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Plan your sample size

How should you allocate replicates to different levels of your experiment? Is it better
to have more plots, or more plants within plots? Is it better to have more small
families or fewer, larger families?

What is a p-value?

What is a “Type I error”?

What is a “Type II error”?
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Plan your sample size

Statistical Power: the likelihood that a study will detect an effect when there is an
effect there to be detected.

Science is expensive: a low-power study is a waste of resources, and so is a study that
is larger than necessary.

Ethics boards and animal care committees require researchers to justify the sample
sizes for proposed experiments on animals, humans.
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Plan your sample size

Problems with low power studies

− High chance of a false negative.

− Highly uncertain estimates of effect size (wide confidence intervals).

− If a statistically significant result is obtained in a low power study, the estimate of
effect is likely to be exaggerated.

− If a statistically significant result is obtained in a low power study, there is a high
chance that the estimated effect is in the wrong direction.
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Plan your sample size

Goals when planning your sample size

− Plan for precision: Choose a sample size that yields a confidence interval of
specified width. A narrow confidence interval means we have an estimate with
high precision.

− Plan for power: Involves choosing a sample size that would have a high
probability of rejecting H0 (≥ 80%) if the absolute magnitude of the difference
between the means, |µ1 − µ2|, is at least as great as a specified value D.

− Compensate for data loss: Some experimental individuals may die, leave the
study, or be lost between the start and the end of the study. The starting sample
sizes should be made even larger to compensate.
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Plan your sample size

Challenges of planning sample size

− Key quantities to plan sample sizes, such as the within-group standard deviation,
σ, are not known.

− Typically a researcher makes an educated guess for these unknown parameters
based on pilot studies or previous investigations.

− If no information is available then consider carrying out a small pilot study first,
before attempting a large experiment.

− Note: post-hoc power calculations are useless (i.e., calculating how likely it is
that the null hypothesis is true, based on your non-significant outcome is
non-sensical; see Colegrave & Ruxton, Behavioral Ecology. 14: 446–450).
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Experiments vs observational studies

In an experimental study the researcher assigns treatments to units or subjects so that
differences in response can be compared. There must be at least 2 treatments (or
treatment and control).

− Examples: Clinical trials, reciprocal transplant experiments, factorial experiments
on competition and predation.

In an observational study, nature does the assigning of treatments to subjects. The
researcher has no influence over which subjects receive which treatment (no matter
how complex the apparatus needed to measure response)

− Examples: Common garden “experiments”, QTL mapping “experiments”.
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Why do experiments

An observational study cannot distinguish between two reasons for an association
between an explanatory variable and a response variable.

Survival of climbers to Mount Everest is higher for individuals taking supplemental
oxygen than not.

1. Supplemental oxygen (explanatory variable) increases survival (response variable).

2. Supplemental oxygen has little or no effect. Survival and oxygen are associated
because other variables affect both (e.g., greater overall preparedness). Variables
(like preparedness) that distort the causal relationship between the measured
variables of interest (oxygen use and survival) are called confounding variables.

We do experiments to eliminate confounding variables.
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Why do experiments

With an experiment, random assignment of treatments to subjects allows researchers
to tease apart the effects of the explanatory variable from those of confounding
variables.

With random assignment, no confounding variables will be associated with treatment
except by chance.

If a researcher could assign supplemental oxygen/no-oxygen randomly to Everest
climbers, this will break the association between oxygen and degree of preparedness.
Random assignment will roughly equalize the preparedness levels of the two oxygen
treatment groups.

In this case, any resulting difference between oxygen treatment groups in survival
(beyond chance) must be caused by treatment.
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Clinical trials: experiments on people

An experimental study in which two or more treatments are assigned to human
subjects.

The design of clinical trials has been refined because the cost of making a mistake
with human subjects is so high.

Experiments on nonhuman subjects are simply called “laboratory experiments” or
“field experiments”, depending on where they take place.
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Example of an experiment (clinical trial)

For personal use.  Only reproduce with permission from The Lancet Publishing Group.
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Summary

Background Nonoxynol-9 (rINN, nonoxinol-9) is an over-the-
counter spermicide that has in-vitro anti-HIV-1 activity. Results
of studies of its effectiveness in prevention of HIV-1 infection in
women have been inconclusive. We aimed to assess
effectiveness of this vaginal gel.

Methods We did a randomised, placebo-controlled, triple-
blinded, phase 2/3 trial with COL-1492, a nonoxynol-9 vaginal
gel, in 892 female sex workers in four countries: Benin, Côte
d’Ivoire, South Africa, and Thailand. 449 women were
randomly allocated nonoxynol-9 and 443 placebo. Primary
endpoint was incident HIV-1 infection. Secondary endpoints
included Neisseria gonorrhoeae and Chlamydia trachomatis
infections. Analysis was by intention to treat.

Findings 765 women were included in the primary analysis.
HIV-1 frequency in nonoxynol-9 users was 59 (16%) of 376
compared with 104 (27%) of 389 in placebo users (402·5 vs
435·0 woman-years; hazard ratio adjusted for centre 1·5; 95%
CI 1·0–2·2; p=0·047). 239 (32%) women reported use of a
mean of more than 3·5 applicators per working day, and in
these women, risk of HIV-1 infection in nonoxynol-9 users was
almost twice that in placebo users (hazard ratio 1·8; 95% CI
1·0–3·2). 516 (68%) women used the gel less frequently than
3·5 times a day, and in these, risk did not differ between the
two treatments. No significant effect of nonoxynol-9 on 
N gonorrhoeae (1·2; 0·9–1·6) or C trachomatis (1·2; 0·8–1·6)
infections was reported. 

Interpretation This study did not show a protective effect 
of COL-1492 on HIV-1 transmission in high-risk women.
Multiple use of nonoxynol-9 could cause toxic effects
enhancing HIV-1 infection. This drug can no longer be
deemed a potential HIV-1-prevention method. Assessment of
other microbicides should continue.

Lancet 2002; 360: 971–77
See Commentary page 962

Introduction
Although the male condom, when used consistently and
correctly, provides high levels of protection against HIV-1
and other sexually transmitted infections, negotiating its
use is not always feasible for many women. Therefore,
there is need for a female-controlled method for
prevention of HIV-1. Research on microbicides is part of
this global effort.

The product that has been tested most is the spermicide
nonoxynol-9 (recommended international name
nonoxinol-9), which shows in-vitro activity against HIV-1
and other sexually transmitted infections1–5 and can
prevent simian immunodeficiency virus infection in
macaques.6 Results of several studies in women showed
that nonoxynol-9 had a protective effect against Neisseria
gonorrhoeae and Chlamydia trachomatis infection.7–10

At the time we planned our study, data for HIV-1
prevention were conflicting. Although results of an
observational study in female sex workers in Cameroon
showed a protective effect in more consistent spermicide
users than less consistent users (relative risk 0·1; 95% CI
0·1–0·6),11 results of a randomised placebo-controlled 
trial did not show a significant protective effect (1·6;
0·8–2·8).12 The high number of toxic effects seen in this
study was thought to be attributable to the high dose of
nonoxynol-9—ie, 1000 mg, with about 50% of this dose
bioavailable.

Because nonoxynol-9 is readily available, low in price,
and has been on the US market as an over-the-counter
product since the 1960s, we thought controversy
surrounding the drug as a potential HIV-1-prevention
method needed to be resolved. We decided to study a new
gel formulation with a low nonoxynol-9 dose (52·5 mg),
COL-1492, which covers the cervix and the vaginal walls
and gives immediate availability of the drug. Because of
the known dose-dependent effect of this drug,13 the
absence of any local toxic effects of the gel was
documented first in women in developed countries, 
then by a study of the phase 3 target population.14,15

Results of both trials showed no difference between
nonoxynol-9 and placebo with respect to frequency of
lesions.

Our aim was to compare the effectiveness of
nonoxynol-9 with placebo gel in prevention of HIV-1
infection in HIV-1-negative female sex workers. 

Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1
transmission in female sex workers: a randomised controlled trial

Lut Van Damme, Gita Ramjee, Michel Alary, Bea Vuylsteke, Verapol Chandeying, Helen Rees, Pachara Sirivongrangson,
Léonard Mukenge-Tshibaka, Virginie Ettiègne-Traoré, Charn Uaheowitchai, Salim S Abdool Karim, Benoît Mâsse,
Jos Perriëns, Marie Laga, on behalf of the COL-1492 study group*

*Study group members listed at end of report

Institute of Tropical Medicine, Antwerp, Belgium (L Van Damme MD,
B Vuylsteke MD, M Laga MD); Medical Research Council, Durban,
South Africa (G Ramjee PhD, S S Abdool Karim MD); Groupe de
Recherche en Epidémiologie, Centre Hospitalier Affilié Universitaire
de Québec et Université Laval, Québec, Québec, Canada (M Alary
MD, L Mukenge-Tshibaka MD, B Mâsse PhD); Projet SIDA 2, Cotonou,
Bénin (M Alary); Projet RETRO-CI, Abidjan, Côte d’Ivoire
(B Vuylsteke, V Ettiègne-Traoré MD); Faculty of Medicine, Prince of
Songkla University, Hat Yai, Thailand (V Chandeying MD);
Reproductive Health Research Unit, Department of Obstetrics and
Gynaecology, University of the Witwatersrand, Johannesburg,
South Africa (H Rees MD); Ministry of Health, Venereal Disease
Division, Bangkok, Thailand (P Sirivongrangson MD); Dispensaire
Maladies Sexuellement Transmissibles, Centre de Santé de la
Circonscription Urbaine de Cotonou 1, Cotonou, Benin 
(L Mukenge-Tshibaka); Venereal Disease Center Region 12,
Songkla, Thailand (C Uaheowitchai MD); Fred Hutchinson Cancer
Research Center, Seattle, WA, USA (B Mâsse); and UNAIDS,
Geneva, Switzerland (J Perriëns MD) 

Correspondence to: Dr Lut Van Damme, CONRAD, 1611 North Kent
Street, Suite 806, Arlington, VA 22209, USA
(e-mail: lvandamme@conrad.org)
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Example of an experiment (clinical trial)

Transmission of the HIV-1 virus via sex workers contributes to the rapid spread of
AIDS in Africa.

The spermicide nonoxynol-9 had shown in vitro activity against HIV-1, which
motivated a clinical trial by van Damme et al. (2002). They tested whether a vaginal
gel containing the chemical would reduce the risk of acquiring the disease by female
sex workers.

Data were gathered on a volunteer sample of 765 HIV-free sex-workers in six clinics in
Asia and Africa.

Two gel treatments were assigned randomly to women at each clinic. One gel
contained nonoxynol-9 and the other contained a placebo (an inactive compound that
subjects could not distinguish from the treatment of interest).

Neither the subjects nor the researchers making observations at the clinics knew who
had received the treatment and who had received the placebo (A system of numbered
codes kept track of who got which treatment.)
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Example of an experiment (clinical trial)

Results of the clinical trial:
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Design components

To reduce bias, the experiment included:

− Simultaneous control group: the women receiving the placebo.

− Randomization: treatments were randomly assigned to women at each clinic.

− Blinding: neither the subjects nor the clinicians knew which women were assigned
which treatment.

To reduce the effects of sampling error, the experiment included:

− Replication: the study was carried out on multiple independent subjects.

− Balance: the number of women was nearly equal in the two groups at every clinic.

− Blocking: subjects were grouped according to the clinic they attended, yielding
multiple repetitions of the same experiment in different settings (“blocks”).
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Design components: Reducing bias

Simultaneous control group

− A study lacking a control group for comparison cannot determine whether the
treatment of interest is the cause of any of the observed changes.

− The health of human subjects often improves after treatment merely because of
their expectation that the treatment will have an effect, a phenomenon known as
the “placebo effect”.

− Control subjects should be perturbed in the same way as the other subjects,
except for the treatment itself (as far as ethical considerations permit). The
“sham operation”, in which surgery is carried out without the experimental
treatment itself, is an example.

− In field experiments, applying a treatment of interest may physically disturb the
plots receiving it and the surrounding areas, perhaps by trampling the ground by
the researchers. Ideally, the same disturbance should be applied to the control
plots.

15 / 32



Design components: Reducing bias

Randomization

− The researcher should randomize assignment to units or subjects.

− Randomization means that treatments are assigned to units at random, such as
by flipping a coin or using random numbers. Other ways of assigning treatments
to subjects are inferior. “Haphazard” assignment has repeatedly been shown to
be non-random and prone to bias.

− Randomization breaks the association between possible confounding variables and
the explanatory variable, allowing the causal relationship between the explanatory
and response variables to be assessed.

− Randomization doesn’t eliminate the variation contributed by confounding
variables, only their correlation with treatment.

− A completely randomized design is an experimental design in which treatments
are assigned to all units by randomization.
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Design components: Reducing bias

Blinding

− Blinding is the process of concealing information from participants (sometimes
including researchers) about which subjects receive which treatment.

− In a single-blind experiment, the subjects are unaware of the treatment that they
have been assigned. Not much of a concern in non-human studies.

− In a double-blind experiment, those administering the treatments and measuring
the response are also unaware of which subjects are receiving which treatments.

− Blinding prevents subjects and researchers from changing their behavior,
consciously or unconsciously, as a result of knowing which treatment they were
receiving or administering.

− Medical studies without double-blinding exaggerated treatment effects by 16% on
average, compared to studies without double-blinding (Jüni et al. 2001).

− Experiments on non–human subjects are also prone to bias from lack of blinding.

− Bebarta et al. (2003) reviewed 290 two-treatment experiments carried out on
animals or on cell lines. The odds of detecting a positive effect of treatment were
more than threefold higher in studies without blinding than in studies with
blinding. (Experiments without blinding also tend to have other problems such as
a lack of randomization.)

− Blinding can be incorporated into experiments on nonhuman subjects using coded
tags that identify the subject to a “blind” observer without revealing the
treatment (and who measures units from different treatments in random order).
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Design components: Reducing the effects of sampling error

The goal of experiments is to estimate and test treatment effects against the
background of variation between individuals (“noise”) caused by other variables.

One way to reduce noise is to make the experimental conditions constant. Fix the
temperature, humidity, and other environmental conditions, for example, and use only
subjects that are the same age, sex, genotype, and so on. In field experiments,
constant experimental conditions might not be feasible.

Constant conditions might not be desirable, either. By limiting the conditions of an
experiment, we also limit the generality of the results - that is, the conclusions might
apply only under the conditions tested and not more broadly.

Another way to make treatment effects stand out is to include extreme treatments.
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Design components: Reducing the effects of sampling error

Replication

− Replication is the assignment of each treatment to multiple, independent
experimental units.

− Studies that use more units (i.e., larger sample sizes) will have smaller standard
errors and a higher probability of getting the correct answer from a hypothesis
test.

− Larger samples mean more information, and more information means better
estimates and more powerful tests.

− Replication is not about the number of plants or animals used, but the number of
independent units in the experiment. An “experimental unit” is the independent
unit to which treatments are assigned.

− The figure shows three experimental designs used to compare plant growth under
two temperature treatments (indicated by the shading of the pots). The first two
designs are unreplicated.

Replication	

• Replication	is	not	about	the	number	of	plants	or	animals	used,	but	the	number	
of	independent	units	in	the	experiment.	An	“experimental	unit”	is	the	
independent	unit	to	which	treatments	are	assigned	(typically,	the	unit	that	is	
interspersed).	

• The	figure	shows	three	experimental	designs	used	to	compare	plant	growth	
under	two	temperature	treatments	(indicated	by	the	shading	of	the	pots).	The	
first	two	designs	are	unreplicated.	
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Design components: Reducing the effects of sampling error

Replication

− An experimental unit might be a single plant/animal, if individuals are randomly
sampled and assigned treatments independently.

− An experimental unit might be a batch of individual organisms treated as a
group, such as a field plot containing multiple individuals, a cage of animals, a
household, a Petri dish, or a family.

− Multiple individual organisms belonging to the same unit (e.g., plants in the same
plot, bacteria in the same dish, members of the same family, and so on) should
be considered together as a single replicate. This is because they are likely to be
more similar to each other, on average, than to individuals in separate units
(apart from the effects of treatment).

− Erroneously treating the single organism as the independent replicate when the
chamber or field plot is the experimental unit is pseudoreplication.
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Design components: Reducing the effects of sampling error

Interspersion

− Treatments must always be interspersed with each other in space and time.

Replication	

• Replication	is	not	about	the	number	of	plants	or	animals	used,	but	the	number	
of	independent	units	in	the	experiment.	An	“experimental	unit”	is	the	
independent	unit	to	which	treatments	are	assigned	(typically,	the	unit	that	is	
interspersed).	

• The	figure	shows	three	experimental	designs	used	to	compare	plant	growth	
under	two	temperature	treatments	(indicated	by	the	shading	of	the	pots).	The	
first	two	designs	are	unreplicated.	

	

− Randomization is one way this is usually implemented.
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Design components: Reducing the effects of sampling error

Balance

− A design is balanced if all treatments have the same sample size.

− Balance helps reduce the influence of sampling error on estimation. To appreciate
this, look at the equation for the standard error of the difference between two
treatment means.

σm1−m2 =

√
σ2

1

n1
+

σ2
2

n2

Let’s assume equal variances (σ2
1 = σ2

1). Then, this equation reduces to

σm1−m2 =

√
σ2

(
1

n1
+

1

n2

)
For a fixed total number of experimental units, n1 + n2, the standard error is
smallest when the quantity 1

n1
+ 1

n2
is smallest, which occurs when n1 and n2 are

equal.

− Balance is not as important as replication (i.e., n1 + n2).
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Design components: Reducing the effects of sampling error

Blocking

− Blocking is the grouping of experimental units that have similar properties.
Within each block, treatments are randomly assigned to experimental units.

− Blocking essentially repeats the same, completely randomized experiment
multiple times, once for each block.

− Differences between treatments are only evaluated within blocks, and in this way
the component of variation arising from differences between blocks is discarded.

Blocking	

• Blocking	is	the	grouping	of	experimental	units	that	have	similar	properties.	
Within	each	block,	treatments	are	randomly	assigned	to	experimental	units.	

• Blocking	essentially	repeats	the	same,	completely	randomized	experiment	
multiple	times,	once	for	each	block.		

• Differences	between	treatments	are	only	evaluated	within	blocks,	and	in	this	
way	the	component	of	variation	arising	from	differences	between	blocks	is	
discarded.		
	

	

	

• Block	(here,	chamber)	must	be	included	as	a	(random)	factor	in	the	statistical	
analysis.	Analysis	follows	design.	We’ll	talk	about	this	more	when	we	apply	
mixed	effects	models	in	R.	

− Block (here, chamber) must be included as a (random) factor in the statistical
analysis. Analysis follows design. We’ll talk about this more when we apply mixed
effects models.
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Design components: Reducing the effects of sampling error

Blocking: Paired design

− For example, consider the design choices for a two-treatment experiment to
investigate the effect of clear cutting on salamander density.

− In the completely randomized (“two sample”) design, we take a random sample
of forest plots from the population and then randomly assign either the clear-cut
treatment or the no clear-cut treatment to each plot.

− In the paired design we take a random sample of forest plots and clear-cut a
randomly chosen half of each plot, leaving the other half untouched.

Blocking:	Paired	design	

• For	example,	consider	the	design	choices	for	a	two-treatment	experiment	to	
investigate	the	effect	of	clear	cutting	on	salamander	density.		

• In	the	completely	randomized	(“two-sample”)	design	we	take	a	random	sample	
of	forest	plots	from	the	population	and	then	randomly	assign	either	the	clear-
cut	treatment	or	the	no	clear-cut	treatment	to	each	plot.		

• In	the	paired	design	we	take	a	random	sample	of	forest	plots	and	clear-cut	a	
randomly	chosen	half	of	each	plot,	leaving	the	other	half	untouched.		
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Design components: Reducing the effects of sampling error

Blocking: Paired design

− In the paired design, measurements on adjacent plot-halves are not independent.
This is because they are likely to be similar in soil, water, sunlight, and other
conditions that affect the number of salamanders.

− As a result, we must analyze paired data differently than when every plot is
independent of all the others, as in the case of the two-sample design.

− The paired design is usually more powerful than completely randomized design,
because it controls for a lot of the extraneous variation between plots or sampling
units that might obscure the effects we are estimating.

Blocking:	Paired	design	

• For	example,	consider	the	design	choices	for	a	two-treatment	experiment	to	
investigate	the	effect	of	clear	cutting	on	salamander	density.		

• In	the	completely	randomized	(“two-sample”)	design	we	take	a	random	sample	
of	forest	plots	from	the	population	and	then	randomly	assign	either	the	clear-
cut	treatment	or	the	no	clear-cut	treatment	to	each	plot.		

• In	the	paired	design	we	take	a	random	sample	of	forest	plots	and	clear-cut	a	
randomly	chosen	half	of	each	plot,	leaving	the	other	half	untouched.		
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Design components: Reducing the effects of sampling error

Blocking: Randomized complete block design

− Paired designs are a special case of RCB design (which allows more than two
treatments). Each treatment is applied once to every block.

− By accounting for some sources of sampling variation, such as the variation
among trees, blocking can make differences between treatments stand out.

− Blocking is worthwhile if units within blocks are relatively homogeneous, apart
from treatment effects, and units belonging to different blocks vary because of
environmental or other differences.

− In the example of a clinical trial, “Clinic” was a blocking variable.
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Design components: Reducing the effects of sampling error

Experiments with more than one factor

− A factor is a single treatment variable whose effects are of interest to the
researcher.

− The factorial design is the most common experimental design for more than one
treatment variable, or factor. In a factorial design every combination of
treatments from two (or more) treatment variables is investigated.

− The main purpose of a factorial design is to evaluate possible interactions between
variables. An interaction between two explanatory variables means that the effect
of one variable on the response depends on the state of a second variable.

− Even if there are no interactions, a factorial design can be an efficient way to
collect information on the effects of more than one treatment variable.
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Experiments with time as a factor

Must account for repeated measures of the same subjects (plots)
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Natural Selection on a Major Armor
Gene in Threespine Stickleback
Rowan D. H. Barrett,* Sean M. Rogers, Dolph Schluter

Experimental estimates of the effects of selection on genes determining adaptive traits add to our
understanding of the mechanisms of evolution. We measured selection on genotypes of the Ectodysplasin
locus, which underlie differences in lateral plates in threespine stickleback fish. A derived allele (low)
causing reduced plate number has been fixed repeatedly after marine stickleback colonized freshwater
from the sea, where the ancestral allele (complete) predominates. We transplanted marine sticklebacks
carrying both alleles to freshwater ponds and tracked genotype frequencies over a generation. The low
allele increased in frequency once lateral plates developed, most likely via a growth advantage. Opposing
selection at the larval stage and changing dominance for fitness throughout life suggest either that the
gene affects additional traits undergoing selection or that linked loci also are affecting fitness.

Adaptive evolution occurs when genetic
variation affects phenotypes under selec-
tion. This process has been detected by

the discovery of candidate genes underlying phe-
notypic traits whose adaptive significance is known
or suspected (1–7) and by identifying statistical
signatures of selection on genomic regions affect-
ing phenotypic traits (8–12). However, field ex-
periments evaluating the fitness consequences of
allelic substitutions at candidate loci should pro-
vide estimates of the timing and strength of selec-
tion, enhance understanding of the genetics of
adaptation, and yield insights into the mecha-
nisms driving changes in gene frequency.

Freshwater threespine sticklebacks (Gastero-
steus aculeatus) originated from marine popula-
tions that invaded newly created coastal lakes and
streams throughout the Northern Hemisphere fol-
lowing the last ice age. Within the past 20,000
years or less, freshwater populations repeatedly
underwent a loss in bony armor plating (13). Ma-
rine sticklebacks are typically armored with a con-
tinuous row of 30 to 36 bony lateral plates on

each side (complete morph), whereas freshwater
sticklebacks typically have 0 to 9 plates (low
morph) or, less often, an intermediate number of

plates (partial morph) (13–15) (Fig. 1). Armor
reduction following colonization of freshwater
evolved rapidly (16–19) from the fixation of a
clade of low alleles of the Ectodysplasin gene
(hereafter, the Eda low allele). This allele evolved
~2million years ago and is rare (~1%) in the ocean
(1). The repeated fixation of this allele implies that
it undergoes positive selection in freshwater,
because genetic drift alone is unlikely to produce
a strong correlation between phenotype and
environment (20–22).

Fish with reduced armor have a juvenile growth
advantage (23), which may result from the higher
cost of mineralizing bone in freshwater (24, 25),
which has low ion concentrations relative to marine
environments. This increased growth rate should,
in turn, reduce predation by insects (26), as well
as increase lipid stores, which results in higher
over-winter survival (27). Larger fish also may
breed earlier (28) and have access to better terri-

Zoology Department and Biodiversity Research Centre, Uni-
versity of British Columbia, 6270 University Boulevard, Van-
couver, BC V6T 1Z4, Canada.

*To whom correspondence should be addressed. E-mail:
rbarrett@zoology.ubc.ca

Fig. 1. Lateral plate
morphs in marine stickle-
back. Complete morph
(top), partial morph (mid-
dle), and low morph (bot-
tom). Fish were stained
with Alizarin red to high-
light bone.
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tories, an increase in mating success, and a higher
reproductive output (28–36). To test this hy-
pothesis, we tracked adaptive evolution at the
Eda locus in replicated transplants of marine
stickleback to freshwater environments. We pre-
dicted that we would observe positive selec-
tion on the low allele via advantages in growth,
survival, and reproduction. We also looked for
deviations from this expectation, which might
suggest that Eda or linked genes have unex-
pected fitness effects.

We experimentally introduced adult wild ma-
rine fish heterozygous at the Eda locus to four
freshwater ponds (37). The fish were trapped
from a marine stickleback population in south-
western British Columbia. We introduced ap-
proximately equal numbers of these fish (n= 45
to 46) to each pond in the spring of 2006, ini-
tiating replicate freshwater invasions. Within 60
days, we observed larval fish in each colonized
pond, indicating that the marine colonizers were
breeding. Genotyping of four microsatellite markers,
which were all in linkage equilibrium with Eda,
confirmed that nearly all alleles present in the
parents were at similar frequencies in the progeny
(fig. S1), which suggested that founding events
did not confer any sampling artifacts. Genotype
frequencies at Eda in the F1 generation were not
significantly different from the predicted 1:2:1
ratio (Fig. 2A) [pond 1: c2(2) = 0.06, P = 0.97;
pond 2: c2(2) = 1.09, P = 0.58; pond 3: c2(2) =
1.09, P = 0.58; and pond 4: c2(2) = 1.20, P =
0.55]. Subsequently, we sampled 50 fish from each
pond 10 times over 1 year to monitor changes in
offspring allele frequencies.

We observed strong fluctuations in Eda al-
lele and genotype frequencies, with replicate ponds
showing nearly parallel oscillations (Fig. 2A).
We did not observe strong changes in allele fre-
quency in the unlinked microsatellite markers,
which suggested that these results are not due to
demographic effects (fig. S1). Fish achieved their
adult number of lateral plates after reaching a
standard length of ~30 mm (25, 38, 39). Most
experimental fish passed this threshold between
October and November 2006 [average length
in October was 27.32 mm (T 5.99 SD); average
length in November was 33.14 mm (T 4.70 SD)].
In agreement with our predictions for growth,
by October, juvenile fish carrying the low allele
were larger than juvenile fish homozygous for
the complete allele. Mean body length was pos-
itively associated with the number of low alleles
per genotype in all ponds [one-tailed t test of four
slopes, t(3) = 2.53, P = 0.043]. We also noted
higher overwintering survival rates in fish with
the low allele. From October 2006 to May 2007,
the frequency of the complete allele dropped from
67 to 49%, which reflected the comparatively poor
survival of individuals homozygous for the com-
plete allele. We calculated that the selection co-
efficient (S) against the complete allele between
these dates was 0.52 (T 0.10 SEM) (Fig. 2) (37).

At the start of the breeding season in May
2007, the number of low alleles carried by an

individual was again positively associated with
body length in all ponds [one-tailed t test of four
slopes, t(3) = 2.35, P = 0.050], and sexually ma-
ture individuals were significantly larger than
nonbreeding individuals (Fig. 3) [Welch two-
tailed t tests, pond 1: t(6) = 2.47, P = 0.049; pond
2: t(2) = 9.40, P = 0.006; pond 3: t(9) = 2.61, P =
0.027; and pond 4: t(13) = 4.23, P < 0.001]. The
genotypes of the earliest reproductive individ-
uals were biased toward carrying the low allele
compared with nonreproductive individuals,
with 95% being heterozygous or homozygous
low (Fig. 3) [tested by the interaction between
breeding status and genotype in a log-linear
model, c2(2) = 7.30, P = 0.026; no effects of
pond were detected, c2(6) = 2.88, P = 0.82]. By
July 2007, most individuals had reached sexual
maturity, and we observed little difference in
genotype frequencies between sexually mature
individuals and the overall population (Fig. 3) [c2

(2) = 2.56, P = 0.28]. By this time, we also could
not detect a correlation between size and Eda

genotype [t(3) = –0.30, P = 0.607]. In all four
ponds, the frequency of the low allele was
greater in the first sample of F2 offspring in June
2007 than in all F1 adults sampled in May [June
F2: 57.0% (T 4.1%SEM),MayF1: 51.6% (T 1.4%
SEM)] (Fig. 2A) [one-tailed t test, t(3) = 2.14, P =
0.061]. By July, the frequency of the low allele in
F2 juveniles had decreased to 52.2% (T 3.7%
SEM), which reflected the similar genotypic ratios
of breeding and nonbreeding adults later in the
breeding season.

These patterns linking the low Edaallele with
higher growth, improved survival, and earlier
breeding are consistent with the hypothesis that
positive selection stemmed from a reduced bur-
den of producing armor plates in freshwater. This
effect, combined with the possibility of reduced
vertebrate predation pressure in freshwater com-
pared with the sea (25, 40), may account for the
evolution of low genotype populations with re-
duced plates in freshwater. At the same time,
selection against plate production does not fully

Fig. 2. (A) Frequency of the low
allele in four replicate ponds (dif-
ferent colored lines). All samples
are from the first (F1) cohort of
offspring, except the June and
July 2007 samples, which are
from the second (F2) pond gen-
eration. (B) Approximate life his-
tory stages through the course
of the experiment. Fish stained
as in Fig. 1. (C) Genotype fre-
quencies averaged across all four
ponds. All samples are as in (A).
Purple,homozygouscompletegeno-
type (CC); orange, heterozygote
genotype (CL); green, homozy-
gous low genotype (LL). Vertical
bars show standard errors on the
basis of n = 4 ponds.
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Analysis follows design

The structure of your analysis should reflect the structure of study design.

Remember, pseudoreplication is a problem of analysis, not design. It can happen when
the analysis doesn’t follow the experimental design.

For example, if subjects are grouped (fish in aquaria; colonies in a Petri dish; repeated
measurements of the same individuals), then your analysis needs to include a
(random) group level variable in the statistical model.

Grouping variables are incorporated using “mixed effects models”, which we will learn
about.
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Analysis follows design

Recognizing how you will analyze the data when you design your study is a
prerequisite for planning the sample sizes you will need.

To plan an experimental design and the sample sizes required to achieve your
experimental goals, use R to make up (simulate) data. Then use R to analyze the
data.

Repeat this many times and you will acquire estimates of power and precision for
alternative plans.

30 / 32



What if you can’t do experiments: think like an experimentalist

Experimental studies are not always feasible, in which case we must fall back upon
observational studies.

− The best observational studies incorporate as many of the features of good
experimental design as possible to minimize bias (e.g., simultaneous controls,
blinding) and the impact of sampling error (e.g., replication, balance, blocking,
and even extreme treatments) except for one: randomization. Randomization is
out of the question, because in an observational study the researcher does not
assign treatments to subjects.

− Two strategies are used to limit the effects of confounding variables on a
difference between treatments in a controlled observational study: matching; and
statistically adjusting for known confounding variables.
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Two extra suggestions when planning data collection

− Always record raw untransformed data (transformations can always be done later,
but some transformations cannot be undone).

− Always try to think of additional “easy to collect” data.
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