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Abstract

Endoscopic images are generally corrupted by various artefacts, such
as blur caused by the irregular motion of endoscopists or organ
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peristalsis, preventing endoscopists from performing efficient and high-
accuracy diagnosis and limiting the utility of computer-aided diagnosis
in endoscopy. As a result, an endoscopy artefact detection algorithm
that is both robust and reliable is critical in endoscopic imaging.
This study proposes an endoscopy artefact detection method based
on an improved Faster Region-based Convolutional Neural Network
(Faster R-CNN) detector, simply named Faster RFD3-CNN. We intro-
duce deformable convolutions and a feature pyramid network (FPN)
to strengthen the model’s adaptability and feature extraction ability.
Furthermore, class-aware non-maximum suppression (NMS) and false
positive elimination are utilized to filter out some bounding boxes with
low confidence or overlap. The experimental results on the public access
EndoCV2020 data set show that the mean average precision (mAP)
can reach 42.66% and the intersection of union (IoU) is 31.61%. The
mAP is increased by nearly 15% compared with the existing methods.
Compared with the basic Faster R-CNN, mAP and IoU are improved
by 7.39% and 11.19%, respectively. To sum up, the proposed method
in this paper has superior performance in endoscopy artefact detection.

Keywords: endoscopic image, artefact detection, artificial intelligence,
feature pyramid network

Introduction

Digestive endoscopes in clinical use are generally made of metal or plastic
tubes of different thicknesses, lengths and shapes, with a light source, camera
and other systems at the tip. Endoscopists can examine the internal conditions
of the digestive tract from the external display connected to the endoscopes.
Endoscopy is widely used in the early screening, treatment, and minimally
invasive surgery of digestive tract diseases and is considered the gold standard
for detecting digestive tract abnormalities and cancer. However, endoscopic
images differ from natural images; the lack of optimal reflected light, inevitable
organ peristalsis, and profound differences in organ shape and surface texture
of different digestive tract segments and body fluids are sources of artefacts
[1].One study showed that more than 60% of endoscopic video frames and
nearly 70% of endoscopic video sequences are damaged by multiple arte-
facts, including floating fluid, specularity, bubbles, chyme, and other artefacts
[2].Typically, such artefacts mask or mimic pathologies and lesions, potentially
leading to increased missed detections and misdiagnosed patients.

Endoscopy artefacts can roughly be divided into eight classes; overexposure
and underexposure of image areas caused by changes in lighting and organ
topology (referred to as ”saturation” and ”low contrast” respectively), blur
caused by irregular hand movements (of endoscopists) and local organ move-
ment, specularity caused by light reflected from smooth organ surfaces, and
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shielding with instruments for minimally invasive surgery and biopsy, inter-
nal cavity bleeding, gas forming dense bubbles in the digestive tract distort
the appearance of tissues, and other general artefacts.Zhang et al. [3] showed
that the performance of polyp tracking detectors in colonoscopy would be
affected by endoscopy artefacts due to the similarity between some types of
artefacts and lesions, and the inherent limitations of object detectors based
on artificial intelligence. Further, another study reported an increase in the
sensitivity of the lesion detector with artefacts and a corresponding increase
in the false positive rate, affecting the model’s overall accuracy [4].Artefacts
affect automated disease detection, reporting and surgical planning. Detecting
and locating endoscopy artefacts is thus a fundamental challenge in endoscopic
imaging.

Current endoscopy artefact detection strategies can roughly be divided
into handcrafted feature-based and deep learning-based methods. Handcrafted
features refer to properties derived using predefined algorithms based on expert
knowledge using the information present in the image itself [5].LBP [6, 7],SIFT
[8], and HOG [9] are typical and universally known algorithms for extracting
handcrafted features.Queiroz et al. [10] used a nonlinear enhancement filter
to highlight the differences between the reflection area and background of
endoscopy images. Segui et al. [11] combined color histograms and texture
features in the small intestine to segment bubbles. Zhao et al. [12] proposed a
general framework of wireless capsule endoscopy based on the Hidden Markov
model, combined with MPEG7 features to detect bubbles, bile, feces and food
residues in the digestive tract. The endoscopy artefact detection method based
on handcrafted features focuses on the research of specific artefacts, and a
single imaging modality on specific organs, making dealing with all artefacts
challenging.

On the other hand, deep learning methods can mine deeper and more
abstract features than handcrafted methods. Yang et al. [13] improved a Cas-
cade R-CNN [14] by adding a FPN module, successfully detecting specularity,
saturation, artefact, blur, contrast, bubbles and instrument. Polat et al. [15]
combined Faster R-CNN [16], Cascade R-CNN and RetinaNet [17] with a con-
sensus integration strategy to detect eight artefacts (specularity, saturation,
artefact, blur, contrast, bubbles, instrument and blood). This method won first
place in the official test set of EAD2020 with a performance of 20.31% for mAP
and 32.85% for IoU. However, there is a problem of slow detection speed caused
by the complexity of framework, which hardly caters to the needs of real-time
detection. From the perspective of data imbalance, Artunc et al. [18] trained
three independent YOLOv5 with the raw data, minority augmented data, and
majority augmented data, respectively, for detecting endoscopy artefacts.

To improve the accuracy of artefact detection, this work takes Faster R-
CNN as the core framework. Inspired by the idea that deformable convolution
introduces a 2D offset at each square sample point, allowing the sampling
network to deform freely and effectively find artefacts [19], we incorporate the
feature pyramid and deformable convolution into the standard Faster R-CNN,



Springer Nature 2022 LATEX template

4 Article Title

constructing a novel Faster RFD3-CNN. Finally, the novel model has been
altered to use class-aware NMS and a false positive elimination for the post
processing.

Materials and Methods

Materials

The EAD2020 dataset [1, 2, 20, 21], containing 2200 single frames, 232 sequence
frames and 99 frames for the out-of-sample generalization task was used. Table
1 summarizes and shows two obvious challenges with datasets: (1) An imbal-
ance in the distribution of various artefacts is unavoidable. (2) Multiple and
dense artefacts may coexist in a single frame.

Table 1 Statistics of the dataset used in this work(%)

Class Annotations Proportion Image Proportion

Blur 2.52 25.21
Bubbles 18.12 27.80

Specularity 36.42 44.04
Saturation 4.54 44.16
Contrast 6.20 66.12

Instrument 1.99 16.16
Blood 1.65 8.35

Artefact 28.54 78.58

The train and test splits are 80% and 20% of the overall data set with the
strategy of stratified sampling. All frames are uniformly resized to 512×512,
similar to [15]. The data augmentation techniques utilized for training include
horizontal flipping, 90°, 180°, 270° rotations, random zoom out and color
jittering.

Methods

Detection model design

The proposed model is an improvement to the Faster R-CNN, named Faster
RFD3-CNN, shown in Fig. 1. To enhance the detection of small region tar-
gets, the last three pieces of the original ResNet50 structure are replaced with
deformable convolution (denoted D) to automatically calculate the offset of
each point and take features from the most suitable place for convolution.
In addition, we utilized a feature pyramid structure, shown in Fig. 2, which
involves a bottom-up pathway, a top-down pathway and lateral connections to
integrate multi-scale feature maps.

The loss function consists of two components: regression losses and classifi-
cation losses. An essential difference between this network and Faster R-CNN
is the use of focal loss in multiple final classifications. The focal loss is an
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Fig. 1 The framework of Faster RFD3-CNN

Fig. 2 A building block illustrating the bottom-up pathway, lateral connection and top-
down pathway

extension to cross-entropy loss, which increases the classification accuracy of
CNN by adding a weighting factor α∈[0,1] to balance the importance of posi-
tive/negative examples and by introducing a modulating factor (1− p)γ with
tunable focusing parameter γ ≥ 0 to reduce the loss contribution from easy
examples, that is:

Lf (p, y) =

{

−α(1− p)
γ
logp y = 1

−(1− α)pγ log(1− p) y = 0
(1)

In equation 1 above, y specifies the ground truth, and p is the prediction
output.
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Post processing

Here, non-maximum suppression (NMS) is performed independently on each
artefact in Table 1, referred to as class-aware NMS. Although class-aware
NMS discards partially overlapping bounding boxes, it can still not eliminate
false positive bounding boxes with a low confidence level. Some solutions are
proposed in order to remove false positive bounding boxes. Because of their
varying natural frequencies in endoscopic images, different types of artefacts
have different prediction confidence levels. This study provides a false posi-
tive elimination method for determining a class-specific confidence threshold.
Inspired by the widely used 3σ principle [22] and other false positive elimi-
nation methods [15], we calculate the thresholds using the equation (2) and
(3):

σcls =

√

√

√

√

1

Ncls

Ncls
∑

i=1

(confidencecls,i − µcls)
2

(2)

µcls − 3σcls ≤ thresholdcls ≤ µcls + 3σcls (3)

Where Ncls is the amount of prediction bounding boxes of a certain kind of
artefact, confidence(cls,i) is the prediction confidence of prediction bounding
box, µcls is the average prediction confidence in a certain kind of artefact. The
prediction bounding box will be removed if its confidence is not within the
range of threshold.

Implementation details

In order to speed up training, we use the pre-trained weights on ImageNet to
initial backbone ResNet50. The stochastic gradient descent is chosen as the
optimizer with a momentum of 0.9 and weight decay of 10−4. To keep the
distribution stable and the model stable when the model converges, the warm-
up strategy is adopted to increase the learning linearly to 0.02 in the first 1000
iterations and then change according to the cosine function, whose period is
set as 10 epochs. 30 epochs are trained, and the batch size is 8. As for anchors,
we use five anchor scales of 322,642,1282,2562,5122 and seven different anchor
ratios: 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, and 10.0.

Results

All experiments were conducted in Google Colab, and the programming lan-
guage implemented is Python3.7. The deep learning framework adopted is
PyTorch1.10.0 (https://pytorch.org/)

Evaluation metrics

Here we use well-defined metrics by the community of object detection for eval-
uation. The Intersection of Union (IoU), mean average precision (mAP) and
a weighted score of mAP and IoU. Furthermore, COCO metrics are included.

https://pytorch.org/
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1. IoU is obtained by the ratio of the intersection and union of the ground
truth (denoted A) and the predicted bounding boxes (denoted B).

IoU =
A ∩B

A ∪B
(4)

2. In terms of numbers of true positives (TP), false positives (FP) and false
negatives (FN), precision (p) is defined as TP

TP+FP
and recall (r) is defined as

TP
TP+FN

. Average precision (AP) is computed as the Area Under Curve (AUC)
of the precision-recall curve:

AP =

1
∫

0

p(r)dr (5)

When the IoU threshold is 0.50, 0.75, AP 0.50 and AP 0.75 are obtained,
respectively. AP small, APmedium and AP large are defined according to the
pixel value of annotation boxes.

3. The mAP is the mean of AP over all classes given as:

mAP =
1

N

N
∑

i=0

APi (6)

4. A weighted score of mAP and IoU is calculated.

Score = 0.6×mAP + 0.4× IoU (7)

When Score is same,the standard deviation of AP (Std) is used.

Ablation studies

The convolution is replaced layer by layer from the original backbone network
to highlight the contribution of deformable convolution. As shown in Table 2,
deformable convolution module improves the model’s artefact detection abil-
ity, and the detection ability presents an upward trend with the increase of
deformable convolution modules. Deformable convolution allows the network
to automatically learn the offset of each point during convolution calculation,
extract features from the most relevant regions, and focus the convolution area
on artefacts as much as possible, avoiding missing detection of small artefacts.
When the last three layers are modified to deformable convolutions, compared
with base ResNet50, the mAP is increased by approximately 2%, the IoU is
increased by 1.44%, and the Score is increased by 1.77%, resulting in optimal
detection performances.

Comparison studies

This section will compare the methods employed by the other two EAD2020
challenge teams and the Faster R-CNN to verify the performance of the pro-
posed method in detecting eight artefacts on endoscopic images. This paper’s
data set division method is consistent with the two teams.
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Table 2 Statistical comparisons of ablation studies (%)

Backbone mAP IoU Score

Resnet50-F 40.67 30.17 36.47
Resnet50-FD 41.38 31.93 37.60
Resnet50-FD2 41.23 31.41 37.30
Resnet50-FD3 42.66 31.61 38.24

Table 3 Comparisons with EAD2020 participants (%)

Method mAP AP 0.50 AP 0.75 AP small APmedium AP large

Yu [23] 27.70 53.90 25.00 6.80 12.70 32.30
Chen [24] 26.70 50.10 24.60 8.20 16.20 33.70

Faster R-CNN 35.27 36.80 16.10 18.60 38.80 50.00
Faster RFD3-CNN 42.66 49.10 21.00 20.20 41.10 49.90

Table 3 fully proves that the method we proposed has significantly outper-
formed others. It increases the mAP by 14.96% and 15.96% higher than the
method proposed by [23] and [24], respectively. For artefacts of different scales,
the detection results are more accurate, and the detection ability of small arte-
facts is substantially improved. AP small and APmedium have achieved the best,
illustrating that our method has progressed in detecting small and medium
artefacts. However, AP 0.50 and AP 0.75 are slightly lower. [23] and [24] both
adopt Cascade architecture to train detectors using increasing IoU thresholds,
which has been proven the gains are mild for low IoU thresholds but significant
for the higher ones [14].

In order to prove the effectiveness of the post processing method, tests for
four different post processing methods are carried out. Class-agnostic is meant
that NMS is applied on all outputs of model, ignoring class difference. The
results are shown in Table 4. The best mAP is obtained using class-aware NMS
without false positive elimination, which is 44.17%. On the other hand, the
post processing method with class-agnostic NMS and false positive elimination
achieves the best performance in IoU value, which is 33.22%.

Table 4 Comparisons with various post-processing methods (%)

Class-agnostic NMS Class-aware NMS

Method mAP IoU Score mAP IoU Score

-FP Elimination1 38.02 23.08 32.04 44.17 20.09 34.54
+FP Elimination2 36.69 33.22 35.30 42.66 31.61 38.24

1With false positive elimination.
2Without false positive elimination.
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Utilizing either class-agnostic NMS or false positive elimination will reduce
mAP slightly, but IoU is greatly improved after eliminating some false pos-
itives and overlapping boxes. The combination of class-agnostic NMS and
false positive elimination leads to a trade-off between mAP and IoU, with a
Score of 35.30%. From the perspective of detection performance, the Score
with class-aware NMS and false positive elimination is 38.24%, which is the
best performance. Our post processing method has a specific contribution to
improving detection performance.

Generalization ability

The generalization ability of the artefact detection model on the endoscopic
image is defined as the ability of the algorithm to achieve similar performance
on the training set when applied to a data set containing the same artefact
classes but completely different [2] The 99 endoscopic frames for the out-of-
sample generalization task provided by the EAD2020 dataset are used. Table
5 lists test results of the three methods on the generalization ability test set.
The method in this paper has relatively superior generalization performance.

Table 5 Comparisons with EAD2020 participants on generalized data (%)

Method mAP Std

Chen [24] 24.85 5.52
aAnand [25] 20.20 19.20

Faster RFD3-CNN 24.88 10.12

Overall Performance

Table 6 shows the individual scores for different classes.The Faster RFD3-
CNN can successfully detect eight types of artefacts , and the mAP and IoU
can reach 42.66% and 31.61%, respectively. Accordingly, the Score is 38.24%
(shown in Table 2). Faster RFD3-CNN obtains the best performance with
a mAP of 88.4% and an IoU of 76.86% when detecting the instrument in
endoscopy images, attributing to metal surfaces and slender shapes of medical
instrument greatly differing from the tissues, organs and mucous membranes
of the digestive tract. Fig. 3 gives representative prediction outputs from the
validation data set and their corresponding ground truth.

Discussion

The ablation, comparison and generalization experiments were designed to ver-
ify the performance of the Faster RFD3-CNN model, and the post-processing
method proposed in our study, which showed good performance.

Instrument and low contrast are the two types of artefacts most eas-
ily detected. Surgical forceps, scissors, and other endoscopic instruments are
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Table 6 Overall performances of the proposed method (%)

Class AP IoU AP 0.25 AP 0.50 AP 0.75

Blur 28.95 17.18 38.22 28.47 18.04
Bubbles 20.79 18.70 35.89 21.75 2.49

Specularity 28.43 31.62 46.66 30.46 5.13
Saturation 48.57 26.40 73.88 54.62 11.55
Contrast 61.02 58.16 73.64 65.82 33.53

Instrument 88.40 76.86 92.04 91.09 75.91
Blood 28.71 6.19 44.81 29.18 7.34

Artefact 36.37 17.80 57.42 37.93 10.28

Fig. 3 Representative prediction (right column) and corresponding ground truth (left col-
umn)

among the many available; their metal surfaces and slender shapes separate
them from the tissues, organs, and mucous membranes found in various diges-
tive tract regions. As a result, instruments are easiest to be distinguished. The
low contrast belongs to a common type of artefact with an image proportion
of 66.12% (shown in Table 1), mainly because the digestive tract is a hollow
pipe. Low contrast features are apparent, often presenting as a circle in the
center of the image, with a brightness significantly lower than the surrounding
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area, leading to a splendid detecting effect. Saturation and contrast are two
forms of artefacts that have opposing qualities. However, because the region
of saturation is smaller than that of contrast, and the edge shape is less visible
than that of low contrast, both AP and IoU are lower than contrast, with IoU
being particularly noticeable. There is a heavy overlap between specular reflec-
tions, and each specular reflection region is tiny. Even if there are the most
annotations, the main reasons why it is still difficult to improve the detection
ability is that specular reflection is easily mistaken for other artefacts. The def-
inition of blur is often subjective to the annotator. The performance of Faster
RFD3-CNN in detecting bubbles and blood on endoscopic images needs to be
significantly improved. Table 6 presents that our method obtained the worst
performance of IoU in detecting blood artefact, which is attributed to the low-
est annotation and image proportions and irregular edge shape. The worst AP
performance is obtained in detecting bubbles due to their dense distribution
and high false detection.

Ablation studies verify the contribution of deformable convolution. The
more deformable convolution modules are introduced, the better the detec-
tion effect of the method. When comparing the method proposed in this work
to others in literature, our method is superior to other methods used in the
EAD2020 challenge. At the same time, by comparing the post processing meth-
ods, it is found that the significant difference between mAP and IoU is perhaps
related to the use of class-aware NMS. If class-agnostic NMS is used, the gap
between mAP and IoU will be narrowed at the cost of a drastic reduction in
mAP.

The generalization experiment results are still better than the existing
methods, but the improvement is slight.

Conclusion

In this study, FPN and deformable convolution are firstly introduced to
improve the Faster R-CNN and enhance the detection ability of small object
features. Then the Faster RFD3-CNN is proposed to construct the detection
model of endoscopy artefacts. Finally, a class-aware NMS and a false positive
elimination method based on a confi-dence threshold are used to eliminate
false positives as many as possible and get the highest score. Our method can
easily predict eight types of artefacts and reach a Score of 38.24% by using
lighter networks.

In future work, we hope to solve better the limitation of distribution imbal-
ance to achieve more robust detection. Furthermore, based on this study, we
will conduct research on endoscopic image quality assessment and restoration.
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