Microstructural Features of 'Quenching and Partitioning': A New Martensitic Steel Heat Treatment

Article Preview

Abstract:

The microstructure following a new martensite heat treatment has been examined, principally by high-resolution microanalytical transmission electron microscopy and by atom probe tomography. The new process involves quenching to a temperature between the martensite-start (Ms) and martensite-finish (Mf) temperatures, followed by ageing either at or above, the initial quench temperature, whereupon carbon can partition from the supersaturated martensite phase to the untransformed austenite phase. Thus the treatment has been termed ‘Quenching and Partitioning’ (Q&P). The carbon must be protected from competing reactions, primarily carbide precipitation, during the first quench and partitioning steps, thus enabling the untransformed austenite to be enriched in carbon and largely stabilised against further decomposition to martensite upon final quenching to room temperature. This microstructural objective is almost directly opposed to conventional quenching and tempering of martensite, which seeks to eliminate retained austenite and where carbon supersaturation is relieved by carbide precipitation. This study focuses upon a steel composition representative of a TRIP-assisted sheet steel. The Q&P microstructure is characterised, paying particular attention to the prospect for controlling or suppressing carbide precipitation by alloying, through examination of the carbide precipitation that occurs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

4819-4825

Citation:

Online since:

March 2007

Export:

Price:

[1] J.G. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth: Acta Mater. Vol. 51 (2003), pp.2611-2622.

DOI: 10.1016/s1359-6454(03)00059-4

Google Scholar

[2] J.G. Speer, A.M. Streicher, D.K. Matlock, F.C. Rizzo and G. Krauss: Austenite Formation and Decomposition Eds: E.B. Damm and M. Merwin (TMS, Warrendale, PA, USA 2003), pp.505-522.

Google Scholar

[3] D.K. Matlock, V.E. Brautigam and J.G. Speer: THERMEC 2003 (Trans Tech Publications, Uetikon-Zurich, Switzerland 2003), pp.1089-1094.

Google Scholar

[4] J.G. Speer, F.C. Rizzo, D.K. Matlock and D.V. Edmonds: Materials Research, Vol. 8, No. 4 (2005), pp.417-423.

Google Scholar

[5] J.G. Speer, D.V. Edmonds, F.C. Rizzo and D.K. Matlock: Current Opinion in Solid-State and Materials Science Vol. 8 (2004), pp.219-237.

Google Scholar

[6] A.M. Streicher, J.G. Speer, D.K. Matlock and B.C. De Cooman: Advanced High-Strength Sheet Steels for Automotive Applications Ed: J.G. Speer (AIST, Warrendale, PA, USA 2004), pp.51-62.

Google Scholar

[7] F.C. Rizzo, D.V. Edmonds, K. He, J. Speer and D.K. Matlock: Solid-Solid Phase Transformations in Inorganic Materials Ed: J. Howe et al. (TMS, Warrendale, PA, USA 2005).

Google Scholar

[8] A. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds and K. He: Solid-Solid Phase Transformations in Inorganic Materials Ed: J. Howe et al. (TMS, Warrendale, PA, USA 2005).

Google Scholar

[9] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock and J.G. Speer: International Conference Martensitic Transformations, ICOMAT'05, Shanghai, China (2005).

Google Scholar

[10] R.F. Hehemann: Phase Transformations (ASM, Metals Park, OH, USA 1970), pp.397-432.

Google Scholar

[11] H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. Vol. 10A (1979), pp.895-907.

Google Scholar

[12] H.K.D.H. Bhadeshia and D.V. Edmonds: Metal Sci. J. Vol. 17 (1983), pp.411-419, 420-425.

Google Scholar

[13] V.T.T. Miihkinen and D.V. Edmonds: Mater. Sci. Technol. Vol. 3 (1987), pp.422-431, 432440, 441-449.

Google Scholar

[14] F.G. Caballero, H.K.D.H. Bhadeshia: K.J.A. Mawella, D.G. Jones, and P. Brown, Mater. Sci. Technol. Vol. 17 (2001), pp.512-522.

Google Scholar

[15] Advanced High-Strength Sheet Steels for Automotive Applications Ed: J.G. Speer (AIST, Warrendale, PA, USA 2004).

Google Scholar

[16] V. Franetovic, M.M. Shea and E.F. Ryntz: Mater. Sci. Eng. Vol. 96 (1987), pp.231-245.

Google Scholar

[17] N. Darwish and R. Elliott: Mater. Sci. Technol. 9 (1993), pp.572-602.

Google Scholar

[18] C. Federici, S. Maggi and S. Rigoni: 1 st International Conference Super-High Strength Steels (Associazione Italiana di Metallurgia and Centro Sviluppo Materiali, Rome, Italy 2005).

Google Scholar

[19] M. Hillert and J. Agren: Scripta Mater. Vol. 50 (2004), pp.697-699.

Google Scholar

[20] J.G. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth: Scripta Mater. Vol. 52 (2005), pp.83-85.

Google Scholar

[21] M. Hillert and J. Agren: Scripta Mater. Vol. 52 (2005), pp.87-88.

Google Scholar

[22] G. Krauss: Steels: Heat Treatment and Processing Principles (ASM International, Metals Park, OH, USA 1990).

Google Scholar

[23] H.K.D.H. Bhadeshia: Acta Metall. Vol. 28 (1980), pp.1103-1114.

Google Scholar

[24] A. Borgenstam, A. Engstron, L. Hoglund and J. Agren: J. Phase Equilibria Vol. 21 (2000), pp.269-280.

Google Scholar

[25] D. V. Edmonds, K. He, F. C. Rizzo, A. Clarke, D. K. Matlock and J. G. Speer: 1 st International Conference Super-High Strength Steels (Associazione Italiana di Metallurgia (AIM) and Centro Sviluppo Materiali (CSM), Rome, Italy 2005).

Google Scholar

[26] M.K. Miller: Atom Probe Tomography (Kluwer Academic/Plenum Press, New York, NY, USA 2000), pp.28-35, 158-160.

Google Scholar

[27] W.S. Owen: Trans ASM Vol. 46 (1954), pp.812-829.

Google Scholar

[28] J. Gordine and I. Codd: J. Iron Steel Inst. Vol. 207 (1969), pp.461-467.

Google Scholar

[29] W. C. Leslie and G.C. Rauch: Metall. Trans. Vol. 9A (1978), pp.343-349.

Google Scholar

[30] F.L.H. Gerdemann: Microstructure and Hardness of 9260 Steel Heat-Treated by the Quenching and Partitioning Process (Diploma Thesis, Aachen University of Technology, 2004).

Google Scholar