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Abstract

Many optimization problems are computationally hard in the sense that no efficient
algorithms are known for computing an optimal solution. Since many so-called
𝒩𝒫-hard problems are practically relevant, many sophisticated techniques have
been developed to cope with these problems in order to get a satisfactory solution
in reasonable time. Moreover, one often has to deal with incomplete or erroneous
information which often makes even those problems hard that are easily solvable
in the presence of full information.
One standard scenario of missing information are the so-called online optimization
problems. Here, the input arrives piecewise step by step and a part of the output
has to be irrevocably produced already for each arriving slice of the input. An
online optimization problem can be seen as a game in which an adversary tries to
create the hardest possible instances and feeds them piecewise to the online player
who tries to compute the best possible piecewise output.
We consider two classical optimization problems in this online setting, graph
coloring and finding a maximum matching in a graph. Both problems are efficiently
solvable in the classical (offline) setting when restricted to bipartite graphs, but
become hard in the online case.
Online coloring is one of the most studied online optimization problems. The
instance arrives vertex by vertex and the task is to assign colors to the vertices
such that no neighboring vertices receive the same color, in the way that as
few colors as possible are used. For offline bipartite graphs, this task is easy.
We show that, in the online scenario, the adversary is able to create an online
bipartite graph on 𝑛 vertices such that every online algorithm has to use at least
⟨︀1.13746 ⋅ log2(𝑛) − 0.49887⧹︀ colors, improving the previously known lower bound
of ⟨︀log2(𝑛)⧹︀ + 1 colors.
The main drawback of online algorithms is that they do not know what happens
in the future. To measure the impact of this disadvantage, one can allow an oracle
which knows the instance and the algorithm and computes, based on this knowledge,
an advice string which can be accessed by the algorithm during its computation.
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We applied this new tool to online coloring, showing an almost matching bound
for the number of advice bits needed if the algorithm is expected to output an
optimal solution. Then, we also study some tradeoffs allowing the algorithm not to
be optimal but using less advice bits instead, and consider also subclasses such as
paths, cycles, and spider graphs.
Another important online optimization problem is the search for a maximum
matching in an online graph. Online matching has practical applications everywhere
where one wants to associate something with something else. For bipartite graphs,
there are two models that have been investigated in the literature. In the one-
sided model, one shore is fixed and only the vertices of the opposite shore arrive
in consecutive time steps. We study the other model, the so-called fully online
matching problem, in which the vertices from both shores are revealed piecewise.
In the case of general graphs, a greedy online algorithm can already reach the
best possible competitive ratio of 2, even without advice, whereas on paths, only a
competitive ratio of approximately 3

2 can be achieved. There is an optimal online
algorithm with advice for paths accessing only approximately 𝑛

3 advice bits. For
paths, special trees and other special bipartite graphs, we show often almost tight
upper and lower bounds on the number of advice bits necessary to be optimal, and
we investigate what competitive ratios can be reached with less advice bits.
Another obstacle we have to overcome when modelling some practical situation,
is that we encounter erroneous information. Many real-world situations can be
modeled by Boolean formulas. Here, the variables represent some parameters of
the problem at hand and the clauses of the formula represent various constraints.
If the constructed formula for an input instance is satisfiable, every satisfying
assignment gives us a solution, i. e., a feasible setting of the parameters. If the
formula is not satisfiable, one can try to satisfy as many constraints as possible, this
leads to the well-studied maximum satisfiability problem. But, besides conflicting
constraints, there is another possible source of errors in modeling, namely mapping
two different parameters of the real-world problem to one variable. To tackle this
problem, we try to split a minimum number of variables into two (one for the
positive occurrences and one for the negative ones) such as to make the given
formula satisfiable. This is known to be a very hard optimization problem, thus,
we restrict our attention to the special case of 2-CNF Horn formulas, i. e., 2-CNF
formulas without positive 2-clauses. We prove that this restricted problem is still
hard to approximate. We also analyze subcases of 2-CNF Horn formulas, where
additional clause types are forbidden. While excluding negative 2-clauses admits
a polynomial-time algorithm based on network flows, the splitting problem stays
APX-hard, even for formulas consisting of positive 1-clauses and negative 2-clauses
only.
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Zusammenfassung

Viele Optimierungsprobleme sind algorithmisch schwer in dem Sinne, dass kein
effizienter Algorithmus für die Berechnung von optimalen Lösungen existiert. Weil
viele dieser sogenannten 𝒩𝒫-schweren Probleme praxisrelevant sind, sind viele
ausgeklügelte Techniken entwickelt worden, um diese Probleme so zu behandeln,
dass eine zufriedenstellende Lösung in vernünftiger Zeit gefunden wird. Ausserdem
bekommt man oft unvollständige oder fehlerhafte Informationen, die sogar solche
Probleme schwer machen, die einfach zu lösen wären, wenn die ganze Information
vorhanden wäre.
Sogenannte Online-Optimierungsprobleme beschreiben eine übliche Art von fehlen-
den Informationen. Hier kommt die Eingabe stückweise, Schritt für Schritt, und
ein Teil der Ausgabe soll jeweils für jedes angekommene Stück der Ausgabe sofort
und unwiderruflich berechnet werden. Ein Online-Optimierungsproblem kann
betrachtet werden als ein Spiel, in welchem Gegenspieler versucht, eine möglichst
schwierige Eingabe zu finden, und diese dem Online-Spieler stückweise übermittelt,
welcher seinerseits versucht, eine möglichst gute Ausgabe stückweise zu generieren.
Wir betrachten zwei klassische Optimierungsprobleme in diesem online Szenario,
Färbung von Graphen und die Suche nach einem Maximum-Matching in einem
Graphen. Beide Probleme sind in der klassischen (Offline-) Formulierung und
eingeschränkt auf bipartite Graphen effizient lösbar, aber sie werden im Online-Fall
schwer.
Eines der am besten untersuchten Online-Optimierungsprobleme ist die Online-
Färbung von Graphen. Die Instanzen erscheinen stückweise, Knoten für Knoten,
und die Aufgabe ist es, den Knoten Farben zuzuordnen, so dass keine benachbarten
Knoten die gleiche Farbe bekommen, und dass dabei so wenige Farben wie nur
möglich gebraucht werden. Für bipartite Offline-Graphen ist diese Aufgabe einfach.
Wir zeigen, dass im Online-Fall der Gegenspieler in der Lage ist, einen bipartiten
Online-Graphen mit 𝑛 Knoten zu konstruieren, so dass jeder Online-Algorithmus
mindestens ⟨︀1.13746 ⋅ log2(𝑛) − 0.49887⧹︀ Farben brauchen muss, was die schon
bekannte untere Schranke von ⟨︀log2(𝑛)⧹︀ + 1 Farben verbessert.
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Der grosse Nachteil von Online-Algorithmen ist, dass sie nicht wissen, was in der
Zukunft passieren wird. Um die Auswirkung dieser Einschränkung zu messen,
kann man ein Orakel erlauben, welches die Instanz und den Algorithmus kennt
und basierend auf diesem Wissen einen Advice-String berechnet, auf den der
Algorithmus während der Berechnung zugreifen darf. Wir haben dieses neue
Hilfsmittel auf die Online-Färbung angewendet und fast zusammenfallende untere
und obere Schranken für die Anzahl der Advice-Bits gezeigt, falls vom Algorithmus
erwartet wird, dass er eine optimale Lösung ausgibt. Dann haben wir auch ein
paar Kompromisse studiert, die dem Algorithmus erlauben, nicht optimal zu sein,
er aber dafür weniger Advice-Bits lesen kann, und wir haben auch Unterklassen
wie Pfade, Kreise und Spinnengraphen angeschaut.
Ein weiteres wichtiges Online-Optimierungsproblem ist die Suche nach einem
Maximum-Matching in einem Online-Graphen. Online-Matching hat überall dort
praktische Anwendung, wo jemand etwas zu etwas anderem zuordnen möchte. Für
bipartite Graphen gibt es zwei Modelle, die in der Literatur untersucht worden sind.
Im One-Sided-Modell ist eine Seite fixiert und nur die Knoten der gegenüberliegen-
den Seite tauchen in nacheinanderfolgenden Schritten auf. Wir studieren das andere
Modell, das sogenannte Fully-Online-Matching Problem, in welchem die Knoten auf
beiden Seiten nacheinander aufgedeckt werden. Im Falle von allgemeinen Graphen
erreicht sogar schon ein Greedy-Algorithmus die bestmögliche kompetitive Güte
von 2 sogar ohne Advice, wohingegen auf Pfaden nur eine kompetitive Güte von
3
2 erreicht werden kann. Es gibt einen optimalen Online-Algorithmus mit Advice
für Pfade, der nur ungefähr 𝑛

3 Advice-Bits liest. Für Pfade, spezielle Bäume und
andere spezielle bipartite Graphen sind wir oft in der Lage, fast zusammenfallende
untere und obere Schranken für die Anzahl von nötigen Advice-Bits zu zeigen, die
gebraucht werden, um optimal zu sein, und welche kompetitive Güte mit weniger
Advice-Bits erreicht werden kann.
Ein anderes Hindernis, das wir bei der Modellierung von praktischen Aufgabenstel-
lungen überwinden müssen, ist, dass wir fehlerhafte Informationen antreffen. Viele
alltägliche Situationen können durch Boolesche Formeln modelliert werden. Hier
repräsentieren die Variablen gewisse Parameter des Problems und die Klauseln
der Formel repräsentieren verschiedene Einschränkungen. Wenn die konstruierte
Formel für eine Eingabeinstanz erfüllbar ist, liefert uns jede erfüllbare Belegung
eine Lösung, also eine zulässige Festlegung der Parameter. Wenn die Formel nicht
erfüllbar ist, kann man versuchen, so viele Einschränkungen wie nur möglich zu
erfüllen, was zum gut untersuchten Maximum-Satisfiability-Problem führt. Aber
neben diesen sich widersprechenden Einschränkungen gibt es noch eine andere
Fehlerquelle in der Modellierung, dass nämlich zwei verschiedene Parameter der
Anwendung auf eine Variable abgebildet wurden. Um dieses Problem zu bewältigen,
versuchen wir eine minimale Anzahl von Variablen jeweils in zwei Variablen aufzus-
palten (eine für die positiven Vorkommen und eine für die negativen Vorkommen),
so dass die Formel dadurch erfüllbar wird. Dieses Problem ist als ein sehr schweres
Optimierungsproblem bekannt, deshalb schränken wir uns auf den Spezialfall von
2-CNF-Horn-Formeln ein, also auf Formeln in 2-CNF ohne positive 2-Klauseln. Wir
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zeigen, dass man dieses eingeschränkte Modell immer noch schwer approximieren
kann. Wir analysieren auch Unterklassen von 2-CNF-Horn-Formeln, in denen
noch zusätzliche Klauseltypen verboten sind. Während das Ausschliessen von
negativen 2-Klauseln einen Polynomzeit-Algorithmus zulässt, der auf Netzwerk-
Flüssen basiert, bleibt das Problem sogar schon für Formeln, die nur aus positiven
1-Klauseln und negativen 2-Klauseln bestehen, APX-schwer.
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“The important thing is not to stop questioning. Curiosity has its own
reason for existing. One cannot help but be in awe when he contemplates
the mysteries of eternity, of life, of the marvelous structure of reality. It
is enough if one tries merely to comprehend a little of this mystery every
day. Never lose a holy curiosity.”

Albert Einstein (1955)
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Chapter 1
Introduction and Preliminaries

In 1936, Alan Turing [63] and Alonzo Church [16], among others, found two
different formalizations of the intuitive concept of computability. Following Turing,
every algorithmically solvable problem can be solved by a Turing machine. This
precise notion of an algorithm was necessary to show, based on the Incompleteness
Theorem of Gödel [32], that there are problems which are not algorithmically
solvable. This insight concluded the search for a proof of the Entscheidungsproblem
of David Hilbert formulated in 1928 [34], who – motivated by the first mechanical
calculating machine of Gottfried Wilhelm von Leibniz in 1785 – was convinced that
every mathematical decision problem is algorithmically solvable [36].
In the early 1960s – after researchers were able to classify the problems into
automatically solvable and unsolvable – the technology started to get better and
better, and therefore the question arose which of the automatically solvable problems
are also practically solvable in the sense that they can be solved by computers
within a reasonable time. The main goal of complexity theory is to classify the
computationally solvable problems into easy and hard problems with respect to
their computational complexity, i. e., the amount of work a computer has take in
order to solve the problem [36,59].
Although more than fifty years of intensive research in complexity did not succeed
in unconditionally proving the computational intractability of practical relevant
(computational) problems, there exists a class of problems that are widely believed
to be intractable, i. e., not solvable within polynomial time. These problems are
referred to as 𝒩𝒫-hard problems, the target of this thesis.
Because many 𝒩𝒫-hard problems have practical applications, theoretical com-
puter scientists are motivated trying to tackle these problems with sophisticated
techniques in order to get a satisfying solution in reasonable time. There are
many approaches for this, such as approximation algorithms (allowing suboptimal
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2 Chapter 1. Introduction and Preliminaries

solutions), randomized algorithms (allowing to toss coins during the computation),
heuristics (experience-based techniques) and many more.
Complexity theory can also be extended to problems where, instead of taking a
binary decision, a solution with optimized costs has to be found. We call these
problems optimization problems. The goal is either to maximize (maximization
problems) or to minimize (minimization problems) the costs. The definition of
𝒩𝒫-hardness can be transferred from decision problems to optimization problems
by considering decision problems asking if there is a solution of at least a fixed size
for maximization problems or at least of this size for minimization problems. If
this corresponding decision problem is 𝒩𝒫-hard, then the original optimization
problem is hard as well.
The probably most crucial decision problem is to decide whether a Boolean formula
is satisfiable, i. e., whether we can assign truth values to the variables such that the
formula evaluates to true. In this thesis, we take care especially of the formulas
which are not satisfiable and try to make them satisfiable using a new approach.
The idea behind this is that Boolean formulas are often used to model practical
applications and the variables of the formula represent some parameters of the
problem. If the computed formula is not satisfiable, this might arise from the fact
that different parameters have been modeled by only one variable. Thus, replacing
the positive and the negative literals by two new variables can help to make the
formula satisfiable. The goal is to find a smallest subset of such variables such
that the formula is satisfiable after applying this operation. This new approach
complements the classical maximum satisfiability approach where one tries to satisfy
as many constraints (modeled by clauses) as possible of the problem instance at
hand [3].
A variation of optimization problems we consider in this thesis is even nearer to
many real-life situations, because an instance often is not presented at once but
comes in step by step. A job agency, for example, receives applications for an
employment day by day and they have to try to assign the applicants a suitable
job within a short period of time. They cannot wait infinitely long for the best
candidate for a particular job. Thus, they have to make decisions every day without
knowing the future.
In online optimization problems, the instance is presented in several rounds, and
the algorithm immediately has to decide on the solution for the already revealed
part. This answer cannot be changed in later time steps. Clearly, online algorithms
encounter a harder situation than offline algorithms. Nevertheless, the quality of
an online algorithm is usually compared – using the so-called competitive ratio –
with the best solution, which is usually only reachable in offline scenarios. This
competitive analysis was first introduced in [60].
Since this comparison seems to be a little unfair, and since we would like to have
a more fine-grained analysis of online optimization problems with respect to the
knowledge about future requests, we use a new model which was first introduced
in [12,21,38]. The idea is to allow the algorithm to make use of an oracle which
knows the whole instance the algorithm will receive. Based on this knowledge,
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the oracle computes an advice string which is a part of an infinite advice tape.
Accessing this advice tape, the algorithm gets additional information which can
help him to solve the instance optimally or at least better than without reading
any advice. The number of advice bits read help us to classify online algorithms
into different classes with respect to the amount of advice they need to be optimal.
Some online optimization problems need only little advice, but some need almost the
whole knowledge about future requests. Especially for the second type of problems,
it also makes sense to look at a tradeoff of advice bits and the competitive ratio
which can be reached with this fixed amount of available advice bits.
In this thesis, two online optimization problems will be of special interest, online
coloring and online matching. Both problems are defined on graphs in which the
vertices are revealed one by one with all the vertices that are adjacent to already
present vertices.
Graph coloring is one of the most prominent optimization problems. Already
the offline version of the problem is hard even for many restricted graph classes,
but online graph coloring belongs to the hardest online optimization problems.
Even for bipartite, i. e., two-colorable graphs, no deterministic online algorithm
can guarantee to use less than a logarithmic number of colors. In this thesis, we
consider the problem of coloring bipartite graphs online with and without advice.
Also the matching problem belongs to the most studied classical optimization
problems with many applications, e. g., in economics. While being efficiently
solvable in the offline case, its online version is hard even for bipartite graphs. Most
attention has been paid to the so-called one-sided matching, where the vertices
from one shore of the bipartite graph are given beforehand and the vertices from
the other shore appear in an online fashion [41]. In this thesis, we consider the
fully online version, where the vertices from both shores appear online.
This thesis is organized as follows: In the remaining part of this chapter, we fix our
notation and recall some mathematical background we use in this thesis. Then, we
define optimization problems and the concept of approximating those problems. In
the last part, we introduce online algorithms formally, give the idea of competitive
analysis, and present the concept of using advice in online algorithms.
In Chapter 2, we deal with online coloring. The first part is devoted to general
bipartite graphs, where we first improve the existing lower bound on solving the
online coloring problem deterministically without advice on bipartite graphs from
⟨︀log(𝑛)⧹︀ + 1 to ⟨︀1.13746 ⋅ log(𝑛) − 0.49887⧹︀. This is followed by a discussion on the
advice complexity of bipartite graphs in general, and of paths, cycles and spider
graphs.
Chapter 3 deals with the online matching problem. We summarize what is known
on deterministic algorithms without advice on paths and trees, complement these
results, and examine afterwards how much advice is needed to be optimal by
giving almost tight lower and upper bounds in paths and cycles. After giving a
lower bound for optimality in special trees with restricted vertex degrees, we show
two alternative algorithms for upper bounds. Then, we investigate some more
general graph classes and give an upper bound for general graphs, a lower bound
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for bipartite graphs and make a short detour to 𝑃𝑘-free bipartite graphs and to
bipartite graphs with a small diameter. This chapter is concluded with a section
on tradeoffs between the number of advice bits an algorithm needs to read and the
competitive ratio it can reach with this amount of advice.
Last, we introduce in Chapter 4 a new approach for making CNF-formulas satisfiable
by splitting some of the variables to their positive and their negative literals. We
try to minimize the number of split variables, which is very hard to approximate in
general. Thus, we focus on 2-SAT Horn formulas here, where we are able to give
an almost full picture of the approximability of variable splitting.

1.1 Mathematical Foundations
First, we want to fix some mathematical notation and introduce the mathematical
background we need in this thesis.

Notations
By N we denote the set of natural numbers including zero, N = {0, 1, 2, . . .}. If
we address only the positive natural numbers, we write N+ or N≥1. We take the
same notation for integer numbers (Z), rational numbers (Q) and real numbers
(R). Other sets are denoted by ordinary capital letters, i. e., 𝑆, and for classes we
write calligraphical symbols, e. g., 𝒢. By ⋃︀𝑆⋃︀ we denote the cardinality of the set 𝑆
(the number of elements in the set).
A partition of a set 𝑆 is a set of subsets 𝑆1, 𝑆2, . . . , 𝑆𝑛, 𝑆𝑖 ⊆ 𝑆 for all 𝑖 ∈ {1, 2, . . . , 𝑛},
such that the union of these sets covers 𝑆, i. e., ⋃𝑛

𝑖=1 𝑆𝑖, and each two of these sets
are pairwise disjoint, 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for 𝑖 ≠ 𝑗.
We denote the integer part of a real value 𝑥 by ⟨︀𝑥⧹︀, defined as

⟨︀𝑥⧹︀ = max{𝑚 ∈ Z ⋃︀ 𝑚 ≤ 𝑥} ,

and the smallest integer number greater than 𝑥 by

[︂𝑥⌉︂ = min{𝑚 ∈ Z ⋃︀ 𝑚 ≥ 𝑥} .

The logarithm function is denoted by log𝑏(𝑥) for an arbitrary base 𝑏. Since we
use mainly the logarithm function for base 2, we write log(𝑥) instead of log2(𝑥)
for the binary logarithm. The natural logarithm is denoted by ln(𝑥) for the
base e, indicating the Eulerian number e = lim𝑛→∞(1 + 1

𝑛
)𝑛 = 2.7182 . . .. For some

𝑥, 𝑦, 𝑝 ∈ R, we use the following rules to analyze terms containing a logarithm
function: log𝑏(𝑥 ⋅ 𝑦) = log𝑏(𝑥) + log𝑏(𝑦) (product), log𝑏 (𝑥⇑𝑦) = log𝑏(𝑥) − log𝑏(𝑦)
(quotient), log𝑏 (𝑥

𝑝) = 𝑝 log𝑏(𝑥) (power), log𝑏(𝑥) = (log𝑎(𝑥)) ⇑ (log𝑎(𝑏)) (change of
base).
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To investigate the asymptotic behaviour of two positive functions 𝑓(𝑛) and 𝑔(𝑛)
for some variable 𝑛, we use the Landau symbols (also referred to as big-O notation)
that are described, e. g., in [37]. They are defined as

𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) ⇐⇒ ∃𝑛0, 𝑐 > 0 such that ∀𝑛 > 𝑛0 ∶ 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)

𝑓(𝑛) ∈ Ω(𝑔(𝑛)) ⇐⇒ ∃𝑛0, 𝑐 > 0 such that ∀𝑛 > 𝑛0 ∶ 𝑐 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛)

𝑓(𝑛) ∈ Θ(𝑔(𝑛)) ⇐⇒ 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛))

Sequences and Combinatorial Tools
In Chapter 2, we use in a proof a generalization of the Fibonacci numbers 𝐹 (𝑛),
recursively defined as

𝐹 (0) = 0 ,

𝐹 (1) = 1 ,

𝐹 (𝑛) = 𝐹 (𝑛 − 1) + 𝐹 (𝑛 − 2) , for any integer number 𝑛 > 1.

Definition 1.1 (Tribonacci Numbers). For Tribonacci numbers, denoted
by 𝑇 (𝑛) (see [27, 61]), the sequence starts with three predetermined numbers
and each new number is the sum of the three preceding numbers,

𝑇 (0) = 0 ,

𝑇 (1) = 0 ,

𝑇 (2) = 1 ,

𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑇 (𝑛 − 2) + 𝑇 (𝑛 − 3) , for any 𝑛 > 2.

This leads to the sequence 0, 0, 1, 1, 2, 4, 7, 13, 24, . . . (see [61]). The number 𝑇 (𝑛)
can be computed as follows:

𝑇 (𝑛) = 3𝑏 ⋅
( 1

3(𝑎+ + 𝑎− + 1))𝑛

𝑏2 − 2𝑏 + 4
≤ 0.336229 ⋅ 1.83929𝑛, (1.1)

where 𝑎+ = (19 + 3
⌋︂

33) 1
3 , 𝑎− = (19 − 3

⌋︂
33) 1

3 , and 𝑏 = (586 + 102
⌋︂

33) 1
3 .

A useful tool to get lower and upper bounds on the factorial of 𝑛, i. e., 𝑛! = 1 ⋅2 ⋅. . . ⋅𝑛
is the approximation of James Stirling, called Stirling’s formula [22], given by

⌋︂
2𝜋𝑛(

𝑛

𝑒
)

𝑛

< 𝑛! <
⌋︂

2𝜋𝑛(
𝑛

𝑒
)

𝑛

(1 + 1
11𝑛

) . (1.2)

This formula can be especially used to give bounds on the binomial coefficient

(
𝑛

𝑘
) =

𝑛!
𝑘!(𝑛 − 𝑘)!
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indicating the number of subsets of size 𝑘 in a set of size 𝑛. To get the number
of all subsets of an arbitrary size, we can sum up all binomial coefficients for an
arbitrary 𝑘, and get

𝑛

∑
𝑘=0

(
𝑛

𝑘
) = 2𝑛 .

Suppose that 𝑛 = 2𝑘 is even for an 𝑘 ∈ N. Using Stirling’s inequality, we get an
upper and a lower bound on the central binomial coefficient,

4𝑘

2
⌋︂

𝜋𝑘
< (

2𝑘

𝑘
) <

4𝑘

⌋︂
2𝜋𝑘

. (1.3)

A permutation of a set {𝑎1, 𝑎2, . . . , 𝑎𝑛} is a bijection

𝜋∶{𝑎1, 𝑎2, . . . , 𝑎𝑛}→ {𝑎1, 𝑎2, . . . , 𝑎𝑛}

such that (𝜋(𝑎1), 𝜋(𝑎2), . . . , 𝜋(𝑎𝑛)) is an ordered set and 𝜋(𝑎𝑖) indicates the posi-
tion of 𝑎𝑖 in the this ordered set. The number of permutations of a set containing
𝑛 elements is 𝑛!.

Graphs
Many practical problems, such as trying to color a map with only four colors such
that no two neighboring countries receive the same color, can be modeled by a
graph. Graphs are a powerful tool for visualizing many problems in order to find a
good solution. A detailed introduction to graph theory can be found in [66].

Definition 1.2 (Graph). An (undirected) graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) con-
sists of a finite set of vertices 𝑉 (𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and a set of edges

𝐸 ⊆ {{𝑣𝑖, 𝑣𝑗} ⋃︀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 for 𝑖 ≠ 𝑗}

connecting the vertices.
In a directed graph, digraph for short, the edges have additionally a direction,
and we write (𝑣𝑖, 𝑣𝑗) for an edge 𝑒 pointing from 𝑣𝑖 to 𝑣𝑗 . We call the directed
edges arcs to distinguish them from ordinary edges.

We say that an edge 𝑒 = {𝑣𝑖, 𝑣𝑗} is incident to its two end vertices 𝑣𝑖 and 𝑣𝑗 , and
that a vertex 𝑣𝑖 is incident to the edge 𝑒. Two vertices 𝑣𝑖 and 𝑣𝑗 are adjacent if
they are connected by an edge 𝑒 = {𝑣𝑖, 𝑣𝑗}. Similarly we define that two edges
𝑒1 = {𝑣𝑖, 𝑣𝑗} and 𝑒2 = {𝑣𝑖, 𝑣𝑘} are adjacent, if they have a common vertex 𝑣𝑖.
Adjacent vertices are called neighbors or neighboring vertices. The degree of a
vertex 𝑣 is the number of incident edges.
We call a graph 𝐺 = (𝑉, 𝐸) complete, if all possible edges appear in the graph, i. e.,
𝐸 = {{𝑣𝑖, 𝑣𝑗} ⋃︀ 𝑣𝑖, 𝑣𝑗 ∈ 𝐸 for every 𝑖 ≠ 𝑗}.
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We only consider so-called simple graphs in which there is at most one edge
connecting two vertices, and no loops are present, i. e., there is no edge 𝑒 = {𝑣, 𝑣},
for a vertex 𝑣. In this thesis, we will mostly focus on the following graph class and
subclasses of this class.

Definition 1.3 (Bipartite Graph). In a bipartite graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)),
the vertex set 𝑉 (𝐺) can be partitioned into two subsets, called shores and
denoted by 𝑆1(𝐺) and 𝑆2(𝐺), with the property that the edges in 𝐸(𝐺)

connect only vertices from different shores.

If the graph is clear from the context, we write 𝑉 , 𝐸, 𝑆1, 𝑆2 instead of 𝑉 (𝐺),
𝐸(𝐺), 𝑆1(𝐺) and 𝑆2(𝐺). If, in a bipartite graph 𝐺 = (𝑉, 𝐸), all edges between
the two shores 𝑆1(𝐺) and 𝑆2(𝐺) are present, we call this special bipartite graph a
complete bipartite graph.
A graph 𝐺′ = (𝑉 ′, 𝐸′) is called a subgraph of 𝐺 if 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. We will focus
on special subgraphs, namely those for which every edge connecting vertices of 𝑉 ′

in 𝐺 appears in the subgraph 𝐺′.

Definition 1.4 (Induced Subgraph). A graph 𝐺′ = (𝑉 ′, 𝐸′) is an induced
subgraph of 𝐺 = (𝑉, 𝐸), if 𝑉 ′ ⊆ 𝑉 , 𝐸′ ⊆ 𝐸 and, for all 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ′,

{𝑣𝑖, 𝑣𝑗} ∈ 𝐸(𝐺) ⇐⇒ {𝑣𝑖, 𝑣𝑗} ∈ 𝐸(𝐺′
) .

We denote the subgraph of 𝐺 = (𝑉, 𝐸) induced by a vertex subset 𝑉 ′ ⊆ 𝑉 by
𝐺(︀𝑉 ′⌋︀, i. e., 𝐺(︀𝑉 ′⌋︀ = (𝑉 ′, 𝐸′), where 𝐸′ = {{𝑣𝑖, 𝑣𝑗} ∈ 𝐸 ⋃︀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ′}.

One important subclass of bipartite graphs are paths. They are also used to define
some structures in general graphs.

Definition 1.5 (Path). A path is a graph containing only vertices of de-
gree 2, except of two vertices that have degree 1. The vertices of degree one
are called the end vertices.
We call a path a 𝑢,𝑣-path if the end vertices are 𝑢 and 𝑣.

The length of a path is its number of edges. We denote by 𝑃𝑛 a path on 𝑛 vertices,
i. e., a path of length 𝑛 − 1. Clearly, every path is a bipartite graph since one shore
consists of the vertices on odd positions and the other shore of the vertices at even
positions.

Definition 1.6 (Connected, Isolated). A graph 𝐺 is connected if it has
a 𝑢,𝑣-path for all 𝑢, 𝑣 ∈ 𝑉 (𝐺). We call a maximal connected subgraph, i. e., a
connected subgraph to which no other vertex of 𝑉 (𝐺) can be added without
losing connectedeness, a component of the graph.
An isolated vertex is a vertex of degree 0.
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Paths can also be used to measure some properties in general graphs, for example,
that every vertex can be reached from every other vertex via a short path. The
diameter of a graph is the maximum distance of two arbitrary vertices. The distance
of two vertices 𝑢 and 𝑣 is measured by the length of the shortest 𝑢-𝑣-path, i. e.,
the number of edges on this path.

Some Other Graph Classes and Their Properties
In the following, we explain the graph classes we examine in this thesis.

Cycles

Connecting the two end vertices of a path, we get a cycle. A cycle is a connected
graph with exclusively vertices of degree 2. Cycles containing an even number of
vertices are bipartite graphs, whereas cycles with an odd number of vertices are
not bipartite.

Trees

Trees are graphs not containing any cycle as a subgraph. Special trees are caterpillars
in which there is a path (called the spine) that contains every vertex of degree
two or more. A comb is a caterpillar in which all vertices on the spine have vertex
degree 3, except the first and the last vertex, which have degree 2. A caterpillar
with a spine containing only one vertex is called a spider graph.
In trees, vertices of degree 1 are called leaves and all other vertices are referred to
as inner vertices.

𝑃𝑘-free graphs

We can also define graph classes by indicating which induced subgraphs are for-
bidden. A graph 𝐺 not containing a path 𝑃𝑘 on 𝑘 vertices, for some 𝑘 ∈ N, as
an induced subgraph is called a 𝑃𝑘-free graph. We will consider 𝑃𝑘-free bipartite
graphs.

Boolean Formulas
For the following definitions we adopt the notation from the detailed lecture notes
from [65]. Satisfiability (Sat) is the problem of deciding whether a Boolean formula
evaluates to true. This problem is the most important 𝒩𝒫-complete problem [17].
Boolean formulas consist of variables that can take the values 1 (for true) and 0
(for false). They are referred to as Boolean variables. In this thesis we only consider
formulas in conjunctive normal form (CNF). As operators in these formulas we use
the conjunction (∧), disjunction (∨), and the negation (¬) (see Table 1.1).
A literal is a variable (positive literal) or the negation of a variable (negative literal),
instead of ¬𝑥 we write 𝑥 for short for a negated variable.
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Table 1.1. Truth tables for the conjunction, disjunction and negation for some Boolean
variables 𝑥 and 𝑦.

Conjunction

𝑥 𝑦 𝑥 ∧ 𝑦

0 0 0
0 1 0
1 0 0
1 1 1

Disjunction

𝑥 𝑦 𝑥 ∨ 𝑦

0 0 0
0 1 1
1 0 1
1 1 1

Negation

𝑥 ¬𝑥

0 1
1 0

Definition 1.7 (Conjunctive Normal Form (CNF)). A Boolean formula
Φ over a variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛} is in conjunctive normal form, CNF for
short, if it is a conjunction of so-called clauses, where a clause is a disjunction
of literals. A CNF formula with 𝑚 clauses is of the form

𝑚

⋀
𝑖=1

(
𝑘𝑖

⋁
𝑗=1

𝑥𝑖,𝑗)

for literals 𝑥𝑖,𝑗 .

In Chapter 4, we consider CNF-formulas with bounded clause sizes. If the number
of literals in a clause is bounded by some constant 𝑘, we say that a Boolean formula
Φ is in 𝑘-CNF.

Definition 1.8 (Assignment). Let 𝑉 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a set of Boolean
variables. An assignment is a mapping 𝛼 ∶ 𝑉 → {0, 1} such that 𝛼 assigns to
every variable a truth value, e. g., 𝛼(𝑥1) = 0, 𝛼(𝑥2) = 1, . . . , 𝛼(𝑥𝑛) = 1.
For negative literals 𝑥, we have 𝛼(𝑥) = 1 − 𝛼(𝑥).

A Boolean formula is satisfiable if there is an assignment 𝛼 such that the formula
evaluates to 1. This assignment 𝛼 satisfies the formula.

1.2 Optimization Problems and Approximation
There are two important classes of computational problems. The inputs of so-called
decision and optimization problems are words, encoded over a given finite set of
symbols (the alphabet). Note that for these problems, we usually consider alphabets
of size at least two, since a unary encoding blows up the size of encodings over a
binary alphabet by an exponential factor. The change of the size of the encodings
between alphabets of size greater than one is only polynomial. A subset of the set
of all words over a given alphabet is called a language. A detailed description of
both problem classes and many paradigmatic examples can be found in [37].
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Decision Problems
In decision problems, one has to decide whether a given input has a described
property or not. One of the most famous decision problems is the satisfiability
problem (Sat), where for a given Boolean formula in CNF, we have to decide if
the formula is satisfiable or not.

Definition 1.9 (Satisfiability Problem (Sat)).

Input: A CNF-formula Φ.

Output: “yes” if Φ is satisfiable, and “no” otherwise.

Decision problems are always defined for an infinite set of problem instances from a
certain class1. For the problem Sat, the set of instances contains all CNF-formulas.
We can also define a decision problem via the language of all “yes” answers. In the
case of Sat, the language

Sat = {Φ ⋃︀ Φ is a satisfiable CNF-formula}

describes the decision problem in the sense that all words of this language would
involve a “yes” answer.
For decision problems, the famous classes 𝒫 and 𝒩𝒫 denote the sets of all languages
(decision problems) that are decidable within polynomial time on a deterministic or
a nondeterministic Turing machine, respectively. We consider a language (decision
problem) 𝐿 ∈ 𝒫 as practically solvable.
One usually assumes that 𝒫 ≠ 𝒩𝒫 . There is no known method for proving directly
for a language 𝐿 ∉ 𝒩𝒫 , that 𝐿 ∉ 𝒫 . Therefore, we define a relative set of languages
in 𝒩𝒫 such that if, for one of these languages one could find an efficient algorithm,
all of the problems in this set would be efficiently solvable. This can be done using
the following type of reductions.

Definition 1.10 (𝒩𝒫-hard, 𝒩𝒫-complete). Let 𝐿1 and 𝐿2 be two lan-
guages over some alphabets Σ1 and Σ2. We say the 𝐿1 is polynomial-time
reducible to 𝐿2 and write 𝐿1 ≤𝑝 𝐿2, if there exists a polynomial-time bounded
algorithm 𝐴∶Σ1 → Σ2 such that, for all 𝐼 ∈ Σ1,

𝐼 ∈ 𝐿1 ⇐⇒ 𝐴(𝐼) ∈ 𝐿2.

A language 𝐿 is called 𝒩𝒫-hard if �̃� ≤𝑝 𝐿, for all �̃� ∈ 𝒩𝒫. A language 𝐿 is
𝒩𝒫-complete if 𝐿 ∈ 𝒩𝒫 and 𝐿 is 𝒩𝒫-hard.

We consider the class of 𝒩𝒫-complete problems to be the hardest problems in
𝒩𝒫. If one could show for an 𝒩𝒫-complete problem that 𝐿 ∈ 𝒫, we would have
𝒫 = 𝒩𝒫.
1 For a finite set of instances, there always exists an algorithm with a finite look-up table of

precomputed answers.
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If we can show a reduction of an 𝒩𝒫-hard language 𝐿1 to a language 𝐿2, we can
conclude that 𝐿2 is 𝒩𝒫-hard, too. Whereas, if for a language 𝐿2 that is decidable
in polynomial time, we have 𝐿1 ≤𝑝 𝐿2, also 𝐿1 is decidable in polynomial time.

Optimization Problems
In optimization problems, the best solution from a set of feasible solutions has to
be found. In the maximum satisfiability problem (Max-Sat), for a given Boolean
formula in CNF, the goal is to find an assignment that satisfies as many clauses as
possible. All assignments for a given formula are feasible solutions. The best of
them is the one which maximizes the number of satisfied clauses.

Definition 1.11 (Maximum Satisfiability Problem (Max-Sat)).

Input: A CNF-formula Φ.

Set of feasible solutions: All assignments for Φ.

Cost: Number of satisfied clauses.

Goal: Maximum.

In this thesis, we focus on optimization problems. Formally, an optimization
problem is defined as follows.

Definition 1.12 (Optimization Problem). An optimization problem can
be described by a 4-tuple 𝑈 = (ℐ,ℳ, cost, goal), where

• ℐ is the set of admissible inputs 𝐼,

• ℳ(𝐼) is the set of feasible solutions for an input 𝐼,

• cost(𝐼, 𝑂) is the cost function assigning to every pair (𝐼, 𝑂), for a
feasible solution 𝑂 ∈ℳ(𝐼) of an input 𝐼 ∈ ℐ, a positive real number,
and

• goal = min is the optimization goal for minimization problems, and
goal = max for maximization problems.

A feasible solution 𝑂 ∈ℳ(𝐼) is called optimal for an input 𝐼 if

cost(𝐼, 𝑂) = goal{cost(𝐼, �̃�) ⋃︀ �̃� ∈ℳ(𝐼)}

holds. We denote by Opt𝑈(𝐼) the cost of an optimal solution.

If the input 𝐼 is clear from the context, we write cost(𝑂) instead of cost(𝐼, 𝑂). We
also abbreviate Opt𝑈(𝐼) by Opt(𝐼). An algorithm 𝐴 is called consistent for an
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optimization problem 𝑈 , if 𝐴(𝐼) ∈ℳ(𝐼), for all 𝐼 ∈ ℐ, i. e., if every output 𝐴(𝐼),
for any input 𝐼 ∈ ℐ, of 𝐴 is a feasible solution.
We can carry the notion of 𝒩𝒫-hardness of decision problems over to optimization
problems. Therefore we need a correspondence between these two types of problems.
For an optimization problem, we can define a corresponding decision problem,
called the threshold language, by asking if an optimal solution for an instance
falls below (for minimization problems) or exceeds (for maximization problems) a
certain threshold.

Definition 1.13 (Threshold Language). Let 𝑈 = (ℐ,ℳ, cost, goal) be
an optimization problem. For minimization problems, the threshold lan-
guage for 𝑈 is defined as

Lang𝑈 = {(𝐼, 𝑎) ∈ 𝐿 × {0, 1}∗ ⋃︀ Opt𝑈(𝐼) ≤ Number(𝑎)},

where Number(𝑎) denotes the natural number whose binary representation
is 𝑎.
For maximization problems, the threshold language for 𝑈 is defined as

Lang𝑈 = {(𝐼, 𝑎) ∈ 𝐿 × {0, 1}∗ ⋃︀ Opt𝑈(𝐼) ≥ Number(𝑎)}.

This definition allows us to transfer the notion of 𝒩𝒫-hardness also to optimization
problems. We say that an optimization problem is 𝒩𝒫-hard, if its threshold
language is 𝒩𝒫-hard. This is justified by the fact that, assuming 𝒫 ≠ 𝒩𝒫, there
is no polynomial-time algorithm for an 𝒩𝒫-hard optimization problem 𝑈 .
Note that the threshold language of an optimization problem is not always the
classical decision problem. In the case of Max-Sat, the threshold language of
Max-Sat does not comply with the decision problem Sat, where all clauses have
to be satisfied if the answer of the decision is “yes”.

Approximation of Optimization Problems

Because 𝒩𝒫-hard optimization problems are not solvable within reasonable time in
general, one can consider approximation algorithms allowing a suboptimal solution.
To measure the quality of such algorithms, we can compute the ratio between
the cost of the optimal solution and the cost the algorithm can reach for a given
instance.
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Definition 1.14 (Approximation Ratio). Let 𝑈 = (ℐ,ℳ, cost, goal) be
an optimization problem, let 𝐴 be a consistent algorithm for 𝑈 . For every
𝐼 ∈ ℐ, the approximation ratio of 𝐴 on 𝐼 is defined as

𝑅𝐴(𝐼) = max{cost(𝐴(𝐼))
Opt(𝐼)

,
Opt(𝐼)

cost(𝐴(𝐼))
(︀ ,

where Opt(𝐼) denotes the costs of an optimal solution for 𝐼.
For 𝑛 ∈N, the approximation ratio of 𝐴 is defined as

𝑟(𝑛) = max{𝑅𝐴(𝐼) ⋃︀ 𝐼 ∈ ℐ and ⋃︀𝐼 ⋃︀ = 𝑛}.

For some 𝛿 > 1, we say that 𝐴 is a 𝛿-approximation algorithm if 𝑟(𝑛) ≤ 𝛿, for
all 𝑛 ∈N.
For some function 𝑓 ∶N → R≥0, we say that 𝐴 is a 𝑓(𝑛)-approximation
algorithm if 𝑟(𝑛) ≤ 𝑓(𝑛), for all 𝑛 ∈N.

The first term in the definition of the approximation ratio is used for minimization
problems, the second one for maximization problem. In this way, the approximation
ratio is defined to be always ≥ 1.
By 𝒜𝒫𝒳 , we denote the set of all optimization problems which admit a polynomial-
time 𝑐-approximation algorithm, for some constant 𝑐 ≥ 1.
We say that an optimization problem admits a polynomial-time approximation
scheme (PTAS) if, for any 𝜀 > 0, there is a polynomial-time (1 + 𝜀)-approximation
algorithm for 𝑈 .
Since hardly any proof techniques are known that allow to show unconditional
lower bounds on the time complexity or the achievable approximation ratio for
some problem, hardness is usually shown by using reductions, i. e., one shows that
an efficient solution for one problem would imply efficient solution for a whole class
of problems.
Similarly as for the time complexity, one can use reductions to prove that, under
some complexity-theoretic assumption like 𝒫 ≠ 𝒩𝒫, it is hard to reach a certain
approximation ratio within polynomial time. Such a so-called approximation-
preserving reduction, or AP-reduction for short, does not only have to take only
polynomial time, but it has to be constructed in such a way that the approximation
ratio carries over from one problem to the other.

Definition 1.15 (AP-Reduction). An AP-reduction (see Figure 1.1) be-
tween two optimization problems 𝑈1 and 𝑈2 consists of one function 𝐹
transforming inputs 𝐼 for 𝑈1 into inputs 𝐹 (𝐼, 𝛿), for any 𝛿 ∈Q+, for 𝑈2 within
polynomial time and a second function 𝐻 transforming feasible solutions for
𝐹 (𝐼, 𝛿) back to feasible solutions for 𝐼 such that the approximation ratio
stays the same or is at most changed by some constant factor 𝛼.
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𝐼 ∈ 𝑈1, 𝛿 ∈Q+ 𝑈2

ℳ(𝐼) 𝑂 ∈ℳ(𝐹 (𝐼, 𝛿))

𝐹

PTAS 𝐴2 with
approx. ratio
𝜀 = 𝛿

𝛼

𝐻

PTAS 𝐴1 with
approx. ratio
𝛿 = 𝛼 ⋅ 𝜀

Figure 1.1. The structure of an AP-reduction according to Definition 1.15.

If there exists an AP-reduction from 𝑈1 to 𝑈2, we say that 𝑈1 is AP-reducible to
𝑈2 and write 𝑈1 ≤𝐴𝑃 𝑈2. For a formal definition of AP-reductions, see [37].
We say that a problem 𝑈 is 𝒜𝒫𝒳 -hard if, for all �̃� ∈ 𝒜𝒫𝒳 , �̃� ≤𝐴𝑃 𝑈 . Similar
to the 𝒩𝒫-hardness of decision problems, if there is an AP-reduction from an
optimization problem 𝑈1 to an optimization problem 𝑈2, i. e., if 𝑈1 ≤𝐴𝑃 𝑈2, we
can conclude the following:

1. If 𝑈1 is 𝒜𝒫𝒳 -hard, then also 𝑈2 is 𝒜𝒫𝒳 -hard, i. e., if there is no PTAS for
𝑈1, there is also no PTAS for 𝑈2.

2. If there is a PTAS for 𝑈2, there is also one for 𝑈1.

3. 𝑈1 can be approximated with the same ratio as 𝑈2, up to a constant factor,
i. e., if 𝑈2 allows a polynomial-time (1 + 𝜀)-approximation, we can design a
polynomial-time (1 + 𝛼𝜀)-approximation algorithm for 𝑈1, for some 𝛼 = 𝛿

𝜀
.

1.3 Online Algorithms and Competitive Analysis
In an online optimization problem, the input is revealed piecewise in consecutive
time steps and an irrevocable part of the output has to be produced at each time step.
Obviously, it is harder and sometimes even impossible to compute the best solution
for an instance if the instance is not shown in its whole length from the beginning.
For a detailed introduction and an overview of online optimization problems and
algorithms, see, e. g., [14]. Online optimization problems represent those real-life
situations, in which the entire input is not available before the algorithm starts to
work. Incrementally, the algorithm gets more and more information and it has to
take irrevocable decisions on every new part of the input.
Consider, for example, the work of an employment agency. The job center receives
job offers daily from companies and, independent from these offers, job applications
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of candidates with a certain profile. Clearly, the job center cannot wait infinitely
long to find the best candidate for an open position. Sometimes, the corresponding
company has a deadline when they need a new employee, but also the employment
agency is interested in finding as soon as possible some candidate since they earn
their money from the commission. So, it may happen that the best candidate
applies for a job right after filling the announced position. If the job center would
know this, for sure they would wait one day longer to assign a candidate to the
job. Actually, in this scenario no human being knows if at a time step 𝑖 the best
candidate appeared, since, if the employment agency does not break down, this
procedure goes on and on.

The probably most famous introductory example for an online optimization problem
is the ski-rental problem (see, e. g., [14]): A tourist being for the first time in the
Swiss mountains and not possessing any pair of skis, has to decide in the beginning
of his vacation if he wants to rent skis, paying 𝑥 CHF per day, or if he buys a new
pair of skis for 𝑦 CHF, for some prices 𝑥 ≪ 𝑦. Suppose, he is in the mountains for
the whole season, but he only wants to ski on sunny days. Therefore, the decision
depends on the number of nice days. But he does not know in advance, how many
days he needs his skis. For sure, if there are many sunny days, the best strategy
would be to buy the skis. But, if he uses the skis less than [︂

𝑦
𝑥
⌉︂ times, to rent them

would be a better idea. In this example, the goal is to minimize the cost of skiing.

In general, an online optimization problem is defined as follows. In this thesis, we
use the notation from [45].

Definition 1.16 (Online Optimization Problem). An online optimiza-
tion problem consists of a set ℐ of inputs and a cost function. Every input 𝐼 ∈ ℐ

is a sequence of requests 𝑥1, 𝑥2, . . . , 𝑥𝑛, denoted as 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). Every
input 𝐼 ∈ ℐ is associated with a set 𝒪 of feasible solutions (outputs). Every
solution 𝑂 ∈ 𝒪 is composed of a sequence of answers 𝑂 = (𝑦1, 𝑦2, . . . , 𝑦𝑛).
The cost function assigns to every pair of inputs and solutions, (𝐼, 𝑂), a real
value cost(𝐼, 𝑂). The goal is to optimize the cost, i. e.,

• to minimize the costs in online minimization problems, or

• to maximize the costs in online maximization problems.

If the input 𝐼 is clear from the context, we omit the 𝐼 in the notation of the cost
function cost(𝐼, 𝑂) and write cost(𝑂) instead. For an instance 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛),
the index 𝑖 of an 𝑥𝑖 indicates, in which time step the request 𝑥𝑖 is given.
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𝑣1

𝐺1

𝑣1

𝑣2

𝐺2

𝑣1

𝑣2 𝑣3

𝐺3

𝑣1

𝑣2 𝑣3 𝑣4
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Figure 1.2. The sequence (𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝐺5) is a possible online presentation of the
(offline) graph 𝐺 = 𝐺5 = (𝑉, 𝐸) with vertex set 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and edge set 𝐸 as
depicted above.

Definition 1.17 (Optimal (Offline) Solution). An optimal (offline) so-
lution for an instance 𝐼 ∈ ℐ is a solution Opt(𝐼) ∈ 𝒪 such that

cost(Opt(𝐼)) = min
𝑂∈𝒪

{cost(𝑂) ⋃︀ 𝑂 is a feasible solution for 𝐼}

in case of an online minimization problem, or

cost(Opt(𝐼)) = max
𝑂∈𝒪

{cost(𝑂) ⋃︀ 𝑂 is a feasible solution for 𝐼}

in case of an online maximization problem.

In this thesis, we discuss online graph problems. A possible online presentation of a
graph 𝐺 = (𝑉, 𝐸) is to reveal the graph vertex by vertex with the edges adjacent to
already present vertices as shown in Figure 1.2. For a vertex set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛},
the index 𝑖 of a vertex 𝑣𝑖 indicates the order in which the vertices appear.

In the first part of the thesis, we focus on the problem of coloring an online graph
properly, i. e., assigning to every vertex a color from a set of colors, e. g., from
the set {1, 2, . . . , 𝑛}, such that no two neighbors get the same color. In the online
scenario of this problem, the online algorithm has to decide immediately after
a vertex 𝑣𝑖 from the vertex set 𝑉 is revealed, which color it should receive (see
Figure 1.3 for an example). The already defined colors cannot be changed in later
time steps. The goal is to use as few colors as possible.

To make the definition of an online optimization problem easier to read, we will use
the following input/output notation for online optimization problems in this thesis.
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𝑣11

𝐺1

𝑣11

𝑣22
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𝑣11

𝑣22 𝑣3

3

𝐺3
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3
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Figure 1.3. A possible coloring for the online graph instance 𝐺≺ given by the sequence
(𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝐺5). This is not an optimal coloring. If the algorithm would choose color
1 for 𝑣4, vertex 𝑣5 could be colored with color 1, resulting in a coloring with only three
colors.

Definition 1.18 (Online Optimization Problem). An online optimiza-
tion problem is defined as:

Input: An online instance 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of the instance class ℐ, con-
sisting of requests 𝑥𝑖 for every time step 𝑖 ∈ {1, 2, . . . , 𝑛}.

Output: Sequence of solutions 𝑂 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) such that 𝑦𝑖 is computed
only based on the first part (𝑥1, . . . , 𝑥𝑖) of the sequence of requests.

Cost: The cost function assigns to every pair (𝐼, 𝑂) the value cost(𝐼, 𝑂).

Goal: Maximizing (online maximization problem) or minimizing (online
minimization problem) the cost.

Algorithms solving an online optimization problem are referred to as online algo-
rithms.

Definition 1.19 (Online Algorithm). Let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an in-
put of an online optimization problem. An online algorithm computes the
output sequence 𝐴(𝐼) = (𝑦1, 𝑦2, . . . , 𝑦𝑛) such that 𝑦𝑖 is computed from the
first 𝑖 requests 𝑥1, . . . , 𝑥𝑖 and the already determined corresponding outputs
𝑦1, . . . , 𝑦𝑖−1 only.
We denote by cost(𝐴(𝐼)) the cost of the algorithm 𝐴 used to compute a
solution for the instance 𝐼. The cost of the optimal (offline) solution is
identified with cost(Opt(𝐼)).

In the online coloring problem of graphs, the cost function counts the number of
colors used. In the ski-rental problem, the cost is determined by the amount of
money the tourist has to invest, i. e., for 𝑘 sunny days out of 𝑛 days we have

cost =
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

𝑘 ⋅ 𝑥 , if the tourist decides to rent the skis
𝑦 , else .
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In online scenarios, the algorithm cannot foresee future requests. Therefore, it is at
a disadvantage with respect to solving the problem offline where the whole input
is given in advance. In the example of Figure 1.3 for an online coloring instance,
we see that an optimal (offline) algorithm would, for example, assign color 1 to 𝑣4
enabling to color 𝑣5 with color 2, yielding a better coloring using only 3 colors.
To measure the quality of online algorithms, we compare the cost of the computed
solution with the cost of an optimal solution (computed offline) in a ratio of these
two costs. For the online coloring algorithm in Figure 1.3, we have a ratio of

cost(𝐴(𝐼))
cost(Opt(𝐼))

=
4
3

.

To avoid problems with small-size special cases, one defines the competitive ratio
of an online algorithm in a slightly more general way.

Definition 1.20 (Competitive Ratio).

• An online algorithm 𝐴 for a minimization problem is 𝑐-competitive
if there exists a constant 𝛼 ≥ 0 such that, for every input 𝐼,

cost(𝐴(𝐼)) ≤ 𝑐 ⋅ cost(Opt(𝐼)) + 𝛼 .

• An online algorithm 𝐴 for a maximization problem is called 𝑐-
competitive if there is a constant 𝛼 ≥ 0 such that, for every input 𝐼, we
have

cost(Opt(𝐼)) ≤ 𝑐 ⋅ cost(𝐴(𝐼)) + 𝛼 .

The constant 𝑐 is called the competitive ratio of 𝐴.
If the inequality holds for 𝛼 = 0, then the algorithm 𝐴 is called strictly
𝑐-competitive.

Note that, in this thesis, we define the so-called competitive ratio, such that this
ratio is always greater or equal to 1. In the literature, one can also find definitions
for which the competitive ratio is smaller or equal to 1 for maximization problems.
In both definitions, the online algorithm behaves optimally if this ratio turns out
to be 1.
Classifying online algorithms based on their competitive ratio is called competitive
analysis in the literature. An online algorithm is called competitive, if it has a
competitive ratio not depending on the length of the input, whereas it is non-
competitive if there is no constant competitive ratio for this algorithm. The constant
𝛼 in the definition of the competitive ratio is necessary to allow the algorithm to
work on short instances arbitrarily (they can be covered in the constant 𝛼), as long
as the algorithm reaches a good competitive ratio for long instances.
More about competitive analysis can be found in [40,60,67]. See [14] for the history
of competitive analysis.
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Figure 1.4. An example of an online path 𝑃 ≺ = (𝑃,≺) with 𝑃 = (𝑉, 𝐸) and 𝑉 =

{𝑣1, 𝑣2, 𝑣3, 𝑣4} such that some intermediate graphs are no paths.

In the following two chapters of this thesis, we will consider online optimization
problems based on online graph instances that appear vertex by vertex and with
each new vertex 𝑣𝑖 all incident edges to previous vertices are revealed.

Definition 1.21 (Online Graph). An online graph instance 𝐺≺ = (𝐺,≺)
consists of a graph 𝐺 = (𝑉, 𝐸) and a linear ordering ≺ on the vertex set
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} with 𝑣𝑖 ≺ 𝑣𝑗 for 𝑖 < 𝑗. In the online presentation 𝐺≺ of
the graph 𝐺, the vertices of 𝑉 appear in the order determined by ≺.

For 𝑉𝑖 = {𝑣1, 𝑣2, . . . , 𝑣𝑖}, we denote by 𝐺≺(︀𝑉𝑖⌋︀ the online subgraph of 𝐺≺ induced
by a subset 𝑉𝑖 of the vertex set 𝑉 . Note that 𝐺≺(︀𝑉𝑛⌋︀ = 𝐺≺ is the final graph. In
other words, 𝐺≺(︀𝑉𝑖⌋︀ is derived from 𝐺≺(︀𝑉𝑖−1⌋︀ by adding the vertex 𝑣𝑖 together with
its edges incident to vertices from 𝑉𝑖−1.
To describe the online presentation of the graph, we can represent the online graph
instance 𝐺≺ as a sequence of graphs (𝐺1, 𝐺2, . . . , 𝐺𝑛) such that 𝐺𝑖 = 𝐺(︀𝑉𝑖⌋︀ for a
prefix of the vertex set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} with an ordering given by 𝑣𝑖 ≺ 𝑣𝑗 for
𝑖 < 𝑗, as we did in Figures 1.2 and 1.3.

Definition 1.22 (Set of Online Graphs). Let 𝒢𝑛 denote the set of all
online graph instances on 𝑛 vertices. Then, 𝒢 is the set of all possible online
graph instances for all 𝑛 ∈N+, i. e., 𝒢 = ⋃𝑛∈N+ 𝒢𝑛.

In this thesis, we focus on special graph classes as paths, for example. Note that we
only require that the final graph 𝐺 = 𝐺(︀𝑉𝑛⌋︀ has the claimed graph property. In the
case of paths, one can easily see that some presentation orders lead to intermediate
graphs 𝐺(︀𝑉𝑖⌋︀, for some time steps 𝑖 < 𝑛, which are not paths (see Figure 1.4).
In the following figures containing online graphs, we will only depict the final
graph 𝐺. The presentation order is given either by the index of the vertices 𝑣𝑖 or
by a time line as shown in Figure 1.5. If two vertices are depicted on the same time
level, it does not matter which of the two vertices is shown earlier in the online
presentation of the graph.
The same observation holds for the quality of the solution in intermediate time
steps. We only require that the cost of the solution in the final graph has to satisfy
some competitive ratio, but not that the solution has to achieve the same ratio in
earlier time steps.
In some proofs, we compare different online presentations of fixed graphs. Then,
we denote the vertex set of the online graph by {𝑤1, 𝑤2, . . . , 𝑤𝑛} and the vertices
of the online presentation by (𝑣1, 𝑣2, . . . , 𝑣𝑛), giving the vertices 𝑤𝑖 an order.
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Figure 1.5. The time line emphasizes the order of the vertices in which they are revealed
in the online presentation of the graph.

If it is clear from the context that an online graph is meant, we write just “graph”
instead of “online graph”.

1.4 Online Algorithms With Advice
The main drawback in the competitive analysis of online algorithms is that an
online algorithm has a huge disadvantage compared to an offline algorithm by not
knowing the future parts of the input. This seems to be a rather unfair comparison
since there is no way to use an offline algorithm in an online setting. The model
of advice complexity of online problems has been introduced to enable a more
fine-grained analysis of the hardness of online optimization problems. The idea is
to measure what amount of information about the yet unknown parts of the input
is necessary to compute an optimal (or near-optimal) solution online [12,21,25,38].
For this, we analyze online algorithms that have access to an arbitrary prefix of
an infinite tape with advice bits that was computed by some oracle knowing the
whole input in advance.
Recall the ski-rental problem in which the algorithm (run by the tourist) has to
decide in the beginning of the season if it wants to rent the skis on every sunny
day, or if it should better buy the skis at the beginning of the season. Note that
the option of buying the skis only makes sense in the beginning. If the tourist first
rents the skis for some days and decides only later to buy them, he wastes money
(assuming that the bought skis hold for the whole season and do not break down
earlier). Therefore, if an oracle (a meteorologist which is never wrong) could foresee
the weather for the whole season, it would compute an advice string containing
only one bit, which is 0, if the algorithm should buy the skis, and 1, if it should
rent the skis.

Definition 1.23 (Online Algorithm With Advice [12, 38]).
Let 𝐼 = (𝑥1, . . . , 𝑥𝑛) be an input of an online optimization problem. An online
algorithm 𝐴 with advice computes the output sequence 𝐴𝜙(𝐼) = (𝑦1, . . . , 𝑦𝑛)

such that 𝑦𝑖 is computed from 𝜙, 𝑥1, . . . , 𝑥𝑖, where 𝜙 is the content of the
advice tape, i. e., an infinite binary sequence.
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For the ski-rental problem, the algorithm would thus read just a single bit from
the advice tape.
The computation of the algorithm 𝐴𝜙 works again step by step. In each time step 𝑖,
𝐴𝜙 reads 𝑥𝑖 and irrevocably produces 𝑦𝑖 using all the information read so far and
possibly reading some bits of the advice string. Note that the definition does not
restrict the computational power of the online algorithms. But nevertheless, all the
algorithms in this thesis will be deterministic and they will all have a polynomial
time complexity.
At first sight, introducing a clairvoyant oracle with unlimited computational power
in order to solve an optimization problem optimally seems to be weird. There is
no such oracle in real life and one also cannot implement such a powerful tool. But
this new type of algorithms enables us to introduce a new measure of complexity
with which the difficulties of online optimization problems can be compared with
respect to the amount of advice that has to be read by every algorithm to solve the
problem. So, the length of the advice string that is necessary to read measures the
disadvantage we have by not knowing the future. Again, the quality of an online
algorithm with advice is measured by the competitive ratio comparing the optimal
(offline) solution and the solution an algorithm 𝐴𝜙 with advice computes.

Definition 1.24 (Advice Complexity). An online algorithm 𝐴 for some
online optimization problem is 𝑐-competitive with advice complexity 𝑏(𝑛) if
there exists some non-negative constant 𝛼 such that, for every 𝑛 and for each
input sequence 𝐼 of length at most 𝑛, there exists some 𝜙 such that

cost(𝐴𝜙
(𝐼)) ≤ 𝑐 ⋅ cost(Opt(𝐼)) + 𝛼 (for minimization problems)

cost(Opt(𝐼)) ≤ 𝑐 ⋅ cost(𝐴𝜙
(𝐼)) + 𝛼 (for maximization problems)

and at most the first 𝑏(𝑛) bits of 𝜙 have been accessed during the computation
of 𝐴𝜙(𝐼).
If 𝛼 = 0, then 𝐴 is called strictly 𝑐-competitive. 𝐴 is optimal if it is strictly
1-competitive.

The advice complexity of online algorithms with advice measures how many advice
bits the algorithm needs to read during its computation in order to achieve a desired
competitive ratio. As usual, the advice complexity of an online optimization problem
is defined as the minimum amount of advice needed by some algorithm solving the
problem. We are especially interested in lower bounds on the advice complexity.
Such lower bounds do not only tell us something about the information content [38]
of online optimization problems, but they also carry over to a randomized setting
where they imply lower bounds on the number of random decisions needed to
compute a good solution [47].
It turns out that, for some problems, very little advice can drastically improve
the competitive ratio of an online algorithm. The artificial ski-rental problem is a
nice example. As we have seen above, one bit of advice is sufficient for solving this
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algorithm 𝑂 = (𝑦1, . . . , 𝑦𝑛)
𝐼

𝐼 = (𝑥1, . . . , 𝑥𝑛)

Figure 1.6. The game between the adversary and the online player. The dashed edge
indicates that the adversary knows the algorithm.

problem optimally. On the other hand, no deterministic online algorithm can be
better than strictly (2 − 1

𝑘
)-competitive, where 𝑘 is the ratio of the cost of buying

and renting [39]. Also for the simple knapsack problem, i. e., when the value and
weight of each item are equal, a single bit of advice is sufficient to jump from
being non-competitive at all to 2-competitiveness [10]. On the other hand, many
problems require a linear (or even higher) amount of advice bits for computing an
optimal solution [10,12,25].
Plenty of more problems have already been analyzed within this model, e. g.,
paging [12], job shop scheduling [12, 47], the 𝑘-server problem [11], online set
cover [46], string guessing [9], online independent set [19], online knapsack [10],
online bin packing [15], disjoint path allocation [4], metrical task systems [25],
online graph exploration [20], and online graph coloring [6, 7, 30, 58], which we
discuss in more detail in Chapter 2.
The relationship between advice complexity and randomized algorithms has been
discussed in [11,25,48].

Analyzing Online Algorithms: A Game Between an Online
Player and an Adversary
Borodin and El-Yaniv described in [14] a nice view on the problem of analyzing
online algorithms. One can view the problem as a game between an online player
feeding an online algorithm with an input determined by an malicious adversary
creating hard inputs in the sense that the competitive ratio is maximized (see
Figure 1.6). The adversary knows the algorithm and therefore the behaviour on all
possible instances. This knowledge allows him to pick a worst possible instance for
the online player, in the sense that:
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• the cost of the online algorithm running on this instance is maximized, and

• the cost of the best optimal (offline) solution is minimized.
The adversary has to try to find an instance maximizing the ratio of these two
measures.
This game can be extended to online algorithms with advice (see Figure 1.7): A
new entity, called the oracle, comes into play. The oracle creates, knowing the
input instance 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) an advice tape containing advice bits that are
intended to help the algorithm to solve this problem instance. This ideal world is a
little bit clouded by the fact that the adversary also knows which advice string the
adversary will create for a particular instance. This makes the game again harder.

adversary

online player

oracle

8

*
* **
* *

algorithm 𝑂 = (𝑦1, . . . , 𝑦𝑛)
𝐼, 𝜙

𝜙 = 𝑏1𝑏2𝑏3 . . .

𝐼 = (𝑥1, . . . , 𝑥𝑛)

Figure 1.7. The game between the adversary and the online player who receives access
to an advice tape produced by an oracle. The dashed edges indicate who sees what.

Note that the advice string is a powerful tool helping the online player. Reading
𝑚 bits of advice means that the online player can choose out of a list of 2𝑚

different, but fixed, deterministic algorithms the one that solves the instance best
(see Figure 1.8 for an example of two advice bits).



24 Chapter 1. Introduction and Preliminaries

adversary

online player

oracle

8

*
* **
* *

algorithm 1

algorithm 2

algorithm 3

algorithm 4

𝑂 = (𝑦1, . . . , 𝑦𝑛)

𝐼, 00

𝐼, 01
𝐼, 10
𝐼, 11

𝜙 = 𝑏1𝑏2

𝐼 = (𝑥1, . . . , 𝑥𝑛)

Figure 1.8. Two advice bits enable the online player to choose the best algorithm out of
four for the instance he receives from the adversary.

Self-Delimiting Codes

In some scenarios, the oracle needs to encode a natural number on the advice tape.
The following observations concerning this topic are taken from [45]. For a natural
number smaller than 𝑛, at most [︂log(𝑛 + 1)⌉︂ bits are necessary to encode 𝑛. We
can simplify this formula if we know that 𝑛 is greater than zero, what usually
happens. Therefore, the oracle can write 𝑛 − 1 to the advice tape using at most
[︂log(𝑛)⌉︂ bits, and the algorithm decodes the depicted number by adding 1 to the
result.
Recall that the advice tape is infinite and the algorithm does not know how long
the online instance is. So, it can only process a constant number of bits per time
step. But, if an algorithm is intended to read as many advice bits from the tape
such that it can learn a natural number 𝑛, the oracle has to somehow delimit the
number of bits on the tape. If the number of bits depends on the length of the
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instance, the oracle has to transmit this to the algorithm by encoding the number 𝑛
in a self-delimiting way.
For small 𝑥, i. e., 𝑥 = 1 or 𝑥 = 2, the first bit of the tape is 0 and the second bit
encodes 𝑥 − 1. For a number 𝑥 ∈ {3, 4, . . . , 𝑛}, the encoding consists of two parts:

• The last [︂log(𝑛)⌉︂ bits encode the number 𝑥, since 𝑚 = [︂log(𝑥)⌉︂ ≤ [︂log(𝑛)⌉︂
holds.

• In the first part of the advice tape, the length 𝑚 of the encoded number 𝑥 is
transmitted using 2 [︂log(𝑚)⌉︂ bits, in the way such that the bits of the binary
representation of 𝑚− 1 are written on odd positions of the tape and the even
positions are 0 as long as the bit right of this 0 still belongs to the binary
representation of 𝑚 − 1. A symbol 1 at an even position indicates that the
binary encoding of 𝑚 has finished.

The whole encoding is summarized in the following lemma.

Lemma 1.25 (Komm [45]). For a strictly positive value 𝑥 ∈ {1, . . . , 𝑛},

max{2, [︂log(𝑛)⌉︂ + 2[︂log ([︂log(𝑛)⌉︂)⌉︂}

bits are sufficient to encode the number 𝑥 in a self-delimiting way. ◻

As an example,

1 0 0 0 1 0 0 1
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

encoding of [︂log(1418)⌉︂ − 1

1 0 1 1 0 0 0 1 0 1 0
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

encoding of 𝑥 − 1 = 1418

encodes the value 𝑥 = 1419. The bold bits in the first part are just there to indicate
where the binary encoding of log(𝑚) terminates.
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Chapter 2
Online Coloring of Graphs

One of the most studied online scenarios is the problem of coloring a graph online.
Here, the vertices of the graph are revealed one after the other, together with the
edges connecting them to the already present vertices. The goal is to assign the
minimum number of colors to these vertices in such a way that no two adjacent
vertices get the same color. As usual in an online setting, each vertex has to be
colored before the next one arrives. For an overview of results on the online graph
coloring problem, see, e. g., [43, 44].

𝑘-Colorable Graphs
It turns out that online coloring is a very hard online optimization problem for
which no constant competitive ratio is possible [33]. For an overview of results on
the online graph coloring problem, see, e. g., [43,44]. In particular, some bounds on
the online chromatic number of the class Γ(𝑘, 𝑛) of 𝑘-colorable graphs on 𝑛 vertices
have been proven: For all 𝑘 and infinitely many 𝑛, there exists a 𝐺 ∈ Γ(𝑘, 𝑛) such
that any online coloring algorithm for 𝐺 needs at least

Ω
⎛

⎝
(

log(𝑛)
4𝑘

)

𝑘−1
⎞

⎠

colors [64]. On the other hand, there exists an online algorithm for coloring any
graph 𝐺 ∈ Γ(𝑘, 𝑛) with

𝑂 (
𝑛 ⋅ log(2𝑘−3)

(𝑛)

log(2𝑘−4)
(𝑛)

)

colors [49], where log(𝑘) is the log-function iterated 𝑘 times.
In [58], the authors consider online graph coloring for all 3-colorable graphs, and
for particular subsets such as chordal graphs and maximal outerplanar graphs.
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For the first two graph classes, the authors show that log(3) bits per vertex are
sufficient and also necessary to produce an optimal coloring online. For maximal
outerplanar graphs, the authors show a lower bound of 1.0424 and an upper bound
of 1.2932 advice bits per vertex. They also develop algorithms for a 4-coloring
in these graph classes. 3-colorable chordal and outerplanar graphs can be solved
using 0.9865 and for general 3-colorable graphs, at most 1.1583 bits per vertex has
to be accessed.

Bipartite Graphs
Even for the very restricted class of bipartite, i. e., two-colorable, graphs, any online
algorithm can be forced to use at least

⟨︀log(𝑛)⧹︀ + 1

colors for coloring some bipartite graph on 𝑛 vertices [5]. On the other hand, an
online algorithm coloring every bipartite graph with at most

2 log(𝑛)

colors is known [49]. In the first part of this chapter, we improve the lower bound
for bipartite graphs to ⟨︀1.13746 ⋅ log(𝑛) − 0.49887⧹︀.
This chapter is organized as follows. In Section 2.1, we formally define the online
coloring problem and fix our notation. In Section 2.2, we consider online algorithms
without advice and present the improved lower bound on the number of necessary
colors for deterministic online coloring algorithms. The proof of this lower bound
is contained in Section 2.3, while Section 2.4 is devoted to the advice complexity
of the online coloring of bipartite graphs. In Section 2.5, we discuss the advice
complexity on paths, cycles, and spider graphs.

2.1 Preliminaries
First, we want to fix our notation and formally define the problem we are dealing
with.

Definition 2.1 (Coloring). Let 𝐺 = (𝑉, 𝐸) be an undirected and unweighted
graph with vertex set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and edge set 𝐸. A (proper) col-
oring of a graph 𝐺 is a function col ∶ 𝑉 → 𝑆 which assigns to every vertex
𝑣𝑖 ∈ 𝑉 a color col(𝑣𝑖) ∈ 𝑆 and has the property that col(𝑣𝑖) ≠ col(𝑣𝑗), for all
𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} with {𝑣𝑖, 𝑣𝑗} ∈ 𝐸.

Usually, we consider the set 𝑆 = {1, 2, . . . , 𝑛} ⊂N+. Let 𝑉 ′ ⊆ 𝑉 , then we denote by
col(𝑉 ′) the set of colors assigned to the vertices in 𝑉 ′. To distinguish the coloring
functions used by different algorithms, we denote, for an algorithm 𝐴, its coloring
function by col𝐴.
With this, we can formally define the online coloring problem.
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Definition 2.2 (Online Coloring Problem).

Input: 𝐺≺ = (𝐺,≺) ∈ 𝒢 with 𝐺 = (𝑉, 𝐸) and 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}.

Output: (𝑐1, 𝑐2, . . . , 𝑐𝑛) ∈ (N
+)𝑛 such that col(𝑣𝑖) = 𝑐𝑖 and col∶𝑉𝑖 →N

+ is a
coloring, for all 𝑖 ∈ {1, 2, . . . , 𝑛}.

Cost: Number of colors used by the coloring.

Goal: Minimum.

The coloring of online graphs 𝐺≺ depends on the used algorithm and the ordering
of the vertices. Therefore, we denote by col𝐴,𝐺≺(𝑉

′) the coloring function of a
given algorithm 𝐴 and an online graph 𝐺≺ ∈ 𝒢𝑛 for the vertex set 𝑉 ′ ⊆ 𝑉𝑛. We
omit the subscript whenever 𝐴 and 𝐺≺ are clear from the context.
In the following, we restrict our attention to the class of bipartite graphs.

Definition 2.3 (BipCol). We denote the subproblem of the online coloring
problem restricted to bipartite input graphs by BipCol.

Recall that, in a bipartite graph 𝐺 = (𝑉, 𝐸), the vertex set 𝑉 can be partitioned into
two subsets, called shores and denoted by 𝑆1(𝐺) and 𝑆2(𝐺), with the property that
the edges in 𝐸 connect only vertices from different shores. We say that a color 𝛼 is
common in a bipartite graph if it appears on both shores of the bipartition.
We want to analyze BipCol, giving bounds on the number of colors used in the
online coloring process. These bounds will always depend on the number 𝑛 of
vertices in the final graph 𝐺≺ = 𝐺≺(︀𝑉𝑛⌋︀. Let 𝐴 be an online coloring algorithm.
We denote by 𝐹𝐴(𝐺

≺) = ⋃︀col𝐴,𝐺≺(𝑉𝑛)⋃︀ the number of colors used by 𝐴 to color the
graph 𝐺. Then, 𝐹𝐴(𝑛) = max𝐺∈𝒢𝑛

𝐹𝐴(𝐺
≺) is the maximum number of colors 𝐴

uses to color any online graph instance with 𝑛 vertices in the final graph 𝐺≺.

Definition 2.4 (Upper Bound). We say that 𝑈 ∶N→N is an upper bound
on the number of colors sufficient for online coloring, if there exists an online
algorithm 𝐴 such that, for all 𝑛 ∈N, we have 𝐹𝐴(𝑛) ≤ 𝑈(𝑛).

Hence, to get an upper bound 𝑈 on the number of used colors, it is sufficient to
find a deterministic online algorithm 𝐴 coloring each graph from 𝒢𝑛 using 𝑈(𝑛)
colors. Similarly, a lower bound is defined.

Definition 2.5 (Lower Bound). A function 𝐿 is a lower bound on the
number of colors necessary for online coloring any graph if, for any online
algorithm 𝐴, there exists an infinite subset 𝑋 ⊆N such that 𝐿∶𝑋 →N and,
for all 𝑛 ∈ 𝑋, we have 𝐿(𝑛) ≤ 𝐹𝐴(𝑛), i. e., if, for every algorithm 𝐴 and for
infinitely many 𝑛, there is an online graph 𝐺≺

𝐴(𝑛) ∈ 𝒢𝑛 for which 𝐴 needs at
least 𝐿(𝑛) colors.
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Figure 2.1. A function �̃�(𝑛) for the lower bound on the number of vertices that are
necessary such that every online algorithm for solving the coloring problem needs at least
𝑛 colors on an instance of size �̃�(𝑛).

Observe that a lower bound 𝐿∶𝑋 →N also implies a lower bound �̃�∶N→N, where
�̃�(𝑛) = 𝐿(𝑚) with 𝑚 = max{𝑘 ∈ 𝑋 ⋃︀ 𝑘 ≤ 𝑛} (see Figure 2.1).

2.2 Online Coloring Without Advice
In this section, we deal with the competitive ratio of deterministic online algorithms
without advice. The following upper bound is well known. We recall the proof since
we need the idea behind the algorithm in the proof later to prove Theorem 2.14.

Theorem 2.6 (Lovász, Saks, and Trotter [49]). There is an online algorithm
using at most [︂2 log(𝑛)⌉︂ colors for coloring any bipartite graph of 𝑛 vertices.

Proof. Let 𝐺≺ be an input instance. We describe an online algorithm 𝐴 that
works as follows: at each step 𝑡, consider the component 𝐶𝑡(𝑣𝑡) containing the last
revealed vertex 𝑣𝑡. If 𝐶𝑡(𝑣𝑡) contains only 𝑣𝑡, i. e., if 𝑣𝑡 was revealed isolated, 𝐴
outputs col𝐴(𝑣𝑡) = 1, otherwise it assigns to 𝑣𝑡 the smallest color not present on
the opposite shore of this component. More formally, assuming 𝑣𝑡 ∈ 𝑆1(𝐶𝑡(𝑣𝑡)), 𝐴
outputs

col𝐴(𝑣𝑡) = min {𝑐 ≥ 1 ⋃︀ 𝑐 ≠ col𝐴(𝑣) for all 𝑣 ∈ 𝑆2(𝐶𝑡(𝑣𝑡))}.

By calling 𝐵(𝑘) the minimum number of vertices required for 𝐴 to output color 𝑘,
we have that 𝐵(2) = 2 and 𝐵(3) = 4 (see Figure 2.2). We inductively show that
𝐵(𝑘) ≥ 2 𝑘

2 , which implies that, on an instance of 𝑛 vertices, 𝐴 uses at most 2 log(𝑛)
colors.
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If col𝐴(𝑣𝑡) = 𝑘 and 𝑣𝑡 ∈ 𝑆1(𝐶𝑡(𝑣𝑡)), it means that on the shore 𝑆2(𝐶𝑡(𝑣𝑡)) all
colors from 1 to 𝑘 − 1 are present. Similarly, since color 𝑘 − 1 was assigned to some
vertex in 𝑆2(𝐶𝑡(𝑣𝑡)), then on the shore 𝑆1(𝐶𝑡(𝑣𝑡)) all colors from 1 to 𝑘 − 2 are
present. Since there are two vertices 𝑣𝑝 ∈ 𝑆1(𝐶𝑡(𝑣𝑡)) and 𝑣𝑞 ∈ 𝑆2(𝐶𝑡(𝑣𝑡)) such that
col𝐴(𝑣𝑝) = col𝐴(𝑣𝑞) = 𝑘 − 2, the only way 𝐴 would assign that color is if 𝑣𝑝 and
𝑣𝑞 were on two different components of 𝐺𝑟, where 𝑟 = max{𝑝, 𝑞}. By induction
hypothesis, each of these components must have at least 2 𝑘−2

2 vertices, therefore
𝐵(𝑘) ≥ 2 ⋅ 2 𝑘−2

2 = 2 𝑘
2 . ◻

There is also a well-known lower bound which even holds for trees. The idea of the
construction of the instances in the following proof will also be used later to prove
Lemma 2.8.

Theorem 2.7 (Bean [5]). For every online coloring algorithm 𝐴 and every 𝑘 ∈

N+, there exists a tree 𝑇 ≺
𝑘 on 2𝑘−1 vertices such that col𝐴(𝑇 ≺

𝑘 ) ≥ 𝑘.

Proof. The class of trees 𝑇 ≺
𝑘 for which every deterministic online coloring algo-

rithm 𝐴 has to use at least 𝑘 colors to color this tree, is built recursively.
Starting with a tree 𝑇 ≺

1 containing only one vertex, the adversary can force every
algorithm 𝐴 to use one color. In a tree 𝑇 ≺

2 on two vertices which are connected by
an edge, every algorithm has to use two colors. Therefore, 𝑇 ≺

2 contains, for every
online algorithm 𝐴, one color that does not appear in 𝑇 ≺

1 .
To force a third color, the adversary introduces a new vertex which is connected
to 𝑇 ≺

1 and the vertex with a different color in 𝑇 ≺
2 . Therefore, every algorithm has

to use a new color. Since the new vertex is only connected to one vertex in each
subtree, there cannot arise a cycle.
In general, the adversary designs the tree 𝑇 ≺

𝑘 recursively, using all the trees 𝑇 ≺
1

to 𝑇 ≺
𝑘−1 such that a new vertex that is connected to one vertex in each subtree

such that the new vertex has neighbors with 𝑘 − 1 different colors. This is always
possible, since 𝑇𝑖+1 has always at least one color which is not present in 𝑇𝑖, for
all 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}. Therefore, the new vertex receives a 𝑘th color for every
algorithm 𝐴. In Figure 2.2, some base cases and the general construction are shown.

Due to the recursive construction, the number of vertices in 𝑇 ≺
𝑘 is given by

⋃︀𝑉 (𝑇 ≺
𝑘 )⋃︀ = 1 +

𝑘−1
∑
𝑖=1

⋃︀𝑉 (𝑇 ≺
𝑖 )⋃︀ .

We show that ⋃︀𝑉 (𝑇 ≺
𝑘 )⋃︀ = 2𝑘−1. Let 𝑡𝑘 = ⋃︀𝑉 (𝑇 ≺

𝑘 )⋃︀ be the number of vertices in
the online tree 𝑇 ≺

𝑘 constructed as shown above. Subtracting the equation 𝑡𝑘−1 =

1 +∑𝑘−2
𝑖=1 𝑡𝑖 from 𝑡𝑘 = 1 +∑𝑘−1

𝑖=1 𝑡𝑖 yields

𝑡𝑘 − 𝑡𝑘−1 = 𝑡𝑘−1 ,

and therefore, we get the recursion 𝑡𝑘 = 2𝑡𝑘−1. The starting condition 𝑡1 = 1
immediately leads to the claimed 2𝑘−1 vertices in a tree 𝑇 ≺

𝑘 . ◻
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𝑣11

1 color

𝑣11

𝑣22

2 colors

𝑣11 𝑣2 1

𝑣3 2

𝑣43

3 colors

𝑣11 𝑣2 1

𝑣3 2

𝑣4 1 𝑣5 1

𝑣6 2

𝑣7 3
𝑣84

4 colors

𝑇 ≺1

1

𝑇 ≺2

2
𝑇 ≺3

3
. . . 𝑇 ≺𝑘−1

𝑘 − 1

𝑣8𝑘

k colors

Figure 2.2. The construction of the trees 𝑇 ≺𝑘 in Theorem 2.7 which contain at least
𝑘 colors, independent of the chosen deterministic online coloring algorithm 𝐴. To build a
tree 𝑇 ≺𝑘 , a vertex is connected to one vertex of each tree 𝑇 ≺𝑖 for all 𝑖 < 𝑘. Each of these
trees 𝑇 ≺𝑖+1 contains at least one color not contained in the smaller tree 𝑇 ≺𝑖 .

Theorem 2.7 immediately implies that there exists an infinite number of trees (and
thus of bipartite graphs) forcing any online algorithm to use at least [︂log(𝑛)⌉︂ + 1
colors on any graph on 𝑛 vertices from this class. In the remainder of this section,
we improve on this result by describing a graph class, which forces every coloring
algorithm 𝐴 to use even more colors on infinitely many graphs of the class. This
class is built recursively. In the proof, we will focus, for a fixed deterministic online
coloring algorithm 𝐴, only on those 𝐺≺(︀𝑉𝑖⌋︀’s in an instance 𝐺≺ ∈ 𝒢𝑛 in which the
new vertex 𝑣𝑖 gets a new color with respect to the previous graph 𝐺≺(︀𝑉𝑖−1⌋︀.

Lemma 2.8. For every 𝑘 ∈N+ and every online coloring algorithm 𝐴, there exists
an online graph 𝐺≺

𝐴(𝑘) such that:

1. 𝐹𝐴(𝐺
≺
𝐴(𝑘)) ≥ 𝑘,

2. 𝐹𝐴(𝑆1(𝐺
≺
𝐴(𝑘))) ≥ 𝑘 − 2,

3. 𝐹𝐴(𝑆2(𝐺
≺
𝐴(𝑘))) ≥ 𝑘 − 1,

4. ⋃︀𝑉 (𝐺≺
𝐴(𝑘))⋃︀ ≤ 𝑊 (𝑘) ∶= 𝑊 (𝑘 − 1) + 𝑊 (𝑘 − 2) + 𝑊 (𝑘 − 3) + 1, for 𝑘 ≥ 3, and

𝑊 (0) = 0, 𝑊 (1) = 1, and 𝑊 (2) = 2.

Consequently, 𝑊 (𝑘) is the maximum number of vertices that a graph needs in
order to force an arbitrary algorithm 𝐴 to use at least 𝑘 colors.
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We will prove Lemma 2.8 in the following section. The recurrence given by
property 4 of Lemma 2.8 can be resolved as follows.
Lemma 2.9. Let 𝑊 (𝑘) be defined as in Lemma 2.8. Then,

𝑊 (𝑘) ≤ 1.35527 ⋅ 1.83929𝑘
− 0.400611 .

Proof. It can be easily shown by induction that 𝑊 (𝑘) = ∑
𝑘+1
𝑛=0 𝑇 (𝑛), where 𝑇 (𝑛) is

the n-th Tribonacci number (see Definition 1.1) defined as

𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑇 (𝑛 − 2) + 𝑇 (𝑛 − 3)

for an integer 𝑛 > 2 and 𝑇 (0) = 𝑇 (1) = 0, 𝑇 (2) = 1.
Base cases: We need to show that the equality holds for 𝑘 = 0, 1, 2:

0 = 𝑊 (0) =
1
∑
𝑛=0

𝑇 (𝑛) = 𝑇 (0) + 𝑇 (1) = 0 + 0 ✓

1 = 𝑊 (1) =
2
∑
𝑛=0

𝑇 (𝑛) = 𝑇 (0) + 𝑇 (1) + 𝑇 (2) = 0 + 0 + 1 = 1 ✓

2 = 𝑊 (2) =
3
∑
𝑛=0

𝑇 (𝑛) = 𝑇 (0) + 𝑇 (1) + 𝑇 (2) + 𝑇 (3) = 0 + 0 + 1 + 1 = 2 ✓

Inductive step: Assume that 𝑊 (𝑖) = ∑
𝑖+1
𝑛=0 𝑇 (𝑛) holds for all 𝑖 < 𝑘. Then, we can

compute 𝑊 (𝑘) as follows.

𝑊 (𝑘) = 𝑊 (𝑘 − 1) +𝑊 (𝑘 − 2) +𝑊 (𝑘 − 3) + 1

=
𝑘

∑
𝑛=0

𝑇 (𝑛) +
𝑘−1
∑
𝑛=0

𝑇 (𝑛) +
𝑘−2
∑
𝑛=0

𝑇 (𝑛) + 1

= (𝑇 (𝑘) + 𝑇 (𝑘 − 1) + 𝑇 (𝑘 − 2))
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

𝑇 (𝑘+1)

+ (𝑇 (𝑘 − 1) + 𝑇 (𝑘 − 2) + 𝑇 (𝑘 − 3))
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

𝑇 (𝑘)

+ . . . + (𝑇 (2) + 𝑇 (1) + 𝑇 (0))
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

𝑇 (3)

+𝑇 (1) + 𝑇 (0) + 𝑇 (0)
⧹︀

=0

+ 1
⟩︀

=𝑇 (2)

= 𝑇 (𝑘 + 1) + 𝑇 (𝑘) + . . . + 𝑇 (3) + 𝑇 (2) + 𝑇 (1) + 𝑇 (0)

=
𝑘+1
∑
𝑛=0

𝑇 (𝑛)

The number 𝑇 (𝑛) can be computed as follows (see Equation 1.1 of Chapter 1):

𝑇 (𝑛) = 3𝑏 ⋅
( 1

3(𝑎+ + 𝑎− + 1))𝑛

𝑏2 − 2𝑏 + 4
≤ 0.336229 ⋅ 1.83929𝑛,

where 𝑎+ = (19 + 3
⌋︂

33) 1
3 , 𝑎− = (19 − 3

⌋︂
33) 1

3 , and 𝑏 = (586 + 102
⌋︂

33) 1
3 . Summing

up the values of 𝑇 (𝑛) for 𝑛 ∈ {0, . . . , 𝑘 + 1} gives the claimed result. ◻
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Theorem 2.10. For any online coloring algorithm 𝐴, there exists an infinite
sequence of online graphs 𝐺≺

𝐴(𝑘) ∈ 𝒢𝑛𝑘
with 𝑛𝑘 < 𝑛𝑘+1 for all 𝑘 ∈ N such that 𝐴

needs at least
⟨︀1.13746 ⋅ log(𝑛𝑘) − 0.49887⧹︀

colors to color 𝐺≺
𝐴(𝑘).

Proof. The claim follows immediately from Lemma 2.8 and Lemma 2.9 by resolving
the following inequality for 𝑘:

𝑛𝑘 ≤ 1.35527 ⋅ 1.83929𝑘 .

Taking the logarithm on both sides yields

log(𝑛𝑘) ≤ log(1.35527) + 𝑘 ⋅ log(1.83929) ,

and resolving for 𝑘 gives

𝑘 ≥
log(𝑛𝑘) − log(1.35527)

log(1.83929)
= 1.13746 ⋅ log(𝑛𝑘) − 0.49887 .

◻

2.3 Proof of Lemma 2.8
In this section, we prove Lemma 2.8. We proceed by an induction over 𝑘, the
number of colors. For every 𝑘, we generate a class 𝒢(𝑘) consisting of online graphs
defined as

𝒢(𝑘) = {𝐺≺
𝐵(𝑘) ⋃︀ 𝐵 is an online coloring algorithm and

properties 1 to 4 of Lemma 2.8 are satisfied} .

Hence, for a fixed 𝑘, we will find in 𝒢(𝑘), for every online coloring algorithm 𝐵,
an instance 𝐺≺

𝐵(𝑘) that forces 𝐵 to use at least 𝑘 colors to color 𝐺≺
𝐵(𝑘). Those

instances are built inductively. We will prove that we can construct, for any
online coloring algorithm 𝐴, a hard instance 𝐺≺

𝐴(𝑘), using three online graphs
𝐺≺

𝑘−1 ∈ 𝒢(𝑘 − 1), 𝐺≺
𝑘−2 ∈ 𝒢(𝑘 − 2), 𝐺≺

𝑘−3 ∈ 𝒢(𝑘 − 3), that are revealed in this order,
and an additional vertex 𝑣 (see Figure 2.3).
Let 𝐻(𝑘) be the induction hypothesis, formulated as follows:

𝐻(𝑘): For all 𝑗 ≤ 𝑘 and all online algorithms 𝐵, there exists
a graph 𝐺≺

𝐵(𝑗) ∈ 𝒢(𝑗).

Assuming 𝐻(𝑘−1) holds, the hypothesis states that, for every online algorithm 𝐴, a
graph 𝐺≺

𝑘−1 = 𝐺≺
𝐴(𝑘 − 1) ∈ 𝒢(𝑘 − 1) satisfying all the properties of Lemma 2.8 exists.

To show the existence of the second and third constructed subgraph, 𝐺≺
𝑘−2 ∈ 𝒢(𝑘−2)
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≥ 𝑘 − 3 colors

≥ 𝑘 − 2 colors

𝐺≺𝑘−1:

≥ 𝑘 − 4

≥ 𝑘 − 3

𝐺≺𝑘−2:

≥ 𝑘 − 5

≥ 𝑘 − 4

𝐺≺𝑘−3:

1

𝑣:

≥ 𝑘 − 2 colors

≥ 𝑘 − 1 colors

𝐺≺𝐴(𝑘):

⇓

Figure 2.3. Using three online graphs 𝐺≺𝑘−1 ∈ 𝒢(𝑘 − 1), 𝐺≺𝑘−2 ∈ 𝒢(𝑘 − 2), 𝐺≺𝑘−3 ∈ 𝒢(𝑘 − 3)
and a vertex 𝑣, we can construct, for any online algorithm 𝐴, a new online graph
𝐺≺𝐴(𝑘) ∈ 𝒢(𝑘).

and 𝐺≺
𝑘−3 ∈ 𝒢(𝑘 − 3), we have to take into account that the algorithm 𝐴 already

knows a part of the instance, and hence it may behave differently from the case
where there is no part known.
We merge the shores of 𝐺≺

𝑘−1, 𝐺≺
𝑘−2, and 𝐺≺

𝑘−3 in an appropriate way and, using an
additional vertex 𝑣, we ensure that the resulting graph 𝐺≺

𝐴(𝑘) is in 𝒢(𝑘). In some
cases, we do not need all four components to guarantee that all four properties of
Lemma 2.8 are satisfied.
We merge two online graph instances 𝐺≺(︀𝑉 ⌋︀ = (𝐺,≺) ∈ 𝒢 with 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}

and 𝐺
≺
(︀𝑉 ′⌋︀ = (𝐺′,≺) ∈ 𝒢 with 𝑉 ′ = {𝑣′1, 𝑣′2, . . . , 𝑣′𝑚} to an instance 𝑀≺(︀𝑉 ′′⌋︀ =

𝐺≺(︀𝑉 ⌋︀ ○𝐺
≺
(︀𝑉 ′⌋︀, defined as

𝑀≺
(︀𝑉 ′′

⌋︀ = (𝐺 ∪𝐺′,≺) ∈ 𝒢 ,

where, for two graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) with 𝑉 ∩ 𝑉 ′ = ∅, 𝐺 ∪ 𝐺′ is
defined as the graph (𝑉 ′′ = {𝑣1, . . . , 𝑣𝑛, 𝑣′1, . . . , 𝑣′𝑚}, 𝐸 ∪𝐸′) and 𝑣𝑛 ≺ 𝑣′1.

Base Cases (𝑘 ≤ 3)
For 𝑘 ∈ {0, 1, 2}, it is easy to see that the hypothesis 𝐻(𝑘) is satisfied (see Figure 2.4).
In case 𝑘 = 3, for every online coloring algorithm 𝐴, 𝐺≺

𝐴(3) can be constructed
recursively using two graphs 𝐺≺

2 ∈ 𝒢(2), 𝐺≺
1 ∈ 𝒢(1), and possibly a new vertex.

The vertices of 𝐺≺
2 = 𝐺≺

𝐴(3)(︀{𝑣1, 𝑣2}⌋︀ are colored, w.l.o.g., with 1 and 2, and
𝐺≺

1 = 𝐺≺
𝐴(3)(︀{𝑣3}⌋︀ can be colored, w.l.o.g., with 1, 2 or 3 (see Figure 2.5).
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𝑣11

𝑣22

(b) Case 𝑘 = 2

𝑣11

(a) Case 𝑘 = 1

Figure 2.4. Base cases: W.l.o.g., the vertices are colored as indicated. The indices of
the vertices indicate their order of appearance.

𝑣1

1

𝑣2

2
𝑣3

1

𝑣4

3
𝑆1

𝑆2

(a) col(𝑣3) = 1

𝑣1

1

𝑣2

2
𝑣4

3

𝑣3

2
𝑆1

𝑆2

(b) col(𝑣3) = 2

𝑣1

1

𝑣2

2
𝑣3

3

𝑆1

𝑆2

(c) col(𝑣3) = 3

Figure 2.5. Case 𝑘 = 3: For any behaviour of an algorithm 𝐴, we can construct the
graph 𝐺≺𝐴(3) using graphs 𝐺≺2 = 𝐺≺𝐴(3)(︀{𝑣1, 𝑣2}⌋︀ ∈ 𝒢(2) and 𝐺≺1 = 𝐺≺𝐴(3)(︀{𝑣3}⌋︀ ∈ 𝒢(1)
that force 𝐴 to use a third color.

If the algorithm colors 𝑣1, 𝑣2, and 𝑣3 with different colors, as shown in case (c) of
Figure 2.5, obviously all properties of 𝐻(3) are already satisfied. Otherwise, we
have to add one new vertex 𝑣4, which is connected to two vertices with different
colors to force every online coloring algorithm 𝐴 to use a third color (see (a) and
(b) of Figure 2.5).

Inductive Step (𝑘 ≥ 4)
For every online algorithm 𝐴 and every 𝑘 ∈N+, we construct 𝐺≺

𝐴(𝑘) in four steps
using three graphs 𝐺≺

𝑘−1 ∈ 𝒢(𝑘 − 1), 𝐺≺
𝑘−2 ∈ 𝒢(𝑘 − 2), 𝐺≺

𝑘−3 ∈ 𝒢(𝑘 − 3), and an
additional vertex 𝑣.
First, assuming that 𝐻(𝑘 − 1) holds, we show that, for every algorithm 𝐴, we
can construct three graphs 𝐺≺

𝑘−1, 𝐺≺
𝑘−2, and 𝐺≺

𝑘−3 in this order satisfying all the
properties of Lemma 2.8. Then, we show that we can merge them, using an
additional vertex 𝑣, to a graph 𝐺≺

𝐴(𝑘) ∈ 𝒢(𝑘).

Existence of the graphs 𝐺≺
𝑘−1, 𝐺≺

𝑘−2, and 𝐺≺
𝑘−3

We assume that 𝐻(𝑘 − 1) holds. Hence, for every online coloring algorithm 𝐵 and
𝑗 ∈ {𝑘 − 1, 𝑘 − 2, 𝑘 − 3}, there exists a graph 𝐺≺

𝐵(𝑗) ∈ 𝒢(𝑗).

Step 1: Because of 𝐻(𝑘 − 1), we know that a graph 𝐺≺
𝑘−1 = 𝐺≺

𝐴(𝑘 − 1) exists.
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≥ 𝑘 − 2

≥ 𝑘 − 1

Case A)

𝑘 − 3

≥ 𝑘 − 1

Case B)

≥ 𝑘 − 2

𝑘 − 2

Case C)

𝑘 − 3

𝑘 − 2

Case D)

𝑆1(𝐺
≺

𝑘−1):

𝑆2(𝐺
≺

𝑘−1):

Figure 2.6. There are four cases how the colors in 𝐺≺𝑘−1 can be distributed.

Step 2: In the next phase, algorithm 𝐴 receives a second subgraph. We cannot
simply use the graph 𝐺≺

𝐴(𝑘 − 2) here, whose existence is guaranteed by
𝐻(𝑘 − 2), since 𝐻(𝑘 − 2) guarantees the hardness of this input only in the
case that 𝐴 reads it from its initial configuration. Having already read
𝐺≺

𝑘−1, 𝐴 might behave differently on 𝐺≺
𝐴(𝑘 − 2). We denote by 𝐴⋃︀𝐺≺

𝑘−1
the

work of algorithm 𝐴 having already processed the graph 𝐺≺
𝑘−1. 𝐴⋃︀𝐺≺

𝑘−1
can

be simulated by an algorithm 𝐵, which does the same work as 𝐴⋃︀𝐺≺
𝑘−1

but
which did not receive any other graph before. In other words, if we think
of the algorithms as Turing machines, 𝐵 uses the same transitions as 𝐴,
but its initial configuration (state and tape content) is the same as the
configuration reached by 𝐴 after processing 𝐺≺

𝑘−1. Because of 𝐻(𝑘 − 1), and
thus 𝐻(𝑘 − 2), we know that, for such an algorithm 𝐵, there is a graph
𝐺≺

𝑘−2 = 𝐺≺
𝐵(𝑘 − 2) = 𝐺≺

𝐴⋃︀𝐺≺
𝑘−1

(𝑘 − 2) ∈ 𝒢(𝑘 − 2).

Step 3: Now, algorithm 𝐴 gets a third subgraph. Again, the work of 𝐴⋃︀𝐺≺
𝑘−1○𝐺≺

𝑘−2
can be simulated by an algorithm 𝐶. Because of the induction hypothesis, a
graph 𝐺≺

𝑘−3 = 𝐺≺
𝐶(𝑘 − 3) = 𝐺≺

𝐴⋃︀𝐺≺
𝑘−1○𝐺≺

𝑘−2
(𝑘 − 3) exists.

Hence, we have the graphs 𝐺≺
𝑘−1, 𝐺≺

𝑘−2, and 𝐺≺
𝑘−3 at our disposal and can force a

new color, possibly with the help of an additional vertex 𝑣, as follows.

Construction of graph 𝐺≺
𝐴(𝑘)

The graphs 𝐺≺
𝑘−1, 𝐺≺

𝑘−2, and 𝐺≺
𝑘−3 are presented in this order. Beginning with graph

𝐺≺
𝑘−1, we distinguish four possible cases for an online algorithm 𝐴 (see Figure 2.6):

A) 𝐴 uses, w.l.o.g., ≥ 𝑘 − 2 colors on 𝑆1(𝐺
≺
𝑘−1) and ≥ 𝑘 − 1 colors on 𝑆2(𝐺

≺
𝑘−1).

B) 𝐴 uses, w.l.o.g., 𝑘 − 3 colors on 𝑆1(𝐺
≺
𝑘−1) and ≥ 𝑘 − 1 colors on 𝑆2(𝐺

≺
𝑘−1).

C) 𝐴 uses, w.l.o.g., ≥ 𝑘 − 2 colors on 𝑆1(𝐺
≺
𝑘−1) and 𝑘 − 2 colors on 𝑆2(𝐺

≺
𝑘−1).

D) 𝐴 uses 𝑘 − 3 colors on 𝑆1(𝐺
≺
𝑘−1) and 𝑘 − 2 colors on 𝑆2(𝐺

≺
𝑘−1).
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Since 𝐻(𝑘−1) holds, graph 𝐺≺
𝑘−1 is colored by algorithm 𝐴 with at least 𝑘−1 colors,

and 𝑆1(𝐺
≺
𝑘−1) contains at least 𝑘 − 3 and 𝑆2(𝐺

≺
𝑘−1) at least 𝑘 − 2 colors. Therefore,

after constructing 𝐺≺
𝑘−1, the algorithm 𝐴 encounters one of the four cases above.

To finish the construction, we have to ensure that the final graph contains at least
𝑘 colors. If this is not yet the case for 𝐺≺

𝑘−1, we need to force the algorithm to use
a new color 𝑘.
We will show that, in order to satisfy the properties 2 and 3 of Lemma 2.8, either
the graphs 𝐺≺

𝑘−2 and 𝐺≺
𝑘−3 contain some of the colors that appear only on one

shore of 𝐺≺
𝑘−1, or there are enough additional colors in 𝐺≺

𝑘−2 and 𝐺≺
𝑘−3, which do

not appear in 𝐺≺
𝑘−1. Only in some cases will we need all three graphs 𝐺≺

𝑘−1, 𝐺≺
𝑘−2,

𝐺≺
𝑘−3 and the vertex 𝑣. In many cases, a subset of those graphs is sufficient to

construct a graph 𝐺≺
𝐴(𝑘) ∈ 𝒢(𝑘).

A) ⋃︀col(𝑆1(𝐺
≺
𝑘−1))⋃︀ ≥ 𝑘 − 2 and ⋃︀col(𝑆2(𝐺

≺
𝑘−1))⋃︀ ≥ 𝑘 − 1

If the graph 𝐺≺
𝑘−1 contains at least 𝑘 colors, properties 1, 2, and 3 of Lemma 2.8

are satisfied. Furthermore, we have

⋃︀𝑉 (𝐺≺
𝐴(𝑘))⋃︀ = ⋃︀𝑉 (𝐺≺

𝑘−1)⋃︀ ≤ 𝑊 (𝑘 − 1) ≤ 𝑊 (𝑘 − 1)+𝑊 (𝑘 − 2)+𝑊 (𝑘 − 3)+ 1 = 𝑊 (𝑘) .

Hence, all the properties of Lemma 2.8 are satisfied and we can finish the construc-
tion without using additional subgraphs.
Now, assume 𝐺≺

𝑘−1 contains only 𝑘 − 1 colors. To satisfy property 1, we need to
force every algorithm to use one more color. Connecting an additional vertex 𝑣 to
all vertices in 𝑆2(𝐺

≺
𝑘−1), and thus adding it to 𝑆1(𝐺

≺
𝑘−1), forces the algorithm to

use color 𝑘:
1 2 . . . 𝑘 − 2

1 2 . . . 𝑘 − 2 𝑘 − 1

𝑘col(𝑆1(𝐺
≺

𝑘−1) ∪ {𝑣}) ∶

col(𝑆2(𝐺
≺

𝑘−1)) ∶

We have

⋃︀𝑉 (𝐺≺
𝐴(𝑘))⋃︀ = ⋃︀𝑉 (𝐺≺

𝑘−1)⋃︀ + 1 ≤ 𝑊 (𝑘 − 1) + 1
≤ 𝑊 (𝑘 − 1) +𝑊 (𝑘 − 2) +𝑊 (𝑘 − 3) + 1 = 𝑊 (𝑘)

and therefore all properties of Lemma 2.8 are satisfied.

B) ⋃︀col(𝑆1(𝐺
≺
𝑘−1))⋃︀ = 𝑘 − 3 and ⋃︀col(𝑆2(𝐺

≺
𝑘−1))⋃︀ ≥ 𝑘 − 1

Because we assume that the induction hypothesis holds, 𝐺≺
𝑘−2 is colored by algorithm

𝐴 with at least 𝑘−2 colors. Therefore, there exists, w.l.o.g., a color 𝑎 ∈ col(𝑆1(𝐺
≺
𝑘−2))

such that 𝑎 ∉ col(𝑆1(𝐺
≺
𝑘−1)). Hence, merging 𝐺≺

𝑘−1 and 𝐺≺
𝑘−2 such that color 𝑎 is

added to shore 𝑆1, we obtain an analogous situation as in case A):

1 2 . . . 𝑘 − 3 𝑎

1 2 . . . 𝑘 − 2 𝑘 − 1

col(𝑆1(𝐺
≺

𝑘−1) ∪ 𝑆1(𝐺
≺

𝑘−2)) ∶

col(𝑆2(𝐺
≺

𝑘−1) ∪ 𝑆2(𝐺
≺

𝑘−2)) ∶
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C) ⋃︀col(𝑆1(𝐺
≺
𝑘−1))⋃︀ ≥ 𝑘 − 2 and ⋃︀col(𝑆2(𝐺

≺
𝑘−1))⋃︀ = 𝑘 − 2

If ⋃︀col(𝑆1(𝐺
≺
𝑘−1))⋃︀ ≥ 𝑘 − 1 holds, we can swap the shores and obtain case A).

Therefore, we can assume that ⋃︀col(𝑆1(𝐺
≺
𝑘−1))⋃︀ = 𝑘 − 2.

Because 𝐺≺
𝑘−1 is colored with at least 𝑘 − 1 colors, its shores can have at most 𝑘 − 3

common colors:
1 2 . . . 𝑘 − 3 𝑏

1 2 . . . 𝑘 − 3 𝑎

col(𝑆1(𝐺
≺

𝑘−1)) ∶

col(𝑆2(𝐺
≺

𝑘−1)) ∶

Hence, 𝐺≺
𝑘−2 has to contain either color 𝑎, 𝑏 or a new color 𝑐 ∉ col(𝐺≺

𝑘−1), w.l.o.g.
𝑏 ∈ col(𝑆1(𝐺

≺
𝑘−2)) or 𝑐 ∈ col(𝑆1(𝐺

≺
𝑘−2)). Merging 𝐺≺

𝑘−1 and 𝐺≺
𝑘−2 in an appropriate

way leads again to a situation as in case A):

1 2 . . . 𝑘 − 3 𝑏

1 2 . . . 𝑘 − 3 𝑎 𝑏

1 2 . . . 𝑘 − 3 𝑏

1 2 . . . 𝑘 − 3 𝑎 𝑐or

col(𝑆1(𝐺
≺

𝑘−1) ∪ 𝑆2(𝐺
≺

𝑘−2)) ∶

col(𝑆2(𝐺
≺

𝑘−1) ∪ 𝑆1(𝐺
≺

𝑘−2)) ∶

D) ⋃︀col(𝑆1(𝐺
≺
𝑘−1))⋃︀ = 𝑘 − 3 and ⋃︀col(𝑆2(𝐺

≺
𝑘−1))⋃︀ = 𝑘 − 2

The shores of 𝐺≺
𝑘−1 contain at most 𝑘 − 4 common colors since we have to have at

least 𝑘 − 1 colors in total:
1 2 . . . 𝑘 − 4 𝑐

1 2 . . . 𝑘 − 4 𝑎 𝑏

col(𝑆1(𝐺
≺

𝑘−1)) ∶

col(𝑆2(𝐺
≺

𝑘−1)) ∶

To satisfy all properties of Lemma 2.8, we need either one additional color on each
shore or two additional colors in 𝑆1(𝐺

≺
𝑘−1). And we have to force a new color 𝑘 for

the construction of graph 𝐺≺
𝐴(𝑘). We distinguish five cases according to the sets of

colors present in 𝐺≺
𝑘−2 and 𝐺≺

𝑘−3:

1. There are 𝑑 ∈ col(𝐺≺
𝑘−2) and 𝑒 ∈ col(𝐺≺

𝑘−3) with 𝑑, 𝑒 ∉ col(𝐺≺
𝑘−1):

W.l.o.g., 𝑑 ∈ col(𝑆1(𝐺
≺
𝑘−2)) and 𝑒 ∈ col(𝑆1(𝐺

≺
𝑘−3)). Then the following com-

bination of the shores leads to 𝐺≺
𝐴(𝑘) ∈ 𝒢(𝑘):

1 2 . . . 𝑘 − 4 𝑐 𝑑

1 2 . . . 𝑘 − 4 𝑎 𝑏 𝑒

col(𝑆1(𝐺
≺

𝑘−1) ∪ 𝑆1(𝐺
≺

𝑘−2) ∪ 𝑆2(𝐺
≺

𝑘−3)) ∶

col(𝑆2(𝐺
≺

𝑘−1) ∪ 𝑆2(𝐺
≺

𝑘−2) ∪ 𝑆1(𝐺
≺

𝑘−3)) ∶

The number of colors in 𝑆1(𝐺
≺
𝐴(𝑘)) is larger than 𝑘 − 2 and in 𝑆2(𝐺

≺
𝐴(𝑘)) it

is larger than 𝑘 − 1. The total number of colors is at least 𝑘 (in the case of
𝑑 ≠ 𝑒 we have at least 𝑘 + 1 colors). And with

⋃︀𝑉 (𝐺≺
𝐴(𝑘))⋃︀ = ⋃︀𝑉 (𝐺≺

𝑘−1)⋃︀ + ⋃︀𝑉 (𝐺≺
𝑘−2)⋃︀ + ⋃︀𝑉 (𝐺≺

𝑘−3)⋃︀

≤ 𝑊 (𝑘 − 1) +𝑊 (𝑘 − 2) +𝑊 (𝑘 − 3) ≤ 𝑊 (𝑘) ,

we have 𝐺≺
𝐴(𝑘) ∈ 𝒢(𝑘).
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2. col (𝐺≺
𝑘−2) ⊆ col(𝐺≺

𝑘−1) and one new color 𝑒 ∈ col(𝐺≺
𝑘−3) ∖ col(𝐺≺

𝑘−1):
Since 𝐺≺

𝑘−2 contains at least 𝑘 − 2 colors and it is colored with a subset of
colors of 𝐺≺

𝑘−1, it has to contain at least one color from the set {𝑎, 𝑏}, say
𝑎 ∈ 𝑆1(𝐺

≺
𝑘−2) and 𝑒 ∈ col(𝑆1(𝐺

≺
𝑘−3)). Then we get

1 2 . . . 𝑘 − 4 𝑐 𝑎

1 2 . . . 𝑘 − 4 𝑎 𝑏 𝑒

col(𝑆1(𝐺
≺

𝑘−1) ∪ 𝑆1(𝐺
≺

𝑘−2) ∪ 𝑆2(𝐺
≺

𝑘−3)) ∶

col(𝑆2(𝐺
≺

𝑘−1) ∪ 𝑆2(𝐺
≺

𝑘−2) ∪ 𝑆1(𝐺
≺

𝑘−3)) ∶

Then 𝐺≺
𝐴(𝑘) ∈ 𝒢(𝑘) since

⋃︀𝑉 (𝐺≺
𝐴(𝑘))⋃︀ = ⋃︀𝑉 (𝐺≺

𝑘−1)⋃︀ + ⋃︀𝑉 (𝐺≺
𝑘−2)⋃︀ + ⋃︀𝑉 (𝐺≺

𝑘−3)⋃︀

≤ 𝑊 (𝑘 − 1) +𝑊 (𝑘 − 2) +𝑊 (𝑘 − 3) ≤ 𝑊 (𝑘) .

3. col (𝐺≺
𝑘−3) ⊆ col(𝐺≺

𝑘−1) and one new color 𝑑 ∈ col (𝐺≺
𝑘−2)∖ col(𝐺≺

𝑘−1):
With the same argumentation as above, we conclude that 𝐺≺

𝑘−3 must contain
at least one of the colors {𝑎, 𝑏, 𝑐}. Then, we have the same situation as in
the case before (in the case of 𝑐 ∈ col(𝐺≺

𝑘−3), the merging of the shores is
reversed).

In the following cases, we can assume that

col(𝐺≺
𝑘−2) ⊆ col(𝐺≺

𝑘−1) and col(𝐺≺
𝑘−3) ⊆ col(𝐺≺

𝑘−1) .

Because 𝐺≺
𝑘−3 is colored with at least 𝑘−3 colors, it contains one of the three colors

{𝑎, 𝑏, 𝑐}. Analogously, 𝐺≺
𝑘−2 contains two of the three colors {𝑎, 𝑏, 𝑐}. Then, either

𝑐 appears in one of the graphs 𝐺≺
𝑘−2 or 𝐺≺

𝑘−3, or one of the colors {𝑎, 𝑏} is in 𝐺≺
𝑘−3

and both 𝑎 and 𝑏 are in 𝐺≺
𝑘−2:

4. 𝑐 ∈ col (𝐺≺
𝑘−2)∪ col(𝐺≺

𝑘−3):
W.l.o.g. , assume 𝑐 ∈ col(𝑆1(𝐺

≺
𝑘−2)). The other cases are analogous.

1 2 . . . 𝑘 − 4 𝑐

1 2 . . . 𝑘 − 4 𝑎 𝑏 𝑐

col(𝑆1(𝐺
≺

𝑘−1) ∪ 𝑆2(𝐺
≺

𝑘−2)) ∶

col(𝑆2(𝐺
≺

𝑘−1) ∪ 𝑆1(𝐺
≺

𝑘−2)) ∶

𝑆1(𝐺
≺
𝑘−1) ∪ 𝑆2(𝐺

≺
𝑘−2) contains at least 𝑘 − 3 colors and 𝑆2(𝐺

≺
𝑘−1) ∪ 𝑆1(𝐺

≺
𝑘−2)

consists of at least 𝑘 − 1 colors. The 𝑘-th color, say color 𝑘, can be forced
by adding a new vertex 𝑣, which is connected to all vertices in 𝑆2(𝐺

≺
𝑘−1) ∪

𝑆1(𝐺
≺
𝑘−2). Then, the resulting graph 𝐺≺

𝐴(𝑘) will look as follows:

1 2 . . . 𝑘 − 4 𝑐

1 2 . . . 𝑘 − 4 𝑎 𝑏 𝑐

col(𝑆1(𝐺
≺

𝑘−1) ∪ 𝑆2(𝐺
≺

𝑘−2) ∪ {𝑣}) ∶

col(𝑆2(𝐺
≺

𝑘−1) ∪ 𝑆1(𝐺
≺

𝑘−2)) ∶

𝑘
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Hence, we have 𝐺≺
𝐴(𝑘) ∈ 𝒢(𝑘) because 𝑆1(𝐺

≺
𝐴(𝑘)) contains 𝑘 − 2 colors,

𝑆2(𝐺
≺
𝐴(𝑘)) is colored with at least 𝑘 − 1 colors, and

⋃︀𝑉 (𝐺≺
𝐴(𝑘))⋃︀ = ⋃︀𝑉 (𝐺≺

𝑘−1)⋃︀ + ⋃︀𝑉 (𝐺≺
𝑘−2)⋃︀ + 1

≤ 𝑊 (𝑘 − 1) +𝑊 (𝑘 − 2) + 1 ≤ 𝑊 (𝑘) .

5. 𝑎, 𝑏 ∈ col(𝐺≺
𝑘−2) and one of those colors is in 𝐺≺

𝑘−3:
W.l.o.g., let 𝑎 ∈ col(𝑆1(𝐺

≺
𝑘−2)) and 𝑏 ∈ col(𝑆1(𝐺

≺
𝑘−3)). The shores can be

matched as follows:

1 2 . . . 𝑘 − 4 𝑐 𝑎 𝑏

1 2 . . . 𝑘 − 4 𝑎 𝑏

col(𝑆1(𝐺
≺

𝑘−1) ∪ 𝑆1(𝐺
≺

𝑘−2) ∪ 𝑆1(𝐺
≺

𝑘−3)) ∶

col(𝑆2(𝐺
≺

𝑘−1) ∪ 𝑆2(𝐺
≺

𝑘−2) ∪ 𝑆2(𝐺
≺

𝑘−3)) ∶

We can force an algorithm to use color 𝑘 by introducing a new vertex 𝑣 that
is connected to all vertices in 𝑆1(𝐺

≺
𝑘−1) ∪ 𝑆1(𝐺

≺
𝑘−2) ∪ 𝑆1(𝐺

≺
𝑘−3):

1 2 . . . 𝑘 − 4 𝑐 𝑎 𝑏

1 2 . . . 𝑘 − 4 𝑎 𝑏

col(𝑆1(𝐺
≺

𝑘−1) ∪ 𝑆1(𝐺
≺

𝑘−2) ∪ 𝑆1(𝐺
≺

𝑘−3)) ∶

col(𝑆2(𝐺
≺

𝑘−1) ∪ 𝑆2(𝐺
≺

𝑘−2) ∪ 𝑆2(𝐺
≺

𝑘−3) ∪ {𝑣}) ∶ 𝑘

Now, both shores contain at least 𝑘−1 colors and hence 𝐺≺
𝐴(𝑘) ∈ 𝒢(𝑘) because

⋃︀𝑉 (𝐺≺
𝐴(𝑘))⋃︀ = ⋃︀𝑉 (𝐺≺

𝑘−1)⋃︀ + ⋃︀𝑉 (𝐺≺
𝑘−2)⋃︀ + ⋃︀𝑉 (𝐺≺

𝑘−3)⋃︀ + 1
≤ 𝑊 (𝑘 − 1) +𝑊 (𝑘 − 2) +𝑊 (𝑘 − 3) + 1 = 𝑊 (𝑘) .

Note that this is the hardest case, leading to exactly the recurrence from
property 4 in Lemma 2.8.

◻

2.4 Advice Complexity in Bipartite Graphs
Now we investigate the advice complexity of the online coloring problem on bipartite
graphs. This section emerged from a joint work with Maria Paola Bianchi.
We observe first that, whenever a graph is 2-colorable, the algorithm does not need
to read any advice bit for non-isolated vertices in the online presentation of the
graph.

Lemma 2.11. Let ℋ𝑛 be the set of all online graph instances such that each offline
graph 𝐻𝑛 underlying the online graph instance 𝐻≺ = (𝐻𝑛,≺) is 2-colorable. An
online algorithm with advice for the problem of coloring 𝐻≺ optimally does not
need to read advice bits whenever the degree of the currently processed vertex 𝑣𝑖 is
positive in the graph 𝐻𝑛(︀𝑉𝑖⌋︀ that is present in time step 𝑖.



42 Chapter 2. Online Coloring of Graphs

Proof. If the degree of 𝑣𝑖 in 𝐻𝑛(︀𝑉𝑖⌋︀ is positive, this vertex must be adjacent to
some vertex 𝑣𝑗 for some 𝑗 < 𝑖. The online algorithm already assigned a color to 𝑣𝑗 ,
and now it must use the other color for 𝑣𝑖. This can be done without advice. ◻

In this section, we restrict our attention to strict competitiveness. For simplicity,
we call a strictly 𝑐-competitive algorithm 𝑐-competitive here.
We start with giving an upper bound on the amount of advice needed for achieving
an optimal coloring.

Theorem 2.12. There exists an online algorithm for BipCol, which uses at most
𝑛 − 2 advice bits to be optimal on every instance on 𝑛 vertices.

Proof. Due to Lemma 2.11, we give advice only for those vertices that appear
without connections to the vertices appearing before them. In the following, we call
those vertices isolated (although they might get connected to some other vertices
appearing later). We cannot reach the upper bound of 𝑛 − 2 by simply asking for
one bit of advice for every vertex that is isolated, except the first and the last
(if isolated) vertices in the input sequence, because this strategy would require
knowing the input length in advance, since the advice tape is infinite and it is up
to the algorithm to decide how many bits to read.
Therefore, in order to achieve the desired bound, we present Algorithm 2.1 that
works as follows.

• The first vertex receives color 1.

• Then the algorithm asks for one bit of advice: if it is 1, then Algorithm 2.1
will assign color 1 to every isolated vertex, otherwise it will ask for a bit of
advice for every further isolated vertex, to decide whether to assign color 1
or 2.

• Any vertex that has an edge to some previously received vertex 𝑣 receives
the opposite color with respect to 𝑣.

It is easy to see that, on an input consisting of 𝑛 vertices, whenever there are at
least 𝑛 − 1 isolated vertices, assigning color 1 to every isolated vertex is an optimal
strategy, therefore the appropriate advice is a string of length one. This implies
that the first advice bit is 0 only when at most 𝑛 − 2 vertices are isolated in the
input sequence. Since the first vertex is among them and does not need any advice,
the upper bound of 𝑛 − 2 holds. ◻

We can complement this result by an almost matching lower bound.

Theorem 2.13. Any deterministic online algorithm for BipCol needs at least
𝑛 − 3 advice bits to be optimal on every instance on 𝑛 vertices.

Proof. For a contradiction, assume there exists an algorithm 𝐴 for BipCol that
uses 2 colors and less than 𝑛 − 3 bits of advice. Given, for any 0 ≤ 𝛼 ≤ 𝑛 − 2, the
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Algorithm 2.1 An Optimal Coloring For BipCol
INPUT: a bipartite graph 𝐺≺ ∈ 𝒢𝑛, for some 𝑛 ∈N

1: 𝑐1 = col(𝑣1) = 1
2: read an advice bit 𝜎
3: if 𝜎 = 1 then
4: for 𝑖 = 2 to 𝑛 do
5: if 𝑣𝑖 is isolated then
6: 𝑐𝑖 = col(𝑣𝑖) = 1
7: else
8: choose an appropriate color 𝑐𝑖 for 𝑣𝑖

9: output 𝑐𝑖

10: else
11: for 𝑖 = 2 to 𝑛 do
12: if 𝑣𝑖 is isolated then
13: read an advice bit 𝜎
14: if 𝜎 = 1 then
15: 𝑐𝑖 = col(𝑣𝑖) = 1
16: else
17: 𝑐𝑖 = col(𝑣𝑖) = 2
18: else
19: choose an appropriate color 𝑐𝑖 for 𝑣𝑖

20: output 𝑐𝑖

OUTPUT: (𝑐1, 𝑐2, . . . , 𝑐𝑛), for some 𝑛 ∈N

𝑤1𝑆1(𝐺𝛼): 𝑤2 ⋯ 𝑤𝛼 𝑣𝑛−1

𝑤𝛼+1𝑆2(𝐺𝛼): ⋯ 𝑤𝑛−2 𝑣𝑛

Figure 2.7. Structure of the graph 𝐺𝛼 in the proof of Theorem 2.13. The set of edges is
𝐸 = {{𝑤𝑖, 𝑣𝑛} ⋃︀ 1 ≤ 𝑖 ≤ 𝛼} ∪ {{𝑤𝑖, 𝑣𝑛−1} ⋃︀ 𝛼 + 1 ≤ 𝑖 ≤ 𝑛 − 2} ∪ {{𝑣𝑛−1, 𝑣𝑛}}.

graph 𝐺𝛼 on 𝑛 vertices described in Figure 2.7, we consider as the set of possible
instances of 𝐴 any online presentation of 𝐺𝛼, for all 0 ≤ 𝛼 ≤ 𝑛−2, such that the first
𝑛 − 2 vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛−2 in the online presentation are a permutation of the
vertices {𝑤1, 𝑤2, . . . , 𝑤𝑛−2}. This means, the algorithm will always receive isolated
vertices until time step 𝑛−2. Hence, 𝐴 will be able to color 𝑣𝑛−1 and 𝑣𝑛 with values
in {1, 2} only if 𝑣1, . . . , 𝑣𝛼 all have the same color, and 𝑣𝛼+1, . . . , 𝑣𝑛−2 all have the
opposite color.
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𝑣𝑖

1

𝑣𝑛

3

𝑣𝑗

2

Case (a): col𝐴(𝑣𝑖) ≠ col𝐴(𝑣𝑗)

𝑣𝑛−1

2

𝑣𝑛

3

𝑣𝑖

1

𝑣𝑗

1

Case (b): col𝐴(𝑣𝑖) = col𝐴(𝑣𝑗)

Figure 2.8. Two non-equivalent instances with the same advice string in the proof of
Theorem 2.13.

We define an equivalence relation ∼ on the possible online representations of the
vertices of the graph 𝐺𝛼 in the following way: we say that two instances are
equivalent iff the order of the first 𝑛 − 2 vertices reflects the same shore partition.
More formally, for all 𝑖 ≤ 𝑛 − 2, let

𝑆(𝑣𝑖) ∶=

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

𝑆1(𝐺𝛼) if 𝑣𝑖 ∈ 𝑆1(𝐺𝛼)

𝑆2(𝐺𝛼) else

be the shore containing 𝑣𝑖. Let (𝑣1, . . . , 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛) and (𝑣1, . . . , 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛)

be two online representations of the vertices {𝑤1, 𝑤2, . . . , 𝑤𝑛}. Then,

(𝑣1, 𝑣2, . . . , 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛) ∼ (𝑣1, 𝑣2, . . . , 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛)

iff, for all 𝑖, 𝑗 ≤ 𝑛 − 2,

𝑆(𝑣𝑖) = 𝑆(𝑣𝑗) ⇐⇒ 𝑆(𝑣𝑖) = 𝑆(𝑣𝑗) ,

i. e., 𝑣𝑖 and 𝑣𝑗 are on the same shore iff 𝑣𝑖 and 𝑣𝑗 lie on the same shore. It is
not hard to see that ∼ is an equivalence relation and, by a counting argument,
the number of equivalence classes of ∼ is 2𝑛−2

2 = 2𝑛−3, since the shore partition is
symmetric with respect to 𝑆1 and 𝑆2.
To prove the claimed lower bound, it is sufficient to show that 𝐴 needs a dif-
ferent advice string for each equivalence class. Suppose, for contradiction, that
(𝑣1, 𝑣2, . . . , 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛) ≁ (𝑣1, 𝑣2, . . . , 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛) and 𝐴 receives the same ad-
vice string for both instances. Then, since all instances look the same until time
step 𝑛 − 2, this implies col𝐴(𝑣𝑖) = col𝐴(𝑣𝑖), for all 𝑖 ≤ 𝑛 − 2.
Because the two instances are not equivalent, there are two values 𝑖, 𝑗 ≤ 𝑛 − 2, with
𝑖 ≠ 𝑗, such that 𝑣𝑖 and 𝑣𝑗 are on the same shore, while 𝑣𝑖 and 𝑣𝑗 are on opposite
shores. We then have two cases (see Figure 2.8):
Case (a): If col𝐴(𝑣𝑖) ≠ col𝐴(𝑣𝑗), then, in the instance associated to (𝑣1, . . . , 𝑣𝑛),

either 𝑣𝑛−1 or 𝑣𝑛 is forced to have a third color assigned, since one of them
will be on the opposite shore with respect to both 𝑣𝑖 and 𝑣𝑗 .
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Case (b): If col𝐴(𝑣𝑖) = col𝐴(𝑣𝑗), then col𝐴(𝑣𝑖) = col𝐴(𝑣𝑗). W.l.o.g., we can
assume that, in the instance associated to (𝑣1, . . . , 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛), the vertex
𝑣𝑛−1 is on the shore opposite to 𝑣𝑖, hence there is an edge {𝑣𝑛−1, 𝑣𝑖} and as a
consequence we must have col𝐴(𝑣𝑛−1) ≠ col𝐴(𝑣𝑖) and therefore col𝐴(𝑣𝑛−1) ≠
col𝐴(𝑣𝑗), but since 𝑣𝑛−1 and 𝑣𝑗 are on the same shore, which is opposite to
𝑣𝑛−2, the algorithm 𝐴 is forced to assign a third color to 𝑣𝑛−2.

Therefore, the algorithm 𝐴 cannot read the same advice string for the two instances
associated to (𝑣1, . . . , 𝑣𝑛) and to (𝑣1, . . . , 𝑣𝑛) in order to be optimal. ◻

We now analyze how much advice is sufficient to guarantee a given constant
competitive ratio.

Theorem 2.14. For any integer constant 𝑘 > 2, there exists an online algorithm
for BipCol that needs less than 𝑛⌋︂

2𝑘−1 advice bits to color every instance on 𝑛

vertices with at most 𝑘 colors.

Proof. We will consider an algorithm, Algorithm 2.2, that is an adaptation of the
algorithm 𝐴 used in the proof of Theorem 2.6: the idea is to make the algorithm
ask for an advice bit only when it is about to assign color 𝑘 − 1, in order to avoid
assigning that color to vertices on both shores of the final graph. This implies that
the algorithm will always have vertices of color 𝑘 − 1 (if any) only on one shore and
vertices of color 𝑘 (if any) only on the other shore, so that color 𝑘 + 1 will never be
needed.

Algorithm 2.2 A Coloring For BipCol with 𝑘 colors
INPUT: a bipartite graph 𝐺≺ ∈ 𝒢𝑛, for some 𝑛 ∈N

1: for 𝑖 = 1 to 𝑛 do
2: let 𝑆1(𝐶𝑖(𝑣𝑖)) denote the shore of 𝐶𝑖(𝑣𝑖) containing 𝑣𝑖

3: if 𝑆2(𝐶𝑖(𝑣𝑖)) does not contain all colors smaller than 𝑘 − 1 then
4: 𝑐𝑖 = col𝐴𝑘

(𝑣𝑖) = min {𝑐 ≥ 1 ⋃︀ 𝑐 ∉ col(𝑆2(𝐶𝑖(𝑣𝑖)))}

5: else if either 𝑘 − 1 ∈ col(𝑆2(𝐶𝑖(𝑣𝑖)) or 𝑘 ∈ col(𝑆1(𝐶𝑖(𝑣𝑖)) then
6: 𝑐𝑖 = 𝑘
7: else if either 𝑘 ∈ col(𝑆2(𝐶𝑖(𝑣𝑖)) or 𝑘 − 1 ∈ col(𝑆1(𝐶𝑖(𝑣𝑖)) then
8: 𝑐𝑖 = 𝑘 − 1
9: else

10: read an advice bit 𝜎
11: if 𝜎 = 1 then
12: 𝑐𝑖 = 𝑘 − 1
13: else
14: 𝑐𝑖 = 𝑘

15: output 𝑐𝑖

OUTPUT: (𝑐1, 𝑐2, . . . , 𝑐𝑛), for some 𝑛 ∈N
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𝑆1(𝐶𝑖(𝑣𝑖))

𝑆2(𝐶𝑖(𝑣𝑖))

𝑣𝑖

Figure 2.9. The component 𝐶𝑖(𝑣𝑖) containing the vertex 𝑣𝑖 at time step 𝑖 in Theo-
rem 2.14.

We now describe the work of Algorithm 2.2 at time step 𝑖, when the vertex 𝑣𝑖 is
revealed. Consider the connected component 𝐶𝑖(𝑣𝑖) to which 𝑣𝑖 belongs at time
step 𝑖. Assume, w.l.o.g., 𝑣𝑖 ∈ 𝑆1(𝐶𝑖(𝑣𝑖)) (see Figure 2.9).
Algorithm 2.2 will choose its output as follows:

1. If the opposite shore 𝑆2(𝐶𝑖(𝑣𝑖)) does not contain all the colors smaller than
𝑘 − 1, then col𝐴𝑘

(𝑣𝑖) = min {𝑐 ≥ 1 ⋃︀ 𝑐 ∉ col(𝑆2(𝐶𝑖(𝑣𝑖)))}.

2. If either 𝑘 − 1 ∈ col(𝑆2(𝐶𝑖(𝑣𝑖)) or 𝑘 ∈ col(𝑆1(𝐶𝑖(𝑣𝑖)), then col𝐴𝑘
(𝑣𝑖) = 𝑘.

3. If either 𝑘 ∈ col(𝑆2(𝐶𝑡(𝑣𝑖)) or 𝑘 − 1 ∈ col(𝑆1(𝐶𝑖(𝑣𝑖)), then col𝐴𝑘
(𝑣𝑖) = 𝑘 − 1.

4. If col(𝑆2(𝐶𝑖(𝑣𝑖)) = {1, 2, . . . , 𝑘 − 2}, then Algorithm 2.2 asks for one bit of
advice to decide whether to assign color 𝑘 − 1 or 𝑘 to 𝑣𝑖.

Algorithm 2.2 asks for an advice bit only when it is about to assign color 𝑘 − 1,
which may happen at most every 2 𝑘−1

2 vertices, as shown in the proof of Theorem
2.6 for algorithm 𝐴, so the maximum number of advice bits required is 𝑛⌋︂

2𝑘−1 . ◻

The proof of Theorem 2.14 can be easily extended to the case of using a non-
constant number of colors, only the size 𝑛 of the input has to be encoded into the
advice string. Since the advice tape is infinite and it is up to the algorithm to
decide how many bits to read, we need to encode the value 𝑛 in a self-delimiting
way (see Lemma 1.25), otherwise the algorithm could not determine where the
encoding of 𝑛 stops and where the actual advice string starts. Therefore, the new
advice string will have [︂log(𝑛)⌉︂ + 2[︂log ([︂log(𝑛)⌉︂)⌉︂ additional bits. This leads to
the following corollary.

Corollary 2.15. There is an online algorithm for BipCol that needs at most
𝑂(

⌋︂
𝑛) advice bits to color every instance on 𝑛 vertices with at most [︂log(𝑛)⌉︂

colors. ◻

In the remainder of this section, we sketch the case of near-optimal coloring using 3
colors. For this case, Theorem 2.14 gives the following upper bound on the advice
complexity.

Corollary 2.16. There exists an online algorithm for BipCol that needs at most
𝑛
2 advice bits to color every instance on 𝑛 vertices with at most 3 colors. ◻
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𝑤1 𝑤2 ⋯ 𝑤 𝑛
2 −1 𝑣𝑛−1

𝑤′

1 𝑤′

2 ⋯ 𝑤′
𝑛
2 −1 𝑣𝑛

Figure 2.10. Pattern of the graph used in the proof of Theorem 2.17. The edges are
𝐸 = {{𝑤𝑖, 𝑤′

𝑖},{𝑤𝑖, 𝑣𝑛},{𝑤
′

𝑖, 𝑣𝑛−1},{𝑣𝑛−1, 𝑣𝑛} ⋃︀ 1 ≤ 𝑖 ≤ 𝑛
2 − 1}.

𝑤𝑖

𝛼

𝑤′

𝑖

𝛽

𝑤𝑗

𝛽

𝑤′

𝑗

𝛼

Figure 2.11. If an advice string would lead to col(𝑤𝑖) = col(𝑤′

𝑗) and col(𝑤𝑗) = col(𝑤′

𝑖),
two colors would be common.

We conclude this section with an almost matching lower bound for coloring with 3
colors. The detailed proof can be found in [6].

Theorem 2.17 (Bianchi et al. [6]). Any deterministic online algorithm with
advice for BipCol needs at least 𝑛

2 − 4 advice bits to color every instance on 𝑛
vertices with at most 3 colors.

Proof sketch. Let 𝑛 ≥ 4 be even. Consider the graph described in Figure 2.10. The
adversary shows in a first step one vertex from each pair {𝑤𝑖, 𝑤′

𝑖}. After these 𝑛
2 −1

vertices are revealed, the corresponding neighbors appear. Finally, 𝑣𝑛−1 and 𝑣𝑛 are
revealed with edges to all vertices of the opposite shore.
It is easy to see that an instance of the form considered above can be colored
with at most 3 colors only if at most 1 color is common, i. e., appears on both
shores, in the first 𝑛 − 2 vertices. Therefore, we can never have an advice string
such that col(𝑤𝑖) = col(𝑤′

𝑗) and col(𝑤𝑗) = col(𝑤′
𝑖) for some 𝑖, 𝑗 ∈ {1, . . . , 𝑛

2 − 1} (see
Figure 2.11).
Counting how many instances can get the same advice string, one can estimate the
number of instances which need a different advice string in order to receive only 3
colors by any online algorithm with advice. ◻
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2.5 Advice Complexity in Paths, Cycles, and
Spider Graphs

In this section, we present results on coloring online paths, cycles and spider graphs
with advice. The results from this section are partially derived as a joint work with
Michal Forišek and Monika Steinová. We start with the simplest graph class, the
paths. Let 𝑃 ≺ = (𝑃𝑛,≺) be an online path instance from the set 𝒫𝑛 of all online
path instances on 𝑛 vertices.

Paths
We can take advantage of Lemma 2.11 in coloring paths online, since paths are
obviously 2-colorable. If the online presentation of a path does not contain any
isolated vertex except the first one, a greedy algorithm solves the problem optimally
since the first vertex can receive, w.l.o.g., color 1. In the case of isolated vertices in
the online presentation, we can rely on the following theorem.

Theorem 2.18. There is an online algorithm solving the online coloring problem
in online paths on 𝑛 vertices reading ]︂𝑛

2 {︂ − 1 advice bits.

Proof. As suggested by Lemma 2.11, our algorithm only asks for advice (i. e., reads
the next bit of the advice string) whenever the vertex 𝑣𝑖 in time step 𝑖 appears
isolated. One bit of advice per isolated vertex is sufficient, since the advice can be
interpreted as the correct color to use. The above only applies for 𝑖 > 1, as we may
pick an arbitrary color for the first isolated vertex.
Let 𝑆 be the set of vertices that were isolated at the moment when we processed
them. Clearly, no two of them are adjacent in 𝐺, hence 𝑆 is an independent set in
𝐺 and therefore ⋃︀𝑆⋃︀ ≤ ]︂𝑛

2 {︂. ◻

The following theorem gives a matching lower bound. The complete proof can be
found in [30].

Theorem 2.19 (Forišek et al. [30]). Any online algorithm finding an optimal
coloring in online paths needs at least ]︂𝑛

2 {︂ − 1 bits of advice in the worst case.

Proof sketch. To prove the lower bound, we describe a set of online path instances
on 𝑛 vertices which start with the same prefix.
Note that, in the online presentation of a path on 𝑛 vertices, at most ]︂𝑛

2 {︂ vertices
can be revealed isolated. If the adversary shows only ]︂𝑛

2 {︂ − 1 vertices isolated, he
can place the isolated vertices such that some of them are on odd positions and
some of them are on even positions. We call the set of isolated vertices on odd
positions 𝑃𝑥 and the set of the other isolated vertices 𝑄𝑥. So, all of these instances
start with a prefix of ]︂𝑛

2 {︂ − 1 isolated vertices. An example for 𝑛 = 14 is shown in
Figure 2.12.
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Figure 2.12. An example for the instances proving the lower bound in Theorem 2.19
with 𝑛 = 14 and 𝑥 = 3: 𝑃𝑥 = {𝑤1, 𝑤3, 𝑤5} and 𝑄𝑥 = {𝑤8, 𝑤10, 𝑤12, 𝑤14}.

1
2

1

2

1
2

1

2

A cycle of even length

1
2

1

2

1
2

3

A cycle of odd length

Figure 2.13. A cycle of even length is 2-colorable and a cycle of odd length 3-colorable.

In a path of an even number of vertices, all the vertices in 𝑃𝑥 have to get the same
color and all vertices in 𝑄𝑥 the other color in order to be optimal on such a path.
To count the number of online presentations that need difference advice strings,
we pick, for every string 𝑤 ∈ {p} ⋅ {p, q}𝑘−1, the lexicographically smallest instance
from all the instances such that we have 𝑣𝑖 ∈ 𝑃𝑥 if and only if the 𝑖th letter in 𝑤 is
a p.
In order to color these instances optimally, the algorithm has to treat the instances
pairwise differently already on the prefix of isolated vertices. Therefore it needs
as many advice strings as there are instances in this set. Since the number of
instances is 𝑆 is 2]︂𝑛

2 {︂−1, we can show the bound of ]︂𝑛
2 {︂ − 1 advice bits that every

algorithm needs to read in order to be optimal.
For odd 𝑛, we have to use a more careful analysis to force the extra bit. ◻

Cycles
In cycles, we have to distinguish cycles of odd and of even length. Cycles with an
even number of vertices can be optimally colored using 2 colors and cycles with an
odd number of vertices using 3 colors (see Figure 2.13). We start with the easier
case, cycles of odd length.
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Theorem 2.20. There is a deterministic online algorithm that solves the problem
of coloring an online cycle of odd length without using advice.

Proof. A greedy strategy provides this upper bound on the number of advice bits
that are necessary to color any cycle of odd length. As we are allowed to use three
colors and each vertex has at most 2 neighbors, we always have at least one color
we may use. ◻

For even cycles, we cannot exploit the benefit of having a third color on disposal
when connecting two subpaths with end vertices of different colors, since cycles of
even length are 2-colorable. Therefore, the algorithm needs to read approximately
as much advice as in the case of online paths.

Theorem 2.21. There is a deterministic online algorithm with advice solving the
online coloring problem on cycles of even length reading 𝑛

2 − 1 advice bits.

Proof. We use the following greedy algorithm: Color the first vertex arbitrarily. In
the rest of the instance, whenever being shown an isolated vertex, use an advice
bit to color it 1 or 2. Whenever being shown a vertex that is not isolated, use the
smallest available color (1 or 2).
In an instance that is a cycle with 𝑛 vertices there can be at most 𝑛

2 isolated
vertices, hence this algorithm always uses at most 𝑛

2 − 1 advice bits. ◻

It is easily verified that, for any instance, there is an advice string such that the
algorithm produces an optimal coloring – using two colors for even 𝑛, three for odd
𝑛. (For even 𝑛 there is one such advice string – the correct coloring. For odd 𝑛, all
possible advice strings work.)
We can complement this result with an almost matching lower bound.

Theorem 2.22. Any deterministic online algorithm with advice solving the prob-
lem of coloring cycles of even length needs at least 𝑛

2 − 2 bits of advice in the worst
case.

Proof. Observe that optimal colorings for paths and cycles of even length look
almost the same – they use two alternating colors. We will use this fact to show
that any algorithm solving the coloring problem on cycles of even length can be
used to solve the online coloring problem on paths.
Assume that there exists a deterministic online algorithm 𝐴𝐶 with advice, solving
the online coloring problem in even cycles accessing 𝑓(𝑛) advice bits. We will
use 𝐴𝐶 as a subroutine to define a deterministic online algorithm 𝐴𝑃 with advice,
solving the online coloring problem on paths with 𝑚 vertices with at most 𝑓(𝑚+2)
of advice bits.
Suppose that 𝐴𝑃 is given a path on 𝑚 vertices. Let 𝑛 = 𝑚 + 2 if 𝑚 is even, and
𝑛 = 𝑚 + 1 if 𝑚 is odd. The algorithm 𝐴𝑃 will interpret all incoming isolated
vertices as vertices on a cycle with 𝑛 vertices, and process them by calling 𝐴𝐶 . The
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Figure 2.14. A cycle of even length is 2-colorable and a cycle of odd length is 3-colorable.

remaining vertices can be handled directly by 𝐴𝑃 (using Lemma 2.11). Figure 2.14
shows an example how these two types of paths can be joined to a cycle.
Clearly, any valid coloring of the cycle corresponds to a valid coloring of the path
and vice versa. So the coloring 𝐴𝐶 constructed for the cycle directly maps to a
valid coloring of the path. Note that 𝐴𝑃 does not know 𝑚 and 𝐴𝐶 does not know
𝑛. The algorithm 𝐴𝑃 never actually computes 𝑛, it just checks each vertex for
adjacency to the previously processed vertices.
As 𝐴𝑃 does not use any additional advice bits, the advice complexity of 𝐴𝑃 for a
path with 𝑚 vertices is equal to the advice complexity of 𝐴𝐶 for a cycle with 𝑛
vertices. By Theorem 2.19 we know that ]︂𝑚

2 {︂ − 1 advice bits are necessary for a
path with 𝑚 vertices. Hence

𝑓(𝑛) ≥ ⌋︂
𝑚 − 2

2
⟨ − 1 = 𝑛

2
− 2 .

◻

Spider Graphs
In this section, we consider special trees where all vertices except for one have
degree at most 2. We call those graphs spider graphs (see [31]).

Definition 2.23 (Spider Graph). A spider graph is a tree in which all the
vertices except of one have degree at most 2 (see Figure 2.15 for an example).
The vertex with degree larger than 2 is referred to as the center of the spider
and the paths from the center are called the legs of the spider graph.

Note that, since spider graphs are trees, and trees are bipartite, spider graphs are
2-colorable.
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Figure 2.15. Example of a spider graph with 8 legs. The center is marked with dark
color. The longest leg contains 5 vertices.

Theorem 2.24. There is an online algorithm without advice that can color any
spider graph using at most 3 colors.

Proof. The naive greedy strategy “always use the smallest available color” has this
property. Any vertex other than the center has at most two neighbors, so it will
surely receive a valid color. Now consider the time step 𝑖 when the online algorithm
processes the center 𝑣𝑖. Some neighbors of the center may have been processed
before. Consider any such neighbor 𝑣𝑗 with 𝑗 < 𝑖. At the moment when 𝑣𝑗 was
revealed, it had at most one already present neighbor – because it has at most two,
and 𝑣𝑖 was not present yet. Therefore 𝑣𝑗 surely received one of the colors 1 and 2.
But this means that it is certainly possible to color the center using color 3. ◻

Note that from Theorem 2.24 it follows that for spider graphs it still does not make
much sense to consider the tradeoff between advice size and the competitive ratio
of the online algorithm. For spider graphs, a ratio of 3

2 can be achieved without
advice, and we are only able to guarantee a better competitive ratio by solving the
problem optimally.

Theorem 2.25. Any online coloring algorithm with advice needs to read at least
least 2

3 𝑛 − 7
3 advice bits in order to color an online spider graph optimally.

Proof. For infinitely many 𝑛, we define a set of instances on 𝑛 vertices such that
every algorithm has to use a different advice string for each two of those instances
in order to color them optimally.
Let 𝑛 = 3𝑘 + 2, for some 𝑘 ∈ {1, 2, 3, . . .}. For a fixed 𝑛, the adversary first reveals
2𝑛−1

3 isolated vertices. Some subset of size 𝑛+1
3 of these will be extended to legs of

length 1 and 𝑛−2
3 to legs of length 2. In Figure 2.16, the vertices 𝑣1, 𝑠1, 𝑠2, ..., 𝑠 𝑛−2

3
are the isolated vertices in the legs of length 1; moreover, in the legs of length 2,
either 𝑙1

𝑗 or 𝑙2
𝑗 will be an isolated vertex, for every 𝑗 ∈ {1, 2, . . . , 𝑛−2

3 }.
In the online instance, first, the vertex 𝑣1 is given. This vertex can be colored
arbitrarily, but once the color is chosen, it fixes one of the two possible colorings of
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Figure 2.16. Examples for 𝑛 = 5, 8, 11 together with an optimal coloring. Vertices of
the same type have to be colored with the same color. The marked vertices indicate the
possible isolated vertices in an online presentation of the given spider graph.

the instance. Therefore, we need to know, for every following isolated vertex, what
color it has to get: All the vertices {𝑠1, 𝑠2, ..., 𝑠 𝑛−2

3
} will get the same color. And

in the legs of length 2, if for some 𝑗 ∈ {1, 2, . . . , 𝑛−2
3 }, 𝑙1

𝑗 is the isolated vertex, it
will get the same color, and 𝑙2

𝑗 will get the other color.
To count the number of possible instances of this type, we have to note that we are
looking for instances in which at least 𝑛−2

3 isolated vertices will get the same color.
The number of instances in which 𝑘 vertices out of 2𝑛−4

3 have the same color is

(

2𝑛−4
3
𝑘

) ,

and this 𝑘 can range between 𝑛−2
3 and 2𝑛−4

3 . Therefore, the total number of
instances is

2𝑛−4
3

∑
𝑘=𝑛−2

3

(

2𝑛−4
3
𝑘

) =

𝑛−2
3

∑
𝑘=0

(

2𝑛−4
3
𝑘

) ≥
1
2

2𝑛−4
3

∑
𝑘=0

(

2𝑛−4
3
𝑘

) =
1
2
⋅ 2 2𝑛−4

3 = 2 2𝑛−7
3 .

Since all of these instances start with the same prefix, namely 2𝑛−1
3 isolated vertices,

every algorithm has to distinguish each two of those instances already on this prefix.
Therefore, any algorithm needs a different advice string for each of those instances.
Hence, any deterministic algorithm needs to read at least log (2 2𝑛−7

3 ) = 2𝑛−7
3 advice

bits in order to be optimal.

In [29], we present an almost matching upper bound on the number of advice bits
necessary to color an online spider graph optimally. In the proof, we assign to
every general spider graph a so-called 1-2-spider graph.
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Figure 2.17. A partially labeled 1-2-spider graph on 𝑛 = 14 vertices. The end vertices
are continuously labeled with 1 to 𝑙, where 𝑙 is the number of legs, and the center gets
the label 𝑛.

Definition 2.26 (1-2-Spider Graph). A spider graph is called a 1-2-spider
graph if each leg consists of at most two vertices. A 1-2-spider graph is par-
tially labeled if the end vertices of the legs are labeled 1 through ℓ (where ℓ is
the number of legs), the center is labeled 𝑛 (where 𝑛 is the total number of
vertices) and the other vertices are unlabeled (see Figure 2.17 for an example).

Theorem 2.27 (Forišek et al. [29]). There is a deterministic online algorithm
with advice solving the online coloring problem in spider graphs with advice com-
plexity log(𝜑) ⋅ 𝑛 + 3 log(𝑛) +𝑂(1), where 𝜑 = 1+⌋︂5

2 denotes the golden ratio.

Proof sketch. The general idea of the proof is that if the algorithm only needs to
read advice for coloring isolated vertices, each possible spider graph is equivalent
to a partially labeled 1-2-spider graph in which the isolated vertices are precisely
the endpoints of all legs. Furthermore, multiple spider graphs correspond to the
same 1-2-spider graph, which decreases the amount of advice we need.
The advice string for the algorithm consists of three parts.

1. In the first part, the number 𝑛 of vertices 𝑛 is encoded.

2. Then, the number of the time step, in which the center vertex is revealed
follows. We fix the color of the center vertex to be 2.

3. The rest of the advice string contains the correct coloring of all vertices that
appear isolated in a certain time step since due to Lemma 2.11, these are the
only interesting vertices where the online algorithm needs advice.

The oracle computes the advice string as follows. It transforms the online spider
graph (𝑆,≺) to a partially labeled 1-2-spider graph 𝑆′ by adding, for every vertex
that appears isolated and should get color 1, a leg of length 1 to the graph and, for
each isolated vertex with optimal color 2, a leg of length 2. The end vertices of the
legs are labeled in the order in which they were added.
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According to the above observation, the resulting instance 𝐼 ′ will never have more
than 𝑛 vertices. If it has less, the oracle adds additional legs of length 1 until the
number of vertices is correct. Then, the algorithm transmits the number of this
graph 𝑆′ in the lexicographic order of all 1-2-spider graphs on 𝑛 vertices.
One can show that there are 𝐹𝑛 possible instances 𝑆′, with 𝐹𝑛 being the 𝑛-th
Fibonacci number, and hence the oracle needs log(𝐹𝑛) = log(𝜑) ⋅ 𝑛 bits to describe
any of them. ◻

2.6 Conclusion
In this chapter, we first showed an improved lower bound on the number of colors
that any deterministic online algorithm without advice is forced to use to color an
online bipartite graph. We conjecture that this inductive technique can be also
transferred to other graph classes with a structure similar to paths and bipartite
graphs, namely to graph classes which can be built recursively, i. e., where every
subgraph of such a graph has the same properties as the whole graph.
Furthermore, we investigated the number of advice bits a deterministic online
algorithm has to access in order to be optimal in an online bipartite graph or in
subclasses such as paths, cycles, and spider graphs, and proved almost matching
lower and upper bounds in most of these cases. This could be extended to other
graph classes. Moreover, a lower bound for a general tradeoff between the number
of advice bits that have to be accessed and the competitive ratio is left open.



56 Chapter 2. Online Coloring of Graphs



Chapter 3
Online Matching in Bipartite
Graphs

The matching problem appears, for example, in economics where the question
arises who or what is associated with whom or what (see [54] for examples). These
problems can be modeled as matching problems in bipartite graphs. If, for example,
a company introduces a new sector, it has to occupy some new jobs. Some people
apply for one or more of these jobs, and the company has to choose at most one
of the suitable applicants for each open position (see Figure 3.1). The goal is to
occupy as many open positions as possible.

Alice

Applicants

Bob

Charlie

Donald

Eva

Freddy

George

Harry

Embedded Software Engineer

Jobs

Software Architect

System Engineer

Translator

Concierge

Secretary

Figure 3.1. The black lines are the applications that are suitable and the wiggly lines
show the employments.

57
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(a) A maximal matching (b) A maximum matching

Figure 3.2. The maximal matching in (a) cannot be extended, (b) shows one possible
maximum matching, i. e., a maximal matching of maximum size.

Figure 3.1 can be seen as a graph 𝐺 = (𝑉, 𝐸) with vertex set

𝑉 = {Alice, Bob, . . . , Harry, Embedded Software Engineer, . . . , Secretary}

and the edge set

𝐸 = {{Alice, Embedded Software Engineer},{Alice, Software Architect}, . . .} .

The wiggled edges are called matching edges.

Definition 3.1 (Matching). Let 𝐺 = (𝑉, 𝐸) be a graph. A subset 𝑀 ⊆ 𝐸
is called a matching if the edges in 𝑀 are pairwise not adjacent, i. e., no two
edges have a common end vertex.
The size of a matching is measured by the number of edges in the matching.
We call a vertex 𝑣 matched in a matching 𝑀 if there is an edge 𝑒 ∈ 𝑀 such
that 𝑣 is an end vertex of 𝑒.

In our example, the company would like to achieve a matching that matches
all vertices of the shore containing the jobs since every open position should be
occupied if possible. Since the shore containing the jobs is smaller than the other
shore and since there are no edges within a shore, a matching which matches all
jobs cannot be extended.

Definition 3.2 (Maximal and Maximum Matching). A matching is said
to be maximal if the matching cannot be extended by adding a new edge,
i. e., every edge 𝑒 ∈ 𝐸 ∖𝑀 is adjacent to at least one edge in 𝑀 .
A maximal matching is maximum if there does not exist any maximal matching
containing more edges, i. e., a maximum matching is a matching of maximum
size among all possible matchings.

Note that every maximum matching is maximal, but the converse does not need to
hold. Figure 3.2 shows a maximal and a maximum matching for a graph.
The offline version of the problem of finding a maximum matching in a graph, i. e.,
when the whole graph is known in the beginning, can be solved with polynomial
algorithms (see, e. g., [2, 24, 50, 51, 53]). This problem has been widely investigated,
an overview of the matching theory can be found in [57]. Edmonds used in [24]
so-called augmenting paths to find a maximum matching.
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𝑀 𝑀 ′

Figure 3.3. In an augmenting path relative to a matching 𝑀 , the edges can be flipped
in order to get a matching 𝑀 ′ containing one edge more than 𝑀 .

Definition 3.3 (Augmenting Path [1]). An augmenting path relative to
a matching 𝑀 is a path which connects two unmatched vertices and in which
the edges alternate from matching to non-matching.

Since the end vertices are unmatched, the edges in an augmenting path can be
flipped without causing any conflict, leading to a matching containing one edge
more than the original matching (see Figure 3.3 for an example).
Usually, the job and applicant situations changes from time to time. Therefore,
it makes sense to allow that the jobs and the applicants appear one by one with
the edges to already present vertices. This is the online version of the problem
of finding a maximum size matching in a graph. An online algorithm receives
the graph instance vertex by vertex, and, in every time step, it has to decide
immediately if one of the incident edges is a matching edge or not. The goal is to
find a maximum matching.

Definition 3.4 (Online Matching Problem).

Input: An online graph 𝐺≺ = (𝐺,≺) with 𝐺 = (𝑉, 𝐸) and 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}

Output: (𝑀1, 𝑀2, . . . , 𝑀𝑛) such that 𝑀𝑖 ⊆ 𝐸 is a matching on 𝐺≺(︀𝑉𝑖⌋︀ and
𝑀𝑖 ⊆ 𝑀𝑗 for all 𝑖 < 𝑗 with 𝑖 ∈ {1, 2, . . . , 𝑛 − 1} and 𝑗 ∈ {2, 3, . . . , 𝑛}

Cost: ⋃︀𝑀𝑛⋃︀

Goal: Maximum

Note that we are interested in the matching in the final graph 𝐺≺(︀𝑉𝑛⌋︀ being
maximum. Therefore, a matching in a subgraph 𝐺≺(︀𝑉𝑖⌋︀, for some 𝑖 < 𝑛, does
not necessarily have to be a maximum matching in the subgraph induced by the
vertex set 𝑉𝑖, but it has to be part of a maximum matching of the final graph, i. e.,
𝑀𝑖 ⊆ 𝑀𝑛 for all 𝑖 < 𝑛.
In the literature, the described online matching problem is sometimes called the fully
online matching problem since the vertices appear in arbitrary order, independent
of the two shores. A better studied online matching problem is the one-sided
online matching problem in bipartite graphs where one shore is given (e. g., the
jobs) and only the vertices from the second shore (e. g., the applicants) appear
in an online manner. This problem, first introduced in [41], is one of the basic
problems that is subject of competitive analysis. The authors showed that the
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greedy algorithm, which assigns every possible edge to the matching, computes a
2-competitive solution in an arbitrary bipartite graph. It is easy to see that, in a
general bipartite graph, there is no algorithm with a better competitive ratio. The
instances showing this lower bound, consist of paths of four vertices. The adversary
always shows the middle edge of each path first, which prevents the algorithm to
take the two adjacent edges to the matching since it always assigns the first edge
to the matching.

Theorem 3.5 (Karp et al. [41]). A greedy algorithm can solve the one-sided
online matching problem with a competitive ratio of 2. No other deterministic
online algorithm can reach a better competitive ratio. ◻

We will only consider the fully online matching problem in this thesis, and therefore
we call this problem online matching problem for short. The lower bound on the
competitive ratio for the one-sided online matching problem in general graphs
of Theorem 3.5 carries over to the fully online matching problem. In [26], the
authors complemented this result with an upper bound for the fully online matching
problem on general graphs.

Theorem 3.6 (Favrholdt et al. [26]). The competitive ratio of the greedy algo-
rithm for solving the (fully online) maximum matching in general graphs is 2 and
this is optimal among deterministic online algorithms. ◻

In the remainder of the chapter, we will use the following notation in the figures:

𝑣1 𝑣2
𝑒

for a regular edge 𝑒 = {𝑣1, 𝑣2}

𝑣1 𝑣2
𝑒

for a matching edge 𝑒 = {𝑣1, 𝑣2}

3.1 Paths and Trees Without Advice
In a first step, we will summarize in this subsection which competitive ratio is
achievable without using any advice. We explore both paths and trees.

Competitive Ratio for Online Algorithms Without Advice on
Paths
Let 𝑃 ≺ = (𝑃𝑛,≺) be an online graph instance where 𝑃𝑛 = (𝑉, 𝐸) is a path on
𝑛 vertices. According to Definition 1.21, let 𝒫𝑛 be the set of all online path
instances on 𝑛 vertices. We start with counting the number of maximum matchings
in a path.

Lemma 3.7. In a path 𝑃𝑛 with 𝑛 even, there is exactly one maximum matching,
while a path with an odd number 𝑛 of vertices contains exactly 𝑛+1

2 maximum
matchings.
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𝑛 = 6 𝑛 = 7

Figure 3.4. The path with an even number of vertices on the left side has exactly one
maximum matching. The path on the right side which contains an odd number of vertices
has more than one maximum matching.

Proof. In the case of 𝑛 even (see Figure 3.4 left), we have an odd number of edges
and therefore it is clear that every second edge, including the two end edges, belong
to the unique maximum matching.
In the case of 𝑛 odd (see Figure 3.4 right), one vertex stays unmatched. Note
that two unmatched vertices would lead to an augmenting path and therefore the
matching would not be a maximum matching. The unmatched vertex can be chosen
such that removing this vertex and its incident edges provides either one (in the
two cases where the unmatched vertex is an end vertex) or two paths with an even
number of vertices, because a path with an odd number of vertices would result in
an additional unmatched vertex. The required properties for the unmatched vertex
are satisfied by the two end vertices and every second inner vertex. Therefore, in
the case of 𝑛 odd, we have exactly 𝑛+1

2 possible maximum matchings. ◻

For the discussion of upper bounds, it is sometimes easier to design an algorithm
that seeks for a matching that matches all inner vertices. Clearly, the following
holds.

Lemma 3.8. For every path 𝑃𝑛, there is always a maximum matching which
matches all inner vertices.

Proof. In the case of an even number of vertices, the unique matching satisfies this
property. In the odd case, exactly two matchings match all inner vertices. Namely
the two matchings with an unmatched end vertex. In Figure 3.4, for example, the
first and the last matching in the case 𝑛 = 7 are matchings satisfying this property.

◻

In [26], the authors showed, by induction, a matching lower and upper bound of 3
2

on the competitive ratio in online paths. We give an alternative proof of this fact
since we need the idea later, e. g., for solving the online matching problem on trees.
To show upper bounds on the competitive ratio for the problem of finding a
maximum matching on online paths, we will show that the greedy algorithm is
reasonably good. This algorithm assigns every possible edge to the matching.
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Algorithm 3.3 Greedy Algorithm for the Online Matching Problem on Online
Graphs
INPUT: 𝐺≺ ∈ 𝒢𝑛 with 𝐺≺ an online graph, for some 𝑛 ∈N

1: 𝑀 = ∅

2: for 𝑖 = 1 to 𝑛 do
3: for all 𝑒 = {𝑣𝑖, 𝑣𝑗} ∈ 𝐸𝑖 do
4: if 𝑣𝑖 and 𝑣𝑗 are unmatched then
5: 𝑀 ←𝑀 ∪ {𝑒}
6: else
7: 𝑀 ←𝑀
8: output 𝑀𝑖 = 𝑀

OUTPUT: 𝑀 = {𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑚} = ⋃
𝑛
𝑖=1 𝑀𝑖 ⊆ 𝐸, for some 𝑚 ∈N

Especially, all isolated edges will become matching edges. First, we need to
investigate how many edges a greedy algorithm assigns to the matching in the
worst case.
To describe the algorithm in detail, we need a notation for the edges that appear in
time step 𝑖 with the revealed vertex 𝑣𝑖, and we have to give an order on these edges.
Therefore, we first order the edges with respect to the order of the appearance of
the vertices 𝑣𝑖.

Definition 3.9 (Set of Edges Appearing in Time Step 𝑖). Let 𝐺≺ be
an online graph with 𝐺 = (𝑉, 𝐸) and 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. We denote by 𝐸𝑖

the set of edges that appear in time step 𝑖 by adding the vertex 𝑣𝑖, i. e.,

𝐸𝑖 = {{𝑣𝑖, 𝑣𝑗} ∈ 𝐸 ⋃︀ 𝑗 < 𝑖} ,

for all 𝑖 ∈ {1, 2, . . . 𝑛}.

Note that these edge sets 𝐸𝑖, for all 𝑖 ∈ {1, 2, . . . , 𝑛}, form a partition of the edge
set 𝐸, i. e., ⋃𝑛

𝑖=1 𝐸𝑖 = 𝐸 and 𝐸𝑖 ∩𝐸𝑗 = ∅ for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} with 𝑖 ≠ 𝑗.
Within a set 𝐸𝑖, the order of edges is defined as follows. Let 𝑣𝑗 , 𝑣𝑘 be two vertices
adjacent to 𝑣𝑖 that appear before the vertex 𝑣𝑖, i. e., 𝑗, 𝑘 < 𝑖. Then {𝑣𝑖, 𝑣𝑗} ≺ {𝑣𝑖, 𝑣𝑘}

if and only if 𝑗 < 𝑘. This means that the order of the edges is given by the order of
appearance of their incident vertices. Note that such a set 𝐸𝑖 can also be empty if
𝑣𝑖 is an isolated vertex. In particular, 𝐸1 = ∅.
A detailed description of the greedy algorithm for an arbitrary online graph as
input is given in Algorithm 3.3.

Lemma 3.10. Algorithm 3.3 for finding a maximum matching in an online path
on 𝑛 vertices chooses a matching of size at least ⟩︀𝑛

3 (︁.

Proof. The greedy algorithm 𝐴 assigns every possible edge to the matching. There-
fore, 𝐴 matches all isolated edges. A previously isolated matching edge prevents at
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Figure 3.5. The worst-case online setting of a path on 16 vertices for the greedy
algorithm of Lemma 3.10. The greedy algorithm assigns 5 instead of 8 edges to the
matching.

most the two adjacent edges (or the single adjacent edge) to be matching edges. A
non-isolated matching edge inhibits at most one adjacent edge to be a matching
edge. Therefore, at least one of three consecutive edges is a matching edge yielding
that the greedy algorithm determines at least ⟩︀𝑛

3 (︁ matching edges in every path on
𝑛 vertices. ◻

We want to describe a worst-case instance for the greedy algorithm. Note that
every third edge can appear as an isolated edge in the online setting. In the worst
case, the adversary shows every third edge to the algorithm starting with the
second edge from one end, for a number 𝑛 of vertices with 𝑛 = 3𝑘 + 1 for any 𝑘 ∈N

(see Figure 3.5). In this case, the greedy algorithm finds a matching containing 𝑘
edges, which can be reformulated as

𝑘 = ⃦𝑘 +
1
3
(︂ = ⃦

3𝑘 + 1
3

(︂ = ⃦
𝑛

3
(︂ ,

yielding the desired result.
This greedy algorithm leads to an upper bound on the competitive ratio for the
online matching problem on paths. Note that every maximum matching for a path
on 𝑛 vertices contains ⟩︀𝑛

2 (︁ matching edges (see Lemma 3.7 and the corresponding
Figure 3.4).
Theorem 3.11. Algorithm 3.3 for finding a maximum matching in online paths
has a competitive ratio of 3

2 .

Proof. For paths with at most two edges, Algorithm 3.3 obviously computes an
optimal solution. Therefore, let 𝐼 be an online path on 𝑛 vertices, for 𝑛 ≥ 3. We
showed in Lemma 3.7 that this path contains at least one maximum matching
consisting of ⟩︀𝑛

2 (︁ edges, leading to Opt(𝐼) = ⟩︀𝑛
2 (︁.

Together with Lemma 3.10, we have for the competitive ratio 𝑐

⃦
𝑛

2
(︂ = cost(Opt(𝐼)) ≤ 𝑐 ⋅ cost(𝐴(𝐼)) + 𝛼 = 𝑐 ⋅ ⃦

𝑛

3
(︂ + 𝛼 , (3.1)

for some 𝛼 ≥ 0. With ⟩︀𝑛
3 (︁ ≥

3
2 − 1 and setting 𝑐 = 3

2 and 𝛼 = 3
2 , we can show that

⃦
𝑛

2
(︂ ≤ 𝑐 ⋅ (

𝑛

3
− 1) + 𝛼 =

3
2
⋅ (

𝑛

3
− 1) + 3

2
.

holds, directly implying inequality (3.1). ◻
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For some lengths of the path, we can even reach a strict competitive ratio of 3
2 .

Corollary 3.12. Algorithm 3.3 for finding a maximum matching on online paths
on 𝑛 vertices with 𝑛 mod 6 ∈ {0, 1, 3} is strictly 3

2 -competitive.

Proof. We will discuss the two cases 𝑛 mod 6 ∈ {0, 1} and 𝑛 mod 6 = 3 separately:

𝑛 mod 6 ∈ {0, 1}: For 𝑛 = 6𝑘 and 𝑛 = 6𝑘 + 1, for any 𝑘 ∈ N, there is a maximum
matching of size

⃦
𝑛

2
(︂ = 3𝑘 .

The greedy algorithm assigns, due to Lemma 3.10, at least

⃦
𝑛

3
(︂ = 2𝑘

edges to the matching. Therefore, we have the inequality

3𝑘 = cost(Opt(𝐼)) ≤ 𝑐 ⋅ cost(𝐴(𝐼)) + 𝛼 = 𝑐 ⋅ 2𝑘 + 𝛼 ,

which holds for 𝑐 = 3
2 and 𝛼 = 0 since

3𝑘 ≤
3
2
⋅ 2𝑘 = 3𝑘 .

𝑛 mod 6 = 3: In this case, the path contains a maximum matching of ⟩︀𝑛
2 (︁ = 3𝑘 + 1

and the greedy algorithm includes ⟩︀𝑛
3 (︁ = 2𝑘 + 1 edges into the matching.

Therefore, the following inequality holds for 𝑐 = 3
2 and 𝛼 = 0

3𝑘 + 1 = cost(Opt(𝐼)) ≤ 𝑐 ⋅ cost(𝐴(𝐼)) + 𝛼 =
3
2
⋅ (2𝑘 + 1) = 3𝑘 +

3
2

.

◻

In order to show a lower bound on the competitive ratio for arbitrary online
paths, we need to investigate the relationship between unmatched vertices and the
difference of edges in the chosen matching to the maximum matching.

Lemma 3.13. If a matching 𝑀 in a path 𝑃 leaves 𝑘 vertices unmatched, then a
maximum matching in 𝑃 has ⟩︀𝑘

2 (︁ edges more than 𝑀 .

Proof. Let 𝑤𝑖1 , 𝑤𝑖2 , . . . , 𝑤𝑖𝑘
be the 𝑘 unmatched vertices from left to right on the

path with 𝑖𝑙 < 𝑖𝑚 for every 𝑙 < 𝑚 in a fixed matching 𝑀 . Then the ⟩︀𝑘
2 (︁ subpaths

from 𝑤𝑖𝑗 to 𝑤𝑖𝑗+1 , for an odd number 𝑗 = 2𝑙 + 1 and for all 𝑙 ∈ {1, 2, . . . , ⟩︀𝑘
2 (︁}, are

vertex-disjoint augmenting paths (i. e., alternating paths that start and end with
an unmatched vertex). Each of those augmenting paths gives rise to one edge
that could be achieved more in a better local maximum matching on this subpath.
Therefore, the global maximum matching contains ⟩︀𝑘

2 (︁ matching edges more than
the fixed matching 𝑀 . ◻
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Figure 3.6. An example for 𝑘 = 2 of an online instance with a possible solution proving
the lower bound on the competitive ratio for an algorithm solving the online matching
problem on an online path. The 5 edges in the upper level are presented as isolated edges
in the beginning.

We show that no algorithm can reach a better competitive ratio for finding a
maximum matching in a path on 𝑛 vertices than Algorithm 3.3 of Theorem 3.11.

Theorem 3.14. No deterministic online algorithm for finding a maximum match-
ing in a path on 𝑛 vertices with 𝑛 ≥

3(𝛼+1)
𝜀

−2 can be better than ( 3
2 − 𝜀)-competitive

(with additive constant 𝛼), for arbitrary non-negative constants 𝛼 and 𝜀 ≤ 1
2 .

Proof. To show the lower bound of ( 3
2 − 𝜀), for some non-negative constant 𝜀 ≤ 1

2 ,
on the competitive ratio of finding a maximum matching in a path on 𝑛 vertices, we
need to describe an instance class such that, for infinitely many 𝑛, every algorithm
𝐴 has a competitive ratio of at least ( 3

2 − 𝜀) on these instances. Therefore, for an
instance 𝐼 from this instance class and every fixed non-negative constant 𝛼,

cost(Opt(𝐼)) ≤ 𝑐 ⋅ cost(𝐴(𝐼)) + 𝛼 (3.2)

only holds for 𝑐 ≥ ( 3
2 − 𝜀).

Let 𝑛 = 6𝑘 + 4 for some 𝑘 ∈ N. Every instance starts with 𝑛−1
3 isolated edges.

A fixed algorithm 𝐴 assigns some of these edges to the matching and some not.
The adversary partitions these edges into two groups, the matching and the non-
matching edges.
Assume first that the algorithm chooses at least one isolated edge for the matching.
Then, the adversary connects each two of the isolated matching edges with new
vertices such that a path emerges (see Figure 3.6 for an example). Appending one
vertex to the left and one to the right of this subpath concludes the part with the
matching edges. We call this subpath 𝑃1. Then, if the second group of isolated
edges is non-empty, each two of these non-matching edges are connected with a
new vertex to a subpath 𝑃2. To connect these two paths, 𝑃1 and 𝑃2, in a third
step, if necessary, the adversary uses a single vertex.
If the algorithm 𝐴 does not assign any isolated edge to the matching, the adversary
appends the last two remaining vertices, after connecting the isolated edges by
single vertices to a path as described in Figure 3.6, to the left and the right end of
the subpath.
Now we estimate the competitive ratio with respect to the number of isolated
edges that a fixed algorithm 𝐴 takes into the matching. Assume that the algorithm
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chooses, w.l.o.g., the connecting edge between the vertex that connects the two
subpaths and 𝑃2 into the matching (as shown in Figure 3.6). This assumption
simplifies the estimation of the number of unmatched vertices.
Therefore, if the algorithm assigns 𝑖 ≤ 𝑛−1

3 of the isolated edges to the matching, 𝑃1
contains exactly 𝑖+ 1 unmatched vertices and 𝑃2 has at least 𝑛−1

3 − 𝑖− 1 unmatched
vertices, since there are 𝑛−1

3 − 𝑖 isolated edges in 𝑃2 and the leftmost vertex is
already matched because of the assumption above. So, in total we have at least
𝑛−1

3 unmatched vertices in the instance if 𝑃1 is non-empty. If 𝑃1 is empty, the
adversary can only guarantee at least 𝑛−1

3 − 1 unmatched vertices for this instance.
Summarizing, the adversary can force the algorithm to invoke at least 𝑛−1

3 − 1 =
6𝑘+4−1

3 − 1 = 2𝑘 unmatched vertices, leading to a loss of 𝑘 matching edges with
respect to the maximum matching containing 𝑛

2 = 3𝑘+2 matching edges. Therefore,
the matching fixed by algorithm 𝐴 contains

3𝑘 + 2 − 𝑘 = 2𝑘 + 2 = 2 ⋅ 𝑛 − 4
6

+ 2 = 𝑛

3
+

2
3

matching edges. Therefore, for any instance 𝐼 of this instance class and every
non-negative constant 𝛼, it holds that

𝑛

2
= cost(Opt(𝐼)) ≤ 𝑐 ⋅ cost(𝐴(𝐼)) + 𝛼 = 𝑐 ⋅ (

𝑛

3
+

2
3
) + 𝛼 .

This yields for the competitive ratio that

𝑐 ≥
𝑛
2 − 𝛼
𝑛
3 +

2
3
=

𝑛−2𝛼
2

𝑛+2
3

=
3(𝑛 − 2𝛼)

2(𝑛 + 2)
=

3𝑛

2𝑛 + 4
−

6𝛼

2𝑛 + 4

Therefore, there exists, for every constant 𝜀 > 0 and every 𝛼 > 0, a sufficiently large
𝑛0 such that, for every 𝑛 ≥ 𝑛0, we have that

𝑐 ≥
3
2
− 𝜀 .

More precisely, 𝑛0 has to satisfy the inequality

3𝑛0

2𝑛0 + 4
−

6𝛼

2𝑛0 + 4
≥

3
2
− 𝜀

and therefore,

3𝑛0 − 6𝛼 ≥ (2𝑛0 + 4) ⋅ 3 − 2𝜀

2
=

6𝑛0 − 4𝑛0𝜀 + 12 − 8𝜀

2
= 3𝑛0 − 2𝑛0𝜀 + 6 − 4𝜀 .

This leads to
𝑛0 ≥

3(𝛼 + 1)
𝜀

− 2 .

◻
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Figure 3.7. An example for 𝑘 = 6 of an online tree instance with a possible solution
proving the lower bound on the competitive ratio for an algorithm solving the online
matching problem on an online tree. The six marked isolated edges are presented as
isolated edges in the beginning. The dotted edges can either be assigned to the matching
or not.

Competitive Ratio for Online Algorithms Without Advice on
Trees
The upper bound of 2 on the competitive ratio for general bipartite online graphs
carries over to online trees. Now we show a matching lower bound for online trees
using the construction idea from Theorem 3.14 for trees.

Theorem 3.15. No deterministic online algorithm for finding a maximum match-
ing in a tree on 𝑛 vertices can be better than 2-competitive.

Proof. We describe an instance class of online trees such that, for infinitely many 𝑛,
every deterministic online algorithm 𝐴 has a competitive ratio of at least 2 on
these instances, showing a lower bound of 2 on the competitive ratio for finding a
maximum matching in an online tree on 𝑛 vertices.
Let 𝑛 = 4𝑘 + 2 for some 𝑘 ∈N. The adversary shows first 𝑘 = 𝑛−2

4 isolated edges to
the algorithm. A fixed algorithm 𝐴 assigns some of these edges to the matching and
leaves some of them unmatched. Then, the adversary completes the tree in such
a way that the decision of the online algorithm is wrong for each of the isolated
edges. Therefore, the algorithm loses, for every isolated edge, one matching edge
with respect to the maximum matching.
More precisely, the instance is expanded as shown in Figure 3.7. After showing the
edges {𝑤𝑖, 𝑤𝑖+1} for 𝑖 ∈ {1, 3, 5, . . . , 2𝑘−1}, the online algorithm assigns, w.l.o.g., the



68 Chapter 3. Online Matching in Bipartite Graphs

Figure 3.8. A maximum matching in the instance of Figure 3.7.

first 𝑚 ≥ 0 edges to the matching. In a next step, the adversary reveals the vertices
{𝑤𝑖, 𝑤𝑖+2𝑘}, for 𝑖 ∈ {1, 2, 3, . . . , 2𝑚}, which lie to the left or to the right of the first
𝑚 isolated edges. Since the first 𝑚 isolated edges are matching edges, the new edges
cannot be assigned to the matching implying that the chosen matching has half
the size of the maximum matching on the constructed paths of length 3. In a next
step, the connecting vertex 𝑤2𝑘+2𝑚+1 and an adjacent vertex 𝑤2𝑘+2𝑚+2 are revealed.
W.l.o.g., the algorithm chooses this new edge {𝑤2𝑘+2𝑚+1, 𝑤2𝑘+2𝑚+2} to the matching
(also any of the edges incident to 𝑤2𝑘+2𝑚+1 and previous vertices could be chosen).
Then, in a last step, the adversary appends, for each previous non-matching isolated
edge, one edge {𝑤𝑖, 𝑤𝑖+1} for every 𝑖 ∈ {2𝑚 + 2𝑘 + 3, 2𝑚 + 2𝑘 + 5, . . . , 4𝑘 − 1} to
the vertex 𝑤2𝑘+2𝑚+1 in order to construct equally large instances with an optimal
matching of the same size, no matter how many previously isolated edges are
assigned to the matching. We do this padding just for the ease of calculation.
Now we want to estimate the size of the matching chosen by a fixed online
algorithm 𝐴. Since we assumed that the edge {𝑤2𝑚+2𝑘+1, 𝑤2𝑚+2𝑘+2} is a matching
edge, the algorithm has no possibility to assign another edge incident to 𝑤2𝑚+2𝑘+1
to the matching. But it can take the edges {𝑤𝑖, 𝑤𝑖+1} for all 𝑖 ∈ {2𝑚 + 2𝑘 + 3, 2𝑚 +

2𝑘 + 5, . . . , 4𝑘 − 1} to the matching. Therefore, the algorithm assigns at most 𝑘 + 1
edges to the matching leading to a matching of size

𝑘 + 1 = 𝑛 + 2
4

in the best case.
To determine the competitive ratio, we need to know the size of the maximum
matching. Figure 3.8 shows the unique maximum matching of size

2𝑘 + 1 = 𝑛

2
.
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Summarizing, for an online instance on 𝑛 vertices from this special instance class
and for any 𝛼 ≥ 0, we have

𝑛

2
= cost(Opt(𝐼)) ≤ 𝑐 ⋅ cost(𝐴(𝐼)) + 𝛼 = 𝑐 ⋅

𝑛 + 2
4

+ 𝛼 .

This inequality is satisfied, for all input sizes 𝑛, only if 𝑐 ≥ 2. ◻

3.2 Optimality in Paths and Cycles
In this section, we will show how much advice an algorithm needs to read in order
to solve the online matching problem in paths and cycles optimally. For this, we
will mostly focus on matchings which satisfy the property stated in Lemma 3.8,
i. e., matchings which match all inner vertices.
In the online setting of a path 𝑃𝑛, the isolated edges play a special role. Since,
at a certain time step 𝑖, they are not appended to any other subpath, they get
no information from the neighborhood about whether they are matching or non-
matching edges. Therefore, an online algorithm for solving the online matching
problem on a path should get some external information from the advisor on these
edges in order to be optimal. We show that there cannot appear too many isolated
edges in an online path instance.

Theorem 3.16. There exists an online algorithm with advice which uses at most
[︂𝑛

3 ⌉︂ advice bits to find a maximum matching in a path 𝑃 ≺ ∈ 𝒫𝑛 on 𝑛 vertices.

Proof. We consider an online algorithm with advice which matches all inner vertices.
Due to Lemma 3.8, there is always such a maximum matching and therefore we
can choose an algorithm striving for this special maximum matching. Let 𝑃 ≺ ∈ 𝒫𝑛

be the online path on 𝑛 vertices. In time step 𝑖, the vertex 𝑣𝑖 can be either isolated
or connected to one previous vertex 𝑣𝑗 or to two previous vertices 𝑣𝑗1 and 𝑣𝑗2 with
𝑗, 𝑗1, 𝑗2 < 𝑖. Since the algorithm will look for a matching that matches all inner
vertices, the algorithm knows what to do with an edge {𝑣𝑖, 𝑣𝑗} if the vertex 𝑣𝑗 is
not isolated in time step 𝑖: If 𝑣𝑗 is not part of a matching edge until time step 𝑖,
the edge {𝑣𝑖, 𝑣𝑗} will be a matching edge. Analogously, the algorithm knows which
one of the two edges {𝑣𝑗1 , 𝑣𝑖} and {𝑣𝑗2 , 𝑣𝑖} is a matching edge if not both vertices
𝑣𝑗1 and 𝑣𝑗2 are isolated (see Figure 3.9).
Note that the case that a vertex 𝑣𝑖 is connected to two non-isolated and unmatched
vertices 𝑣𝑗1 , 𝑣𝑗2 (see Figure 3.10) cannot occur. Algorithm 3.4 strives for a matching
that matches all inner vertices. This case would be a contradiction to this fact
because either 𝑣𝑗1 or 𝑣𝑗2 would stay unmatched after choosing the matching edge
incident to 𝑣𝑖.
It is also not possible that both vertices 𝑣𝑗1 and 𝑣𝑗2 are already matched in a
previous time step since in this case, vertex 𝑣𝑖 would remain unmatched (see
Figure 3.11).
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Figure 3.9. If at least one of the two previous vertices 𝑣𝑗1 or 𝑣𝑗2 is not isolated, the
algorithm knows from the context which one of the two edges {𝑣𝑖, 𝑣𝑗1} and {𝑣𝑖, 𝑣𝑗2} should
be a matching edge.

𝑣𝑗1

𝑣𝑖

𝑣𝑗2
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𝑣𝑗1

𝑣𝑖

𝑣𝑗2

time

(b)

Figure 3.10. It cannot appear that a vertex 𝑣𝑖 is adjacent to two unmatched vertices
because, w.l.o.g., 𝑣𝑗2 would stay unmatched.

𝑣𝑗1

𝑣𝑖

𝑣𝑗2

time

(a)

𝑣𝑗1

𝑣𝑖

𝑣𝑗2

time

(b)

Figure 3.11. It cannot happen that both vertices 𝑣𝑗1 and 𝑣𝑗2 are matched in a previous
time step since otherwise 𝑣𝑖 would stay unmatched.
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In all other cases, the algorithm reads a bit of advice to decide whether the new
edges belong to the matching or not. The algorithm encounters one of the two
situations (a) or (b) shown in Figure 3.12. If 𝑣𝑖 has only one adjacent isolated
vertex in time step 𝑖, the advice bit gives the algorithm the hint if the edge {𝑣𝑖, 𝑣𝑗}

belongs to the matching or not. In the case with two adjacent isolated vertices 𝑣𝑗1

and 𝑣𝑗2 , the bit says whether the edge {𝑣𝑗1 , 𝑣𝑖} or the edge {𝑣𝑗2 , 𝑣𝑖} is part of the
matching. The details of the algorithm are described in Algorithm 3.4. The case
distinction is also visualized in Figure 3.12.

Algorithm 3.4 Maximum Matching on Paths
INPUT: 𝑃 ≺ ∈ 𝒫𝑛, for some 𝑛 ∈N

1: 𝑀 = ∅

2: for 𝑖 = 1 to 𝑛 do
3: if (a) 𝑣𝑖 is connected by exactly one edge 𝑒 to a previously isolated vertex

then
4: read an advice bit 𝜎 to decide whether 𝑒 is a matching edge:
5: if 𝜎 = 1 then
6: 𝑀 ←𝑀 ∪ {𝑒}
7: else
8: 𝑀 ←𝑀
9: else if (b) 𝑣𝑖 has two edges 𝑒1 and 𝑒2 to previously isolated vertices then

10: use an advice bit 𝜎 to decide whether 𝑒1 or 𝑒2 is a matching edge:
11: if 𝜎 = 0 then
12: 𝑀 ←𝑀 ∪ {𝑒1}
13: else
14: 𝑀 ←𝑀 ∪ {𝑒2}

15: else if (c) 𝑣𝑖 is connected to some non-isolated and unmatched vertex by
an edge 𝑒 then

16: 𝑀 ←𝑀 ∪ {𝑒}
17: else if (d) 𝑣𝑖 has an edge 𝑒1 to a matched vertex and an edge 𝑒2 to an

isolated vertex then
18: 𝑀 ←𝑀 ∪ {𝑒2}
19: else
20: 𝑀 ←𝑀
21: output 𝑀𝑖 = 𝑀

OUTPUT: 𝑀 = {𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑚} = ⋃
𝑛
𝑖=1 𝑀𝑖 ⊆ 𝐸, for some 𝑚 ∈N

Now we have to estimate the number of advice bits needed in the worst case for an
instance 𝑃 ≺ ∈ 𝒫𝑛 on 𝑛 vertices. Only in the two cases (a) and (b) of Figure 3.12,
the algorithm has to read advice for the vertex 𝑣𝑖. In all other cases, we showed
above that no advice is needed since the decision on the new edges is given by the
neighborhood of these edges. The subpaths of (a) and (b) in Figure 3.12 need to be
separated by at least one vertex in order to ensure that every of these subpaths has
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𝑣𝑖

𝑒

time

(a) One isolated previous neighbor (lines
3–8).

𝑣𝑖

𝑒1

𝑒2

time

(b) Two isolated previous neighbors
(lines 9–14).

𝑣𝑖

𝑒

time

(c) A non-isolated and an unmatched
neighbor (lines 15–16).

𝑣𝑖

𝑒1

𝑒2

time

(d) A matched and an isolated neigh-
bor (lines 17–18).

Figure 3.12. The four cases in Algorithm 3.4.

1. Isolated vertices:
2. Their neighbors:

3. Connecting vertices:

tim
e

Figure 3.13. One worst-case instance with 17 vertices for the algorithm: In a first phase,
the adversary gives some isolated vertices, then the dark vertices appear, which need to
ask for an advice bit. In the end, the path will be connected with the remaining vertices.

to ask for an advice bit. In the worst case, the online path 𝑃 ≺ consists of subpaths
of length 1 as shown in Figure 3.12 (a) and each two of those subpaths will be
separated by a vertex (see Figure 3.13). In such online paths with 𝑛 vertices, at
most [︂𝑛

3 ⌉︂ advice bits are needed, which concludes the proof. ◻

We can view Algorithm 3.4 as follows. Algorithm 3.4 asks advice for every new
vertex if necessary and applies the answer of this bit to the adjacent edges. The
intuition behind this algorithm is that the algorithm has no information from the
neighborhood for isolated edges as in case (a) or for an isolated path of length 2
that arises in time step 𝑖 by connecting two isolated vertices by a new vertex 𝑣𝑖

as in case (b). Therefore, the advice bits can also be directly associated with the
edges. Then, case (c) describes a greedy algorithm for all non-isolated edges. The
number of advice bits used by the algorithm depends therefore on the number of
isolated edges or isolated subpaths of length 2. The worst case is achieved with
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the maximum number of isolated edges, which is [︂𝑛
3 ⌉︂ in a path on 𝑛 vertices. We

will use this intuition later in the discussion of tradeoffs between advice bits and
the competitive ratio of the algorithm using this amount of advice bits.
We already observed that, in a path with an odd number of vertices, there are
𝑛+1

2 different maximum matchings. But only two of these matchings satisfy the
property of Lemma 3.8, namely that all inner vertices are matched. If the algorithm
would admit also maximum matchings that do not satisfy this property, we could
save two additional bits of advice. The modified algorithm will not read any advice
bit for the first and the second isolated edge, but it will decide to take them both
into the matching. One of the optimal matchings contains these edges for sure and
therefore the oracle can guide the algorithm to this optimal matching. Still, we
have to modify Algorithm 3.4 slightly because the cases of Figures 3.10 and 3.11
can appear if we allow matchings that do not match all inner vertices. For the
second case, we do not have to change the algorithm since any of the two edges will
be taken into the matching. For the first case, we have to replace lines 15 to 16 by

else if (c’) 𝑣𝑖 has two edges 𝑒1 and 𝑒2 to two non-isolated and unmatched
vertices then

𝑀 ←𝑀 ∪ {𝑒1}
else if (c”) 𝑣𝑖 is connected to one non-isolated and unmatched vertex by an
edge 𝑒 then

𝑀 ←𝑀 ∪ {𝑒}

We call Algorithm 3.4 with the changes described above Algorithm 3.4∗ in the
proof of the following theorem.

Theorem 3.17. In the case of an online path 𝑃 ≺ ∈ 𝒫𝑛 with 𝑛 odd, there is an
algorithm which uses at most [︂𝑛

3 ⌉︂ − 2 bits of advice to find a maximum matching
in 𝑃 ≺.

Proof. We have to show that Algorithm 3.4∗ can complete the matching which
contains the first two isolated edges of 𝑃 ≺ ∈ 𝒫𝑛 to a valid maximum matching. Let
𝑒1 be the first and 𝑒2 be the second of these isolated edges. Then there are two
possibilities with respect to the number of edges in the final graph 𝑃 ≺(︀𝑉𝑛⌋︀:

1. There is an odd number of edges between 𝑒1 and 𝑒2.

2. There is an even number of edges between 𝑒1 and 𝑒2.

Observe that, in every maximum matching, there is exactly one unmatched vertex.
Since this vertex can be an arbitrary vertex of the 𝑛+1

2 vertices described in
Lemma 3.7, there will always be a possibility to complete the matching where 𝑒1
and 𝑒2 are matching edges. In case 1, the unmatched vertex will be left of 𝑒1 or
right of 𝑒2. Therefore the matching will look as described in Figure 3.14. Note
that some of the vertices in the lower levels of Figures 3.14 and 3.15 can appear
as isolated vertices earlier than 𝑒1 and 𝑒2 in the online setting of 𝑃 ≺. But for the
sake of readability, all of the vertices are depicted in the lower level.
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tim
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⋰ . . . ⋱𝑒1 𝑒2

Figure 3.14. Odd number of edges between 𝑒1 and 𝑒2.

tim
e

⋰ . . . . . . ⋱𝑒1 𝑒2

Figure 3.15. Even number of edges between 𝑒1 and 𝑒2.

In case 2, the unmatched vertex has to be somewhere in between 𝑒1 and 𝑒2 and
the final maximum matching will look as shown in Figure 3.15.
Alltogether, there is always a possibility to finish the matching correctly in order
to get a valid maximum matching. ◻

Observe that, in case 2 of the proof of Theorem 3.17, there are still several maximum
matchings possible if there are more than 4 edges between 𝑒1 and 𝑒2. But trying
to save an additional advice bit by forcing the algorithm also to take the third
isolated edge into the matching will not work since, in the worst case, this would
create two subpaths with an even number of vertices and we cannot afford a second
unmatched vertex.
The upper bound in a cycle can be developed similarly. Let 𝐶≺ = (𝐶𝑛,≺) be an
online cycle instance with 𝐶𝑛 a cycle on 𝑛 vertices. A maximum matching in 𝐶𝑛

looks as shown in Figure 3.16. In the case of a cycle of even length, there are two
edge-disjoint maximum matchings. If a cycle 𝐶≺ = (𝐶𝑛,≺) has an odd number 𝑛 of

𝑛 = 10 𝑛 = 9

Figure 3.16. One of two possible maximum matchings for a cycle with an even number
of vertices and one of several for a cycle with an odd number of vertices.
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vertices, we have 𝑛 maximum matchings, since the only unmatched vertex can be
any from the whole set of vertices.

Theorem 3.18. There is an online algorithm which uses at most ⟨︀𝑛
3 ⧹︀ − 1 advice

bits to find a maximum matching in a cycle 𝐶≺ ∈ 𝒞𝑛 of length 𝑛.

Proof. In an online cycle 𝐶≺ ∈ 𝒞𝑛 with 𝑛 vertices, maximally ⟨︀𝑛
3 ⧹︀ isolated edges of

type (a) in Figure 3.12 can appear. The algorithm 𝐴 can take the first isolated edge
𝑒 to the matching since in both cases, 𝑛 even and 𝑛 odd, there exists a maximum
matching containing 𝑒. Therefore, at most ⟨︀𝑛

3 ⧹︀ − 1 isolated edges could be left
which need an advice bit each. This leads to the upper bound of ⟨︀𝑛

3 ⧹︀ − 1 for the
algorithm 𝐴. ◻

In the case of a cycle of odd length, we have analogously to paths more maximum
matchings than in the case of a cycles of even lengths. The unmatched vertex helps
us again to save an additional bit.

Corollary 3.19. For all online cycles 𝐶≺ ∈ 𝒞𝑛 with 𝑛 odd, there exists an algorithm
which uses at most ⟨︀𝑛

3 ⧹︀ − 2 bits of advice to find a maximum matching in 𝐶≺.

Proof. We modify the algorithm 𝐴 from the proof of Theorem 3.18, analogously to
the modification for the paths, in the way that also the second isolated edge will
be taken into the matching. Then, the first two isolated edges 𝑒1 and 𝑒2 cut the
cycle into two paths. One of these paths contains an even number of edges and the
other one an odd number of edges since the number of edges without 𝑒1 and 𝑒2 is
also odd and an odd number can only be the sum of an even and an odd number.
In the path with an odd number of edges, the algorithm has to complete the
matching as shown in Figure 3.14 and if there are an even number of edges in
the path, the algorithm can follow one of the possible matchings according to
Figure 3.15. Therefore, there is always a possibility for the algorithm to find, with
the help of ⟨︀𝑛

3 ⧹︀− 2 advice bits, a valid maximum matching, given that the first two
isolated edges 𝑒1 and 𝑒2 are matching edges. ◻

Now, we show that there exist almost matching lower bounds for the online matching
problem on paths and cycles.

Theorem 3.20. Any deterministic online algorithm for the problem of finding a
maximum matching in an online path instance 𝑃 ≺ ∈ 𝒫𝑛 needs to read at least

⎝
⎝
⎝
⎝
⎝
⎪

1
3

𝑛 −
1
2

log(𝑛) + log
⎛

⎝

}︂
3

2𝜋

⎞

⎠

⎠
⎠
⎠
⎠
⎠
⎮

advice bits in order to be optimal.
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𝑤7 𝑤8
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Figure 3.17. Structure of the online instances for the lower bound on advice bits used by
every algorithm solving the online matching problem on an online path. In this example,
we have 𝑛 = 12 and therefore 𝑘 = 2.

Proof. We give a proof by contradiction. The proof is based on the following idea.
We assume that there exists an algorithm 𝐴< that uses less than

𝑏(𝑛) =
1
3

𝑛 −
1
2

log(𝑛) + log
⎛

⎝

}︂
3

2𝜋

⎞

⎠

advice bits to find a maximum matching in an online path instance with 𝑛 vertices.
Then, we describe a special set of pairwise different instances with pairwise different
optimal solutions. The number of these instances will be at least 2𝑏(𝑛). Therefore,
by the pigeonhole principle, there exists a pair of instances such that the algorithm
has to use the same advice string to solve them both optimally. Because the
optimal solutions of these two instances differ, there is a smallest time step in
which the algorithm should start to behave differently on these two instances. The
set of instances has to be constructed in such a way that one is forced to behave
differently already in the time when one cannot distinguish between them, because
they have the same prefix. If the algorithm would do the same on both instances
at this point, one of these instances would not be solved optimally. Therefore the
algorithm cannot use the same advice string to solve them both optimally. This is
achieved by choosing the problem instances in such a way that they all have a long
common prefix and so any online algorithm can perform differently on this long
prefix if and only if the advice is different.
For the proof, we will assume that 𝑛 = 6𝑘 is an even number such that all the
instances contain exactly one maximum matching. The special instances all start
with a common prefix, namely with 𝑛

3 = 2𝑘 isolated edges

{{𝑤3𝑖+1, 𝑤3𝑖+2} ⋃︀ 𝑖 ∈ {0, 1, 2, . . . , 2𝑘 − 1}}

given in all possible orders. Note that each online algorithm has to decide im-
mediately which of these edges are in the machting and which ones are not. In
the second step, each two of those edges are connected by one of the vertices in
{𝑤3𝑖 ⋃︀ 𝑖 ∈ {1, 2, . . . , 2𝑘}} in order to get a path (see Figure 3.17).
The described instances only differ in the presentation order of the edge set

{{𝑤3𝑖+1, 𝑤3𝑖+2} ⋃︀ 𝑖 ∈ {0, 1, 2, . . . , 2𝑘 − 1}}

containing 2𝑘 vertices. Thereby, it does not matter, if the vertex 𝑤3𝑖+1 or the
vertex 𝑤3𝑖+2 appears first. Note that half of these edges, namely the edge set
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{{𝑤1, 𝑤2}, . . . ,{𝑤6𝑘−5, 𝑤6𝑘−4}} has to be a set of matching edges and the remaining
edges {{𝑤4, 𝑤5}, . . . ,{𝑤6𝑘−2, 𝑤6𝑘−1}} are non-matching edges. The solution only
depends on the order in which the matching and the non-matching edges appear.
This divides the set of all instances that can be reached with the described construc-
tion in equivalence classes and for each of this classes, there is exactly one unique
optimal solution. The unique solution ist determined by a string 𝑥1𝑥2𝑥3 . . . 𝑥2𝑘

with 𝑥𝑖 ∈ {0, 1} for all 𝑖 ∈ {1, 2, . . . , 2𝑘} with

𝑥𝑖 =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

1 if the 𝑖th isolated edge is a matching edge ,

0 else .

These strings contain exactly 𝑘 zeros and 𝑘 ones. This leads to (
2𝑘
𝑘
) equivalence

classes. With the help of Stirling’s formula (1.2) and the inequality (1.3) of
Chapter 1 we get
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advice bits. Therefore, there are two equivalence classes which get the same advice
string. This means that the algorithm makes the same decisions on the first 𝑛

3
isolated edges on both instance classes. But since these equivalence classes are
different, there is a first isolated edge 𝑒 such that, w.l.o.g., 𝑒 is a matching edge
in the first instance but a non-matching edge in the second instance. Therefore,
the matching chosen by 𝐴< will not be optimal in one of these instances which is a
contradiction to the assumption.
Therefore, there is no online algorithm which can find an optimal matching in all
online path instances with less than 1

3 𝑛 − 1
2 log(𝑛) + log (

⌉︂
3

2𝜋
) advice bits. ◻

The lower bound for online cycles 𝐶≺ = (𝐶𝑛,≺) can be derived similarly. The main
difference is that both types of cycles, with 𝑛 even or 𝑛 odd, do not have a unique
solution. Therefore, we have to pay a little bit more attention to the argumentation
in the proof.



78 Chapter 3. Online Matching in Bipartite Graphs
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Figure 3.18. The two solutions of an online cycle instance with 𝑛 = 12 (𝑘 = 2) for the
lower bound on advice bits used by every algorithm solving the online matching problem
on an online cycle.

Theorem 3.21. Any deterministic online algorithm for the problem of finding a
maximum matching in an online cycle instance 𝐶≺ ∈ 𝒞𝑛 needs to read at least
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advice bits in order to be optimal.

Proof. The instance class is defined similarly to the one in the proof of Theorem 3.20.
Again, we assume that 𝑛 = 6𝑘. The adversary shows to the algorithm first the
𝑛
3 = 2𝑘 isolated edges {{𝑤3𝑖+1, 𝑤3𝑖+2} ⋃︀ 𝑖 ∈ {0, 1, 2, . . . , 2𝑘 − 1}} in an arbitrary order
and then the 2𝑘 connecting vertices {𝑤3𝑖 ⋃︀ 𝑖 ∈ {1, 2, . . . , 2𝑘}} which are depicted on
an inner circle in Figure 3.18.
Note that every instance has exactly two optimal solutions. If the string 𝑥1𝑥2 . . . 𝑥2𝑘

with 𝑥𝑖 ∈ {0, 1} for all 𝑖 ∈ {1, 2, . . . , 2𝑘} with

𝑥𝑖 =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

1 if the 𝑖th isolated edge is a matching edge ,

0 else

is an optimal solution, also the string 𝑥1𝑥2𝑥3 . . . 𝑥2𝑘 with

𝑥𝑖 =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

1 if 𝑥𝑖 = 0 ,

0 if 𝑥𝑖 = 1
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is an optimal solution for the same instance. Therefore, there are (2𝑘
𝑘
)

2 different
equivalence classes. Adjusting the calculation of the proof of Theorem 3.20, we get
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and therefore, with the same argumentation as in the proof of Theorem 3.20, we
get the claimed lower bound of
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concluding the proof ◻

3.3 Lower Bound for Optimality in Trees
In order to determine the amount of advice bits needed solving the online matching
problem on trees optimally, we will first show a lower bound on the number of
advice bits that any online algorithm needs to read in order to find a maximum
matching in trees. The described lower bound will have the special shape of combs.
This is a special case of so-called caterpillars [66].

Definition 3.22 (Caterpillar, Comb). A caterpillar is a tree in which
there exists a path (called the spine) that contains every vertex of degree
two or more. A comb is a caterpillar in which all vertices on the spine have
vertex degree 3, except the first and the last vertex which have degree 2.

See Figure 3.19 for an example of a caterpillar and a comb.

Theorem 3.23. Any deterministic online algorithm for the problem of finding a
maximum matching in an online comb instance on 𝑛 vertices needs to read at least

𝑛

2
− 1

advice bits in order to be optimal.

Proof. Assume that there is an algorithm 𝐴< that needs less than 𝑛
2 − 1 advice bits

to be optimal for any online comb instance on 𝑛 vertices. We need to describe a
class of online instances in which each two of the instances need a different advice
string. We show that this class consists of 2 𝑛

2 −1 instances. This is a contradiction
to the assumption and this provides us with the claimed lower bound.
Let 𝑛 = 2𝑘 + 2 with 𝑘 ∈ N be the number of vertices in the final comb. They are
built according to the pattern described in Figure 3.20. Note that these instances
all have a unique optimal solution. All the instances start with the vertex 𝑣1 = 𝑤1.
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Then, for the vertex 𝑣2 there are 2 possibilities: Either 𝑣2 = 𝑤1
2 or 𝑣2 = 𝑤2

2.
According to the decision for 𝑣2, we assign the remaining vertex of the vertex set
{𝑤1

2, 𝑤2
2} to 𝑣3. In general, for every 𝑖 ∈ {1, 2, . . . , 𝑘}, the vertex 𝑣2𝑖 is either 𝑤1

𝑖+1
or 𝑤2

𝑖+1, and 𝑣2𝑖+1 is the remaining of these two vertices.
So, the adversary has the chance to choose, in every time step 2𝑖 for all 𝑖 ∈

{1, 2, . . . , 𝑘}, either a matching or a non-matching edge to show to the algorithm.
Therefore, there are

2𝑘
= 2 𝑛

2 −1

many different instances.
It remains to show that no two of these online instances can get the same advice
string in order to be optimal. These two instances have a prefix with undistinguish-
able information and differ, w.l.o.g., in time step 2𝑖 for the first time. W.l.o.g., one
of the instances, say 𝐼1, has 𝑣2𝑖 = 𝑤1

𝑖+1 and 𝑣2𝑖+1 = 𝑤2
𝑖+1 and the other instance 𝐼2

has 𝑣2𝑖 = 𝑤2
𝑖+1 and 𝑣2𝑖+1 = 𝑤1

𝑖+1 (see Figure 3.21).

(a) Caterpillar

(b) Comb

Figure 3.19. Example of a caterpillar and a comb. The vertices on the spine are marked
darker.

time

𝑤1 𝑤1
2

𝑤2
2

𝑤1
3

𝑤2
3

𝑤1
4

𝑤2
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𝑤1
5

𝑤2
5

𝑤1
6

𝑤2
6

𝑤1
7

𝑤2
7 𝑤8

Figure 3.20. Pattern of the online combs for the proof of the lower bound on advice bits
used by every algorithm solving the online matching problem on combs. In this example,
we have 𝑛 = 14 and 𝑘 = 6. In time steps 2, 4, 6, 8, and 10, the adversary has the choice to
reveal either an edge that should be a matching edge or a non-matching edge.
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𝑣1 𝑣2

𝑣3
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𝑣4

𝑣7
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𝑣10

. . .

𝐼1

𝑣1 𝑣2

𝑣3

𝑣5

𝑣4

𝑣7

𝑣6

𝑣8

𝑣9

. . .

𝑣10

𝐼2

Figure 3.21. Two online instances that differ in time step 10 for the first time.

Since for 𝐼1 and 𝐼2 the same information is provided until time step 2𝑖, the algorithm
has to decide for both instances 𝐼1 and 𝐼2 in the same way in time step 2𝑖. Therefore
one of the two chosen matchings will not be optimal. Therefore, any algorithm has
to use two different advice strings for each two instances in our class. This means
that every algorithm needs to read at least 𝑛

2 − 1 advice bits to be optimal. ◻

One special subclass of trees we will consider in the next section is the class of
trees where we restrict the vertex degrees of the inner vertices. All inner vertices
will have exactly the vertex degree 3. The instance class used in the proof of
Theorem 3.23 does not satisfy this property. Therefore, we modify the instances
slightly, but we have to accept a lower bound that is weaker by two advice bits.

Corollary 3.24. Any deterministic online algorithm for the problem of finding a
maximum matching in a tree on 𝑛 vertices with vertex degrees 1 and 3 needs to
read at least

𝑛

2
− 3

advice bits in order to be optimal.

Proof. The only modification on the instance class of the proof of Theorem 3.23 is
that we have to append to the leftmost vertex 𝑤1 a vertex 𝑤3

𝑘+2 with two neighbors
𝑤1

𝑘+3 and 𝑤2
𝑘+3 and to the rightmost vertex 𝑤1

𝑘+1 of the spine the concluding vertex
𝑤2

𝑘+2 for a 𝑘 ∈ N (see Figure 3.22). The adversary shows the additional vertices
𝑤3

𝑘+2, 𝑤1
𝑘+3, 𝑤2

𝑘+3, and 𝑤2
𝑘+2 in this order after the set of vertices described in

Theorem 3.23 (actually, an arbitrary order would be sufficient, but it is easier to
fix one). These additional vertices do not provide any additional choice to the
algorithm but they assure that the resulting online graph is an online {1, 3}-tree.
In the new instance class, we have 𝑛 = 2𝑘 + 6 with 𝑘 ∈ N vertices in the final
tree. Since the prefix of these instances is constructed in the same way as the one
of Theorem 3.23 until time step 2𝑘 + 2, again, we have 2𝑘 different instances for
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3
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4
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6
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6
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7
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Figure 3.22. Pattern of the modified trees for the proof of the lower bound on advice
bits used by every algorithm solving the online matching problem on {1, 3}-trees. Here
we have 𝑛 = 18 and 𝑘 = 6.

which each two have to receive a different advice string as shown in the proof of
Theorem 3.23. Inserting 𝑘 = 𝑛−6

2 to this term, we see that we have 2 𝑛−6
2 = 2 𝑛

2 −3

different instances leading to 𝑛
2 − 3 advice bits that are necessary to be optimal. ◻

3.4 Upper Bounds for Optimality in Trees
After giving a straight-forward upper bound on general trees, we restrict our
attention to special subclasses of trees.

Theorem 3.25. There is an online algorithm which reads at most 𝑛 − 1 advice
bits to solve the online online matching problem on trees 𝑇𝑛 with 𝑛 vertices.

Proof. The algorithm 𝐴tree asks for every new edge one bit of advice which indicates
to the algorithm if the edge should be a matching or a non-matching edge. Since a
tree 𝑇𝑛 contains exactly 𝑛 − 1 edges, the algorithm 𝐴tree has to ask for maximally
𝑛 − 1 bits. ◻

Trees With Restricted Vertex Degrees
In the following, we consider special graph classes with restricted vertex de-
grees.

Definition 3.26 (𝑆-Tree). A tree 𝑇 with vertex degrees from the set 𝑆 ⊆N

is called an 𝑆-tree.

According to this definition, a path is a {1, 2}-tree. As a next graph class, we will
consider {1, 3}-trees. This means that all inner vertices of the trees have exactly
degree 3. Therefore, these trees are similar to binary trees. Let us first observe
some special properties of (offline) {1, 3}-trees.
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𝑇𝑛+2

𝑇𝑛

Figure 3.23. To construct 𝑇𝑛+2, we attach two vertices to one vertex of degree 1 in 𝑇𝑛.

Lemma 3.27. The number of vertices in {1, 3}-trees with more than one vertex is
even.

Proof. For a tree 𝑇 = (𝑉, 𝐸) we have

∑
𝑣∈𝑉 (𝑇 )

deg(𝑣) = 2 ⋅ ⋃︀𝐸(𝑇 )⋃︀ ,

i. e., the sum over all vertex degrees is even. Because all the vertex degrees are
odd, only an even number of summands can lead to an even number. Therefore
the number of vertices is even. ◻

To count the number of leaves in {1, 3}-trees, we need to know how all {1, 3}-trees
can be constructed.

Lemma 3.28. Every {1, 3}-tree 𝑇𝑛 on 𝑛 = 2𝑘 vertices, for 𝑘 ∈ N, 𝑘 > 1, can be
constructed recursively by the following two rules:

1. For 𝑘 = 1, 𝑇2 is a single edge.

2. Let 𝑛 = 2𝑘 for a 𝑘 ∈ N, 𝑘 > 1. We construct a {1, 3}-tree 𝑇𝑛+2 by attaching
two vertices to one vertex of degree 1 in some {1, 3}-tree 𝑇𝑛 (see Figure 3.23).

Proof. We will prove this lemma by contradiction. Assume that there exists a
smallest {1, 3}-tree 𝑇2𝑘+2 for some 𝑘 ∈ N that cannot be constructed following
these two rules. Then 𝑘 has to be larger than 0 since a {1, 3}-tree on 2 vertices
always has to follow rule 1. The deviation from the construction rules has to have
happened in the last step since we deal with the smallest {1, 3}-tree which does
not follow these rules. Therefore, the construction of 𝑇2𝑘+2 from 𝑇2𝑘 happened in
a different way than suggested in rule 2 and applying rule 2 on any 𝑇2𝑘 cannot
result in 𝑇2𝑘+2.
Rule 2 could have been applied if there would exist two leaves in 𝑇2𝑘+2 which would
be attached to the same vertex as shown in Figure 3.23. Since this rule was not
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𝑇2𝑘+2

𝑇2𝑘

�

Figure 3.24. No two leaves in 𝑇2𝑘+2 are attached to the same inner vertex.

𝑣𝑗1 𝑣𝑖 𝑣𝑗2 Ô⇒ 𝑣𝑗1 𝑣𝑗2

Figure 3.25. All vertices 𝑣𝑖 of degree 2 in 𝑇 ′ are removed in order to get a regular graph
𝑇 ′′ with degree 3.

applicable, 𝑇2𝑘+2 contains only leaves that are pairwise adjacent to different inner
vertices (see Figure 3.24). Since 𝑇2𝑘+2 is a {1, 3}-tree, removing all leaves (i. e., all
vertices of degree 1) results in a tree 𝑇 ′ with vertices of degrees 2 and 3. Note that
the vertices that are adjacent to the removed leaves all have degree 3 and therefore
they do not become leaves after removing their leaves. We want to show that T’
contains a cycle which is a contradiction to 𝑇2𝑘+2 being a tree.
Therefore, we transform 𝑇 ′ to a graph 𝑇 ′′ of containing only vertices of degree 3
by removing all vertices 𝑣𝑖 of degrees two and adding edges 𝑣𝑗1 and 𝑣𝑗2 to 𝑇 ′′ if
and only if {𝑣𝑗1 , 𝑣𝑖} ∈ 𝐸(𝑇 ′) and {𝑣𝑗2 , 𝑣𝑖} ∈ 𝐸(𝑇 ′) (see Figure 3.25). Note that,
due to the above construction, if there is a cycle in 𝑇 ′′, there is also one in 𝑇 ′ and
therefore in 𝑇2𝑘+2. Since 𝑇 ′′ is a 3-regular graph, it has to contain a cycle. Hence,
our assumption was wrong, and every graph 𝑇2𝑘+2 can be constructed following
rules 1 and 2 of the lemma. ◻

In the proof, we used the folklore that every 3-regular (cubic) graph contains a
cycle1.
Lemma 3.29. Any {1, 3}-tree 𝑇𝑛 with 𝑛 vertices contains exactly 𝑛

2 + 1 leaves.

Proof. This can be proven by induction over the number of vertices. Because of
Lemma 3.27, we know that the number of vertices in a {1, 3}-tree 𝑇𝑛 is even, i. e.,
𝑛 = 2𝑘 for some 𝑘 ∈N.
The only tree with two vertices, i. e., for 𝑘 = 1, is an isolated edge which contains
two leaves. Because 𝑛

2 + 1 = 2, the base case is proven.
1 This holds because the depth-first search starting from an arbitrary vertex 𝑣 will lead back to 𝑣

at the latest when all other vertices have been visited. Therefore, this graph has to contain a
cycle.
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Assume that any {1, 3}-tree 𝑇2𝑘 on 𝑛 = 2𝑘 vertices contains exactly 𝑛
2+1 = 𝑘+1 leaves.

Now, let us look at the case 𝑘+1, i. e., the number of vertices is 𝑛 = 2(𝑘+1) = 2𝑘+2.
Because of Lemma 3.28, any {1, 3}-tree 𝑇2𝑘+2 on 2𝑘 + 2 vertices can be constructed
from some {1, 3}-tree 𝑇2𝑘 on 2𝑘 vertices by attaching two new vertices to some leaf
of 𝑇2𝑘.
With the described construction, 𝑇2𝑘+2 gets two new leaves, but one old leaf
disappears. Therefore 𝑇2𝑘+2 has one leaf more than 𝑇2𝑘. This implies that 𝑇2𝑘+2
contains (𝑘 + 1) + 1 = 𝑘 + 2 = 𝑛

2 + 2 = 𝑛+1
2 + 1 leaves concluding the proof. ◻

A Special Maximum Matching
Sometimes it is easier to try to find a maximum matching with a special property.
In Lemma 3.8, we showed that in paths, there is always a maximum matching
that matches all inner vertices. Also for trees a matching which matches all inner
vertices can be easier to find.

Lemma 3.30. There exists always a maximum matching for a general tree 𝑇 that
matches all inner vertices.

Proof. Suppose that, for a maximum matching 𝑀 , there exist inner vertices that
are not incident to a matching edge. First, consider one of the unmatched inner
vertices 𝑣 with the smallest distance to a leaf. Since no two neighboring edges can
be both matching edges and 𝑣 is an unmatched vertex that is nearest to this leaf,
there must exist an alternating path between 𝑣 and a leaf (see Figure 3.26). Since
𝑀 is a maximum matching, this alternating path ends with a matching edge. If
this edge would not be a matching edge, we would have an augmenting path which
is a contradiction to the fact that 𝑀 is a maximum matching.
Now, we can switch the matching and non-matching edges on this path such that
𝑣 will be matched in the end.
Then, we can proceed in the same way with a next unmatched inner vertex until
all inner vertices are matched. Obviously, this procedure terminates in finitely
many steps because we do not create new unmatched inner vertices when switching
matching and non-matching edges on the alternating paths. ◻

One First Algorithm for Finding a Maximum Matching in
{1,3}-Trees
Now, we are ready to look at two algorithms proving upper bounds on the number
of advice bits needed to find a maximum matching in an online {1, 3}-tree. We
will explain both algorithms, estimate their advice complexity and show their
limitations. Both algorithms will look for a matching that matches all inner
vertices.
The first algorithm is similar to Algorithm 3.4 for finding a maximum matching
on paths. The algorithm reads an advice bit for every edge if necessary. The
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𝑣

(a) The marked vertex is unmatched and the
marked path is an alternating path.

𝑣

(b) All inner vertices are matched by this
matching.

Figure 3.26. The transformation of a matching that does not match an inner vertex to
one which matches all inner vertices.

algorithm does not have to use any advice bit for a new edge 𝑒 if it is adjacent to a
previous matching edge or to two non-matching edges (see Figure 3.27) because
the algorithm seeks a matching that matches all inner vertices. In the first case, 𝑒
will be a non-matching edge and in the second case, 𝑒 has to be a matching edge.
To describe the algorithm in more detail, we need an order on the edges. Recall,
that we define this order in two steps. First, we order the edges with respect to
the appearance of the vertices 𝑣𝑖 in the online graph 𝐺≺ given by 𝐺 = (𝑉, 𝐸) with
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. We denote by 𝐸𝑖 the set of edges that appear in time step 𝑖 by
adding the vertex 𝑣𝑖, i. e., 𝐸𝑖 = {{𝑣𝑖, 𝑣𝑗} ∈ 𝐸 ⋃︀ 𝑗 < 𝑖} for all 𝑖 ∈ {1, 2, . . . , 𝑛}. Within
a set 𝐸𝑖, ⋃︀𝐸𝑖⋃︀ > 1, the order of edges is given by the order, in which two previous
adjacent vertices 𝑣𝑗 , 𝑣𝑘 (𝑗, 𝑘 < 𝑖) appear (see Definition 3.9 for more details).
Now, we are ready to give the details of the first algorithm for finding a maximum
matching in a {1, 3}-tree which are described in Algorithm 3.5 (see also Figure 3.27).
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𝑣𝑗 𝑣𝑖
𝑒

time

(a) 𝑒 = {𝑣𝑖, 𝑣𝑗} is adjacent to one
previous matching edge.

𝑣𝑗 𝑣𝑖
𝑒𝑒2

𝑒1

time

(b) 𝑒 = {𝑣𝑖, 𝑣𝑗} is adjacent to two
previous non-matching edges

Figure 3.27. The two cases where the Algorithm 3.5 does not need to read an advice
bit.

Algorithm 3.5 Maximum Matching on {1, 3}-trees
INPUT: 𝑇 ≺ ∈ 𝒯𝑛 with 𝑇 ≺ a {1, 3}-tree, for some 𝑛 ∈N

1: 𝑀 = ∅

2: for 𝑖 = 1 to 𝑛 do
3: if 𝐸𝑖 = ∅ then
4: 𝑀 ←𝑀
5: else
6: for all 𝑒 ∈ 𝐸𝑖 do
7: if (a) 𝑒 is adjacent to a matching edge then
8: 𝑀 ←𝑀
9: else if (b) 𝑒 is adjacent to 𝑒1, 𝑒2 ∈ 𝐸𝑖 ∖𝑀 with 𝑒1, 𝑒2 ≺ 𝑒 then

10: 𝑀 ←𝑀 ∪ {𝑒}
11: else
12: read an advice bit 𝜎 to decide whether 𝑒 is a matching edge:
13: if 𝜎 = 1 then
14: 𝑀 ←𝑀 ∪ {𝑒}
15: else
16: 𝑀 ←𝑀
17: output 𝑀𝑖 = 𝑀

OUTPUT: 𝑀 = (𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑚) = ⋃
𝑛
𝑖=1 𝑀𝑖 ⊆ 𝐸, for some 𝑚 ∈N
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𝑣𝑖

𝑒1

𝑒2

𝑒3

time

Figure 3.28. If the algorithm looks at all 3 edges at once, it can see that 𝑒1 should be a
matching edge.

In the 𝑖th run of the loop, Algorithm 3.5 looks at every edge 𝑒 ∈ 𝐸𝑖 one by one
according to their order. But sometimes it could save an advice bit by looking at
the edges of 𝐸𝑖 at once because there could be some useful information for the
other edges. In the case shown in Figure 3.28, the algorithm would ask an advice
bit for the edge 𝑒1. But, because 𝑒2 and 𝑒3 have to be non-matching edges and
the algorithm constructs a matching which matches all inner vertices, 𝑒1 has to be
the matching edge. Therefore, we could modify the algorithm by taking this case
into account. We decided not to do so because this case does not appear in any
worst-case instance and therefore cannot be used to improve the estimation of the
upper bound.
Recall that the lower bound on the number of advice bits for an algorithm finding
a maximum matching in a {1, 3}-tree is 𝑛

2 − 3 as we have proven in Corollary 3.24.
Our goal is to find a matching upper bound for {1, 3}-trees. We show that this
algorithm will not satisfy our needs. First, we estimate the amount of advice used
by the algorithm and then, we will give a class of online {1, 3}-trees for which the
algorithm uses a lot of advice bits.
A local view on the work of Algorithm 3.5 will help us to estimate the upper bound.

Lemma 3.31. Let 𝑇 ≺ with 𝑇 = (𝑉, 𝐸) and 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} be an online {1, 3}-
tree. For every vertex 𝑣𝑖 ∈ 𝑉 of degree 3, Algorithm 3.5 reads an advice bit for at
most two of the three incident edges.

Proof. The edges incident to the vertex 𝑣𝑖 appear either in time step 𝑖 or later.
There is an order on these three edges. Say, the edges 𝑒1 and 𝑒2 are already
present and the edge 𝑒 appears as the last incident edge to 𝑣𝑖. Then, we encounter
one of the two cases in Figure 3.27. Either one of 𝑒1 and 𝑒2 is a matching edge
and therefore 𝑒 is non-matching or neither 𝑒1 nor 𝑒2 are matching and hence 𝑒 is



3.4. Upper Bounds for Optimality in Trees 89

matching since the algorithms seeks a matching which matches all inner vertices.
Therefore, the third incident edge 𝑒 never will ask for an advice bit. ◻

Lemma 3.31 helps us to estimate the number of advice bits that Algorithm 3.5
needs to read in order to find a maximum matching in an arbitrary {1, 3}-tree.

Theorem 3.32. Algorithm 3.5 uses at most

⌋︂
3
4

𝑛 −
1
2
⟨

advice bits to find a maximum matching in an online {1, 3}-tree 𝑇 ≺ ∈ 𝒯𝑛 on 𝑛
vertices.

Proof. Algorithm 3.5 asks for every edge either for one bit of advice or for no bit
of advice. To make the calculation easier, we copy, for every edge 𝑒 = {𝑣𝑖, 𝑣𝑗}, this
bit onto the two incident vertices 𝑣𝑖 and 𝑣𝑗 . Because of Lemma 3.31, we know
that every vertex of degree 3 is labeled with at most two advice bits. Furthermore,
every leaf will have at most 1 advice bit in the worst case.
Now, we sum up all the advice bits of the 𝑛 vertices. Note that we count every
bit twice, since we copied the advice bit of every edge to the two incident vertices.
In Lemma 3.29, we showed that there are exactly 𝑛

2 + 1 leaves in a {1, 3}-tree.
Therefore, Algorithm 3.5 uses at most

(𝑛
2 + 1) ⋅ 1 + (𝑛

2 − 1) ⋅ 2
2

=

3𝑛
2 − 1

2
=

3
4

𝑛 −
1
2

advice bits to find a maximum matching in any online {1, 3}-tree of size 𝑛. ◻

In a next step, we show that Algorithm 3.5 cannot reach our desired bound of
𝑛
2 − 1 advice bits for a {1, 3}-tree of size 𝑛. Therefore, we need an instance class of
{1, 3}-trees where the algorithm always has to use a certain amount of advice bits
to find a maximum matching in these graphs.

Theorem 3.33. Algorithm 3.5 reads at least ⟨︀ 7
12 𝑛− 1

2 ⧹︀ = ⟨︀0.583𝑛− 0.5⧹︀ advice bits
in order to find a maximum matching in every {1, 3}-tree of size 𝑛.

Proof. To show the desired lower bound on the algorithm, we need to describe an
instance class such that, for infinitely many 𝑛, there exists an instance of size 𝑛 for
which the algorithm reads at least ⟨︀ 7

12 𝑛 − 1
2 ⧹︀ bits in order to be optimal.

These instances will repeatedly use the two subgraphs 𝐶≺
1 and 𝐶≺

2 described in
Figure 3.29. The order of the vertices in the components 𝐶≺

1 and 𝐶≺
2 is given

according to the index of the vertices. In both components, the algorithm will
ask for an advice bit for the edges {𝑣1, 𝑣2}, {𝑣1, 𝑣3} and {𝑣2, 𝑣4}, and additionally
one bit is required for the edge {𝑣3, 𝑣6} in 𝐶≺

2 , so three advice bits are needed in
component 𝐶≺

1 and four in component 𝐶≺
2 . It does not matter whether the edge
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𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

time

𝐶≺1

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

time

𝐶≺2

Figure 3.29. The two components 𝐶≺1 and 𝐶≺2 that are repeatedly used in the worst-case
instances for Algorithm 3.5. The marked vertices will be the connecting vertices.

𝑣

𝐺≺1 𝐶≺1

𝐶≺2

Figure 3.30. The graph 𝐺≺2 is built by attaching a copy of 𝐶≺1 and one of 𝐶≺2 with a new
vertex 𝑣 to 𝐺≺1. The marked vertex will be the connecting vertex for further components.

{𝑣2, 𝑣4} or the edge {𝑣2, 𝑣5} is a matching edge, but, as we will see later, all other
edges have to be matching or non-matching edges as shown in Figure 3.29.
Now we are ready to build the instances step by step. Let the first subgraph 𝐺≺

1
be the component 𝐶≺

1 . Note that the algorithm asks for 3 advice bits in 𝐺≺
1. Then,

in every following stage 𝑘, an independently built copy of 𝐶≺
1 and one of 𝐶≺

2 will
be attached to the existing subgraph 𝐺≺

𝑘 by a vertex 𝑣 adjacent to the marked
vertices as shown in Figure 3.30 for the graph 𝐺≺

2. Therefore, the algorithm will
not ask for any advice bit for the three new edges incident to 𝑣. Hence, with the
additional 7 advice bits, the algorithm asks in total for 10 advice bits in 𝐺≺

2. The
new connecting vertex is the vertex 𝑣3 of the component 𝐶≺

2 , which is the marked
vertex in Figure 3.30.
To conclude the construction of the graphs 𝐺≺

𝑘 to the final graphs �̃�≺
𝑘, for all 𝑘 ∈N,

we need to add an additional vertex adjacent to the last marked vertex in 𝐺≺
𝑘 in

order to build a {1, 3}-tree. Otherwise, the last marked vertex would have degree
2. An example of a final graph �̃�≺

3 is shown in Figure 3.31.
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𝑣

𝐺≺2

𝐶≺1

𝐶≺2

Figure 3.31. An example of a final graph �̃�≺𝑘 for 𝑘 = 3.

The number 𝑛 of vertices in stage 𝑘, in the final graph �̃�≺
𝑘, is

𝑛 = 𝑉 (�̃�≺
𝑘) = 𝑉 (𝐺≺

1) + (𝑘 − 1) ⋅ (𝑉 (𝐶≺
1 ) + 𝑉 (𝐶≺

2 ) + 1) + 1
= 5 + (𝑘 − 1) ⋅ (5 + 6 + 1) + 1 = 6 + (𝑘 − 1) ⋅ 12
= 12𝑘 − 6 .

The number of advice bits needed by the algorithm in order to find a maximum
matching in �̃�≺

𝑘 is

3 + (𝑘 − 1) ⋅ (3 + 4) = 3 + (𝑘 − 1) ⋅ 7 = 7𝑘 − 4

= 7 ⋅ 𝑛 + 6
12

− 4 = 7𝑛 + 42
12

−
48
12

=
7
12

𝑛 −
1
2

using the fact that 𝑘 = 𝑛+6
12 .
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It remains to show that there is no maximum matching for which the algorithm
would need less bits to find it. These instances are constructed such that all
maximum matchings differ only in the choice whether the edge {𝑣2, 𝑣4} or the
edge {𝑣2, 𝑣5} in each component 𝐶≺

1 and 𝐶≺
2 is a matching edge and whether the

edge {𝑣3, 𝑣6} of the last constructed component 𝐶≺
2 or the last concluding edge

is a matching edge. No matter which of these edges is chosen as matching edge,
the algorithm has to ask one advice bit for the first edge of each of these pairs of
edges. The matching of the inner edges is the same in every maximum matching.
Therefore, for each of these maximum matchings, the algorithm has to consider
the same number of advice bits. ◻

An Improved Algorithm for Finding a Maximum Matching
in {1,3}-Trees

We now know the range of advice bits used by Algorithm 3.5 in order to find a
maximum matching in any {1, 3}-tree. This algorithm asks advice bits for every
edge, if needed. But in some cases this may be too much. For example, for a
vertex 𝑣𝑖 of degree 3 in the 𝑖th run of the loop for a {1, 3}-tree, Algorithm 3.5
asks two advice bits for the three incident edges in the worst case. But, because
only one of these incident edges can be a matching edge, this is a one-out-of-three
choice and therefore we would only need log(3) advice bits to encode the choice
of the matching edge from the three incident edges to 𝑣𝑖. If there already exists
a non-matching edge {𝑣𝑖, 𝑣𝑘} incident to 𝑣𝑖, for a 𝑘 < 𝑖, even one bit of advice
suffices to decide which one of the two new edges, {𝑣𝑖, 𝑣𝑗1} or {𝑣𝑖, 𝑣𝑗2}, should be a
matching edge (see Figure 3.32). The second modification does not improve the
previous algorithm with respect to the number of advice bits used, but the advice
bit is used slightly different. The first algorithm uses this bit to decide whether the
second edge incident to 𝑣𝑖 is a matching edge and the second algorithm decides
with the help of this bit whether the second or the third edge is a matching edge.
Since both algorithms are looking for an algorithm that matches all inner vertices,
these two possibilities are the same.
So, the main modification that we undertake to find a better algorithm is, that we
ask log(3) advice bits instead of 1 advice bit for an isolated edge {𝑣𝑖, 𝑣𝑗}. These
log(3) advice bits encode the one-out-of-three decision for the three edges incident
to 𝑣𝑖 if the next adjacent edge is an edge {𝑣𝑖, 𝑣𝑘} for a 𝑘 > 𝑖 (see Figure 3.33). Note
that if 𝑣𝑗 gets additional adjacent vertices in a later time step, the algorithm has
to ask an advice bit for the one-out-of-two decision for these two new edges.
Another new feature of the new algorithm is that the advice bits asked by it will
always be assigned to a vertex and not to an edge as in the previous algorithm. This
results in the problem that we have to define for which vertices the new algorithm
should ask for advice in time step 𝑖. This will depend on the neighborhood of the
new vertex 𝑣𝑖 in the 𝑖th run of the loop.
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𝑣𝑗2

𝑣𝑗1

𝑣𝑗3

𝑣𝑖 log(3)

(a) One-out-of-three decision for the
three new edges incident to 𝑣𝑖.

𝑣𝑗2

𝑣𝑗1

𝑣𝑘

𝑣𝑖 1

(b) One-out-of-two decision for the
two new incident edges of 𝑣𝑖.

Figure 3.32. The two possible decisions that have to be made in order to find the
matching edge. {𝑣𝑘, 𝑣𝑖} for 𝑘 < 𝑖 is a non-matching edge.

𝑣𝑖𝑣𝑗

𝑣𝑘

𝑣𝑙

log(3)

Figure 3.33. If the algorithm asks log(3) advice bits for an edge {𝑣𝑖, 𝑣𝑗} in time step 𝑖,
these bits are mapped, w.l.o.g., to the vertex 𝑣𝑖 with the next incident edge in the online
presentation of the tree for 𝑖, 𝑗 < 𝑘 and 𝑖, 𝑗 < 𝑙.

Before describing the details of the new algorithm, we have to take care about
what it means to read log(3) advice bits because a fraction of advice bits cannot
be read. We take three possibilities into account:

1. One possibility would be to round the log(3) advice bits up to 2 advice bits,
but then we would not save anything with respect to Algorithm 3.5.

2. The second possibility is to use the more elaborate idea of [58] to ask the
oracle what we should make in the case of a one-out-of-three decision.
Lemma 3.34 (Seibert et al. [58]). Reading several one-out-of-three deci-
sions from a bit string can be done with 46

29 < 1.5863 advice bits on average.
◻

In the proof of Lemma 3.34 it is described that, when the first one-out-of-three
decision is necessary, the algorithm reads 46 bits from the advice string. This
is far too much, but these 46 bits encode 29 one-out-of-three decisions. So
the algorithm always asks 29 one-out-of-three decisions at the time and keeps
them in its memory. This means that in the worst case, the algorihm has an
overhead of 44 advice bits in the end which it cannot use. These small blocks
of advice bits that encode one-out-of three decisions are good for instances
on which not many one-out-of-three decisions have to be made.
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3. If the algorithm has to make many one-out-of-three decisions, it would
be better to ask the oracle in advance for the number 𝑘 of one-out-of-three
decisions that are necessary on the online {1, 3}-tree. This costs the algorithm
𝒪(log(𝑘)) advice bits. But then, the oracle can encode all of these decisions
in one advice block in order not to have a big overflow of advice bits:

Lemma 3.35. When 𝑘 is known to the algorithm, encoding 𝑘 one-out-of-
three decisions costs ⟨︀𝑘 log(3)⧹︀ + 1 advice bits.

Proof. Let 𝑘 be the number of one-out-of-three decisions that an algorithm
has to make on an online {1, 3}-tree. Hence, the algorithm has to choose one
out of the 3𝑘 possible sequences of 𝑘 one-out-of-three decisions. We want to
know how many advice bits are necessary to encode these 3𝑘 sequences. So,
we need to find a length 𝑙 of the advice string such that

3𝑘
≤ 2𝑙

holds. Applying the logarithm with basis two on both sides leads to 𝑘 log(3) ≤
𝑙 and therefore to 𝑙 = ⟨︀𝑘 log(3)⧹︀ + 1. ◻

We will use this third possibility in our calculation.

To give the details of an improved algorithm, we need to distinguish some special
edges which do not need any advice because it is clear from their neighborhood
what decision has to be made for this edge. Note that our new algorithm will also
match all inner vertices as the previous one. There are two possibilities where
the decision for an edge {𝑣𝑖, 𝑣𝑗} in a time step 𝑖 is already made because of the
previous neighborhood:

• Either the adjacent edges give some information about the new edge 𝑒,

• or the algorithm already asked advice for the vertex 𝑣𝑗 in an earlier time
step.

In both cases, the algorithm does not need any additional advice to decide optimally
on the edge 𝑒.
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𝑣𝑘 𝑣𝑗

𝑣𝑙

𝑣𝑖

(a) 𝑣𝑗 is incident to a match-
ing edge.

𝑣𝑘 𝑣𝑗

𝑣𝑙

𝑣𝑖

(b) 𝑣𝑗 is incident to two non-
matching edges.

𝑣𝑘 𝑣𝑗

adv
𝑣𝑖

(c) The algorithm already
read advice bits for 𝑣𝑗 .

Figure 3.34. The edge {𝑣𝑖, 𝑣𝑗} is in the above cases saturated in time step 𝑖 for 𝑗, 𝑘, 𝑙 < 𝑖.

Definition 3.36 (Saturated Edge). Let 𝑇 ≺ be an online tree. In time
step 𝑖, a new edge 𝑒 = {𝑣𝑖, 𝑣𝑗}, for a 𝑗 < 𝑖, is called a saturated edge if (see
Figure 3.34)

a) either 𝑣𝑗 is incident to a previous matching edge {𝑣𝑗 , 𝑣𝑘} for a 𝑘 < 𝑖,

b) or 𝑣𝑗 is incident to two previous non-matching edges {𝑣𝑗 , 𝑣𝑘} and {𝑣𝑗 , 𝑣𝑙}

for 𝑘, 𝑙 < 𝑖,

c) or the algorithm already read advice bits for the vertex 𝑣𝑗 .

We say in cases (a) and (b) that 𝑒 is saturated by the edge {𝑣𝑗 , 𝑣𝑘}, or by the
edges {𝑣𝑗 , 𝑣𝑘} and {𝑣𝑗 , 𝑣𝑙} respectively, and in case (c), 𝑒 is saturated by the
vertex 𝑣𝑗 .

Now we want to show that the algorithm does not need any additional advice for
deciding if a saturated edge 𝑒 is a matching edge or not.

Lemma 3.37. The algorithm can make an optimal decision on saturated edges.

Proof. In the case of adjacency to a matching edge, 𝑒 = {𝑣𝑖, 𝑣𝑗} is non-matching
for sure. In case b), the new edge 𝑒 has to be a matching edge since our algorithm
looks for a matching that matches all inner vertices. In the last case, the algorithm
already asked advice bits for 𝑒 in an earlier time step and therefore the decision
has been already made. ◻

Note that the algorithm can exploit more benefits: If a non-saturated edge 𝑒
is incident to exactly one previous saturated edge, a one-out-of-two decision is
sufficient to make a decision on 𝑒 as shown in Figure 3.32 (b). If 𝑒 is adjacent
to exactly two previous saturated edges, the decision of 𝑒 being a matching or a
non-matching edge is given implicitely by the two other edges.
To describe the details of the algorithm, we have to distinguish three cases with
respect to the neighborhood a new vertex 𝑣𝑖 encounters in time step 𝑖. The vertex 𝑣𝑖

has either 1, 2 or 3 neighbors in time step 𝑖 as described in Figure 3.35. Note that
a new vertex 𝑣𝑖 can never be connected to two vertices in the same subtree because
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𝑣𝑗1 𝑣𝑖
𝑒1

𝑣𝑖 is adjacent to one
subtree.

𝑣𝑗1 𝑣𝑖 𝑣𝑗2
𝑒1 𝑒2

𝑣𝑖 is adjacent to two subtrees.

𝑣𝑗1 𝑣𝑖

𝑣𝑗2

𝑣𝑗3

𝑒1 𝑒2

𝑒3

𝑣𝑖 is adjacent to three subtrees.

Figure 3.35. The three possibilities for the neighborhood of a vertex 𝑣𝑖 in time step 𝑖
for 𝑗1, 𝑗2, 𝑗3 < 𝑖.

this would invoke a cycle. The subtrees to which 𝑣𝑖 is adjacent in time step 𝑖 can
either contain more than one vertex or just be a single vertex.
The new algorithm can ask for advice in every time step 𝑖 and assigns the advice
bits to a vertex which not always has to be the new vertex. The decision if an advice
bit should be read is based on the neighborhood of 𝑣𝑖 the algorithm encounters in
step 𝑖. All the details are formalized in Algorithm 3.6.
Now we want to estimate the number of advice bits Algorithm 3.6 uses in order to
find a maximum matching in an arbitrary {1, 3}-tree. Unfortunately, we do not
reach the desired bound of 𝑛

2 − 3 but we come closer to it as with Algorithm 3.5.

Theorem 3.38. Algorithm 3.6 needs to ask at most

log(3)
3

𝑛 +𝒪(log(𝑛)) = 0.52832𝑛 +𝒪(log(𝑛))

advice bits in order to find a maximum matching in an online {1, 3}-tree 𝑇 ≺ ∈ 𝒯𝑛.

Proof. We relate the advice asked by Algorithm 3.6 always to the vertices. There
are three possibilities for the vertices: Either a vertex is labeled with advice
log(3), with advice 1, or with advice 0 if no decision is to be made for this vertex,
respectively its incident edges.
To count the number of advice bits Algorithm 3.6 needs, we have to take care of
the vertices with a positive amount of assigned advice bits. We will distribute these
advice bits to the edges that are saturated by this vertex. Note that, due to the
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Algorithm 3.6 Improved Maximum Matching on {1, 3}-trees
INPUT: 𝑇 ≺ ∈ 𝒯𝑛 with 𝑇 ≺ an online {1, 3}-tree, for some 𝑛 ∈N

1: 𝑀 = ∅

2: for 𝑖 = 1 to 𝑛 do
3: if 𝐸𝑖 = ∅ then
4: 𝑀 ←𝑀
5: else if 𝐸𝑖 = {𝑒1} then
6: if 𝑒1 = {𝑣𝑖, 𝑣𝑗} is isolated then
7: make a one-out-of-three-decision accounting for the incident vertex

receiving the next incident edge and update 𝑀 according to the
decision

8: else if 𝑒1 is saturated then
9: make the decision according to the neighboring edges or the advice

bits of 𝑣𝑗 and update 𝑀 accordingly
10: else
11: make a one-out-of-two-decision for vertex 𝑣𝑖, update 𝑀 accordingly
12: else if 𝐸𝑖 = {𝑒1, 𝑒2} then
13: if 𝑒1 and 𝑒2 are saturated then
14: make the decision according to the neighboring edges or the advice

bits of 𝑣𝑗1 and 𝑣𝑗2 and update 𝑀 accordingly
15: else if only one of 𝑒1 and 𝑒2 is saturated then
16: make a one-out-of-two-decision for vertex 𝑣𝑖, update 𝑀 accordingly
17: else
18: make a one-out-of-three-decision for vertex 𝑣𝑖, update 𝑀 accordingly
19: else if 𝐸𝑖 = {𝑒1, 𝑒2, 𝑒3} then
20: if at least 2 of the incident edges are saturated then
21: the decision is already made, update 𝑀 according to the decision
22: else if only 𝑒1 is saturated then
23: make a one-out-of-two-decision for vertex 𝑣𝑖, update 𝑀 accordingly
24: else
25: make a one-out-of-three-decision for vertex 𝑣𝑖, update 𝑀 accordingly
26: output 𝑀𝑖 = 𝑀

OUTPUT: 𝑀 = (𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑚) = ⋃
𝑛
𝑖=1 𝑀𝑖 ⊆ 𝐸, for some 𝑚 ∈N
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log(3)

(a) A log(3)-vertex saturates 3 inci-
dent edges.

1

(b) A 1-vertex saturates 2 incident
edges.

Figure 3.36. The connection between saturated edges and their assigned vertices
(marked darker).

construction of the algorithm, once an edge is saturated by a vertex it will not be
saturated again by another vertex. So, the mapping of a an edge that is saturated
by a vertex to a vertex is unique. Note that this mapping is not defined for every
edge. Some of the edges are not saturated by any vertex but by the neighboring
edges. But we are only interested in the edges which are saturated by vertices with
advice larger than 0 since we want to count the number of advice bits used. The
edges which are saturated by other edges and not by previous read advice bits do
not account nothing to this sum.
A vertex that is labeled with log(3) always saturates exactly 3 edges. So, the
algorithm asks log(3)

3 advice bits in average for these saturated edges. Similarly, a
vertex labeled with 1 saturates exactly two vertices implying an average advice bit
request of 1

2 per saturated edge (see Figure 3.36). Therefore, the maximum amount
of advice that one edge needs in average is log(3)

3 . Because of Lemma 3.35, we know
that there is a possibility to encode the one-out-of-three decisions corresponding
to the label log(3) that is approximately log(3) in average but the algorithm has
to read 𝒪(log(𝑛)) bits in advance to get the number of one-out-of-three decisions.
Therefore, Algorithm 3.6 reads at most

log(3)
3

(𝑛 − 1) +𝒪(log(𝑛)) ≤ log(3)
3

𝑛 +𝒪(log(𝑛))

advice bits for a {1, 3}-tree on 𝑛 vertices. ◻

This upper bound comes closer to the lower bound of 𝑛
2 − 3 for online {1, 3}-

trees that are connected in every time step. An example of such an instance is
shown in Figure 3.37. The vertex labels correspond to the number of advice bits
Algorithm 3.6 uses while finding a maximum matching. More precisely, log(3)
indicates that the algorithm makes a one-out-of-three decision, 1 stands for a
one-out-of-two decision and 0 means that all decisions are already made.
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𝑣10 𝑣2 log(3)

𝑣31

𝑣41
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𝑣6 0
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𝑣9
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0

𝑣11 0
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𝑣14
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𝑣15 0

𝑣16 0

time

Figure 3.37. A {1, 3}-tree that is connected in every time step of the online presentation.
The labels indicate the number of advice bits, the algorithm reads in order to get an
optimal maximum matching. The arrows illustrate the mapping of edges to the vertices
by which they are saturated.

Lemma 3.39. In a {1, 3}-tree which is connected in every time step of the online
presentation, Algorithm 3.6 has to make exactly one one-out-of-three decision.

Proof. An online {1, 3}-tree 𝑇 ≺ which is connected in every time step can have
an edge set ⋃︀𝐸𝑖⋃︀ > 1 only either in time step 2 (𝑇 ≺ starts with an isolated edge),
time step 3 (𝑇 ≺ starts with two isolated edges) or time step 4 (𝑇 ≺ starts with three
isolated edges). After that, all new vertices lead to exactly one new edge since a
new vertex can never be connected to two vertices of the same subtree. Hence,
⋃︀𝐸𝑖⋃︀ = 1 holds for all 𝑖 > 4. Therefore, Algorithm 3.6 only makes one one-out-of-three
decision in the beginning of the online presentation. ◻

Therefore, the number of advice bits used in average per edge in {1, 3}-trees that
are connected in every time step is in most of the cases 1

2 and only for three edges
log(3)

3 ( 2
3 respectively), i. e., for one vertex log(3) (2 respectively).

Corollary 3.40. Algorithm 3.6 uses at most

1
2

𝑛

advice bits to find a maximum matching in an online {1, 3}-tree 𝑇 ≺ ∈ 𝒯𝑛 that is
connected in every time step of the online presentation.

Proof. Because of Lemma 3.39, we know that the algorithm asks log(3) advice bits
for only one vertex. For this one-out-of-three decision, the algorithm needs to read
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Figure 3.38. An online worst-case {1, 3}-tree that is connected in every time step of
the online presentation.

2 advice bits. The other vertices need at most 1 advice bit. In the worst case, the
algorithm has to ask one advice bit for every inner vertex. In total, we have

(𝑛 − 1) ⋅ 1
2
+ 0.5 = 1

2
𝑛

advice bits since the algorithm asks for all of the edges in average 1
2 advice bits up

to three edges that need 2 advice bits in total what explains the 0.5 on the left
side of the above equation. ◻

Note that the worst case can only happen if this online {1, 3}-tree is a special comb
similar to the one treated in Corollary 3.24 (compare Figure 3.38 with Figure 3.22).
This has to be a worst-case instance since Algorithm 3.6 never reads advice bits
for the leaves due to the construction of the algorithm.
Assume that Algorithm 3.6 reads 𝑘 advice bits on such a worst-case instance. Then,
this instance contains 𝑛 = 4 + 2𝑘 vertices. Therefore, the algorithm reads in total

2 + 𝑘 = 2 + 𝑛 − 4
2

=
1
2

𝑛 + 2 − 2 = 1
2

𝑛

advice bits in the worst case.
Now it is time for lower bounds. In general, Algorithm 3.6 cannot guarantee asking
less than approximately log(3)

3 𝑛 advice bits on an online {1, 3}-tree on 𝑛 vertices.
Hence, Theorem 3.38 gives us the best upper bound that Algorithm 3.6 can produce.

Theorem 3.41. Algorithm 3.6 needs to read at least ⟨︀ log(3)
3 𝑛 − log(3)

3 ⧹︀ advice bits
in order to find a maximum matching in every {1, 3}-tree of size 𝑛.
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Figure 3.39. An online {1, 3}-tree on 𝑛 = 22 vertices for the lower bound of Algorithm 3.6
with a possible maximum matching.

Proof. Let 𝑛 = 3𝑘 + 1 for some 𝑘 ∈ {3, 5, 7, . . .}. The instance class for the lower
bound on the algorithm starts in the first phase with 𝑘 isolated edges. Then, 𝑘+1

2
of these edges get an adjacent edge. In a last phase, repeatedly three of these
subtrees are connected in order to get a {1, 3}-tree as shown in Figure 3.39.
Since all the advice bits are asked on the first 𝑘 isolated edges, it does not depend
on the chosen maximum matching how much advice the algorithm needs to read.
Therefore, Algorithm 3.6 needs

log(3) ⋅ 𝑘 = log(3) ⋅ 𝑛 − 1
3

=
log(3)

3
𝑛 −

log(3)
3

advice bits on these instances in order to be optimal. ◻

3.5 Optimality in General and Bipartite Graphs
A natural generalization of paths and trees are bipartite graphs. In this section, we
want to discuss a straight-forward upper bound that also holds for general graphs,
and a lower bound on the number of advice bits any algorithm needs to read in
order to find a maximum matching in bipartite graphs.

Upper Bound for General Graphs
A vertex in a general online graph on 𝑛 vertices has at most 𝑛 − 1 neighbors, i. e.,
has vertex degree of at most 𝑛− 1. For every vertex, at most one incident edge can
be a matching edge. Therefore, if an algorithm asks, for every of the 𝑛 vertices,
which of the neighboring edges should be a matching edge, it finds a maximum
matching. Algorithm 3.7 uses this strategy. Note that the algorithm needs to get
to know the number 𝑛 of vertices first, since otherwise it does not know how many
neighbors one vertex can have at most.
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Algorithm 3.7 Maximum Matching on General Graphs
INPUT: general graph 𝐺≺ ∈ 𝒢𝑛, for some 𝑛 ∈N

1: 𝑀 = ∅

2: read the number 𝑛 of vertices from the advice tape
3: for 𝑖 = 1 to 𝑛 − 1 do
4: read log(𝑛) advice bits to decide which of the potentially 𝑛 − 1 incident

edges is a matching edge and assign this edge, when it appears, to the
matching and update 𝑀 accordingly

5: assign an edge greedily to the matching for the last vertex 𝑣𝑛 and update 𝑀
accordingly

OUTPUT: 𝑀 = {𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑚} = ⋃
𝑛
𝑖=1 𝑀𝑖 ⊆ 𝐸, for some 𝑚 ∈N

Theorem 3.42. Algorithm 3.7 reads at most

𝑛 [︂log(𝑛)⌉︂ + 2 [︂log([︂log(𝑛)⌉︂)⌉︂ + 1

advice bits in order to find a maximum matching in a general online graph 𝐺≺
𝑛 on

𝑛 vertices.

Proof. Algorithm 3.7 finds a maximum matching in a general graph since the
[︂log(𝑛)⌉︂ advice bits for a vertex 𝑣𝑖, for any 𝑖 ∈ {1, 2, . . . , 𝑛}, indicate to the algorithm,
which of the at most 𝑛 − 1 incident edges (if any) is a matching edge. For the
last vertex 𝑣𝑛, the decision can be taken greedily: if there is a still unmatched
neighbor 𝑣𝑗 of 𝑣𝑛, the edge {𝑣𝑗 , 𝑣𝑛} can be assigned to the matching.
But first, in line 2, Algorithm 3.7 needs to read the number 𝑛 of vertices since
otherwise the algorithm would not know how much [︂log(𝑛)⌉︂ advice bits are. This
number 𝑛 appears on the advice tape encode in a self-delimiting way as described
in [45]. Therefore, the algorithm reads [︂log(𝑛)⌉︂ + 2 [︂log([︂log(𝑛)⌉︂)⌉︂ advice bits in a
first step.
In total, Algorithm 3.7 needs to read at most

(𝑛 − 1) [︂log(𝑛)⌉︂ + [︂log(𝑛)⌉︂ + 2 [︂log([︂log(𝑛)⌉︂)⌉︂ ≤ 𝑛 [︂log(𝑛)⌉︂ + 2 [︂log([︂log(𝑛)⌉︂)⌉︂ + 1

advice bits in order to be optimal. ◻

Approximately the same upper bound can also be reached with an algorithm that
asks the oracle in advance, which of the potentially (

𝑛
2) =

𝑛(𝑛−1)
2 edges should

be assigned to the matching. Since a graph on 𝑛 vertices can contain at most 𝑛
2

matching edges, the indices of the matching edges can be encoded with at most

𝑛

2
⋅ ⌈︂log(𝑛(𝑛 − 1)

2
)⟩

advice bits. With a lower order term, we can encode the length 𝑛, and therefore
this algorithm uses approximately the same number of advice bits as Algorithm 3.7.
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time

𝑤1

𝑤7
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𝑤3
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𝑤11
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𝑤12

Figure 3.40. Pattern of the online bipartite graphs used in the proof of the lower bound
on the number of advice bits used by every algorithm solving the online matching problem
in bipartite graphs. Here, we have 𝑛 = 12. The adversary shows first a permutation of the
vertices 𝑤1, 𝑤2, . . . , 𝑤6. Then, the vertices 𝑤7, 𝑤8, . . . , 𝑤12 are given in this order.

Lower Bound for Bipartite Graphs
Now, we will show a matching lower bound which already holds for bipartite graphs.
This lower bound has the same order Θ(𝑛 log(𝑛)) as the upper bound for general
graphs.

Theorem 3.43. Any deterministic online algorithm for the problem of finding a
maximum matching in an online bipartite graph instance needs to read at least

log ((𝑛

2
)!)

advice bits in order to find a maximum matching.

Proof. In order to show that no algorithm exists that needs less than log ((𝑛
2 )!)

advice bits to be optimal, we describe a class of online instances in which each two
of the instances need a different advice string. Since the cardinality of this class is
(𝑛

2 )!, the algorithm cannot cope with less than log ((𝑛
2 )!) advice bits.

Let 𝑛 = 2𝑘 with 𝑘 ∈N be the number of vertices in the instance class, containing two
shores of size 𝑘, 𝑆1 = {𝑤1, 𝑤2, . . . , 𝑤𝑘} and 𝑆2 = {𝑤𝑘, 𝑤𝑘+1, . . . , 𝑤2𝑘} (see Figure 3.40
for an example).
The edge set 𝐸 is defined as

𝐸 = {{𝑤𝑖, 𝑤𝑗} ⋃︀ 𝑗 ≤ 𝑖 + 𝑘 with 1 ≤ 𝑖 ≤ 𝑘 and 𝑘 + 1 ≤ 𝑗 ≤ 2𝑘} ,

leading to a unique perfect matching in these types of bipartite graphs since the
only possibility for all vertices 𝑤2𝑖 being matched is that they are matched by the
edges {𝑤𝑖, 𝑤2𝑖}, for 1 ≤ 𝑖 ≤ 𝑘.
The online presentation of one of these bipartite graphs starts with a permutation
of isolated vertices 𝑤1, 𝑤2, . . . , 𝑤𝑘. Then, the adversary presents the vertices
𝑤𝑘+1, 𝑤𝑘+2, . . . , 𝑤2𝑘 in this order. In every time step 𝑖, for any 𝑘 + 1 ≤ 𝑖 ≤ 2𝑘, the
algorithm encounters the same prefix but it has to choose one of the 2𝑘− 𝑖+1 edges
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Lower bound

Figure 3.41. The lower bound and the upper bound on online algorithms with advice
achieving an optimal solution in bipartite graphs.

incident to 𝑤𝑖 to be a matching edge, and only one of these possibilities is correct.
Therefore, the algorithm has to distinguish

2𝑘

∏
𝑖=𝑘+1

(2𝑘 − 𝑖 + 1) =
𝑘

∏
𝑖=1

𝑖 = (
𝑛

2
)!

different possible online representations of this bipartite graph, leading to

log ((𝑛

2
)!)

advice bits that every online algorithm with advice needs to read at least in order
to be optimal. With the help of Stirling’s formula (see Equation (1.2) of Chapter 1),
we see that

log ((𝑛

2
)!) ≥ log

⎛

⎝

{︂

2𝜋 ⋅
𝑛

2
⋅ (

𝑛
2
e
)

𝑛
2 ⎞

⎠
=

𝑛

2
log ( 𝑛

2e
)+

1
2

log(𝑛)+ log(𝜋)
2

∈ Θ(𝑛 log(𝑛)) ,

concluding the proof. ◻

In Figure 3.41 the lower and the upper bound on optimality in bipartite graphs
are compared.

𝑃𝑘-free Bipartite Graphs
It is folklore that, in a complete bipartite graph, i. e., in a graph that contains all
edges between the two shores (see Figure 3.42), there is an optimal deterministic
online algorithm that solves the online matching problem on these types of graphs.
We give the easy proof here for the sake of completeness.
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𝑆1:

𝑆2:

Figure 3.42. A complete bipartite graph on 10 vertices. One shore contains 6 vertices
and the other one 4 vertices.

Lemma 3.44. There exists a deterministic online algorithm for finding a maxi-
mum matching in an online complete bipartite graph.

Proof. Let 𝐵 = (𝑉, 𝐸) be a complete bipartite graph with the shores 𝑆1 and 𝑆2
such that 𝑆1 ∪ 𝑆2 = 𝑉 and ⋃︀𝑆1⋃︀ = 𝑚 and ⋃︀𝑆2⋃︀ = 𝑛 and 𝑚 ≥ 𝑛. A maximum matching
in a complete bipartite graph matches all vertices of the smaller shore. For each
vertex on the smaller shore 𝑆2, the algorithm can choose any of the incident edges
to be a matching edge. This blocks exactly one vertex in 𝑆1 from being part of
a further matching edge. But, since 𝑚 ≥ 𝑛, there still remain sufficiently many
vertices in 𝑆1 that can be part of a matching edge. ◻

In this section, we want to discuss some results on bipartite graphs that do not
contain certain types of paths as induced subgraphs.

Definition 3.45 (𝑃𝑘-Free Bipartite Graph). A bipartite graph not con-
taining a path 𝑃𝑘 on 𝑘 vertices, for some 𝑘 ∈ N, as an induced subgraph is
called a 𝑃𝑘-free bipartite graph.

In the case of 𝑘 = 4, a deterministic online algorithm solves the online matching
problem optimally since, in [28], the authors showed that every 𝑃4-free bipartite
graph is a complete bipartite graph.

Lemma 3.46 (Fomin [28]). Every connected bipartite 𝑃4-free graph is a complete
bipartite graph. ◻

Corollary 3.47. There is a deterministic online algorithm for finding a maximum
matching in an online 𝑃4-free bipartite graph.

Proof. Due Lemma 3.46, every 𝑃4-free bipartite graph is a complete bipartite
graph, and therefore Lemma 3.44 states that there is an algorithm for solving the
online matching problem on 𝑃4-free bipartite graphs. ◻

Now, we want to show that the lower bound on the number of advice bits used by
any online algorithm solving the online matching problem in bipartite graphs also
holds for 𝑃5-free bipartite graphs.
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𝑤1𝑆1:

𝑤7𝑆2:

𝑤2

𝑤8

𝑤3

𝑤9

𝑤4

𝑤10

𝑤5

↓

𝑤11

𝑤6

𝑤12

Figure 3.43. A path on 5 vertices, say 𝑃4 = (𝑤3, 𝑤8, 𝑤5, 𝑤11, 𝑤6), cannot be an induced
subpath because there is an edge connecting the two vertices 𝑤6 and 𝑤8.

Theorem 3.48. Any deterministic online algorithm for the online matching prob-
lem on online 𝑃5-free bipartite graphs needs to read at least

log ((𝑛

2
)!)

advice bits in order to be optimal.

Proof. We show that the instances of the instance class described in the proof
of Theorem 3.43 are 𝑃5-free and therefore the lower bound for general bipartite
graphs carries over to 𝑃5-free bipartite graphs.
Assume that one of these instances on 𝑛 = 2𝑘 vertices contains an induced 𝑃5.
Let 𝑤𝑖 be the middle vertex of this path and, w.l.o.g., 𝑤𝑖 ∈ 𝑆1 and therefore,
𝑖 ∈ {1, 2, . . . , 𝑘}. Because of the construction, both neighbors 𝑤𝑗1 and 𝑤𝑗2 of 𝑤𝑖 in
the path, lie left or below of 𝑤𝑖, i. e., 𝑗1 < 𝑗2 ≤ 𝑖+𝑘 (see Figure 3.43 for an example).
The next neighboring vertex of 𝑤𝑗2 in the path is an arbitrary vertex 𝑤𝑗3 lying
on the opposite shore above or right of 𝑤𝑗2 , i. e., 𝑗2 ≤ 𝑗3. Due to the construction,
there is also an edge {𝑤𝑗1 , 𝑤𝑗3} disproving the assumption that the graph contains
an induced 𝑃5. Hence, the graph is 𝑃5-free, concluding the proof. ◻

Since, for any 𝑘 ≥ 6, the class of all 𝑃𝑘-free graphs contains all 𝑃5-free graphs, we
know that this lower bound also holds for all 𝑃𝑘-free bipartite graphs with 𝑘 ≥ 5.

Theorem 3.49. Any deterministic online algorithm for the online matching prob-
lem on online 𝑃𝑘-free bipartite graphs, for any 𝑘 ≥ 5, needs to read at least

log ((𝑛

2
)!)

advice bits in order to be optimal.

Therefore, excluding a 𝑃𝑘 from a bipartite graph, for any 𝑘 ≥ 5, leads to the same
lower bound for the online matching problem as in general bipartite graphs.
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Graphs With Small Diameter
The graphs from the class described in the proof of Theorem 3.43 have the special
property that every vertex can be reached from every other vertex via a short path.
This property can be measured by the diameter of a graph.

Definition 3.50 (Diameter). The diameter of a graph is the maximum
distance of two arbitrary vertices. The distance of two vertices 𝑢 and 𝑣 is
measured by the length of the shortest 𝑢-𝑣-path, i. e., the number of edges on
this path.

We show that the instances used to show the lower bound on general bipartite
graphs have diameter 3, implying that bipartite graphs with small diameter are
not easier to solve than general bipartite graphs.

Theorem 3.51. Any deterministic online algorithm for the online matching prob-
lem on online bipartite graphs with diameter 3 needs to read at least

log ((𝑛

2
)!)

advice bits in order to be optimal.

Proof. Showing that the instances of the graph class described in the proof of
Theorem 3.43 have diameter 3, we can prove that the general lower bound for
bipartite graphs also holds for online bipartite graphs of diameter 3.
There are three cases for two vertices 𝑤𝑖 and 𝑤𝑗 :

(a) Either they are both on the same shore, say, w.l.o.g., in 𝑆1, and 𝑖 < 𝑗, or

(b) 𝑤𝑖 ∈ 𝑆1 and 𝑤𝑗 ∈ 𝑆2 with 𝑖 ≥ 𝑗 − 𝑘, or

(c) 𝑤𝑖 ∈ 𝑆1 and 𝑤𝑗 ∈ 𝑆2 with 𝑖 < 𝑗 − 𝑘.

In the first case, a path (𝑤𝑖, 𝑤𝑘+𝑖, 𝑤𝑗) is a path of length 2 from 𝑤𝑖 to 𝑤𝑗 . In the
second case, the edge {𝑤𝑖, 𝑤𝑗} is present and therefore they have distance 1. And
in the last case, the path (𝑤𝑖, 𝑤𝑖+𝑘, 𝑤𝑗−𝑘, 𝑤𝑘) has length 3 (see Figure 3.44 for an
example). Therefore, every pair of vertices is connected with a path of length
smaller than four, implying a diameter of 3 in these graphs. ◻

3.6 Tradeoffs in Paths
Until now, we know bounds on how much advice is needed to be optimal. We want
to analyze what happens in the case when the algorithm has less than this number
of advice bits on disposal.
In this section, we return to the problem of online maximum matching on paths.
We want to discuss some tradeoffs between the amount of advice bits algorithms
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(c) 𝑖 = 1 and 𝑗 = 7

Figure 3.44. The three cases in the proof of Theorem 3.51 show that these graphs all
have diameter 3.

are allowed to read and the competitive ratio these algorithms with advice can
reach. We already know that any algorithm needs to read at least

⎝
⎝
⎝
⎝
⎝
⎪

1
3

𝑛 −
1
2

log(𝑛) + log
⎛

⎝

}︂
3

2𝜋

⎞

⎠

⎠
⎠
⎠
⎠
⎠
⎮

advice bits for solving the online matching problem optimally (see Theorem 3.20).
Algorithm 3.4 almost matches this lower bound using [︂𝑛

3 ⌉︂ advice bits (see Theo-
rem 3.16).
We showed in Section 3.1 that all online algorithms solving the online matching
problems on paths without advice have a competitive ratio of at least 3

2 − 𝜀 (see
Theorem 3.14). A greedy algorithm provides us with a matching upper bound of 3

2
on the competitive ratio proven in Theorem 3.11.

A Lower Bound for One Advice Bit
First, we want to show that, for one bit of advice, we can prove the same lower
bound as for deterministic algorithms on paths.

Theorem 3.52. No online algorithm using one bit of advice for finding a maximum
matching in a path on 𝑛 vertices with 𝑛 ≥

3(𝛼+1)
𝜀

− 2 can be better than ( 3
2 − 𝜀)-

competitive (with additive constant 𝛼), for arbitrary non-negative constants 𝛼
and 𝜀.
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𝐴1:

𝐴2:
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𝐴2:
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𝐴1:
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Group 4

Figure 3.45. The four possibilities how a pair of algorithms 𝐴1 and 𝐴2 can decide about
an isolated edge.

Proof. One bit of advice can be used to decide which of two given deterministic
algorithms should be used in order to find a maximum matching in paths on 𝑛
vertices. This makes the work of the adversary more involved since he has to
provide a class of lower bound instances for all pairs of algorithms. To cover all
these pairs, we distinguish the algorithms with respect to the behaviour on the
isolated edges for a given online path instance 𝑃𝑛. Let 𝐴1 and 𝐴2 be two arbitrary
online algorithms. There are four possibilities how these two algorithms can treat
an isolated edge 𝑒 (see Figure 3.45):

Group 1: Both, 𝐴1 and 𝐴2 assign 𝑒 to the matching.

Group 2: Only 𝐴1 takes 𝑒 into the matching.

Group 3: Only 𝐴2 takes 𝑒 into the matching.

Group 4: Neither 𝐴1 nor 𝐴2 allocate 𝑒 to the matching.

This gives us a classification of the isolated edges. Note that the adversary fights
against two arbitrary algorithms. Therefore, some of these groups of edges can be
empty. The algorithm has to handle all subsets of these four groups.
Recall that, due to Lemma 3.13, a matching 𝑀 with 𝑘 unmatched vertices has
⟩︀𝑘

2 (︁ matching-edges less than a maximum matching on this instance. Therefore, it
suffices if we count the minimum number of unmatched vertices on the instances of
these special instance class in order to calculate a lower bound on the competitive
ratio for algorithms reading one bit of advice.
The construction of the class of lower bound instances is similar to the one in the
proof of Theorem 3.14. Let 𝑛 = 6𝑘 + 4 be the number of vertices in the online path
𝑃𝑛 for a 𝑘 ∈N. The adversary starts with 𝑛−1

3 isolated edges which belong to one
of the above described edge groups. In order to reach a high number of unmatched
vertices, the adversary arranges the isolated edges group by group in order to build
four subpaths 𝑃 (𝑖), for 𝑖 ∈ {1, 2, 3, 4}, connecting the isolated edges inside a group
by single vertices. Note that, in each group, the neighboring isolated edges are
either both matching or both non-matching edges. Therefore, if the algorithms act
best possible, any of the subpaths 𝑃 (𝑖) built by any of the two algorithms is of one
of the two forms as shown in Figure 3.46.
In both types of subpaths containing 𝑖 isolated edges, the adversary forces the
algorithm to leave at least 𝑖 − 1 vertices unmatched. Therefore, we can guarantee
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tim
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Type 1: A group with isolated matching edges.

tim
e

Type 2: A group with isolated non-matching edges

Figure 3.46. The algorithm chooses, inside each group, one of the two patterns if it
acts best possible connecting the isolated edges to a path. The marked vertices are the
unmatched vertices within each group (ignoring the end vertices for type 2 subpaths).
Note that we can assume w.l.o.g. that the algorithm always assigns the right edge to the
matching when connecting the isolated edges in a subpath of type 2.

tim
e

Connecting two matching
edges.

tim
e

Two non-matching edges.
tim

e
Two different edges.

Figure 3.47. Connecting two isolated edges. The adversary can only force the algorithm
to leave a vertex unmatched when connecting two edges of the same type.

𝑖 − 1 unmatched vertices in each group. In type 2 subpaths, we have possibly
further unmatched vertices at the left and the right end. But we will count these
possibly unmatched vertices in a second step, when the adversary connects the
subpaths such that the two algorithms are forced to leave many vertices unmatched
in between the at most four groups. Note that connecting two edges that are
both matching or both non-matching edges, forces the algorithm to leave one
vertex unmatched. On the other hand, connecting two different edges enables the
algorithm to construct at least locally a good matching (see Figure 3.47).
The end edges of possibly four subpaths are given in Figure 3.45. Therefore, these
pairs of edges will symbolize the whole subpaths in the following figures. We will
do a case distinction with respect to the subset of the groups that arise in the
solution of a given pair of algorithms:

Groups 1, 2, 3, 4 If all the edge groups are present in a solution, we arrange the
subpaths in the order 2, 1, 3, 4, as shown in Figure 3.48.

Both algorithms 𝐴1 and 𝐴2, have to leave 3 vertices unmatched. Since in a
subpath on 𝑖 vertices, both algorithms leave at least 𝑖− 1 vertices unmatched,
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Figure 3.48. All of the edge groups are present in the solution.
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𝐴1:
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Figure 3.49. The edge groups 1, 2 and 3 are present in the solution.

we have 𝑛−1
3 − 4 unmatched vertices within the four subpaths. Therefore,

overall, the adversary can force both algorithms to leave at least
𝑛 − 1

3
− 4 + 3 = 𝑛 − 1

3
− 1 = 2𝑘

vertices unmatched, leading to a loss of 𝑘 matching edges as in the proof of
Theorem 3.14.

If we can show the same for all other subgroups, we are done, since we get the
same lower bound as in the deterministic case.

Groups 1, 2, 3 When no edges from group 4 appear in the solution, the adversary
arranges the remaining groups as shown in Figure 3.49.
Within the three subpaths, there are at least 𝑛−1

3 − 3 unmatched vertices and
together with the two additional unmatched vertices between the paths, we
have again 𝑛−1

3 − 1 unmatched vertices.

Groups 2, 3, 4 In this case, the adversary provides the order of Figure 3.50,
leading to at least 𝑛−1

3 − 1 unmatched vertices.

Groups 1, 2, 4 or groups 1, 3, 4 In these two equivalent cases, the order of
Figure 3.51 leads to 𝑛−1

3 − 1 unmatched vertices.

Groups 1, 4 or groups 2, 4 or groups 3, 4 If only two edge groups appear in
the solution, there are 𝑛−1

3 − 2 unmatched vertices within the two subpaths.
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Figure 3.50. The edge groups 2, 3 and 4 are present in the solution.
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Figure 3.51. The edge groups 1 and 4 and either group 2 or group 3 are present in the
solution.

Therefore, one unmatched vertex between the two subpaths or at one end
would be enough to reach the bound of 𝑛−1

3 − 1 unmatched vertices in total.
We see in Figure 3.52 that this is given for all pairs of groups containing
group 4, since the adversary can force the algorithm to leave at least the
right end vertex unmatched.

Groups 1, 2 or groups 1, 3 Also in these two cases, the algorithm can force
the algorithm to leave 𝑛−1

3 − 1 vertices unmatched (see Figure 3.53).

tim
e

tim
e

𝐴1:
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𝐴2:

Group 4

Groups 1 and 4

tim
e

tim
e

𝐴1:
Group 2 or 3

𝐴2:

Group 4

Groups 2 and 4 or groups 3 and 4

Figure 3.52. All pairs of edge groups containing group 4 in the solution.
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𝐴1:
Group 1

𝐴2:

Group 2 or 3

Groups 1 and 2 or groups 1 and 3

tim
e

tim
e

𝐴1:
Group 2

𝐴2:

Group 3

Groups 2 and 3

Figure 3.53. All remaining pairs of two edge groups.

Groups 2 and 3 Also in this case, one of the end vertices will stay unmatched
(see Figure 3.53) and therefore the adversary can guarantee a bound of 𝑛−1

3
unmatched vertices.

Group 1, 2, 3 or 4 If only one group of edges is present in the solution, an
algorithm leaves at least 𝑛−1

3 vertices unmatched within this path.

Summarizing, in all possible subsets of isolated edges, the solution has to contain
at least 𝑛−1

3 unmatched vertices. In the proof of Theorem 3.14, we showed that
this leads to a competitive ratio of 3

2 − 𝜀 in paths on 𝑛 vertices with 𝑛 ≥
3(𝛼+1)

𝜀
− 2,

for arbitrary non-negative constants 𝛼 and 𝜀. ◻

Note that Theorem 3.52 shows the same lower bound for the competitive ratio
as the one for deterministic online algorithms. Therefore, Theorem 3.11 with
its greedy Algorithm 3.3 implies an almost matching upper bound of 3

2 on the
competitive ratio for online algorithms reading one advice bit in order to solve the
online matching problem on paths.
It remains open to analyze how much advice bits can help an algorithm to improve
over any deterministic online algorithm.

Not Enough Advice Bits to Be Optimal
Recall that we showed in Lemma 3.8 that, for every path 𝑃𝑛, there is exactly one
maximum matching that matches all inner vertices. Using this result, we could
show in the proof of Theorem 3.16 that, if an algorithm gets advice for every
isolated edge and for isolated paths on 3 vertices (that arise from connecting the
new vertex 𝑣𝑖 with two isolated vertices in time step 𝑖), then the non-isolated edges
can be treated greedily in order to get a maximum matching. The advice bit was
used in the first case to decide if the isolated edge is a matching edge or not. In
the second case, the advice bit indicates which of the two edges is a matching edge.
Because at most [︂𝑛

3 ⌉︂ edges can appear isolated, the algorithm reads at most
[︂𝑛

3 ⌉︂ advice bits. In the following, we will discuss algorithms that have less than
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[︂𝑛
3 ⌉︂ advice bits on disposal. Obviously, such algorithms cannot always find an

optimal solution.
We want to use the same idea as described before for an upper bound on the
tradeoff of advice bits and the competitive ratio of the algorithm. If the algorithm
gets less advice bits, it may happen that the decision on some of the isolated edges
or paths on 3 vertices is wrong. The question is, by how much the solution is
worse than in a maximum matching. For the sake of convenience, we will fix for
every instance one maximum matching 𝑀∗, which matches all inner vertices. We
will compare the solution of the algorithm always with 𝑀∗ although also other
maximum matchings may exist.
We need to know what happens with the non-isolated edges between two given
neighboring isolated edges when treating them greedily. We observe that, given a
decision on the isolated edges, a greedy strategy applied on the non-isolated edges
yields the best possible matching on every subpath between two nearest previous
isolated edges. Note that the following results are, for the sake of convenience,
only formulated for isolated edges but they are also valid for isolated paths on 3
vertices.

Lemma 3.53. Assume that the decision on two neighboring isolated edges 𝑒1 and
𝑒2 is made. Then the greedy algorithm, which assigns every possible non-isolated
edge to the matching, leaves at most one inner vertex on the subpath containing 𝑒1
and 𝑒2 as end edges unmatched.

Proof. There are 3 possibilities how the isolated edges 𝑒1 and 𝑒2 can be set:

1. 𝑒1 and 𝑒2 are both matching edges,

2. 𝑒1 and 𝑒2 are both non-matching edges,

3. 𝑒1 is a matching edge and 𝑒2 not (the converse case is equivalent).

For each of these cases, the number of edges between 𝑒1 and 𝑒2 can be either even
or odd.
Since 𝑒1 and 𝑒2 are neighboring isolated edges, all the edges in between are either
appended to the subpath containing 𝑒1 or to the subpath containing 𝑒2. This
always happens without leaving any vertex unmatched, since the algorithm acts
greedily. At some point, both subpaths will be connected with a vertex 𝑣𝑖. In this
time step 𝑖, at most one of the vertices 𝑣𝑖 or its neighbors can remain unmatched
because a greedy algorithm admits at most one unmatched vertex when connecting
two subpaths.
Table 3.1 gives an overview of the unmatched vertices in all the cases with an odd
or an even number of vertices between two isolated edges 𝑒1 and 𝑒2. ◻

A consequence of Lemma 3.53 is that, if one of two neighboring isolated edges
is treated wrongly by the algorithm, there remains one vertex unmatched on the
subpath connecting them.
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Table 3.1. Number of unmatched vertices between two given neighboring isolated
edges 𝑒1 and 𝑒2 treating the non-isolated edges greedily. The column with the parity
indicates if there are an even or an odd number of edges between 𝑒1 and 𝑒2.

Case Parity Unmatched Example
Edges Vertices

1 even 1

𝑒1 𝑒2

1 odd 0

𝑒1 𝑒2

2 even 1

𝑒1 𝑒2

2 odd 0

𝑒1 𝑒2

3 even 0

𝑒1 𝑒2

3 odd 1

𝑒1 𝑒2

Corollary 3.54. Assume that the algorithm does not decide right on one of two
neighboring isolated edges 𝑒1 or 𝑒2 with respect to a fixed maximum matching 𝑀∗

which matches all inner vertices. Then, there remains one inner vertex unmatched
on the subpath connecting those two edges.

Proof. Let 𝑒1 and 𝑒2 be two neighboring isolated edges. If there are an odd number
of edges between 𝑒1 and 𝑒2 in the complete online graph, an algorithm which
matches all inner vertices, either has to assign both edges 𝑒1 and 𝑒2 to the matching
or leave both unmatched in order to solve the problem optimally. Therefore, a
wrong decision would be to treat 𝑒1 and 𝑒2 differently leading to an unmatched
vertex on the subpath containing 𝑒1 and 𝑒2 as end vertices due to Table 3.1.
If 𝑒1 and 𝑒2 have an even number of edges in between, an algorithm would have
to choose one of the two edges to be a matching edge and leave the other edge
unmatched in order to be optimal on this subpath. Due to Table 3.1, we see that a
wrong decision on one of the edges 𝑒1 and 𝑒2 leads again to an unmatched vertex
between 𝑒1 and 𝑒2, concluding the proof. ◻

The good news is that, if both neighboring isolated edges 𝑒1 and 𝑒2 are treated
wrongly, the mistake on the path containing 𝑒1 and 𝑒2 as end vertices is canceled
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out and the greedy algorithm connects this two edges without leaving any inner
vertex on the connecting subpath unmatched.

Corollary 3.55. If the algorithm decides for both neighboring isolated edges 𝑒1
and 𝑒2 wrongly with respect to a fixed maximum matching 𝑀∗ that matches all
inner vertices, the greedy algorithm connects these two edges without leaving any
inner vertex on the connecting subpath unmatched.

Proof. For a fixed maximum matching, flipping the matched and the unmatched
edges on a certain subpath containing 𝑒1 and 𝑒2 as end edges leads to a matching
that matches all inner vertices on this subpath (see Figure 3.54). ◻

tim
e

↺

𝑒1 𝑒2 𝑒1 𝑒2

(a) One of the edges 𝑒1 and 𝑒2 is a matching edge.

tim
e

↺

𝑒1 𝑒2 𝑒1 𝑒2

(b) Either both edges 𝑒1 and 𝑒2 are matching edges or both not.

Figure 3.54. Flipping all matching and non-matching edges on a path containing 𝑒1
and 𝑒2 as end vertices yields again a matching that matches all inner vertices.

The local matching of Corollary 3.55 on a subpath containing 𝑒1 and 𝑒2 as end
edges does not have to be part of the fixed maximum matching 𝑀∗, but there will
be no unmatched vertex on this subpath.
Corollary 3.54 and Corollary 3.55 show that an algorithm that acts greedily on
non-isolated edges causes an unmatched vertex on a subpath of non-isolated edges
only in the case that exactly one isolated end edge was set wrong with respect to a
fixed matching 𝑀∗ that matches all inner vertices (see Figure 3.55 for an example).

Therefore, a wrong decision on an isolated edge can cause at most two unmatched
vertices when the algorithm uses a greedy strategy on the non-isolated edges.
The worst case for 𝑖 isolated edges, for some 𝑖 ∈ {0, 1, 2, . . . , ]︂𝑛

3 {︂}, happens if an
algorithm decides wrongly on ]︂ 𝑖

2{︂ of the 𝑖 isolated edges, 𝑖 ∈ {0, 1, 2, . . . , ]︂𝑛
3 {︂}, and

the adversary places always an isolated edge with a right decision next to one with
a wrong decision, beginning with a wrong decision as the leftmost isolated edge.
We get the following pattern on the isolated edges:

7 3 7 3 7 . . . 3 7 3 7 3 7
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tim
e

(a) A fixed maximum matching 𝑀∗.

tim
e 3 7 7 3 7

(b) The maximum matching 𝑀 found by an algorithm.

Figure 3.55. An example of a fixed maximum matching 𝑀∗ and a matching 𝑀 for
which some of the isolated edges are set different by the algorithm.

The leftmost and the rightmost subpath containing each only one isolated edge as
an end edge might not contain any unmatched vertex. But every other subpath
containing neighboring isolated edges as end edges, contains one unmatched vertex
in this example. Therefore, the algorithm leaves at most 𝑖 + 1 vertices unmatched
if it acts greedily on the non-isolated edges.

Corollary 3.56. An algorithm that acts greedily on non-isolated edges leaves at
most 𝑖+ 1 vertices unmatched in an online path instance containing 𝑖 isolated edges,
for some 𝑖 ∈ {0, 1, 2, . . . , ]︂𝑛

3 {︂}. This bound is reached for ]︂ 𝑖
2{︂ wrongly set isolated

edges. ◻

So, the worst case occurs for 𝑖 = ]︂𝑛
3 {︂ leading, due to Lemma 3.13, to

⃦
𝑖 + 1

2
(︂ =

⎝
⎝
⎝
⎝
⎪

]︂𝑛
3 {︂ + 1

2

⎠
⎠
⎠
⎠
⎮

matching edges less with respect to a fixed maximum matching 𝑀∗ that matches
all inner vertices. Recall that a maximum matching in a path of 𝑛 vertices contains
⟩︀𝑛

2 (︁ matching edges. Hence, an algorithm as described above, finds a matching
containing at least

⃦
𝑛

2
(︂ −

⎝
⎝
⎝
⎝
⎪

]︂𝑛
3 {︂ + 1

2

⎠
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⎠
⎮
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𝑛

2
−

1
2
−
]︂𝑛

3 {︂ + 1
2

≥
𝑛

2
−

1
2
−

𝑛
3 +

2
3 + 1
2

≥
𝑛

3
−

4
3

matching edges in an online path containing 𝑛 vertices and 𝑖 isolated edges. This
is a similar result as we have already seen in Lemma 3.10, with the difference that
this result speaks about all algorithms that treat the non-isolated edges greedily.
In Lemma 3.10, we only proved that an algorithm that acts greedily on all edges
reaches a slightly higher bound.

Corollary 3.57. Every deterministic algorithm that acts greedily on non-isolated
edges, in order to find a matching in an online path om 𝑛 vertices, chooses a match-
ing of size at least ]︂𝑛

3 −
4
3{︂. ◻
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Now, we are ready to look at algorithms with advice that use less than ⟩︀𝑛
3 (︁ advice

bits, which would be necessary in order to find a maximum matching in every online
path on 𝑛 vertices. Recall again Algorithm 3.4 which finds an optimal solution.
This algorithm reads an advice bit for every isolated edge and for every isolated
path on 3 vertices. In all other cases, it acts greedily. In order to have an algorithm
using only ]︂𝑛

3 {︂ − 𝑘 advice bits, we modify this algorithm to Algorithm 3.8 such
that this new algorithm acts the same as the previous one until all allowed advice
bits are exhausted. Then, the algorithm follows a greedy strategy on all (possibly
also isolated) edges. To implement this strategy, the algorithm has to know the
length 𝑛 of the input. This can be communicated in a self-delimiting way by using
additional [︂log(𝑛)⌉︂ + 2[︂log ([︂log(𝑛)⌉︂)⌉︂ advice bits (see Lemma 1.25).
Note that there are at most 𝑘 isolated edges or isolated paths on 3 vertices left in
the remainder which has to be set without advice. In the worst case, all of these
remaining isolated subpaths are set wrong.

Theorem 3.58. Algorithm 3.8 finds a matching on max (]︂𝑛
3 −

4
3{︂ , ⟩︀𝑛

2 (︁ − 𝑘) edges
in a path on 𝑛 vertices using at most ]︂𝑛

3 {︂ + [︂log(𝑛)⌉︂ + 2[︂log ([︂log(𝑛)⌉︂)⌉︂ − 𝑘 advice
bits for some 𝑘 ∈ {0, 1, . . . , ]︂𝑛

3 {︂}.

Proof. Due to Corollary 3.57, no matter how the isolated edges are set, every
algorithm that matches non-isolated edges greedily, i. e., including Algorithm 3.8,
matches at least ]︂𝑛

3 −
4
3{︂ edges.

But for small 𝑘, i. e., for

𝑘 ≤
⎨
⎝
⎝
⎝
⎝

]︂𝑛
3 {︂

2

⎬
⎠
⎠
⎠
⎠

,

the algorithm can reach a better bound, as we will show now. The algorithm first
reads the input length 𝑛 from the advice tape. From this, it knows how many
advice bits it can use for the isolated edges. Since Algorithm 3.8 first uses all
advice bits, at most 𝑘 isolated edges are left for which the algorithm has no advice
left. Therefore, it greedily assigns all these isolated edges to the matching. In the
worst case, all these edges which were set without advice are wrong. Since, 𝑘 is
smaller than approximately half of the possible isolated edges, Corollary 3.56 states
that, in the worst case, the adversary can arrange the edges on which the wrong
decision was made such that they have two neighboring isolated edges with a right
decision. Hence, every mistake leads to two unmatched vertices and therefore to a
matching edge less with respect to a fixed maximum matching 𝑀∗ that matches
all inner vertices.
Figure 3.56 visualizes the tradeoff between the number of advice bits read and the
number of matching edges that Algorithm 3.8 can reach on every online path on 𝑛
vertices. ◻

In Theorem 3.58, we fixed a maximum matching 𝑀∗ for every online path and
compared the work of Algorithm 3.8 with respect to 𝑀∗. Paths with an odd
number of vertices contain 𝑛+1

2 different maximum matchings (see Lemma 3.7)
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Algorithm 3.8 Matching on Paths with ]︂𝑛
3 {︂ − 𝑘 advice bits

INPUT: 𝑃 ≺ ∈ 𝒫𝑛, for some 𝑛 ∈N

1: 𝑀 = ∅

2: read the number 𝑛 of vertices from the advice tape
3: adv = ]︂𝑛

3 {︂ − 𝑘
4: for 𝑖 = 1 to 𝑛 do
5: while adv > 0 do
6: if (a) 𝑣𝑖 has exactly one edge 𝑒 to a previously isolated vertex then
7: read an advice bit 𝜎 to decide whether 𝑒 is a matching edge:
8: if 𝜎 = 1 then
9: 𝑀 ←𝑀 ∪ {𝑒}

10: else
11: 𝑀 ←𝑀
12: adv← adv − 1
13: else if (b) 𝑣𝑖 has two edges 𝑒1 and 𝑒2 to prev. isolated vertices then
14: use an advice bit 𝜎 to decide whether 𝑒1 or 𝑒2 is a matching edge:
15: if 𝜎 = 0 then
16: 𝑀 ←𝑀 ∪ {𝑒1}
17: else
18: 𝑀 ←𝑀 ∪ {𝑒2}

19: adv← adv − 1
20: else if (c) 𝑣𝑖 is connected to some non-isolated and unmatched vertex

by an edge 𝑒 then
21: 𝑀 ←𝑀 ∪ {𝑒}
22: else if (d) 𝑣𝑖 has an edge 𝑒1 to a matched vertex and an edge 𝑒2 to an

isolated vertex then
23: 𝑀 ←𝑀 ∪ {𝑒2}
24: else
25: 𝑀 ←𝑀
26: output 𝑀𝑖 = 𝑀

27: # Advice bits are all used up:
28: if (a) then
29: 𝑀 ←𝑀
30: else if (b) then
31: 𝑀 ←𝑀 ∪ {𝑒1}
32: else if (c) then
33: 𝑀 ←𝑀 ∪ {𝑒}
34: else if (d) then
35: 𝑀 ←𝑀 ∪ {𝑒2}
36: else
37: 𝑀 ←𝑀
38: output 𝑀𝑖 = 𝑀

OUTPUT: 𝑀 = (𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑚) = ⋃
𝑛
𝑖=1 𝑀𝑖 ⊆ 𝐸, for some 𝑚 ∈N
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0.1𝑛 0.2𝑛 0.3𝑛

0.1𝑛

0.2𝑛

0.3𝑛

0.4𝑛

0.6𝑛

0.7𝑛

𝑛
6

𝑛
3

max.

number of advice bits

number of edges
in the matching

Algorithm 3.8

Figure 3.56. Minimum number of edges found by Algorithm 3.8 in an arbitrary online
path on 𝑛 edges with respect to the number of advice bits that are on disposal.

admitting that the algorithm can afford one unmatched inner vertex. But allowing
all maximum matchings does not improve the algorithm since every wrongly set
isolated edge forces two unmatched vertices.

3.7 Tradeoffs in Paths and Trees via the String
Guessing Problem

We already showed that, given the decision on the isolated edges, an algorithm
solves the online matching problem in paths optimally. Therefore, we used in
Section 3.6 the straight-forward idea that the algorithm asks for every isolated edge
one advice bit in order to set this edge correctly. Algorithm 3.8 asks 𝑘 advice bits
less than would be necessary to find a maximum matching. It uses up all advice
bits for the first isolated edges and decides on the remaining isolated edges greedily
as well as on all non-isolated edges. Algorithm 3.8 finds a matching containing
max (]︂𝑛

3 −
4
3{︂ , ⟩︀𝑛

2 (︁ − 𝑘) edges.
In this section, we want to modify this algorithm in order to give an improved
upper bound. We will use an algorithm for the string guessing problem to find a
correct setting for the isolated edges. This algorithm will reach a better competitive
ratio for a fixed number of advice bits.
In the string guessing problem, the algorithm has to guess a bit string

𝑏 = 𝑏1𝑏2𝑏3 . . . 𝑏𝑛

of a given length 𝑛, for some 𝑏𝑖 ∈ {0, 1} for all 𝑖 ∈ {1, 2, . . . , 𝑛}. An online algorithm
solves the online instance bit by bit, starting with 𝑏1. All requests contain the
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question what the next bit is, denoted by ?𝑖 for the 𝑖th request. In the first request,
the algorithm also receives the length 𝑛 of the bit string. And as a last, concluding
request, the bit string 𝑏 itself is given in order to distinguish the instances of the
same length 𝑛. The goal of the online algorithm is to minimize the number of
wrongly guessed bits. This measure can be described by the Hamming distance,
denoted by Ham, of the string 𝑏 and the guessed bit string. The following two
definitions are a special case of the definitions in [8, 9].

Definition 3.59 (String Guessing with Unknown History).

Input: A sequence of requests 𝐵 = ((𝑛, ?1), ?2, ?3, . . . , ?𝑛, 𝑏) for a bit string
𝑏 = 𝑏1𝑏2𝑏3 . . . 𝑏𝑛 and some 𝑛 ∈N

Output: Guessed bits: (𝛽1, 𝛽2, . . . , 𝛽𝑛, 𝜆) such that 𝛽𝑖 ∈ {0, 1} for all 𝑖 ∈
{1, 2, . . . , 𝑛}

Cost: Number of wrongly guessed bits: Ham(𝑏1𝑏2 . . . 𝑏𝑛, 𝛽1𝛽2 . . . 𝛽𝑛)

Goal: Minimum

In this online optimization problem, it might be useful if the algorithm would know
the correct answers to the already set part of the online instance. In the setting of
the so-called string guessing with known history, the algorithm receives, with every
new request, the correct answer for the preceding request.

Definition 3.60 (String Guessing with Known History).

Input: A sequence of requests

𝐵 = ((𝑛, ?1), (𝑏1, ?2), (𝑏1𝑏2, ?3), . . . , (𝑏1𝑏2 . . . 𝑏𝑛−1, ?𝑛))

for a bit string 𝑏 = 𝑏1𝑏2𝑏3 . . . 𝑏𝑛 and some 𝑛 ∈N

Output: Guessed bits: (𝛽1, 𝛽2, . . . , 𝛽𝑛, 𝜆) such that 𝛽𝑖 ∈ {0, 1} for all 𝑖 ∈
{1, 2, . . . , 𝑛}

Cost: Number of wrongly guessed bits: Ham(𝑏1𝑏2 . . . 𝑏𝑛, 𝛽1𝛽2 . . . 𝛽𝑛)

Goal: Minimum

An Upper Bound for the Online Matching Problem on Paths
The new algorithm will use an algorithm for the string guessing problem with
known history as a subroutine to compute advice for the isolated edges. Therefore,
we need to reduce the online matching problem to the string guessing problem
with known history.
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tim

e 𝑒1 𝑒2 𝑒3 𝑒4

Figure 3.57. This online path instance on 16 vertices contains the isolated edges 𝑒1, 𝑒2,
𝑒3, and 𝑒4. The maximum matching corresponds to the bit string 𝑏 = 𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6 = 100100
in the bit string guessing problem with known history. 𝑏1 to 𝑏4 correspond to the decision
on the edges 𝑒1 to 𝑒4, and 𝑏5 and 𝑏6 are non-relevant bits that occur since this online
path does not contain the maximum possible number of isolated edges, which would be 6.

Lemma 3.61. There is an algorithm with advice that solves the online matching
problem with help of the string guessing problem with known history.

Proof. Let 𝑃 ≺ ∈ 𝒫𝑛 be an online path instance for the online matching problem and
let 𝑀∗ be a fixed maximum matching that matches all inner vertices. Algorithm 3.9
works on the non-isolated edges in the same way as Algorithm 3.8, namely greedily.
But the treatment on the isolated edges is different: Algorithm 3.9 computes the
decision on the isolated edges with an algorithm solving the string guessing problem
with known history.
Recall that an online path instance on 𝑛 vertices contains at most ]︂𝑛

3 {︂ isolated
edges. Let

𝑒1, 𝑒2, . . . , 𝑒𝑘, for some 𝑘 ∈ {1, 2, . . . , ⌋︂
𝑛

3
⟨ ,

be these isolated edges.
Now, we transform the decision on these isolated edges to the problem of finding a
bit string 𝑏 = 𝑏1𝑏2 . . . 𝑏[︂𝑛

3 ⌉︂ with

𝑏𝑖 =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

1, if 𝑒𝑖 is an edge in 𝑀∗,
0, if 𝑒𝑖 is not present in 𝑀∗,

for all 𝑖 ∈ {1, 2, . . . , 𝑘} and 𝑏𝑖 = 0 for all non-relevant bits 𝑏𝑘+1, . . . , 𝑏[︂𝑛
3 ⌉︂. See

Figure 3.57 for an example. Algorithm 3.9 describes the algorithm using string
guessing with known history to set the isolated edges in detail. ◻

Now, we want to analyze Algorithm 3.9 in order to give an upper bound on the
tradeoff for the online matching problem. For this, we need an online algorithm
described in [8, 9] for solving the string guessing problem with known history.

Lemma 3.62 (Böckenhauer et al. [8]). Let 𝑏 be a bit string of length 𝑚. There
is an online algorithm reading at most

⌋︂(1 + (1 − 𝛼) log(1 − 𝛼) + 𝛼 log(𝛼))𝑚 +
3
2

log(𝑚) +
1
2
+ log(ln(2))⟨

advice bits in order to guess 𝛼𝑚 bits of 𝑏 correctly, for some 1
2 ≤ 𝛼 < 1.
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Algorithm 3.9 Matching on Paths Using a Bit String
INPUT: 𝑃 ≺ ∈ 𝒫𝑛, for some 𝑛 ∈N

1: 𝑀 = ∅

2: Calculate 𝑏 = 𝑏1𝑏2 . . . 𝑏[︂𝑛
3 ⌉︂ by an algorithm for the string guessing problem with

known history using the amount of advice specified in Theorem 3.63 to achieve
the desired number of correct guesses

3: for 𝑖 = 1 to 𝑛 do
4: if (a) 𝑣𝑖 has exactly one edge 𝑒 to a previously isolated vertex then
5: read the next bit in 𝑏 to decide whether 𝑒 is a matching edge:
6: if 𝜎 = 1 then
7: 𝑀 ←𝑀 ∪ {𝑒}
8: else
9: 𝑀 ←𝑀

10: else if (b) 𝑣𝑖 has two edges 𝑒1 and 𝑒2 to prev. isolated vertices then
11: use the next bit in 𝑏 to decide whether 𝑒1 or 𝑒2 is a matching edge:
12: if 𝜎 = 0 then
13: 𝑀 ←𝑀 ∪ {𝑒1}
14: else
15: 𝑀 ←𝑀 ∪ {𝑒2}

16: else if (c) 𝑣𝑖 is connected to some non-isolated and unmatched vertex by
an edge 𝑒 then

17: 𝑀 ←𝑀 ∪ {𝑒}
18: else if (d) 𝑣𝑖 has an edge 𝑒1 to a matched vertex and an edge 𝑒2 to an

isolated vertex then
19: 𝑀 ←𝑀 ∪ {𝑒2}
20: else
21: 𝑀 ←𝑀
22: output 𝑀𝑖 = 𝑀

OUTPUT: 𝑀 = (𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑚) = ⋃
𝑛
𝑖=1 𝑀𝑖 ⊆ 𝐸, for some 𝑚 ∈N

Applying this result to Algorithm 3.9 leads to an upper bound on the number of
advice bits the algorithm needs to achieve a desired size of the matching.

Theorem 3.63. Algorithm 3.9 finds a matching on

⃦
𝑛

2
(︂ − (1 − 𝛼) ⌋︂

𝑛

3
⟨

edges in a path on 𝑛 vertices using at most

⌋︂(1 + (1 − 𝛼) log(1 − 𝛼) + 𝛼 log(𝛼)) ⌋︂𝑛

3
⟨ +

3
2

log(⌋︂𝑛

3
⟨) +

1
2
+ log(ln(2))⟨

advice bits for some 1
2 ≤ 𝛼 < 1.



124 Chapter 3. Online Matching in Bipartite Graphs

0.1𝑛 0.2𝑛 0.3𝑛

0.1𝑛

0.2𝑛

0.3𝑛

0.4𝑛

0.6𝑛

0.7𝑛

𝑛
6

𝑛
3

max.
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Algorithm 3.9
Algorithm 3.8

Figure 3.58. Minimum number of edges found by Algorithm 3.9 in an arbitrary online
path on 𝑛 edges with respect to the number of advice bits that are on disposal.

Proof. Guessing 𝛼𝑚 bits correctly means guessing (1−𝛼)𝑚 bits wrongly, implying
(1 − 𝛼)𝑚 wrongly set isolated edges in the online path on 𝑛 vertices with 𝑚 = ]︂𝑛

3 {︂

with respect to a fixed maximum matching 𝑀∗ that matches all inner vertices.
We showed in the proof of Theorem 3.58 that every wrongly set isolated edge
leads to exactly two unmatched vertices if the adversary can arrange the isolated
edges such that every correctly set edge lies between two wrongly set edges. This
implies directly that every wrongly set isolated edge leads to exactly one edge less
in the matching computed by the algorithm, with respect to the fixed maximum
matching 𝑀∗. To arrange the isolated edges in this way is possible as long as we
have less than half of the isolated edges set wrong, i. e., if 𝛼 ≥ 1

2 holds.
Therefore, we can use Lemma 3.62 and and the fact that a path on 𝑛 vertices
has a matching containing ⟩︀𝑛

2 (︁ matching edges to show that Algorithm 3.9 finds a
matching of size

⃦
𝑛

2
(︂ − (1 − 𝛼)𝑚 = ⃦

𝑛

2
(︂ − (1 − 𝛼) ⌋︂

𝑛

3
⟨

for some 1
2 ≤ 𝛼 < 1, using

⌋︂(1 + (1 − 𝛼) log(1 − 𝛼) + 𝛼 log(𝛼)) ⌋︂𝑛

3
⟨ +

3
2

log (⌋︂𝑛

3
⟨) +

1
2
+ log(ln(2))⟨

advice bits. This function is visualized in Figure 3.58. ◻
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Figure 3.59. Example of a matching in a spider graph.

A Lower Bound on the Online Matching Problem in Trees
To show a lower bound on the tradeoff for the online matching problem on trees,
we will use spider graphs (see Definition 2.23). Recall that a spider graph is a
special tree where all vertices except for one have degree at most 2.
As shown in Lemma 3.7, a path on 𝑛 vertices contains a matching of size ⟩︀𝑛

2 (︁.
In the case of 𝑛 even, the matching is unique whereas there are 𝑛+1

2 maximum
matchings for a path with 𝑛 odd. In a spider graph, the maximum matching
depends on how the vertices are distributed to legs of even and odd lengths (see
Figure 3.59). Since at most one matching edge is incident to the center, the legs of
the spider graph can be seen as independent paths. Every leg of an even number 𝑘
of vertices contributes 𝑘

2 edges to the matching and every leg of an odd number 𝑙

of vertices, except of one, contributes exactly 𝑙−1
2 edges to the matching. The leg

which is adjacent to the matching edge incident to the center contains, including
the center edge, 𝑙+1

2 edges. As shown in Figure 2.15, we have an unmatched vertex
in every path of an odd number of vertices except in one. Hence, a spider graph
with 𝑖 legs containing an odd number of vertices has a maximum matching of size

𝑛

2
−

𝑖 − 1
2

=
𝑛 − 𝑖 + 1

2
.

To give a lower bound on the number of advice bits used in order to achieve a
certain fixed competitive ratio on finding a maximum matching in trees, we reduce
the string guessing problem with unknown history to the online matching problem
in special spider graphs.

Lemma 3.64. There exists an advice-preserving reduction from the string guessing
problem with unknown history to the online matching problem on spider graphs
with legs of 4 vertices, except of one leg consisting of exactly one vertex.

Proof. Let 𝑏 = 𝑏1𝑏2𝑏3 . . . 𝑏𝑚 be the bit string that should be guessed from some
input 𝐵 = ((𝑚, ?1), ?2, ?3, . . . , ?𝑚, 𝑏) for the string guessing problem with unknown
history, for some 𝑚 ∈ N. We transform the problem of guessing this bit string 𝑏
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Figure 3.60. A spider graph containing exactly one maximum matching, used for the
advice-preserving reduction.

to the problem of finding a maximum matching in a special online spider graph
on 𝑛 = 4𝑚 + 2 vertices as shown in Figure 3.60. This spider graph has exactly
one maximum matching because of the leg containing 1 vertex. Since this spider
graph contains 𝑚− 1 legs of length 4 and one of length 1, the size of the maximum
matching is

2𝑚 + 1 = 2 ⋅ (𝑛 − 2
4

) + 1 = 𝑛

2
.

In the online presentation of this spider graph, 𝑆≺
𝑛 with 𝑛 = 4𝑚 + 2, the adversary

shows the isolated edges first, according to the bit string 𝑏. The 𝑖th edge 𝑒𝑖 in the
online presentation is defined as

𝑒𝑖 =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

𝑒1
𝑖 if 𝑏𝑖 = 1 ,

𝑒2
𝑖 if 𝑏𝑖 = 0 .

Now, we have to show how a solution to the online matching problem on such
a spider graph 𝑆≺

𝑛 transforms to a solution for the string guessing problem with
unknown history on 𝑏. If 𝑒𝑖 is supposed to be a matching edge in 𝑆≺

𝑛, then the
according bit 𝑏𝑖 is set to 1, otherwise, i. e., if 𝑒𝑖 is not a matching edge, 𝑏𝑖 = 0, in
other words,

𝑏𝑖 =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

1 if 𝑒𝑖 is a matching edge ,

0 else .

We want to show that every wrongly set edge in 𝑆≺
𝑛 leads to exactly one matching

edge less with respect to the maximum matching, and therefore a wrongly set bit
in 𝑏 corresponds directly to one lost matching edge in 𝑆≺. If 𝑒1

𝑖 would wrongly
be set as non-matching, only one of the edges 𝑒2

𝑖 or 𝑒3
𝑖 can be a matching edge,

leading to a matching edge less on the leg containing 𝑒1
𝑖 . Assigning wrongly 𝑒𝑖 to

be a matching edge, prevents both, 𝑒1
𝑖 and 𝑒2

𝑖 , to be matching edges, and since the
edge next to the center also cannot be a matching edge because of the edge 𝑒0, we
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again lose one matching edge with respect to the unique maximum matching on
the corresponding leg.
Summarizing, if an algorithm for the online matching problem computes a maximum
matching on ≤ 𝑛

2 − 𝑘 edges, then there is also an algorithm for string guessing
admitting 𝑘 mistakes and using the same amount of advice. Therefore, if an
algorithm for solving the string guessing problem needs at least 𝑓𝛼(𝑚) advice bits
to guarantee guessing 𝛼𝑚 bits correctly, for some 1

2 ≤ 𝛼 < 1, then every algorithm for
the online matching problem on this special spider graphs needs at least 𝑓𝛼 (

𝑛−2
4 )

advice bits to guarantee a matching on

𝑛

2
− (1 − 𝛼)𝑚 =

𝑛

2
− (1 − 𝛼) ⋅

𝑛 − 2
4

edges. ◻

Since a lower bound on the string guessing problem with known history directly
implies a lower bound on the string guessing problem with unknown history, we can
use the lower bound of [8] to give a lower bound for the online matching problem
on trees.

Lemma 3.65 (Böckenhauer et al. [8]). Let 𝑏 be a bit string of length 𝑚. Every
deterministic online algorithm for the string guessing problem with known history
that can guarantee to be correct for more than 𝛼𝑚 bits, for some 1

2 ≤ 𝛼 < 1, needs
to read at least

(1 + (1 − 𝛼) log(1 − 𝛼) + 𝛼 log(𝛼))𝑚

advice bits. ◻

This leads to a lower bound on the number of advice bits needed by every online
algorithm solving the online matching problem on trees with a fixed competitive
ratio.

Theorem 3.66. Every deterministic online algorithm that guarantees a matching
of size

𝑛

2
− (1 − 𝛼) ⋅

𝑛 − 2
4

,

for an 1
2 ≤ 𝛼 < 1, needs to read at least

(1 + (1 − 𝛼) log(1 − 𝛼) + 𝛼 log(𝛼)) ⋅ 𝑛 − 2
4

advice bits.

Proof. Due to Lemma 3.64, a matching edge less than the unique maximum
matching in the special spider graphs described in the proof implies directly a
mistake in the string guessing problem. Therefore the lower bound on the number of
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Figure 3.61. The lower bound from Theorem 3.66 on the number of advice bits every
online algorithm solving the online matching problem on trees needs to read in order to
find a matching of fixed size.

correct guesses in the string guessing problem with known history directly transfers
to the online matching problem on these special trees. Hence, Lemma 3.65 leads to

𝑓𝛼 (
𝑛 − 2

4
) = (1 + (1 − 𝛼) log(1 − 𝛼) + 𝛼 log(𝛼)) ⋅ 𝑛 − 2

4

advice bits that every online algorithm has to read in order to get a maximum
matching of size 𝑛

2 − (1 − 𝛼) ⋅ 𝑛−2
4 . This lower bound is depicted in Figure 3.61. ◻

3.8 Conclusion
We considered the online matching problem mainly on bipartite graphs and some of
its subclasses. For general graphs, we constructed a deterministic online algorithm
with advice which solves the problem optimally using 𝒪(𝑛 log(𝑛)). We comple-
mented this result with a matching lower bound that holds already for 𝑃5-free
bipartite graphs with diameter 3.
For paths and cycles, we showed an almost tight upper and lower bound of
approximately 𝑛

3 advice bits for optimality. We also investigated the case of {1, 3}-
trees, where we showed a lower bound of approximately 𝑛

2 and an upper bound
of approximately log(3)

3 𝑛. It would be interesting to extend these results to more
general trees, starting with {1, 𝑘}-trees and general degree-bounded trees.
For paths, we also investigated the tradeoff of the number of advice bits and the
competitive ratio using a reduction from string guessing. Moreover, we showed that
one single advice bit does not help at all. It is open which ratio can be reached
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with two or a few more advice bits. Also the tradeoff for other graph classes could
be of interest.
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Chapter 4
Approximability of Splitting-SAT
in 2-CNF Horn Formulas

Many problems arising from practical applications can be formulated using Boolean
formulas in conjunctive normal form (CNF). Usually, the variables of the formula
model some parameters of the problem, and the constraints of the problem are
modeled by the clauses of the formula. The goal is to find out a valid parameter
setting by computing a satisfiable assignment for the corresponding formula. But
often the modeling of the practical situation is very complex, leading to some
contradictory constraints in the model, and the corresponding formula turns out to
be unsatisfiable. In this case, one often tries to find a maximum set of constraints
that can be simultaneously satisfied. This leads to the well-known Max-Sat
problem (see, e. g., [3] for an overview of the known results for Max-Sat). Another
source of mistakes that might arise when modeling a real-world problem as a
Boolean formula is a too coarse-grained choice of parameters, i. e., variables. If two
different parameters are erroneously modeled by the same variable, this might also
lead to an unsatisfiable formula. In other words, an unsatisfiable formula might
contain one or more variables that should be split into two variables in order to
make the formula satisfiable. The minimum splitting SAT problem formalizes this
approach, the input is an (unsatisfiable) CNF-formula and the goal is to find a
minimum number of variables that have to be split into two to make the resulting
formula satisfiable.
The splitting operation has not only been considered on formulas. For example,
it arises in the context of vertex splitting in phylogenetic tree construction [55].
Splitting vertices in a graph was also considered for making a graph Hamiltonian [62].
To the best of our knowledge, splitting variables in a Boolean formula was introduced
by Steinová [62], who showed that the minimum splitting SAT problem is 𝒜𝒫𝒳 -

131
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hard even for formulas in 2-CNF, i. e., when restricted to formulas in which each
clause contains at most two literals.
In a 2-CNF formula, we can have the following five types of clauses:

P1: Positive 1-clauses (𝑥) consisting of one positive literal,

N1: negative 1-clauses (𝑥) consisting of one negative literal,

M2: mixed 2-clauses (𝑥 ∨ 𝑦) consisting of one positive and one negative literal,

N2: negative 2-clauses (𝑥 ∨ 𝑦) consisting of two negative literals, and

P2: positive 2-clauses (𝑥 ∨ 𝑦) consisting of two positive literals.

A 2-CNF formula without positive 2-clauses is called a 2-CNF Horn formula. We
will restrict our attention to 2-CNF Horn formulas in the first part of this chapter.
We analyze which combinations of clause types make the minimum splitting SAT
problem hard to approximate. An overview of the results is given in Figure 4.1.
Observe that lower bounds carry over upwards and upper bounds downwards in
the lattice of subsets. In particular, we show that the minimum splitting SAT
problem remains exactly as hard to approximate as the vertex cover problem, when
restricted to the special case of Horn formulas consisting of clauses of type P1 and
N2 only. On the other hand, even when allowing additional clauses of type N1,
the problem can be approximated exactly as good as the vertex cover problem,
it becomes polynomially solvable when restricted to Horn formulas consisting of
clauses of type P1, N1, and M2.
Another way to look at the splitting SAT problem is to ask for the maximum
number of variables that can be assigned a truth value without evaluating any
clause to 0, i. e., for the maximum number of variables that can be left unsplit. This
is called the maximum assignment SAT problem. Obviously, the optimal solutions
for minimum splitting SAT and maximum assignment SAT coincide, but we show
that the approximability of the two problems essentially differs. The maximum
assignment SAT problem on 2-CNF Horn formulas with clauses of type P1 and N2
turns out to be as hard to approximate as the maximum independent set problem,
and, on arbitrary 2-CNF Horn formulas, it can be approximated as good as the
maximum independent set problem. An overview of the results on the maximum
assignment SAT problem is shown in Figure 4.2.
We complement our results with an approximation algorithm for the maximum
assignment SAT problem on E2-CNF formulas, i. e., formulas containing only
clauses of the types M2, P2, and N2. The approximation hardness of this problem
was shown by Steinová [62].
This chapter is organized as follows: In Section 4.1, we fix our notation. Sections
4.2 and 4.3 are devoted to the analysis of minimum splitting SAT and maximum
assignment SAT in Horn formulas, respectively. In Section 4.4, we discuss the case
of E2-CNF formulas, and we conclude this chapter in Section 4.5.
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P1/N1/M2/N2
U: open
L: MinVC

P1/N1/M2
U: MaxFlow
L: –

P1/N1/N2
U: MinVC
L: MinVC

P1/M2/N2
U: open
L: MinVC

N1/M2/N2
U: no split
L: –

P1/N1
U: linear time
L: –

P1/M2
U: no split
L: –

P1/N2
U: MinVC
L: MinVC

N1/M2
U: no split
L: –

N1/N2
U: no split
L: –

M2/N2
U: no split
L: –

P1
U: no split
L: –

N1
U: no split
L: –

M2
U: no split
L: –

N2
U: no split
L: –

∅

U: trivial
L: –

Figure 4.1. Upper and lower bounds on the approximability of the minimum splitting
SAT problem on 2-CNF Horn formulas for each set of allowed clause types

4.1 Basic Definitions
We start with formally defining the minimum splitting SAT problem and the
maximum assignment SAT problem. We follow the definitions from [62].

Definition 4.1 (Splitting). Let Φ be a Boolean formula over the variable
set 𝑋 and let 𝑦, 𝑧 ∉ 𝑋 be two new variables. We say that a variable 𝑥 ∈ 𝑋
is split if each occurrence of 𝑥 in Φ is replaced by either 𝑦 or 𝑧 and each
occurrence of 𝑥 is replaced by either 𝑦 or 𝑧. This operation is called a splitting
of 𝑥. We call a set 𝑋 ′ ⊆ 𝑋 such that splittting all variables from 𝑋 ′ yields a
satisfiable formula a feasible splitting set (or splitting set for short).

Note that, when splitting a variable 𝑥 into the two new variables 𝑦 and 𝑧, we can
replace all occurrences of the literal 𝑥 by 𝑦 and all occurrences of the literal 𝑥 by
𝑧. Thus, the resulting formula is satisfiable if and only if the formula resulting
from removing all clauses containing the variable 𝑥 is satisfiable. Hence, we can
think of a splitting operation as the removal of the split variable (together with
all clauses it appears in) from the formula. Furthermore, note that the result of
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P1/N1/M2/N2
U: MaxIS
L: MaxIS

P1/N1/M2
U: MaxFlow
L: –

P1/N1/N2
U: MaxIS
L: MaxIS

P1/M2/N2
U: MaxIS
L: MaxIS

N1/M2/N2
U: 𝛼 ≡ 0
L: –

P1/N1
U: linear time
L: –

P1/M2
U: 𝛼 ≡ 1
L: –

P1/N2
U: MaxIS
L: MaxIS

N1/M2
U: 𝛼 ≡ 0
L: –

N1/N2
U: 𝛼 ≡ 0
L: –

M2/N2
U: 𝛼 ≡ 0
L: –

P1
U: 𝛼 ≡ 1
L: –

N1
U: 𝛼 ≡ 0
L: –

M2
U: 𝛼 ≡ 0
L: –

N2
U: 𝛼 ≡ 0
L: –

∅

U: trivial
L: –

Figure 4.2. Upper and lower bounds on the approximability of the maximum assignment
SAT problem on 2-CNF Horn formulas for each set of allowed clause types

splitting multiple variables is independent from the order of applying the splitting
operations.

Definition 4.2 (Minimum Splitting SAT Problem). The minimum
splitting SAT problem, MinSplit-SAT for short, is the following minimization
problem:

Input: A Boolean formula in CNF over the variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛}.

Set of feasible solutions: A feasible splitting set 𝑋 ′ ⊆ 𝑋.

Cost: Number of split variables.

Goal: Minimum.

If the input is restricted to 𝑘-CNF formulas, we call the resulting subproblem
MinSplit-𝑘-SAT.

In this chapter, we will consider the following subclass of 2-CNF formulas.
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Definition 4.3 (Horn Formulas). For a formula in 2-CNF and a set 𝑆 of
clause types from {P1, N1, M2, N2, P2} as defined above, we say that Φ is in
𝑆-2-CNF, if it contains only clauses of types from 𝑆. The {P1, N1, M2, N2}-
2-CNF formulas are called Horn formulas.

Definition 4.4 (MinSplit-𝑆-2-SAT). When we restrict, for some

𝑆 ⊆ {P1, N1, M2, N2, P2} ,

the input to 𝑆-2-CNF formulas, the resulting subproblem is denoted as
MinSplit-𝑆-2-SAT. The problem MinSplit-{P1, N1, M2, N2}-2-SAT is
referred to as MinSplit-Horn-2-SAT and MinSplit-{P2, M2, N2}-2-SAT
is called MinSplit-E2-SAT.

In the following, we will only deal with MinSplit-2-SAT and its subproblems and
we will assume without loss of generality that the input always is an unsatisfiable
formula. Since 2-SAT, i. e., checking the satisfiability of a 2-CNF formula, is
solvable in polynomial time, this is no severe restriction. This implies that the
cost of any feasible solution is always strictly greater than zero, which allows us
to consider the approximation ratio of an algorithm for MinSplit-2-SAT as the
quotient of the cost of the computed solution and the optimal cost.

Definition 4.5 (Maximum Assignment SAT Problem). The maximum
assignment SAT problem, MaxAssign-SAT for short, is the following maxi-
mization problem:

Input: A Boolean formula in CNF over the variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛}.

Set of feasible solutions: A subset 𝑋 ′ ⊆ 𝑋 such that there exists a partial
assignment 𝛼∶𝑋 ′ → {0, 1} such that no clause is evaluated to 0 under
this partial assignment.

Cost: Size of the subset.

Goal: Maximum.

For the restrictions to special types of clauses, we use analogous notations as
for the respective MinSplit-SAT variants.

Observation 4.6. Let Φ be a formula in CNF over the set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of
variables. A set 𝑋 ′ ⊆ 𝑋 is an optimal MinSplit-SAT solution for Φ if and only
if 𝑋 −𝑋 ′ is an optimal MaxAssign-SAT solution for Φ.

Proof. Let 𝑋 ′ be a feasible solution for MinSplit-SAT on Φ. Then all clauses are
either satisfied by splitting one of the variables from 𝑋 ′ or can be satisfied by some



136 Chapter 4. Approximability of Splitting-SAT in 2-CNF Horn Formulas

partial assignment 𝛼 for the variables from 𝑋 − 𝑋 ′ (otherwise another variable
would need to be split). Thus, 𝑋 −𝑋 ′ is a feasible MaxAssign-SAT solution for
Φ since all clauses not satisfied by 𝛼 contain an unassigned variable from 𝑋 ′ and
thus are not evaluated to 0.
On the other hand, let 𝑋 −𝑋 ′ be a feasible MaxAssign-SAT solution for Φ. Then
there exists a partial assignment 𝛼 to the variables from 𝑋 − 𝑋 ′, such that no
clause evaluates to 0 under 𝛼. Thus, each clause is either satisfied by 𝛼 or contains
an unassigned variable from 𝑋 ′. Thus, splitting all variables from 𝑋 ′ makes the
formula satisfiable. ◻

Several of our results are based on reductions from the minimum vertex cover
problem and the maximum independent set problem. The minimum vertex cover
problem, MinVC for short, is the following minimization problem: Given an
undirected graph 𝐺 = (𝑉, 𝐸), find a minimum-size vertex cover of 𝐺, i. e., a
minimum-size subset 𝐶 ⊆ 𝑉 such that 𝑒 ∩ 𝐶 ≠ ∅ for all 𝑒 ∈ 𝐸. The maximum
independent set problem, MaxIS for short, is the following maximization problem:
Given an undirected graph 𝐺 = (𝑉, 𝐸), find a maximum-size independent set of 𝐺,
i. e., a maximum-size subset 𝐼 ⊆ 𝑉 such that {𝑥, 𝑦} ∉ 𝐸 for all 𝑥, 𝑦 ∈ 𝐼 with 𝑥 ≠ 𝑦.
MinVC is known to be approximable within a factor of 2 − log(log(⋃︀𝑉 ⋃︀))

2 log(⋃︀𝑉 ⋃︀) [52], but it
is 𝒜𝒫𝒳 -hard [56] and not approximable within a factor of 2 − 𝜀, for any constant
𝜀 > 0, if the Unique Games Conjecture holds [42]. The MaxIS is approximable
within 𝑂 (

⋃︀𝑉 ⋃︀
(log(⋃︀𝑉 ⋃︀))2 ) [13], but not approximable within ⋃︀𝑉 ⋃︀1−𝜀, for any 𝜀 > 0, unless

𝒫 = 𝒩𝒫 [35].

4.2 Splitting in 2-CNF Horn Formulas
In this section, we deal with the approximability of MinSplit-𝑆-2-SAT, for all
possible subsets 𝑆 ⊆ {P1, N1, M2, N2}.
If all allowed clause types contain a positive literal or all contain a negative literal,
setting all variables to 1 or 0, respectively, satisfies the formula and no splitting is
needed.

Observation 4.7. For 𝑆 = {P1, M2} or 𝑆 = {N1, M2, N2} or any subset thereof,
MinSplit-𝑆-2-SAT is solvable in constant time. ◻

Similarly, as already observed in [62], for any formula consisting of 1-clauses only,
MinSplit-𝑆-2-SAT is easily solvable. This immediately leads to the following
observation.

Observation 4.8. For 𝑆 = {P1, N1}, MinSplit-𝑆-2-SAT is solvable in linear
time. ◻

Next, we prove that MinSplit-{P1, N1, M2}-2-SAT can be solved by computing
the maximum flow in a given network. For this, we first define a representation of
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𝑣𝑡

𝑣1 𝑣2 𝑣3

𝑣𝑓

𝑣4 𝑣5

Figure 4.3. The graph representation of the {P1, N1, M2}-2-CNF Horn formula Φ =

(𝑥1) ∧ (𝑥2) ∧ (𝑥3) ∧ (𝑥3) ∧ (𝑣4) ∧ (𝑣5) ∧ (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥3) ∧ (𝑣4 ∨ 𝑣5)

formulas of this type by directed graphs. This graph representation is a special
case of the representation in [23].

Definition 4.9 (Graph Representation of a Horn Formula). Given a
{P1, N1, M2}-2-CNF Horn formula Φ = 𝐶1 ∧𝐶2 ∧ . . . ∧𝐶𝑚 over the variable
set 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, 𝐺Φ = (𝑉Φ, 𝐸Φ) is a digraph with vertex set 𝑉Φ =

{𝑣𝑖 ⋃︀ 𝑥𝑖 ∈ 𝑋} ∪ {𝑣𝑡} ∪ {𝑣𝑓} and arc set

𝐸Φ = {(𝑣𝑡, 𝑣𝑗) ⋃︀ (𝑥𝑗) in Φ}∪{(𝑣𝑗 , 𝑣𝑓) ⋃︀ (𝑥𝑗) in Φ}∪{(𝑣𝑖, 𝑣𝑗) ⋃︀ (𝑥𝑖 ∨𝑥𝑗) in Φ} .

The arcs from 𝑣𝑡 to vertices 𝑣𝑖 ∈ {𝑣1, 𝑣2, . . . , 𝑣𝑛} represent a satisfying assignment
𝛼(𝑥𝑖) = 1 for all clauses of type (𝑥𝑖). The connecting arcs in the vertex set
{𝑣1, 𝑣2, . . . , 𝑣𝑛} indicate that, for an arc (𝑣𝑖, 𝑣𝑗), 𝛼(𝑥𝑖) = 0 or 𝛼(𝑥𝑗) = 1 has to
hold in order to satisfy the clauses of type (𝑥𝑖 ∨ 𝑥𝑗). An arc from a vertex
𝑣𝑖 ∈ {𝑣1, 𝑣2, . . . , 𝑣𝑛} to 𝑣𝑓 represents a satisfying assignment 𝛼(𝑥𝑖) = 0 for the
corresponding clause (𝑥𝑖). We see in Figure 4.3 that only the shaded vertices can
be reached by a path from 𝑣𝑡. We call such a vertex a 𝑣𝑡-pebbled vertex or pebbled
vertex for short.
This graph construction and the idea of a pebbling were used in a more general
way by Dowling and Gallier [23]. They proved the following theorem.

Theorem 4.10 (Downing and Gallier [23]). A Horn formula is satisfiable if
and only if there is no directed path from 𝑣𝑡 to 𝑣𝑓 . ◻

Furthermore, they made a statement about the assignment in the case of a satisfiable
formula.

Theorem 4.11 (Downing and Gallier [23]). Let Φ be a satisfiable Horn for-
mula with variable set 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. The assignment 𝛼(𝑥𝑖) = 1 if and only
if 𝑣𝑖 is pebbled and 𝛼(𝑥𝑖) = 0 otherwise, is a satisfying assignment. ◻

This means that we get a satisfying assignment if we set all variables corresponding
to pebbled vertices to 1 and all other vertices to 0 in the case with no directed
path from 𝑣𝑡 to 𝑣𝑓 .

Corollary 4.12. Only pebbled vertices are candidates to split.
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𝑣 Ô⇒ 𝑣1 𝑣2

Figure 4.4. In the transformation of an instance 𝐺 for finding a minimum 𝑠 − 𝑡 vertex
cut into an instance 𝐺′ for finding a minimum 𝑠 − 𝑡 arc cut, every vertex 𝑣 is replaced by
two vertices 𝑣1 and 𝑣2 and the arcs are adjusted as shown above.

Proof. There is no directed path from 𝑣𝑡 to a non-pebbled vertex 𝑣𝑖 and therefore
no 1-clause (𝑥𝑖). Furthermore, for all variables 𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘

that correspond
to vertices 𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑘

for which a directed path from 𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑘
to 𝑣𝑖

exists, there are no 1-clauses (𝑥𝑖1), (𝑥𝑖2), . . . , (𝑥𝑖𝑘
). Therefore, all variables that

correspond to non-pebbled vertices can be set to 0 so that all clauses containing
those vertices are satisfied by this assignment. ◻

If we remove all non-pebbled vertices from the graph, it remains connected with a
directed path from 𝑣𝑡 to 𝑣𝑓 . To make the corresponding formula satisfiable, we
have to delete some of the remaining vertices in order to disconnect 𝑣𝑡 from 𝑣𝑓 .
Lemma 4.13. A splitting set of size 𝑘 in a {P1, N1, M2}-2-CNF Horn formula
corresponds to a 𝑣𝑡 − 𝑣𝑓 vertex cut of size 𝑘 in the corresponding graph.

Proof. After removing the split vertices from the formula Φ, the corresponding
graph 𝐺Φ has no directed path from 𝑣𝑡 to 𝑣𝑓 due to Theorem 4.10. Hence, the
removed vertices form a 𝑣𝑡 − 𝑣𝑓 vertex cut.
Conversely, removing the variables corresponding to a 𝑣𝑡 − 𝑣𝑓 vertex cut in 𝐺Φ
from the formula Φ makes it satisfiable due to Theorem 4.10. ◻

The problem of finding a minimum 𝑠− 𝑡 vertex cut in a graph 𝐺 equals the problem
finding a minimum 𝑠 − 𝑡 arc cut in a graph 𝐺′ where we replace every vertex 𝑣 of
𝐺, except the source 𝑠 and the sink 𝑡, by two vertices 𝑣1 and 𝑣2 and an arc (𝑣1, 𝑣2)
in 𝐺′. The ingoing arcs of 𝑣 are connected to 𝑣1 in 𝐺′ and the outgoing arcs of
𝑣 are outgoing arcs of 𝑣2 (see Figure 4.4). Additionally, the new arcs in 𝐺′ get
capacity 1 and the old ones capacity 2𝑛 + 1 such that in a minimum arc cut the
new arcs will be chosen.
According to the well-known maxflow-mincut theorem [18], the problem of finding
a minimum 𝑠 − 𝑡 arc cut in a graph 𝐺 equals the problem of finding a maximum
value of a 𝑠 − 𝑡 flow in 𝐺.
Corollary 4.14. The problem of finding a splitting in a {P1, N1, M2}-2-CNF Horn
formula equals the problem of finding a maximum flow in a graph 𝐺′

Φ.

Since the graph 𝐺′
Φ and its capacities are of polynomial size with respect to the

formula size, the discussion above immediately yields the following theorem.
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𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

Ô⇒

Φ𝐺 = (𝑥1) ∧ (𝑥2) ∧ (𝑥3) ∧ (𝑥4)

∧(𝑥5) ∧ (𝑥6) ∧ (𝑥1 ∨ 𝑥2)

∧(𝑥1 ∨ 𝑥4) ∧ (𝑥2 ∨ 𝑥3)

∧(𝑥2 ∨ 𝑥4) ∧ (𝑥5 ∨ 𝑥6)

Figure 4.5. An example of the construction used in the proof of Theorem 4.16

Theorem 4.15. MinSplit-{P1, N1, M2}-2-SAT is polynomial-time solvable. ◻

Next, we show that MinSplit-{P1, N2}-2-SAT is as hard to approximate as
MinVC. This result immediately implies that all remaining subcases of Horn
formulas are also as hard to approximate as MinVC since they are generalizations
of MinSplit-{P1, N2}-2-SAT.

Theorem 4.16. MinVC ≤AP MinSplit-{P1, N2}-2-SAT.

Proof. We present an AP-reduction from MinVC to MinSplit-{P1, N2}-2-SAT.
For this, we give a polynomial-time function transforming any MinVC instance 𝐺
into a MinSplit-{P1, N2}-2-SAT instance Φ𝐺 such that any 𝛼-approximate feasi-
ble solution for Φ𝐺 can be transformed in polynomial time into a feasible solution
for 𝐺 achieving the same approximation ratio. For more details on the general
concept of AP-reductions, see [3, 37].
Let 𝐺 be a MinVC instance, where 𝐺 = (𝑉, 𝐸) is an undirected graph. Let
𝑉 = {𝑣1, . . . , 𝑣𝑛}. We construct a formula Φ𝐺 from 𝐺 as follows: Φ𝐺 contains a
positive 1-clause (𝑥𝑖) for each non-isolated vertex 𝑣𝑖 ∈ 𝑉 and a negative 2-clause
(𝑥𝑖 ∨ 𝑥𝑗) for each edge {𝑣𝑖, 𝑣𝑗} ∈ 𝐸. An example of this construction is shown in
Figure 4.5.
We now show that every vertex cover in 𝐺 corresponds to a feasible set of split
variables of the same size in Φ𝐺 and vice versa.
Let 𝐶 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑘

} be a vertex cover of 𝐺 of size 𝑘. We consider the corresponding
variable set 𝑋𝐶 = {𝑥𝑖1 , . . . , 𝑥𝑖𝑘

} in Φ𝐺. Following the construction, since 𝐶 is a
vertex cover, every 2-clause in Φ𝐺 contains at least one variable from 𝑋𝐶 . Thus,
splitting the variables from 𝑋𝐶 removes all 2-clauses and the remaining formula
consists of positive 1-clauses only and hence is obviously satisfiable.
Let, on the other hand, 𝑋 = {𝑥𝑖1 , . . . , 𝑥𝑖𝑘

} be a set of variables whose splitting
makes Φ𝐺 satisfiable. Since there exists a positive 1-clause for each variable in Φ𝐺,
every partial assignment setting any variable to 0 violates at least one of these
1-clauses. Thus, every variable that remains unsplit has to be assigned the value 1.
This means that every 2-clause in Φ𝐺 has to contain at least one variable from 𝑋.
We consider the corresponding set 𝐶𝑋 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑘

} of vertices in 𝐺. Due to the
construction, 𝐶𝑋 is a vertex cover of 𝐺 of size 𝑘.
Summing up, there is a one-to-one correspondence between vertex covers for 𝐺
and feasible solutions for Φ𝐺 of the same size proving our claim. ◻
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We conclude this section with showing that MinSplit-{P1, N1, N2}-2-SAT can
be approximated as good as MinVC. The upper bound on the approximability of
MinSplit-{P1, M2, N2}-2-SAT and MinSplit-Horn-2-SAT remains open. For
these cases, we only know about an 𝑂 ( 𝑛

log(𝑛))-approximative algorithm due to
Mömke that was mentioned in [62].

Theorem 4.17. Any polynomial-time 𝛼-approximation algorithm for MinVC can
be used to approximate MinSplit-{P1, N1, N2}-2-SAT within a factor of 𝛼 in
polynomial time.

Proof. We first preprocess the {P1, N1, N2}-CNF formula Φ in order to receive
a {P1, N2}-CNF formula Φ′. We first remove all clauses containing variables 𝑥𝑖

with (𝑥𝑖) and (𝑥𝑖) in Φ and add those variables to the splitting set. All remaining
variables 𝑥𝑖 with (𝑥𝑖) in Φ can be set to 0 such that no clause is violated and
all clauses containing the variable 𝑥𝑖 are satisfied. Thus, we remove all clauses
containing those variables 𝑥𝑖. After that, we set all variables 𝑥𝑖 occurring only
positively or only negatively in Φ to the value 1 or 0, respectively. The remaining
formula Φ′ contains only clauses of type P1 and N2 because of the construction,
and every variable occurs in a positive 1-clause.
Now, we present a reduction from MinSplit-{P1, N2}-2-SAT to MinVC. Let Φ′ be
a {P1, N2}-CNF formula with variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛}. Then, 𝐺Φ′ is a graph
with vertex set 𝑉Φ′ = {𝑣𝑖 ⋃︀ (𝑥𝑖) in Φ′} and edge set 𝐸Φ′ = {{𝑣𝑖, 𝑣𝑗} ⋃︀ (𝑥𝑖 ∨𝑥𝑗) in Φ′}.
Note that, since every possible positive 1-clause is present in Φ′, this is exactly
the reverse of the construction used in the proof of Theorem 4.16, where we have
already proven the one-to-one correspondence between feasible splitting sets for Φ′

and vertex covers for 𝐺Φ′ . This proves our claim. ◻

4.3 Maximum Assignment in 2-CNF Horn
Formulas

In this section, we deal with the approximability of MaxAssign-Horn-2-SAT and
its subproblems. According to Observation 4.6, every polynomial-time algorithm for
minimum splitting immediately yields a polynomial-time algorithm for maximum
assignment. Hence, the results of Observation 4.7 and Theorem 4.15 directly carry
over to MaxAssign-Horn-2-SAT.

Observation 4.18. For 𝑆 = {P1, M2} or 𝑆 = {P1, N1} or 𝑆 = {N1, M2, N2} or
any subset thereof, MaxAssign-𝑆-2-SAT is solvable in linear time. ◻

Theorem 4.19. MaxAssign-{P1, N1, M2}-2-SAT is polynomial-time solvable.◻

It is well known that, if 𝐶 is a vertex cover of size 𝑘 in a graph 𝐺 = (𝑉, 𝐸)

with ⋃︀𝑉 ⋃︀ = 𝑛, then 𝑉 − 𝐶 is an independent set of size 𝑛 − 𝑘 in 𝐺. This strong
correspondence between MinVC and MaxIS resembles the correspondence between
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minimum splitting and maximum assignment. Thus, we can use similar ideas as
in the previous section to prove that MaxAssign-{P1, N2}-2-SAT is as hard to
approximate as MaxIS and that MaxAssign-Horn-2-SAT can be approximated
using MaxIS algorithms.

Theorem 4.20. Unless 𝒫 = 𝒩𝒫, MaxAssign-{P1, N2}-2-SAT cannot be better
approximated than MaxIS.

Proof. We use the same reduction as in the proof of Theorem 4.16 to transform
a given MaxIS instance 𝐺 into a MaxAssign-{P1, N2}-2-SAT instance Φ𝐺.
Following the discussion about the relation of MinVC and MaxIS above, it is
easy to see that every independent set in 𝐺 corresponds to a set of variables in Φ𝐺

of the same size which can be assigned the truth value 1 without generating an
unsatisfied clause. ◻

Theorem 4.21. Any polynomial-time 𝑓(𝑛)-approximation algorithm for MaxIS
can be used to approximate MaxAssign-Horn-2-SAT within 𝑓(2 ⋅𝑛) in polynomial
time, where 𝑛 denotes the number of vertices or variables, respectively.

Proof. Let Φ be an input instance for MaxAssign-Horn-2-SAT. We start with a
preprocessing of Φ. If there exists a variable 𝑥 that occurs both in a positive and a
negative 1-clause, then 𝑥 obviously cannot be assigned any truth value, thus, we
delete all clauses containing 𝑥 from the formula. If, for some variable 𝑥 and some
literal 𝑙, there exist two clauses (𝑥) and (𝑥 ∨ 𝑙), we can remove the clause (𝑥 ∨ 𝑙).
This is due to the fact that any partial assignment that does not contradict (𝑥)
also does not contradict (𝑥 ∨ 𝑙). Analogously, for any two clauses (𝑥) and (𝑥 ∨ 𝑦),
we can remove the clause (𝑥 ∨ 𝑦). Finally, if some variable appears only positively
or only negatively in the formula, we can assign the respective value to it and
shrink the formula accordingly.
For the remainder of the proof, let Φ = 𝐶1 ∧ . . . ∧ 𝐶𝑚 denote a 2-CNF Horn
formula on the variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛} that cannot be further shrunk by the
preprocessing as described above. We construct a graph 𝐺Φ from Φ as follows.
For each variable 𝑥𝑖 that appears in a positive 1-clause, we add a vertex 𝑣𝑖, for
each variable 𝑥𝑖 that appears in a negative 1-clause, we add a vertex 𝑣𝑖, and for
each variable 𝑥𝑘 only appearing in 2-clauses of Φ, we add two vertices 𝑣𝑘 and 𝑣𝑘

and an edge between them. Additionally, we add an edge {𝑣𝑖, 𝑣𝑗} for each clause
(𝑥𝑖 ∨ 𝑥𝑗) and an edge {𝑣𝑖, 𝑣𝑗} for each clause (𝑥𝑖 ∨ 𝑥𝑗). Note that, due to the
preprocessing, this construction is well-defined. An example of the construction is
shown in Figure 4.6.
We now show that any independent set in 𝐺Φ directly translates into a set of
variables in Φ that can be assigned without raising a contradiction. Let 𝑉 ′ ⊆ 𝑉Φ
be an independent set in 𝐺Φ. By the construction, at most one of the vertices 𝑣𝑖

and 𝑣𝑖 can be part of 𝑉 ′, for every 1 ≤ 𝑖 ≤ 𝑛. Every variable 𝑥𝑖 corresponding to
a vertex 𝑣𝑖 ∈ 𝑉 ′ can be set to the value 1 and every variable 𝑥𝑖 corresponding to
a vertex 𝑣𝑖 ∈ 𝑉 ′ can be set to the value 0. Since 𝑉 ′ is an independent set, this
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Φ = (𝑥1) ∧ (𝑥2) ∧ (𝑥1 ∨ 𝑥2)

∧(𝑥1 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥3)

∧(𝑥2 ∨ 𝑥3)

Ô⇒ 𝐺Φ ∶

𝑣1 𝑣2

𝑣3 𝑣3

Figure 4.6. An example of the construction in the proof of Theorem 4.21.

leaves at least one endpoint of each edge in 𝐺Φ unassigned, thus the corresponding
2-clause does not cause a contradiction. On the other hand, any partial assignment
not causing any conflict in Φ directly translates into an independent set in 𝐺Φ of
the same size. Since the graph 𝐺Φ has at most 2𝑛 vertices, we lose at most a factor
of 2 on the approximation ratio. ◻

Corollary 4.22. Since MaxIS can be approximated with at least a linear function,
any polynomial-time 𝑓(𝑛)-approximation algorithm for MaxIS can be used to
approximate MaxAssign-Horn-2-SAT within 2 ⋅ 𝑓(𝑛) in polynomial time.

4.4 Maximum Assignment in Exact-2-CNF
Formulas

In this section, we deal with the case of E2-CNF formulas, i. e., formulas containing
only clauses of types M2, P2, and N2. The approximation hardness of this problem
was implicitly shown by Steinová [62], in her proof of the approximation hardness
of the general MaxAssign-2-SAT, she constructs formulas consisting of 2-clauses
only.

Theorem 4.23 (Steinová, 2012). There exists an AP-reduction from MaxIS
on undirected hypergraphs to MaxAssign-E2-SAT. ◻

We complement this result by the following upper bound.

Theorem 4.24. MaxAssign-E2-SAT ≤AP MaxIS.

Proof. To prove AP-reducability of MaxAssign-E2-SAT to MaxIS, we need the
following polynomial-time function that transforms an E2-CNF formula Φ with
variable set 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} into a graph instance 𝐺Φ for MaxIS with vertex
set 𝑉Φ = {𝑣0

𝑖 , 𝑣1
𝑖 ⋃︀ 𝑥𝑖 ∈ 𝑋} and edge set 𝐸Φ = {{𝑣0

𝑖 , 𝑣0
𝑗 } ⋃︀ (𝑥𝑖 ∨ 𝑥𝑗) in Φ} ∪ {{𝑣0

𝑖 , 𝑣1
𝑗 } ⋃︀

(𝑥𝑖 ∨ 𝑥𝑗) in Φ} ∪ {{𝑣1
𝑖 , 𝑣1

𝑗 } ⋃︀ (𝑥𝑖 ∨ 𝑥𝑗) in Φ} ∪ {{𝑣0
𝑖 , 𝑣1

𝑖 } ⋃︀ 1 ≤ 𝑖 ≤ 𝑛}. In other words,
every variable 𝑥𝑖 gives rise to two vertices 𝑣0

𝑖 an 𝑣1
𝑖 representing the assignment 0

or 1. Those two vertices are connected by an edge and there is also an edge for
every assignment restriction given by the clauses (see Figure 4.7). Obviously, this
transformation can be implemented in polynomial time.
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Φ = (𝑥1 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥3)

∧(𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3)

∧(𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3)

Ô⇒ 𝐺Φ ∶ 𝑣0
2

𝑣1
2

𝑣0
1 𝑣1

1

𝑣1
3

𝑣0
3

Figure 4.7. An example of the construction in the proof of Theorem 4.24.

We show that every feasible set of variables in Φ with a partial assignment not
violating any clause corresponds to an independent set in 𝐺Φ of the same size.
Let 𝑋 ′ = {𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘

} ⊆ 𝑋 be a subset of variables and let 𝛼∶𝑋 ′ → {0, 1} be
a partial assignment such that no clause is evaluated to 0. We show that, for a
variable 𝑥𝑖 ∈ 𝑋 ′ and an assignment 𝛼(𝑥𝑖) = 𝑏 for some 𝑏 ∈ {0, 1}, the corresponding
vertex 𝑣𝑏

𝑖 is part of an independent set 𝐼𝑋′ ⊆ 𝑉Φ in 𝐺Φ. No two endpoints of edges
of type {𝑣0

𝑖 , 𝑣1
𝑖 } will be part of 𝐼𝑋′ since a variable can be set either to 1 or to 0,

but not to both values. Moreover, no two endpoints of the remaining edges will be
both part of 𝐼𝑋′ since then the corresponding assignment would cause an empty
clause. Therefore, 𝐼𝑋′ is an independent set in 𝐺Φ.
Conversely, let 𝐼 ⊆ 𝑉Φ be an independent set in 𝐺Φ. For every 𝑣𝑏

𝑖 ∈ 𝐼, let 𝛼(𝑥𝑖) = 𝑏
define the partial assignment for the vertex set 𝑆𝐼 ⊆ 𝑋 in Φ. This assignment does
not violate any clause since never both endpoints of an edge will be part of 𝐼 and
therefore, never both literals of a clause will be set to 0.
Hence, we have a one-to-one correspondence between a partial assignment in Φ
not causing empty clauses and an independent set in 𝐺Φ of the same size. ◻

4.5 Conclusion
We have explored the approximability of the minimum splitting problem and the
maximum assignment problem in various special cases of 2-CNF formulas, including
Horn formulas and E2-CNF formulas. The main open problem is to close the
gap between the trivial upper bound and the lower bound for general 2-CNF
Horn formulas and for those excluding negative 1-clauses in the splitting case. It
would also be interesting to extend the results to other classes of non-Horn 2-CNF
formulas besides the E2-CNF formulas.
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