar Point Clouds”, The International Journal of Ro-
botics Research (IJRR), vol. 31, no. 12, pp. 1465–1488, 2012.

• J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart and P. Beard-
sley, “Image and Animation Display with Multiple Robots”, The Inter-
national Journal of Robotics Research (IJRR), vol. 31, no. 6, pp. 753–
773, 2012.

• G. Caprari, A. Breitenmoser, W. Fischer, C. Hürzeler, F. Tâche, R. Sieg-
wart, O. Nguyen, R. Moser, P. Schoeneich and F. Mondada, “Highly
Compact Robots for Inspection of Power Plants”, Journal of Field Ro-
botics (JFR), vol. 29, no. 1, pp. 47–68, 2012.

Conferences (refereed)

• J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley and R. Sieg-
wart, “Optimal Reciprocal Collision Avoidance for Multiple Non-
Holonomic Robots”, In Distributed Autonomous Robotic Systems, The
10th International Symposium, Springer Tracts in Advanced Robotics
(STAR), vol. 83, pp. 203–216, Springer Berlin Heidelberg, 2013.

• A. Breitenmoser, H. Sommer and R. Siegwart, “Adaptive Multi-Robot
Coverage of Curved Surfaces”, in Proc. of the 11th International Sympo-
sium on Distributed Autonomous Robotic Systems (DARS), Baltimore,
USA, Nov. 2012.

• J. Alonso-Mora, M. Schoch, A. Breitenmoser, R. Siegwart and P. Beard-
sley, “Object and Animation Display with Multiple Aerial Vehicles”, In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vilamoura, Portugal, Oct. 2012.

• F. Pomerleau, A. Breitenmoser, M. Liu, F. Colas and R. Siegwart,
“Noise Characterization of Depth Sensors for Surface Inspections”, In
Proc. of the 2nd International Conference on Applied Robotics for the
Power Industry (CARPI), Zurich, Switzerland, Sept. 2012.



233

• A. Breitenmoser and R. Siegwart, “Surface Reconstruction and Path
Planning for Industrial Inspection with a Climbing Robot”, In Proc. of
the 2nd International Conference on Applied Robotics for the Power
Industry (CARPI), Zurich, Switzerland, Sept. 2012.

• S. Hauri, J. Alonso-Mora, A. Breitenmoser, R. Siegwart and P. Beard-
sley, “Multi-Robot Formation Control via a Real-Time Drawing Inter-
face”, In Proc. of the 8th International Conference on Field and Service
Robotics (FSR), Matsushima, Japan, July 2012.

• J. Alonso-Mora, A. Breitenmoser, P. Beardsley and R. Siegwart, “Re-
ciprocal Collision Avoidance for Multiple Car-like Robots”, In Proc. of
the IEEE International Conference on Robotics and Automation
(ICRA), pp. 360–366, St. Paul, USA, May 2012.

• A. Breitenmoser, L. Kneip and R. Siegwart, “A Monocular Vision-based
System for 6D Relative Robot Localization”, In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 79–85, San Francisco, USA, Sept. 2011.

• J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart and P. Beard-
sley, “Multi-Robot System for Artistic Pattern Formation”, In Proc. of
the IEEE International Conference on Robotics and Automation
(ICRA), pp. 4512–4517, Shanghai, China, May 2011.

• D. Haumann, A. Breitenmoser, V. Willert, K. Listmann and R. Sieg-
wart, “DisCoverage for Non-Convex Environments with Arbitrary Ob-
stacles”, In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 4486–4491, Shanghai, China, May 2011.

• A. Breitenmoser, J.-C. Metzger, R. Siegwart and D. Rus, “Distributed
Coverage Control on Surfaces in 3D Space”, In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 5569–5576, Taipei, Taiwan, Oct. 2010.

• G. Caprari, A. Breitenmoser, W. Fischer, C. Hürzeler, F. Tâche, R. Sieg-
wart, P. Schoeneich, F. Rochat, F. Mondada and R. Moser, “Highly
Compact Robots for Inspection of Power Plants”, In Proc. of the 1st
International Conference on Applied Robotics for the Power Industry
(CARPI), pp. 1–6, Montreal, Canada, Oct. 2010.



234 CURRICULUM VITAE

• A. Breitenmoser, F. Tâche, G. Caprari, R. Siegwart and R. Moser,
“MagneBike: Toward Multi Climbing Robots for Power Plant Inspec-
tion”, In Proc. of the 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 1713–1720, Toronto,
Canada, May 2010.

• A. Breitenmoser, M. Schwager, J. Metzger, R. Siegwart and D. Rus,
“Voronoi Coverage of Non-Convex Environments with a Group of Net-
worked Robots”, In Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 4982–4989, Anchorage, USA,
May 2010.

• M. Rossi, C. Lombriser, A. Breitenmoser and G. Tröster, “Smart Dice”,
In Adjunct Proc. of the 3rd European Conference on Smart Sensing and
Context (EuroSSC), Zurich, Switzerland, Oct. 2008.

Workshops (refereed)

• J. Alonso-Mora, A. Breitenmoser, S. Wismer, R. Siegwart, P. Beards-
ley, “Human-Robot Shared Control in a Large Robot Swarm”, Poster
Presentation, ICRA Workshop on Many-Robot Systems: Crossing the
Reality Gap, IEEE International Conference on Robotics and Automa-
tion (ICRA), St. Paul, USA, May 2012.

• C. Lombriser, A. Bulling, A. Breitenmoser and G. Tröster, “Speech as
a Feedback Modality for Smart Objects”, In Proc. of the 2nd Interna-
tional Workshop on Intelligent Pervasive Devices (PerDev), Galveston,
USA, March 2009.

Conference Videos and Demonstrations (refereed)

• J. Alonso-Mora, A. Breitenmoser, M. Rufli, S. Haag, G. Caprari, R. Sieg-
wart and P. Beardsley, “DisplaySwarm: A Robot Swarm Displaying
Images”, Symposium: Robot Demonstrations, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Francisco,
USA, Sept. 2011.



235

Technical Reports

• C. Lombriser, M. Rossi, A. Breitenmoser, D. Roggen and G. Tröster,
“Recognizing Context for Pervasive Applications with the Titan Frame-
work”, Technical Report, Wearable Computing Laboratory, ETH
Zurich, Zurich, Switzerland, 2009.

Theses

• A. Breitenmoser, “Titanic Smart Objects”, Master’s Thesis, Eidgenös-
sische Technische Hochschule (ETH), Zurich, Switzerland, April 2008.

• A. Breitenmoser, “Simulation and Measurement of Silicon Carbide Res-
onators for Harsh Environment”, Bachelor’s Thesis, University of Edin-
burgh, Edinburgh, Scotland, and Eidgenössische Technische Hochschule
(ETH), Zurich, Switzerland, June 2006.

Patents and Patent Applications

• P. Beardsley, J. Alonso-Mora, A. Breitenmoser, F. Perazzi, A. Hornung,
“Robotic Texture”, Disney Enterprises, 2012: US 20120206473.

• P. Beardsley, J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart,
I. Matthews and K. Yamane, “Display with Robotics Pixels”, Disney
Enterprises, 2011: US 20110304633.

• M. G. Zahnert, E. Fonseka, A. Ilic and A. Breitenmoser, “Automatic
Sizing of Images Acquired by a Handheld Scanner”, Dacuda AG, 2010:
US 20100296129.

• M. G. Zahnert, E. Fonseka, A. Ilic and A. Breitenmoser, “Mode Switch-
ing in a Handheld Scanner”, Dacuda AG, 2010: US 20100296133.

• M. G. Zahnert, E. Fonseka, A. Ilic, S. Meier and A. Breitenmoser,
“Image Processing for Handheld Scanner”, Dacuda AG, 2010:
US 20100295868.

• M. G. Zahnert, E. Fonseka, A. Ilic, S. Meier and A. Breitenmoser,
“Real-time Display of Images Acquired by a Handheld Scanner”,
Dacuda AG, 2010: US 20100296131.



236 CURRICULUM VITAE

Academic Service
Reviewer for Journal

• Transactions on Robotics

• The International Journal of Robotics Research

• Mechatronics

• Neural Computing and Applications

Reviewer for Conference

• International Conference on Autonomous Agents and Multiagent
Systems (AAMAS)

• International Conference on Applied Robotics for the Power Industry
(CARPI)

• International Symposium on Distributed Robotic Systems (DARS)

• International Conference on Robotics and Automation (ICRA)

• International Conference on Intelligent Robots and Systems (IROS)

• International Workshop on the Algorithmic Foundations of Robotics
(WAFR)


	Introduction
	Objectives
	State-of-the-Art
	Contributions
	Organization

	Environments and Robots
	Environments
	Steam Chest Environment
	Test Setups

	Robots
	MagneBike Robots
	e-puck Robots

	Summary

	Mathematical Methods
	Notation and Terminology
	Differential Geometry
	Curved Surfaces

	Computational Geometry
	Voronoi Tessellations
	Graph Search and Shortest Paths

	Structure Inference
	Basics of Tensor Voting
	Tensor Voting Applied to Point Clouds

	Control Theory
	System Models
	Gradient Descent Controller
	Cooperative Control

	Summary

	The Concept of Hybrid Coverage
	Related Work
	Hybrid Coverage Solutions
	Variants of Hybrid Coverage
	Examples for Hybrid Coverage of Type 1
	Examples for Hybrid Coverage of Type 2
	Combination of Type 1 and Type 2

	Results
	Comparison of Hybrid Coverage Algorithms
	Application of Hybrid Coverage to Inspection

	Summary

	Multi-Robot Coverage under Constraints
	Related Work
	Preliminaries
	Voronoi Coverage in Nonconvex Environments
	Problem Formulation
	Gradient Projection Controller
	Combining Voronoi Coverage with Path Planning
	Properties of the Nonconvex Coverage Algorithm

	Voronoi Coverage in Unknown Environments
	DisCoverage and Star-Shaped Domains

	Results
	Evaluation of the Nonconvex Coverage Algorithm

	Summary

	Multi-Robot Coverage on Curved Surfaces
	Related Work
	Preliminaries
	Voronoi Coverage on Curved Surfaces
	Problem Formulation
	Surface Coverage with Shortest Path Distance
	Surface Coverage with Approximative Euclidean Distance
	Properties of the Surface Coverage Algorithms

	Extensions to Adaptive and Hybrid Coverage Control
	Adaptive Surface Coverage
	Application to Hybrid Coverage

	Results
	Comparison of Surface Coverage Algorithms
	Extensions of Surface Coverage Algorithms

	Summary

	Mesh-Based Path Planning on Curved Surfaces
	Related Work
	Triangle Strip Planning
	Problem Formulation
	Environment Representation
	Path Planner and Robot Control
	Extensions

	Results
	Evaluation of Triangle Strip Planning

	Summary

	Point-Based Path Planning on Curved Surfaces
	Related Work
	Dense Point Cloud Planning
	Problem Formulation
	Environment Representation
	Path Planner
	Robot Control

	Sparse Point Cloud Planning
	Results
	Evaluation of Tensor Voting
	Evaluation of Dense Point Cloud Planning

	Summary

	Relative Robot Localization in 3D Space
	Related Work
	Preliminaries
	System Overview
	Camera and Target Modules
	Optimization of Target Geometries

	6D Relative Localization
	Pose and Marker Prediction
	Blob Extraction
	Pose Update

	Results
	Localization of a Handheld Module
	Aerial Vehicle Localization
	Relative Localization for Multiple Robots

	Summary

	Conclusion
	Discussion of Contributions
	Outlook on Future Work

	Proofs
	P-Norms and the Parallel Axis Theorem

	Bibliography
	Curriculum Vitae

