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ABSTRACT

In the modern world, not only is software getting larger and more complex, it is also

becoming pervasive in our daily lives. On the one hand, the advent of multi-core processors is

pushing software towards becoming more concurrent, making it more complex. On the other

hand, software is everywhere, inside nuclear reactors, space shuttles, cars, traffic signals, cell

phones, etc. To meet this demand for software, we need to invest in automated program-

verification techniques, which ensure that software will always behave as intended.

The problem of program verification is undecidable. A verification technique can only

gain a limited amount of knowledge about a program’s behavior by reasoning about certain

aspects of the program. This dissertation addresses program verification by considering two

important features of programs: (i) procedures (and procedure calls) and (ii) concurrency.

Interprocedural Analysis: An analysis that can precisely handle the procedural aspect

of programs is called an interprocedural analysis. Procedures are an important feature of

most programming languages because they allow for modular design of programs: each

procedure is meant to perform a task, and they can be put together to implement more

complex functionality. Because procedures serve as a natural abstraction mechanism for

developers to organize their programs, an interprocedural analysis can leverage them to

enable verification of a larger and more complex programs.

There is a long history of work on interprocedural analysis, including several frameworks

that support a variety of different program abstractions, and provide algorithms for analyzing

them. The advantage of having a framework is that any program abstraction that fits the
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framework can make use of the algorithms for the framework. One such framework, called

Weighted Pushdown Systems (WPDSs), was the subject of the research reported on in this

dissertation.

The dissertation makes several contributions to interprocedural analyses that are based

on WPDSs:

• We define the Extended WPDS (EWPDS) model, which removes a crucial limitation

of WPDSs by providing a convenient abstraction mechanism for local variables of a

procedure. Using EWPDSs, it is possible to model a program’s behavior more precisely

than with WPDSs. In our work, we used EWPDSs for checking properties of Boolean

programs; computing affine relations in x86 programs; building debugging tools; com-

puting alias pairs in programs with single-level pointers; and for checking properties of

concurrent programs (where EWPDSs are used to model individual threads).

• We use graph-theoretic algorithms to speed up the analysis algorithms for WPDSs and

EWPDSs. This results in immediate speedup in all of the applications based on these

models without requiring any tuning for a particular application. The speedups ranged

from 1.8× to 3.6×.

• We show how to answer more expressive queries on EWPDSs, such as computing the

set of all error traces in the model, called an error projection. This enables faster

verification.

Concurrency: The advent of multi-core processors is pushing software to become more

concurrent. Concurrent programs are not only difficult to write, but are also difficult to

analyze and verify. One reason is that the interprocedural analysis of concurrent programs

is undecidable, even when all of the other aspects of a programs (like the program heap,

non-scalar variables, pointers, etc.) are abstracted away. As a result, most verification tools

do not mix interprocedural analysis with concurrency, i.e., tools that analyze concurrent

programs give up on precise handling of procedures. This is unfortunate because precise

handling of procedures has proven to be very useful for the analysis of sequential programs.
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The contribution of our work is to give techniques for interprocedural analysis for con-

current programs. We show that one does not have to design new algorithms for concurrent

programs; instead, it is possible to automatically extend most interprocedural analysis tech-

niques for sequential programs to perform interprocedural analysis of concurrent programs.

As mentioned earlier, interprocedural analysis of concurrent programs is undecidable.

We sidestep the undecidability by placing a bound on the number of context switches, i.e.,

we bound the number of times control is transferred from one thread to another. We call the

analysis of concurrent programs under a bound on the number of context switches context-

bounded analysis (CBA).

CBA is an interesting avenue of research that has attracted a lot of attention recently

because empirical evidence suggests that many concurrency-related bugs can be found in a

few context switches. Moreover, CBA was shown to be decidable for finite-data abstractions.

The dissertation makes two important contributions to interprocedural analysis of con-

current programs:

• We show that if each thread is modeled using a WPDS then CBA is decidable, and also

give an algorithm for performing CBA. This represents the first step towards providing

a general model for concurrent programs that can be used to perform interprocedural

analysis.

• We show that, given a concurrent program P and a context bound K, one can create

a sequential program PK such that the analysis of PK is sufficient for CBA of P under

the bound K. This reduction is a source-to-source transformation, and requires no

assumptions nor extra work on the part of the user, except for the identification of

thread-local data. We implemented this technique to create the first known implemen-

tation of CBA. Using this tool, we conducted a study on concurrent Linux drivers to

show that most bugs could not only be found in a few context switches, but, compared

to previous approaches, they could be found must faster using our approach.
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Chapter 1

Introduction

In the modern world, not only is software getting larger and more complex, it is also

becoming pervasive in our daily lives. On the one hand, the advent of multi-core processors is

pushing software towards becoming more concurrent, making it more complex. On the other

hand, software is everywhere, inside nuclear reactors, space shuttles, cars, traffic signals, cell

phones, etc. In meeting this demand for software, ensuring reliability is one of the major

bottlenecks. Any approach for ensuring reliability that requires a substantial manual effort

is not going to suffice in the future, and we need to invest in automated program verification

techniques.

The goal of program verification is to inspect program behavior, and then conclude if

some program execution can be faulty, or if there are no faulty executions. One key ingredient

needed for program verification is a property that classifies if a program execution is faculty

or not. The property of interest can, for example, state that there are no null-pointer

dereferences or memory-safety violations, or be more functional and state that the result of

executing a procedure on an array is that it sorts the array. Thus, in program verification,

given a program P and a property A, one has to answer the question: “is there an execution

of P that violates property A?”. The answer can be in the form of the violating execution,

or a proof that the property holds for all executions of P .

Program verification is undecidable, i.e., no single tool can always give an answer to the

above question for given any program and any property. Consequently, program-verification

research focuses on developing algorithms and tools that can only infer a few aspects of
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Figure 1.1 Typical design of verification tools based on abstraction.

a program’s behavior. Such tools find answers for as many properties as possible under

their limited knowledge of the program’s behavior. Most tools are based on the notion of

abstraction.

1.1 The Need for Abstraction

A common organization of a verification tool is shown in Fig. 1.1. It has two main phases.

The first is an abstraction phase that creates an abstract model of a given program. The

set of behaviors of this model is a superset of the set of behaviors of the original program.

In other words, the abstract model over-approximates the original program. An example is

discussed in Section 1.1.2.

The second phase is the analysis phase, which checks if the abstract model can violate the

property of interest. This check, in essence, is to see if the set of behaviors of the abstract

model is disjoint from the set of bad behaviors described by the property, as depicted in

Fig. 1.2. If so, one can conclude that the original program has no bad behaviors. Otherwise,

some of the behaviors in their intersection are reported (which may or may not be actual

behaviors of the original programs — see Fig. 1.4).

The reason for the separation of the two phases is that the set of behaviors of a program,

in general, is not computable, but is computable for the abstract model.1 In the model

checking community, the first phase is called model extraction and the second phase is called

model checking.

1In some cases, it may not be computable even for the abstract model, in which case the analysis phase
further over-approximates the set of behaviors of the abstract model.
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Figure 1.2 Proving the absence of bugs using abstraction.

Note that what we have described here is the common approach taken for program

verification in which the set of program behaviors is over-approximated. The approach taken

by some bug-finding tools is to under-approximate the set of program behaviors. Then

any intersection between this set and the set of bad behaviors described by the property

immediately indicates the presence of a bug. In this dissertation, we will mostly stick to the

verification approach.

1.1.1 Abstraction Refinement

It is possible that the chosen abstraction is too coarse to prove that a property holds,

i.e., the set of bad behaviors is not disjoint from the set of behaviors of the abstract model,

but is disjoint from the set of behaviors of the program. In this case, abstraction refinement

can be used: multiple abstractions with increasing precision are used until a bug is found or

the property is proved to hold. In Fig. 1.4, abstractions A1 and A2 are not precise enough

to prove that the property holds, but abstraction A3 suffices.

The design of a verification tool based on abstraction refinement is shown in Fig. 1.3. The

result of the analysis phase is used to refine the abstraction when necessary: if the current

abstract model does not violate the property, then the analysis phase concludes that the

program is correct; otherwise, it produces a behavior of the model, called a counterexample,

that violates the property. If this is also a behavior of the original program, then a bug has

been found. Otherwise, the abstraction is refined to produce a model that does not exhibit

this behavior, and the process continues. Because verification is undecidable, it is possible
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Figure 1.4 Proving the absence of bad behaviors using abstraction refinement.

that the refinement loop may fail to terminate; i.e., the abstraction is made more and more

precise, but it always fails to show the absence of a bug, or to produce an actual bug.

1.1.2 Example: Predicate Abstraction and Boolean Programs

In this section, we describe how predicate abstraction is used to create abstract models of

programs, called Boolean programs. We also illustrate how abstraction, as well as abstraction

refinement, helps in verification. The examples used in this section are taken from [7], and

will be used later in Chapter 5 to illustrate some of the contributions of this dissertation.

Consider the program P shown in the leftmost column of Fig. 1.5. We would like to

verify that the assertion shown on line 10 can never fail. Because the assertion will always

fail when executed, we essentially have to show that line 10 is never reached in any program

execution.
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numUnits : int;

level : int;

void getUnit() {

[1]      canEnter: bool := F;

[2]      if (numUnits = 0) {

[3]        if (level > 10) {

[4]          NewUnit();

[5]          numUnits := 1;

[6]          canEnter := T;

}

} else 

[7]          canEnter := T;

[8]      if (canEnter)

[9]        if (numUnits = 0)

[10]        assert(F);

else

[11]        gotUnit();

}

void getUnit() {

[1]      ...

[2]      if (?) {

[3]        if (?) {

[4]          ... 

[5]          ...

[6]          ...

}

} else 

[7]          ...

[8]      if (?)

[9]        if (?)

[10]        ...

else

[11]        ...

}

nU0: bool;

void getUnit() {

[1]      ...

[2]      if (nU0) {

[3]        if (?) {

[4]          ... 

[5]          nU0 := F;

[6]          ...

}

} else 

[7]          ...

[8]      if (?)

[9]        if (nU0)

[10]        ...

else

[11]        ...

}

nU0: bool;

void getUnit() {

[1]      cE: bool := F;

[2]      if (nU0) {

[3]        if (?) {

[4]          ... 

[5]          nU0 := F;

[6]          cE := T;

}

} else 

[7]          cE := T;

[8]      if (cE)

[9]        if (nU0)

[10]        ...

else

[11]        ...

}

P B1 B2 B3

Figure 1.5 An example program P and its abstractions as Boolean programs. The “· · · ”
represents a “skip” or a no-op.

One simple abstraction of P is the program B1 in Fig. 1.5. This program only retains

the control-flow structure of P and all other data is abstracted away. Consequently, the

branch conditions are non-deterministic, meaning that the branch may go either way in an

execution. Other program statements are abstracted to a “skip” because the data being

manipulated by those statements is not present in B1. (The abstract model B1 can also be

thought of as the control-flow graph of P .) It is easy to see that B1 over-approximates P .

B1 is very simple to analyze; however, it fails to show that line 10 is unreachable because

there is an execution of B1 that reaches line 10.

Program B2 is a more precise model of P , as compared to B1. It retains the control

structure of P , but additionally, it keeps track of the value of the predicate {numUnits = 0}

using the Boolean variable nU0 as follows: if at some point in the execution of P , the
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predicate {numUnits = 0} holds (does not hold), then the value of nU0 in the corresponding

execution of B2 will be true (false). B2 is still an over-approximation of P because some

branch conditions cannot be decided using just the value of nU0. However, line 10 is reachable

in B2 as well.

Program B3 is an even more precise more of P , as compared to B1. It keeps track of two

predicates: {numUnits = 0} (using variable nU0) and {canEnter = T} (using variable cE).

B3 is an over-approximation of P because the variable level is still abstracted away. Line

10 is not reachable in B3, which proves that the assertion holds for P .

The process of iterating through the abstract models B1, B2, and B3 is an example of how

abstraction refinement is used.2 Each of these three models are Boolean programs, which are

defined as imperative programs, possibly with procedure calls, and only Boolean variables

or fixed-size vectors of Boolean variables (and no heap). The process of creating Boolean

programs from ordinary (executable) programs by keeping track of certain predicates is called

predicate abstraction.

1.2 Challenges in Verification of Programs

The previous section gave an example for the abstraction phase of program verification.

In this section, we discuss the analysis phase. The design of the analysis phase depends

heavily on the kind of abstract model that is created. We discuss two features of programs

that are important to retain in abstract models, but also pose challenges for the analysis

phase. The first feature is procedures and procedure calls. An analysis that can precisely

handle the procedural aspect of programs is called an interprocedural analysis. The second

feature is concurrency.

1.2.1 Interprocedural Analysis

Procedures are an important feature of most programming languages because they allow

for modular design of programs: each procedure is meant to perform a task, and they can

2See [7] for a description of how the SLAM tool systematically creates these models.
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be put together to implement more complex functionality. Because procedures serve as a

natural abstraction mechanism for developers to organize their programs, it is important

that they be retained in the abstract model. However, this makes designing the analysis for

the model more challenging.

The difficulty posed by interprocedural analysis is that it requires precise reasoning about

the program’s runtime stack, which can be unbounded in size because of recursion. This

induces an infinite control-state space, even for Boolean programs (i.e., when there is no heap

and all variables are Booleans or vectors of Booleans). Thus, straightforward techniques of

enumerating the state space of the model do not work in the presence of recursion. Even

in the absence of recursion, the state space of a model is exponential in the maximum call

depth that can arise in an execution of the model.

We now describe some of the common ways of approximating analysis of programs with

multiple procedures, and show how they fail to prove even very simple properties of programs.

(For ease of discussion, we consider the analysis of C programs directly, instead of an abstract

model.)

Consider the program shown in Fig. 1.6(a). It consists of a single recursive procedure foo

that manipulates the array arr. This procedure is intended to operate in a multithreaded

environment in which other threads may also be accessing arr. The programmer intends

this procedure to be free of data races, i.e., no two threads should be allowed to access

arr simultaneously. This is enforced in the program by having the same mutex protect

accesses to the same array element (m[i] protects arr[i]). Proving this invariant requires

an interprocedural analysis because one must reason about local variables stored on the stack

to establish the invariant that in any execution, for all activation records in the runtime stack,

l1== m[l2]. One this is established, it is easy to conclude that arr[l2] is always protected

by m[l2].

There are two common ways of approximating interprocedural analysis of programs.

The program from Fig. 1.6(a) shows that neither is sufficient. The first option is to inline

procedures (similar to a compiler’s function-inlining optimization) until only one procedure
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mutex m[N]

int arr[N]

foo( ) {

1:     if (?) {

2:        i = ...

3:        l1 = m[i]

4:        l2 = i

5:        foo( )

6:        acquire(l1)

7:        arr[l2] = ...

8:        release(l1)

if(?) {

l1 = m[i]

g = i

} else {

l1 = m[i+1]

g = i+1

}

bar( )

l2 = g2

bar( ) {

g2 = g

g = 0

}

8:        release(l1)

}

}

(a)

l2 = g2

(b)

Figure 1.6 An example program. In (a) l1and l2are local variables; in (b) g and g2 are
global variables.

remains in the program. Because foo() is recursive, inlining does not help here: one can

never get to the point where only a single procedure remains.

The other option is to “short-circuit” an invariant on local variables across a procedure

call, i.e., project out the local variables from any invariant I that holds before a procedure

call to obtain an invariant Il on only the local variables, and then assert that Il holds after

the procedure call. (For this discussion, we assume that local variables of a procedure cannot

be accessed by any called procedure.) Such an approach would be sufficient for this example:

it would establish that (l1== m[l2]) holds before the recursive call to foo(); hence, it must

also hold after the call because l1and l2are local variables and m is not modified in foo().

This approach is only a heuristic and may lead to imprecision when the intermediate invariant

involves global variables that can possibly be modified by a called procedure. Assume that

lines 3 and 4 are replaced by the snippet of code in Fig. 1.6(b). Before the call to bar(),

the invariant is I1 = (l1== m[g]), whereas after the call, it becomes I2 = (l1== m[g2]).

Short-circuiting the invariant I1 across the call to bar() produces an invariant that says

that l1equals some entry in m. This information is insufficient to conclude that the program
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array.insert(elem)
n = array.size()
if(n != 0)

x = array[n-1]

array.clear()

x = array[n-1]

array.clear()

array.insert(elem)
n = array.size()
if(n != 0)

Figure 1.7 Two different interleavings of the same program trace. The first one runs
correctly, while the second one may crash because the memory dereference “array[n− 1]” is

out of bounds.

behaves correctly. Establishing I2 after the call to bar() requires an interprocedural analysis

that tracks the invariant between l1and g through bar().

1.2.2 Analysis of Concurrent Programs

As mentioned previously, the advent of multi-core processors is pushing software to be-

come more concurrent. Concurrent programs are not only difficult to write, but are also

difficult to analyze and verify.

In industry, the most prevalent way of finding bugs in programs is testing, where pro-

grams are executed under fixed input for which the output is known a priori. If executing a

program fails to produce the desired output, then there must be a bug in the program. Com-

pared to verification, testing has the disadvantage of being incomplete: finding bugs depends

crucially on choosing the right set of inputs for the program. Furthermore, the presence of

concurrency greatly increases this incompleteness because it adds non-determinism to the

program. Even under fixed input, a program can have a huge number of behaviors depending

on the interleaving that occurs between different threads. For example, see Fig. 1.7. Because

the interleavings are not in the control of the programmer, bugs that only arise on specific

interleavings are especially hard to find. This motivates the need for verification tools that

can not only prove properties for all program inputs, but also prove them for all interleavings

that may happen during program execution.
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One may wonder why the analysis of concurrent programs is considered harder than the

analysis of sequential programs. The answer is obvious in the case of testing because sequen-

tial programs can exhibit only one behavior with a fixed input, but concurrent programs may

exhibit several behaviors. However, in terms of verification, the answer is not that obvious

because the analysis of both sequential and concurrent programs has to consider a possibly

unbounded number of behaviors anyway. Also, in general, the analysis of both sequential

and concurrent programs is undecidable.

The answer lies in the way we do verification. As mentioned before, verification has

two main steps: abstraction to an abstract model, and then an analysis of the model. The

complication introduced by concurrency is that even with very simple abstract models, the

presence of concurrency makes their analysis computationally expensive.

For instance, the analysis of sequential Boolean programs can be carried out in time

linear in the size of the program (but exponential in the number of variables). However,

when, for a concurrent program with procedures, each thread is abstracted to a Boolean

program, the analysis is undecidable, even for two threads. The situation is similar even in

the absence of procedures: the analysis of concurrent Boolean programs without procedures

is PSPACE-complete, i.e., expected to have a running time exponential in the size of the

programs (as opposed to linear in the case of sequential Boolean programs).

This result shows that a finite abstraction of program data (into Boolean variables) is

not sufficient to design effective verification algorithms for concurrent programs. There is

hope if the program control is abstracted, i.e., if the procedures are abstracted so that the

resulting abstract model only has a single procedure, then the abstract model can be analyzed

precisely (albeit in exponential time). Because of this result, verification tools give up on

precise handling of procedures while dealing with concurrent programs; i.e., they do not mix

interprocedural analysis with concurrency. This is unfortunate because precise handling of

procedures has proven to be very useful for analysis of sequential programs.
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1.3 Contributions and Organization of the Dissertation

The dissertation makes several contributions in two main directions. First, it gives new

algorithms and techniques for interprocedural analysis of sequential programs (Chapters 3,

4, and 5). Second, it shows how interprocedural analysis can be carried out in the presence of

concurrency (Chapters 6 and 7). Background material that our work builds upon is covered

in Chapter 2.

1.3.1 New Technology for Sequential Programs

It is important to choose an expressive abstract model so that it can retain enough of

the important aspects of the program to be able to prove the desired property. Boolean

programs can encode models with infinite state spaces, but the infiniteness can only come

from the runtime stack. It is restricted to finite abstractions of program data. Weighted

pushdown systems (WPDSs) are strictly more expressive models than Boolean programs.

They can encode infinite-state abstractions of data as well.

WPDSs are based on pushdown systems (PDSs), which are essentially finite-state ma-

chines equipped with a stack. PDSs are expressive enough to encode the interprocedural

control flow of a program by using the PDS stack to encode the runtime stack of the pro-

gram. PDSs can also encode Boolean programs, but the encoding is not very efficient: the

size of a PDS encoding a Boolean program B will be exponential in the number of variables

of B.

WPDSs are a generalization of PDSs. WPDSs extend PDSs by adding a general “black-

box” abstraction for expressing transformations of a program’s data state (through weights).

Thus, the common strategy of encoding a program abstraction as a WPDS is to encode the

interprocedural control-flow graph (ICFG) of the program using a PDS and the data transfor-

mations induced by the program statements as weights. WPDSs generalize other frameworks

for interprocedural analysis, such as the Sharir-Pnueli functional approach [88], as well as

the Knoop-Steffen [52] and Sagiv-Reps-Horwitz summary-based approaches [84].
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One advantage of using WPDSs is that one can make use of any of several algorithms

that exist for analyzing them [83]. Thus, in order to design a new verification tool, one

only has to encode the program as a WPDS and then the analysis part is available for free.

In particular, there are algorithms that compute the set of all reachable states at a given

program node (for checking assertions at that node), using backward or forward search.

There are also algorithms for computing a set of witnesses—a set of paths that justify

the computed set of reachable states. Such witnesses can be used for reporting errors or

generating counterexamples for subsequent abstraction refinement. Moreover, because they

are based on pushdown systems, WPDSs can answer a richer set of queries about the model

than can be answered by classical interprocedural dataflow-analysis algorithms [88, 52, 84],

which only provide the ability to compute the set of all reachable states at a given program

node. There are algorithms for WPDSs that also compute the set of reachable states at

a given program node and for a given calling context for that node, or for a regular set

of calling contexts for the node. In our earlier work, we shoued that these queries, called

stack-qualified queries can be useful in the interprocedural setting [56].

Three implementations of WPDSs are publicly available [49, 47, 86], and all three provide

a convenient base for implementing different analyses. As a programming abstraction, these

systems offer several benefits:

• An analyzer is created by means of a declarative specification: one specifies a weight

domain, along with an encoding of the program’s ICFG and a mapping of each ICFG

edge to a weight.

• They permit the creation of libraries of reusable weight domains, which can also be

used to create new weight domains by means of weight-domain construction operations

(pairing, reduced product [26], tensor product [71], etc.)

• They allow for symbolic analysis. Encoding Boolean programs as WPDSs can be

exponentially more succinct than encoding them as PDSs. This happens because the

weights can be encoded symbolically, e.g., using BDDs. In this case, the analysis of the
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WPDS using the standard WPDS reachability algorithms corresponds to a symbolic

analysis of the Boolean program.

• Compared with other tools that support the creation of program analyzers from high-

level specifications, (i) the WPDS implementations allow more sophisticated abstract

domains to be used (such as the domains for affine-relation analysis [67, 68]), and (ii)

they also permit a broader range of dataflow-analysis queries to be posed (in particular,

stack-qualified queries) than is possible with tools such as Banshee [53] and BDDBDDB

[94].

Several of the contributions of this dissertation are made using WPDSs as a starting

point; these results all retain the benefits of WPDSs mentioned above. PDSs and WPDSs

are discussed in more detail in Chapter 2. Readers familiar with PDSs and WPDSs may

skip reading this chapter, and use it only as reference material.

The rest of this section describes the contributions made by this dissertation.

First, we generalized the WPDS model to extended weighted pushdown systems (EW-

PDSs). (This result is presented in Chapter 3.) WPDSs, while expressive, do not provide a

way to model the local variables of a procedure. EWPDSs provide a way in which a weight

only has to describe the transformation on the variables in scope. In addition to the weights,

merge functions can be provided that take care of the change in scope across procedure

boundaries.

With EWPDSs, it was possible to build many more applications than was possible with

WPDSs. EWPDSs have been used for checking properties of Boolean programs (Chapter

4); computing affine relations in x86 programs (Section 3.5.2); computing aliasing in a pro-

gram with single-level pointers (Section 3.5.3); and (as components of model checkers) for

concurrent programs [48, 58] to model individual threads.

In our earlier work, we used EWPDSs to design a debugging application, called BTrace

[56], which tries to find the erroneous run of a program, given certain data related to the

error, like the stack trace dumped out at a program crash. BTrace benefitted from being
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able to make use of the reachability algorithms for EWPDSs. For instance, it uses the ability

of EWPDSs to answer stack-qualified queries to obtain information associated with a stack

trace. It also uses the witness-tracing feature to reconstruct the failing path.

The EWPDS model and some of its applications are described in Chapter 3.

Second, we showed how to improve the fix-point computation of both WPDSs and EW-

PDSs using graph-theoretic techniques. We call the resulting algorithm FWPDS (the “F”

stands for “Fast”). The previous algorithms for (E)WPDSs were based on chaotic iteration

to compute the fixpoint, which is also typical of other program-analysis tools. We noticed

that adding direction to the chaotic iteration could improve things drastically. Tarjan had

earlier given an efficient iteration strategy for graphs, which applies to programs with a single

procedure [91, 90]. We generalized his algorithm to (E)WPDS. As a result, FWPDS applies

to programs with multiple procedures.

FWPDS applies to all applications that use (E)WPDSs. FWPDS resulted in median

speedups of 1.8× for finding affine-relations in x86 programs, 3.6× for BTrace, 2.6× for

checking properties of Boolean programs.

We also developed techniques for incremental analysis, as well as efficient counterexample

generation. Both techniques are useful in program-verification tools. FWPDS is discussed

in Chapter 4.

Third, we showed how to combine forwards and backwards interprocedural analysis to

compute what we call error projections (Chapter 5). An error projection is the union of all

error traces in a program.

Typically, when an analysis concludes that bad states are reachable in an abstract model,

but the counterexample is infeasible in the original program, the model is refined and the

search is restarted. The single counterexample is the only information that is carried forward

to the next refined model. Error projections allow much more information to be carried

forward. In particular, the part of the model outside the error projection is provably correct

because any execution that travels outside the error projection cannot lead to an error. Thus,

the error projection represents the smallest part of the model that needs to be refined (and
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re-analyzed). Error projections can be used for speeding up abstraction refinement, as well

as for reporting errors back to the user.

We showed how to efficiently and precisely compute error projections when the pro-

gram model is an (E)WPDS. Our algorithm uses forward and backward reachability on the

(E)WPDS, which can in turn be sped up using FWPDS. Error projections and algorithms

for computing them are discussed in Chapter 5.

1.3.2 New Technology for Concurrent Programs

The dissertation also makes a significant contribution to the design and implementation of

efficient and practical verification tools for concurrent programs. We target shared-memory

concurrent programs, whose verification is considered a challenging problem because of the

fine-grained interactions that can occur between threads.

Earlier in the chapter, we mentioned that combining interprocedural analysis and concur-

rency leads to undecidability, and as a consequence, most tools give up precise interprocedural

reasoning. We make a trade-off in a different direction, which is to bound concurrency, but

retain the interprocedural aspect.

We place a bound on the number of context switches that can happen in any execution of

a program. A context switch is defined as the transfer of control from one thread to another

thread. We build tools that perform verification under a given context bound K; i.e., they

can determine if any bug exists in any program execution with K context switches or fewer.

We call verification under a context bound context-bounded analysis (CBA).

A natural question to ask at this point is what abstraction is more useful: one that

gives up precise handling of procedures but does not require any bound on the number of

context switches, or one that can handle procedures but requires a bound on the number of

context switches? While one approach may not be provably better than the other, there are

advantages to exploring the latter approach:
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• For finite-data programs, the analysis of concurrent programs without procedures is

PSPACE-complete, whereas CBA of concurrent programs with procedures is only NP-

complete (Chapter 6).

• Retaining procedures in the abstract model implies that the sequential part of the anal-

ysis remains precise. Consequently, if the global verification property requires strong

“thread-local” invariants to be established in each executing thread, this technique will

do well in proving the global property. A technique that does not handle procedures

would not be able to get off the ground, even in the presence of a context bound. One

such example is shown in Fig. 1.6.

• Many program bugs can be found in a few context switches [77, 78, 70, 59]. KISS [78]

showed how a number of concurrency bugs could be found by exploring just two context

switches and two threads. Furthermore, Musuvathi and Qadeer [70] used an explicit-

state model checker on programs with a closed environment (i.e., with fixed input), to

systematically explore all their interleavings; this approach uncovered numerous bugs.

In our work (Chapter 7), we showed that most bugs can be found in a few context

switches even for programs with an open environment (where the input is not fixed).

• The context bound can be iteratively increased to find more bugs. This has the added

advantage of finding bugs in the smallest number of context switches needed to trigger

them, which can help in understanding the bug. Thus, concurrency is added gradually

by increasing the context bound.

• The number of context switches seems to be good measure of the “hardness” of a bug.

A bug that requires more context switches before it is triggered can be regarded as

being more complicated than a bug that can be triggered in fewer context switches.

Hence, CBA is “demand-driven” in terms of concurrency. The context-switch bound

can be iteratively increased to gain a greater degree of assurance about the correctness

of the program or to find more bugs. The analysis will incur higher costs only for

finding more complicated bugs.
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The disadvantage of bounding the number of context switches is that it is unsound and

cannot be used to verify the absence of bugs. It can only provide a correctness guarantee

under a bound on the number of context switches, for example, by proving that the program

does not have any bugs when fewer than 10 context switches occur.

There has been work on CBA prior to our work. Qadeer and Rehof [77] showed that when

the number of context switches is bounded, the reachability problem for Boolean programs is

decidable. They also give an algorithm for this problem, but its complexity is exponential in

the number of context switches and has not been implemented. Subsequently, we showed that

CBA of Boolean programs is NP-complete (Chapter 6), thus indicating that an algorithm

with lower worst-case complexity may not be possible at all.

This dissertation makes two contributions towards realizing practical algorithms for CBA.

The theme of each of these contributions is that one can take an existing analysis for se-

quential programs and automatically extend it to perform CBA.

Result 1 (Chapter 6): We show that if each thread is modeled using a WPDS then CBA

is decidable, and also give an algorithm for performing CBA. This result requires one extra

property on the weights: they must have a tensor operation. We also showed that this

operation exists for a large class of abstractions Atensor, which includes finite-state ones, such

as the one required for encoding Boolean programs, as well as infinite-state abstractions, such

as the one required for affine-relation analysis. Our result generalizes the work of Qadeer

and Rehof to a larger class of abstractions (and does so using much different techniques).

The significance of our result is that one only needs to show two properties to auto-

matically obtain an algorithm for CBA: (i) the abstraction satisfies (or approximates) the

properties required by a WPDS; and (ii) the abstraction belongs to the class Atensor, i.e.,

an appropriate tensor operation exists. Neither of these requires any concurrency-related

reasoning.

We obtained this result in two steps. First, we showed that all behaviors of a WPDS

can be captured using a weighted transducer. A transducer is like a finite-state machine,

but has an output tape as well. A weighted transducer, additionally, produces a weight
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for every string that it writes on the output tape. We showed that one can construct a

weighted transducer τ for a thread T that summarizes the behavior of T (when T does not

yield control to other threads) in the following sense: when a state s of T is written on the

input tape of τ , it can write a state s′ on the output tape with weight w if and only if the

net effect of executing T from s to s′ is w. This provides a strong characterization of the

set of behaviors of thread T . Second, we used such thread-summarization transducers to

devise a compositional approach to CBA: CBA reduces to composing thread-summarization

transducers as many times as the number of context switches. We showed that this can be

done provided the weights have a tensor operation.

This work provided theoretical insight into CBA. However, the construction of the trans-

ducers can be an expensive operation. We improved on this by giving a more direct way of

performing CBA that avoids the transducer construction.

Result 2 (Chapter 7): We showed that, given a concurrent program P and a context

bound K, one can create a sequential program PK such that the analysis of PK is sufficient

for CBA of P under the bound K. This reduction is a source-to-source transformation, and

requires no assumptions nor extra work on the part of the user, except for the identification

of thread-local data. We implemented this technique for a language that is used to specify

Boolean programs to create the first known implementation of CBA. It scales to programs

with shared state space as large as 224 states and 10 context switches.

The key insight behind this result is that in a program with two threads T1 and T2,

execution proceeds with control alternating between the two threads: T1; T2; T1; · · · . Con-

current analysis is hard because during the analysis of T2, one also has to keep track of the

local state of T1, so that it can be restored when T1 resumes execution. Keeping track of

multiple local states typically makes the verification task expensive (or even undecidable).

We solved this by transforming the threads to T s
1 and T s

2 so that one only has to analyze

T s
1 ; T s

1 ; · · · ; T s
2 ; T s

2 ; · · · , which involves no thread interleaving. For the program to be able

have this structure, the context switches have to be simulated. To simulate T1 relinquishing

control to T2, T s
1 simply guesses the effect that T2 will have on the shared state and resumes
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execution. It does this K times, making a total of K guesses. Next, control is passed to

T s
2 and it verifies whether the K guesses made by T s

1 were correct. If not, execution is

aborted. This ensures that any execution that is not aborted is a valid execution of the con-

current program. We showed that this guess-and-check strategy can be implemented using

a source-to-source transformation.

The program PK is (i) nK-times larger than P , where n is the number of threads, and

(ii) has K times the number of variables as P . The former shows another salient feature of

our reduction: CBA scales linearly with the number of threads. The latter shows that there

is no free lunch: the worst-case complexity of analyzing sequential programs typically grows

exponentially with the number of variables. Thus, the analysis of PK scales exponentially

with K, in the worst case. This result was expected because we had earlier proved that CBA

is NP-complete (when variables are Boolean-valued).

We present our conclusions in Chapter 8.
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Chapter 2

Background: Abstract Models and Their Analysis

This chapter discusses some common abstract models and algorithms for their analysis.

All of the models are for sequential programs with multiple procedures, and their analyses

will be interprocedural.

In Section 2.1, we define the dataflow model, which has been commonly used in the

compiler literature. It serves to lay down some of the useful definitions and concepts. Next, in

Section 2.2 and Section 2.3, we define Boolean programs and pushdown systems, respectively,

which are more popular in verification and model-checking communities. In Section 2.4,

we define weighted pushdown systems (WPDSs), which are capable of encoding all of the

previous models under certain conditions. WPDSs merge the concepts that are common to

compilers and verification. We mostly present results for the analysis of PDSs and WPDSs.

We will build on these results in later chapters.

While discussing the analysis of an abstract model, we focus attention only on asser-

tion checking. There are two important class of properties that one would like to verify on

programs: safety properties and liveness properties. Safety properties address finite (but

possibly unbounded) behaviors of a program, e.g., memory safety, information flow, API us-

age rules, etc. Whereas liveness properties address infinite behaviors, e.g., non-termination,

response time, etc. In this dissertation, we focus only on safety properties. For such proper-

ties, it is possible to reduce the problem of checking them on programs to assertion checking

by inserting instrumentation in the program that keeps track of all the information relevant

to checking the property (similar to inlined reference monitors [29]). For example, memory
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safety can be checked by inserting assertions that check that a pointer is not null right before

it is dereferenced. For array-bounds checking, one can keep track of the size of each allocated

memory block and assert that any access to the array is within the bound. An instance of

this technique for finite-state properties is given in Section 2.4.3.

Reducing the verification property to assertion checking simplifies the design of the anal-

ysis phase. To check an assertion at program node n, one only needs to find the set of

reachable states at n, and then check if this set intersects with the asserted condition. This

can further be simplified by converting an assert(φ) statement to “if(!φ) then goto error”,

and then simply check if node error is reachable or not.

To avoid overloading the term “state”, we may refer to the instantaneous state of a

program as a memory configuration when there is a possibility of confusion with other terms.

Notation. A binary relation on a set S is a subset of S × S. If R1 and R2 are binary

relations on S, then their relational composition, denoted by “R1; R2”, is defined by {(s1, s3) |

∃s2 ∈ S, (s1, s2) ∈ R1, (s2, s3) ∈ R2}. If R is a binary relation, Ri is the relational composition

of R with itself i times, and R0 is the identity relation on S. R∗ = ∪∞i=0R
i is the reflexive-

transitive closure of R.

2.1 The Dataflow Model

Dataflow analysis is used more broadly than just for program verification. It is a technique

commonly used in compilers to enable compiler optimizations. Irrespective of whether a ver-

ification property is present or not, dataflow analysis is concerned with finding a dataflow

value associated with each program node n that summarizes possible memory configura-

tions whenever control reaches n. The dataflow value for n safely approximates (i.e., over

approximates) the set of memory configurations reachable at node n.

The dataflow model of a program consists of the following elements:

• The interprocedural control-flow graph (ICFG) of the program.

• A join semilattice (V,t) with least element ⊥:
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– Elements of V are called dataflow values. A dataflow value represents a set of

possible memory configurations.

– The join operator t is used for combining information obtained along different

paths.

• A value v0 ∈ V that represents the set of possible memory configurations at the

beginning of the program.

• An assignment M of dataflow transfer functions (of type V → V ) to the edges of the

ICFG: M(e) ∈ V → V .

A dataflow-analysis problem can be formulated as a path-function problem.

Definition 2.1.1. A path of length j from node m to node n is a (possibly empty) sequence

of j edges, denoted by [e1, e2, . . . , ej], such that the source of e1 is m, the target of ej is n,

and for all i, 1 ≤ i ≤ j − 1, the target of edge ei is the source of edge ei+1.

The path function pfq for path q = [e1, e2, . . . , ej] is the composition, in reverse order, of

q’s transfer functions: pfq = M(ej) ◦ . . . ◦M(e2) ◦M(e1). The path function for an empty

path is the identify function from V to V .

2.1.1 Join Over All Paths

In intraprocedural dataflow analysis, the goal is to determine, for each node n, the “join-

over-all-paths” (JOP) solution:

JOPn =
⊔

q∈Paths(enter,n)

pfq(v0),

where Paths(enter, n) denotes the set of paths in the ICFG from the enter node to n [51].

JOPn represents a summary of the possible memory configurations that can arise at n:

because v0 ∈ V represents the set of possible memory configurations at the beginning of

the program, pfq(v0) represents the contribution of path q to the memory configurations

summarized at n.
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The soundness of the JOPn solution with respect to the programming language’s concrete

semantics is established by the methodology of abstract interpretation [24]:

• A Galois connection (or Galois insertion) is established to define the relationship be-

tween sets of concrete states and elements of V .

• Each dataflow transfer function M(e) is shown to overapproximate the transfer function

for the concrete semantics of e.

In the discussion below, we assume that such correctness requirements have already been

taken care of, and we concentrate only on algorithms for determining dataflow values once

a dataflow model has been given.

2.1.2 Example: Copy-Constant Propagation

This section gives an example of a dataflow model that can be used to do copy-constant

propagation, in which only statements of the form “x = y” and “x = constant” are inter-

preted, whereas the other statements are over-approximated. The goal of the analysis is to

find if a variable always holds a constant value at some point in the program.

An example ICFG is shown in Fig. 2.1. The dashed and dotted arrows represent the two

procedure calls to f and their return back to main. Let Var be the set of all variables in a

program, and let (Z>,v,t), where Z> = Z ∪ {>}, be the standard constant-propagation

semilattice: for all c ∈ Z, > A c; for all c1, c2 ∈ Z such that c1 6= c2, c1 and c2 are

incomparable; and t is the least-upper-bound operation in this partial order. > stands

for “not-a-constant”. Let D = (Env → Env) be the set of all environment transformers,

where an environment is a mapping for all variables: Env = (Var → Z>) ∪ {⊥}. We use

⊥ to denote an infeasible environment. Furthermore, we restrict the set D to contain only

⊥-strict transformers, i.e., for all d ∈ D, d(⊥) = ⊥. We can extend the join operation to
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int a,b,y;

void main() {

n1: a = 5;

n2: y = 1;

n3,n4: f();

n5: if(...) {

n6: a = 2;

n7,n8: f();

}

n9: ...;

}

void f() {

n10: b = a;

n11: if(...)

n12: y = 2;

else

n13: y = b;

}

emain

n1: a=5

n3: call f

n4: ret from f

n5: if(...)

λe.e[a a5]

n2: y=1

ef

n11: if(...)

n12: y=2 n13: y=b

λe.e[y a1] n10: b=a

λe.e[b ae(a)]

n9: ...

n7: call f

n8: ret from f

n5: if(...)

n6: a=2
λe.e[y a2]

xmain

xf

12

λe.e[y ae(b)]

λe.e[a a2]

Figure 2.1 A program fragment and its ICFG. For all unlabeled edges, the environment
transformer is λe.e. The statements labeled “...” are assumed not to change any of the

declared variables.

environments by taking join componentwise.

env1 t env2 =


env1 if env2 = ⊥

env2 if env1 = ⊥

λv.(env1(v) t env2(v)) otherwise

The dataflow transformers are shown as edge labels in Fig. 2.1. A transformer of the form

λe.e[a 7→ 5] returns an environment that agrees with the argument e, except that a is bound

to 5. The environment ⊥ cannot be updated, and thus (λe.e[a 7→ 5])⊥ equals ⊥. The initial



25

dataflow value is the environment where all variables are uninitialized: [y 7→ >, a 7→ >, b 7→

>].

2.1.3 Interprocedural Join Over All Paths

The interprocedural dataflow analysis problem is similar to the intraprocedural one,

except that the paths that are chosen in the ICFG must be valid interprocedural paths, i.e.,

they should have matching calls and returns. (The exact definition of valid paths can be

found elsewhere [88, 84].)

For instance, in the ICFG shown in Fig. 2.1, the path

[emain, n1, n2, n3, ef, n10, n11, xf, n4, n5] has matching calls and returns, and hence it is a

valid path; the path [emain, n1, n2, n3, ef, n10, n11, xf, n8] is not a valid path because the

exit-to-return-site edge xf → n8 does not correspond to the preceding call-to-enter edge

n3 → ef.

In interprocedural dataflow analysis, the goal shifts from finding the join-over-all-paths

solution to the more precise “join-over-all-valid-paths” (JOVP), or “context-sensitive” solu-

tion. A context-sensitive interprocedural dataflow analysis is one in which the analysis of a

called procedure is “sensitive” to the context in which it is called. A context-sensitive anal-

ysis captures the fact that the results propagated back to each return site r should depend

only on the memory configurations that arise at the call site that corresponds to r. More

precisely, the goal of a context-sensitive analysis is to find the JOVP value for nodes of the

ICFG [88, 52, 84].

Definition 2.1.2. The join-over-all-valid-paths (JOVP) value for an ICFG node n is defined

as follows:

JOVPn =
⊔

q∈VPaths(emain,n)

pfq(v0),

where VPaths(emain, n) denotes the set of valid paths from the main procedure’s enter node

to n.
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Although some valid paths may also be infeasible execution paths, none of the non-valid

paths are feasible execution paths. By restricting attention to just the valid paths from

emain, we exclude some of the infeasible execution paths. In general, therefore, JOVPn

characterizes the memory configurations at n more precisely than JOPn.

Example 2.1.3. For the dataflow model described in Section 2.1.2, JOVPn4 = [y 7→ >, a 7→

5, b 7→ 5] and JOVPn8 = [y 7→ 2, a 7→ 2, b 7→ 2]. This proves, for instance, that the variable

y holds the value 2 whenever control reaches node n8, irrespective of the path taken to reach

n8.

2.1.4 Solving for JOP

In this section, we briefly sketch an algorithm for finding the JOP value. The JOP value

cannot be computed directly by using its definition because it involves taking joins over an

unbounded number of values. It is computed using a fixpoint iteration.

For each node n in the ICFG, let Xn be a variable ranging over V , the set of dataflow

facts. Initialize all such variables to ⊥. Next, repeat the following until the values of all

of the variables stop changing: choose any edge e = (n, m) in the ICFG; update Xm to

(Xm tM(e)(Xn)). Once this iteration is finished, call the resulting value of Xn LFPn (the

least fixpoint value at n).

In the above algorithm, the aspect of choosing an edge randomly among all possible

edges is an instance of the chaotic iteration strategy, where one chooses randomly from a

set of possibilities to make progress. Chapter 4 discusses ways of improving over the chaotic

iteration strategy.

An early result in dataflow analysis shows that LFPn = JOPn, provided that the func-

tions M(e) are distributive for all edges e [44]. A function f : V → V is distributive if

f(v1t v2) = f(v1)t f(v2), for all v1, v2 ∈ V .1 Moreover, the iteration in the above algorithm

will terminate if V has no infinite ascending chains (in the partial order defined by t). Such

1We shall see that the distributivity property is an important requirement in later sections as well.
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a result, which equates the ideal value (JOP) with one obtained from an iterative algorithm

(LFP) is called a coincidence theorem.

A coincidence theorem for interprocedural dataflow analysis was given by Sharir and

Pnueli [88]. The dataflow model was extended to better deal with local variables by Knoop

and Steffen and they also gave a coincidence theorem for this extended model [52]. This

theorem is covered in Section 3.3.

We do not give an algorithm for JOVP here (it can be found elsewhere [88, 84]), but

weighted pushdown systems can encode dataflow models, and the algorithms for them also

provide algorithms to solve for JOVP on dataflow models. As we shall see in later sections,

whenever an interprocedural analysis is carried out (to compute a value similar to the JOVP

value), the computation is always done over variables Xn that range over the function space

V → V , instead of variables that range over V .

2.2 Boolean Programs

A Boolean program can be thought of as a C program with only the Boolean datatype. It

does not have any pointers or heap-allocated storage. A Boolean program consists of a finite

set of procedures. It has a finite set of global variables, and a finite set of local variables

for each procedure. Each variable can only hold a value from a finite domain.2 Boolean

programs are very commonly used by model checkers [4, 6, 96]. They are often obtained as

a result of predicate abstraction (Section 1.1.1).

To simplify the discussion, we assume that procedures do not have parameters (they

can be passed through global variables). The variables in scope inside a procedure are the

global variables and its set of local variables. Fig. 2.2(a) shows a Boolean program with two

procedures and two global variables x and y over a finite domain V = {0, 1, . . . , 7}.

Let G be the set of valuations of the global variables, and let Vali be the set of valuations

of the local variables of procedure i. The set of global states of a Boolean program is the set

2An assignment to a variable v that holds a value from a finite domain can be thought of a collection of
assignments to a vector of Boolean-valued variables, namely, the collection of Boolean-valued variables that
holds the encoding of v’s value.
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n1

n4 n5

n6

x=3 x=7

y=x

n7

n8

n2 n3
bar( ) bar( )

proc foo

proc bar

[[x = 3]] = {((v1, v2), (3, v2)) | v1, v2 ∈ V }

[[x = 7]] = {((v1, v2), (7, v2)) | v1, v2 ∈ V }

[[y = x]] = {((v1, v2), (v1, v1)) | v1, v2 ∈ V }

(a) (b)

Figure 2.2 (a) A Boolean program with two procedures and two global variables x and y

over a finite domain V = {0, 1, . . . , 7}. (b) The (non-identity) transformers used in the
Boolean program. v1 refers to a value of x and v2 refers to a value of y.

G, and the set of local states L is defined as follows: a local state consists of the value of

the program counter, a valuation of local variables from some Vali, and the program stack

(which, for each unfinished call to a procedure P , contains a return address and a valuation

of the local variables at the time of the call to P ). Let Ni be the set of all CFG nodes of

procedure i. Then L = (∪i(Ni × Vali))
+, i.e., elements of L are a non-empty list of pairs

from the set (Ni × Vali) for some i. For convenience, we write the elements of L with an

overbar, e.g. l̄, and use juxtaposition to denote list concatenation.

The effect of executing a statement st of procedure i, denoted by [[st]], is a binary relation

on G × Vali that describes how values of variables in scope can change. Fig. 2.2(b) shows

the (non-identity) transformers used in Fig. 2.2(a).

The operational semantics of Boolean programs is shown in Fig. 2.3. The instantaneous

state of a Boolean program is an element of G×L. The operational semantics define how the

instantaneous state can change on the execution of a single statement in the program. Let

entry(f) denote the entry node of procedure f, proc(n) denote the procedure that contains

node n, ep(n) denote entry(proc(n)); let exitnode(n) denote a predicate on nodes that is true

when n is the exit node of its procedure.
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n st−−→ m (g1, l1, g2, l2) ∈ [[st]]
Intra

(g1, (n, l1) l̄)→ (g2, (m, l2) l̄)

n call f()−−−−−−→ m e = entry(f) l ∈ Valf
Call

(g1, (n, l1) l̄)→ (g1, (e, l) (m, l1) l̄)

exitnode(n)
Return

(g1, (n, l1) l̄)→ (g1, l̄)

Figure 2.3 Operational semantics of a Boolean program. In the rule Call, node m is the
return site for the procedure call at n.

A Boolean program with only global variables can be thought of as an instance of a

dataflow model. In particular, it is one where a dataflow value is a subset of G, t is defined

as union, and the dataflow transformer associated with an edge (n, m) is [[st]], where st is

the statement on node n. In this case, JOVPn denotes the set of all values that the variables

can hold at node n. Assertion checking at node n can be done using JOVPn. To encode

a Boolean program with local variables, an extended dataflow model is needed, such as the

one used in [52], or pushdown systems (Section 2.3) and their extensions (Chapter 3). The

analysis of Boolean programs can be carried out via its encoding to other models, which will

be discussed in Chapter 3. A more direct way of analyzing Boolean programs is be discussed

in Chapter 7.

The advantage of using Boolean programs is that one can encode branch conditions using

assume statements. (An assume statement is one that states a condition but does not change

the value of any variable.) For instance, the statement x == y in the program Fig. 2.2(a)

would be associated with the transformer:

[[x == y]] = {((v, v), (v, v)) | v ∈ V }

Such a statement would have the effect of only letting those states pass that satisfy the

condition x == y. For example, composing the transformers of each statement along the
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program path x = 3; y = 7; x == y, in order, leads to the empty relation, i.e., the path

is infeasible.

2.3 Pushdown Systems

A pushdown system (PDS) is similar to a pushdown automaton but does not have an

input tape. It is simply used to represent a transition system.

Definition 2.3.1. A pushdown system is a triple P = (P, Γ, ∆) where P is the set of

states or control locations, Γ is the set of stack symbols and ∆ ⊆ P × Γ× P × Γ∗ is the set

of pushdown rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and u ∈ Γ∗. A rule

r ∈ ∆ is written as 〈p, γ〉 ↪→ 〈p′, u′〉 where p, p′ ∈ P , γ ∈ Γ and u′ ∈ Γ∗.

The rules of P define a transition relation ⇒P on the configurations of P as follows:

If r = 〈p, γ〉 ↪→ 〈p′, u′〉 then 〈p, γu′′〉 ⇒P 〈p′, u′u′′〉 for all u′′ ∈ Γ∗. Moreover, if for two

configurations c and c′, σ ∈ ∆∗ is a rule sequence that transforms c to c′, we say c ⇒σ
P c′.

The set of all rule sequences that transform c to c′ is denoted as paths(c, c′).

The reflexive transitive closure of ⇒P is denoted by ⇒∗
P . For a set of configurations C,

we define pre∗P(C) = {c′ | ∃c ∈ C : c′ ⇒∗
P c} and post∗P(C) = {c′ | ∃c ∈ C : c ⇒∗

P c′},

which are just backward and forward reachability under the transition relation ⇒. We drop

the subscript P when there is no possibility of confusion.

We restrict PDS rules to have at most two stack symbols on the right-hand side. This

means that for every rule r ∈ ∆ of the form 〈p, γ〉 ↪→P 〈p′, u〉, we have |u| ≤ 2. This restric-

tion does not decrease the power of pushdown systems because by increasing the number of

stack symbols by a constant factor, an arbitrary pushdown system can be converted into one

that satisfies this restriction [85].

The standard approach for modeling program control flow with a pushdown system is as

follows: P contains a single state {p}, Γ corresponds to program locations, and ∆ corresponds

to transitions in the interprocedural control-flow graph (ICFG), as shown in Fig. 2.4. For
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Rule Control flow modeled

〈p, u〉 ↪→ 〈p, v〉 Intraprocedural edge u→ v

〈p, c〉 ↪→ 〈p, ef r〉 Call to procedure f from node c that enters

the procedure at ef and returns to r

〈p, xf〉 ↪→ 〈p, ε〉 Return from procedure f at exit node xf

Figure 2.4 The encoding of an ICFG’s edges as PDS rules.

instance, the rules that encode the ICFG shown in Fig. 2.1 are:

〈p, emain〉 ↪→ 〈p, n1〉

〈p, n1〉 ↪→ 〈p, n2〉

〈p, n2〉 ↪→ 〈p, n3〉

〈p, n3〉 ↪→ 〈p, ef n4〉

〈p, n4〉 ↪→ 〈p, n5〉

〈p, n5〉 ↪→ 〈p, n6〉

〈p, n5〉 ↪→ 〈p, n9〉

〈p, n6〉 ↪→ 〈p, n7〉

〈p, n7〉 ↪→ 〈p, ef n8〉

〈p, n8〉 ↪→ 〈p, n9〉

〈p, n9〉 ↪→ 〈p, xmain〉

〈p, xmain〉 ↪→ 〈p, ε〉

〈p, ef〉 ↪→ 〈p, n10〉

〈p, n10〉 ↪→ 〈p, n11〉

〈p, n11〉 ↪→ 〈p, n12〉

〈p, n12〉 ↪→ 〈p, xf〉

〈p, n11〉 ↪→ 〈p, n13〉

〈p, n13〉 ↪→ 〈p, xf〉

〈p, xf〉 ↪→ 〈p, ε〉

Under such an encoding of a program, a PDS configuration can be thought of as a CFG

node with its calling context, i.e., the stack of return addresses of unfinished calls leading

up to the node. A rule r = 〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ∗, is called a pop rule if |u| = 0, and a push

rule if |u| = 2.

A PDS in which the set P is a singleton set is also referred to as a context-free process

[16]. The state space P can be expanded to use multiple states to encode a finite abstraction

of the global variables, and the stack alphabet can be expanded to encode local variables

[85]. This technique will be discussed in more detail below.

Because the number of configurations of a pushdown system is unbounded, it is useful to

use finite automata to describe certain infinite sets of configurations.

Definition 2.3.2. If P = (P, Γ, ∆) is a pushdown system then a P-automaton is a finite

automaton (Q, Γ,→, P, F ) where Q ⊇ P is a finite set of states, →⊆ Q × Γ × Q is the
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transition relation, P is the set of initial states, and F is the set of final states of the

automaton. We say that a configuration 〈p, u〉 is accepted by a P-automaton if the automaton

can accept u when it is started in the state p (written as p u−→∗ q, where q ∈ F ). A set of

configurations is called regular if some P-automaton accepts it. Without loss of generality,

P-automata are restricted to not have any transitions leading to an initial state.

An important result is that for a regular set of configurations C, both post∗(C) and

pre∗(C) are also regular sets of configurations [15, 85, 9, 30, 33].

2.3.1 Encoding Boolean programs using PDSs

To encode a Boolean program B using a PDS, the state alphabet P is expanded to encode

the values of global variables, and the stack alphabet Γ is expanded to encode the values of

local variables [85].

Let Ni be the set of CFG nodes of the ith procedure of B. Let G and L be the set of

global and local states of B, respectively, as defined in Section 2.2. Let Vali be the set of

valuations of local variables of the ith procedure.

We set P to be G, and Γ to be the union of Ni × Vali over all procedures. (Note that

the set of local states L equals Γ+.) The PDS rules for the ith procedure are constructed as

follows: (i) an intraprocedural ICFG edge u → v with statement st is encoded via a set of

rules 〈g, (u, l)〉 ↪→ 〈g′, (v, l′)〉, for each ((g, l), (g′, l′)) ∈ [[st]]; (ii) a call edge c → r that calls

procedure f , with enter node ef , is encoded via a set of rules 〈g, (c, l)〉 ↪→ 〈g, (ef , l0) (r, l)〉,

for each (g, l) ∈ G× Vali and l0 ∈ Valf ; (iii) a procedure return at node u is encoded via a

set of rules 〈g, (u, l)〉 ↪→ 〈g, ε〉, for each (g, l) ∈ G× Vali;

Under such an encoding of a Boolean program as a PDS, a configuration 〈p, γ1γ2 · · · γn〉

of the PDS is an element of G × L that describes the instantaneous state of the Boolean

program. The state p encodes the values of global variables; γ1 encodes the current program

counter and the values of local variables in scope; and the rest of the stack encodes the list of

unfinished calls with the values of local variables at the time the call was made. The reader
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can verify that the PDS transition relation (⇒) is the same as the single-step execution

relation (→) defined in Fig. 2.3.

2.3.2 Solving Reachability on PDSs using Saturation-Based Algo-
rithms

In this section, we show how to compute post∗(C) and pre∗(C) for a regular set of

configurations C.3 This will serve to lay out some of the concepts that we will use in

designing algorithms for more advanced abstract models in later chapters.

The algorithms for computing post∗ and pre∗, called poststar and prestar, respectively,

take a P-automaton A as input, and if C is the set of configurations accepted by A, they

produce P-automata Apost∗ and Apre∗ that accept the sets of configurations post∗(C) and

pre∗(C), respectively [9, 30, 33]. Both poststar and prestar can be implemented as saturation

procedures ; i.e., transitions are added to A according to some saturation rule until no more

can be added.

Algorithm prestar: Apre∗ can be constructed from A using the following saturation rule:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w→ q in the current automaton, add a transition (p, γ, q).

This algorithm is based on the intuition that if the automaton accepts a configuration

c and a rule r allows the transition c′ ⇒ c, then the automaton needs to accept c′ as well:

If there is an accepting path starting in state q that accepts u, then the automaton accepts

the configuration c = 〈p′, wu〉. The rule r = 〈p, γ〉 ↪→ 〈p′, w〉 allows the transition c′ ⇒ c,

where c′ = 〈p, γu〉. The addition of the transition (p, γ, q) allows c′ to be accepted by the

automaton.

Termination of the algorithm follows from the fact that the number of states of the

automaton does not increase (hence, the number of transitions is bounded).

Algorithm poststar: Apost∗ can be constructed from A by performing Phase I and then

saturating via the rules given in Phase II:

3The material in this section is adapted from [83].
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• Phase I. For each pair (p′, γ′) such that P contains at least one rule of the form

〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, add a new state p′γ′ .

• Phase II (saturation phase). (The symbol
γ
 denotes the relation (

ε→)? γ→ (
ε→)?.)

– If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ and p
γ
 q in the current automaton, add a transition

(p′, ε, q).

– If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p
γ
 q in the current automaton, add a transition

(p′, γ′, q).

– If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ and p
γ
 q in the current automaton, add the transitions

(p′, γ′, p′γ′) and (p′γ′ , γ
′′, q).

This algorithm is based on intuition similar to that for prestar. The difference is that

poststar adds more states to the automaton. These states are needed to accommodate

configurations that are added because of a push rule. One has to argue that reusing these

states for different applications of (possibly distinct) call rules is correct. The interested

reader is referred to the original papers for this proof [9, 30, 33].

Example 2.3.3. Given the PDS that encodes the ICFG from Fig. 2.1 and the query au-

tomaton A shown in Fig. 2.5(a), which accepts the language {〈p, emain〉}, poststar produces

the automaton Apost∗ shown in Fig. 2.5(b),

2.3.3 Solving Pre-Reachability on PDSs using Context-Free Gram-
mars

While most implementations of PDS reachability use the saturation-based algorithms,

there are different ways looking at the reachability problem.4 In particular, we show how

context-free grammars can be used to find not only the set of reachable configurations, but

also the set of paths (rule sequences) that justify their reachability. In this section, fix a

PDS P = (P, Γ, ∆) and a P-automaton A = (Q, Γ,→, P, F ).

4The material in this section is adapted from [83].



35

emainp

emain,n1,n2,n3,
n4,n5,n6,n7,
n8,n9,xmain,ε

p

n4

n8
ef,n10,
n11,n12,
n13,xf,ε pe

f

(a) (b)

Figure 2.5 (a) Automaton for the input language of configurations {〈p, emain〉}; (b)
automaton for post∗({〈p, emain〉}) (computed for the PDS that encodes the ICFG from

Fig. 2.1).

Production for each

(1) PopRuleSeq(q,γ,q′) → r r = 〈q, γ〉 ↪→ 〈q′, ε〉 ∈ ∆

(2) PopRuleSeq(p,γ,q) → r PopRuleSeq(p′,γ′,q) r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ P

(3) PopRuleSeq(p,γ,q) → r PopRuleSeq(p′,γ′,q′) PopRuleSeq(q′,γ′′,q)

r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, q, q′ ∈ P

Figure 2.6 The PopRuleSeq grammar for a PDS P = (P, Γ, ∆).

Consider the PopRuleSeq grammar shown in Fig. 2.6. The non-terminals of the grammar

are PopRuleSeq(p,γ,q) for all p, q ∈ P and γ ∈ Γ, and the set of terminals is ∆. An important

property of this grammar is as follows.

Lemma 2.3.4. The set of strings derived by the non-terminal PopRuleSeq(p,γ,q) of the gram-

mar shown in Fig. 2.6 is exactly the set pathsP(〈p, γ〉, 〈q, ε〉).

The proof of Lem. 2.3.4 follows quite easily from induction on the length of a rule se-

quence.

We extend Lem. 2.3.4 to capture the set of all rule sequences from a given configuration.

First, observe that every rule sequence σ ∈ paths(〈p1, γ1γ2 · · · γn〉, 〈p, ε〉) can be decomposed

as σ = σ1σ2 · · ·σn (see Fig. 2.7) such that σi ∈ paths(〈pi, γi〉, 〈pi+1, ε〉) for 1 ≤ i ≤ n, and
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〈p1, γ1 γ2 γ3 · · · γn〉 ⇒σ1 〈p2, γ2 γ3 · · · γn〉

⇒σ2 〈p3, γ3 · · · γn〉

· · ·

⇒σn−1 〈pn, γn〉

⇒σn 〈pn+1, ε〉

Figure 2.7 A path in the transition relation of a PDS from the configuration
〈p1, γ1 γ2 γ3 · · · γn〉 to the configuration 〈pn+1, ε〉.

pn+1 = p. Intuitively, this holds because for a path to look at γ2, it must first pop off γ1,

and then repeat this until the stack becomes empty. This implies the following two results.

Lemma 2.3.5. For any PDS P = (P, Γ, ∆), the set pathsP(〈p1, γ1γ2 · · · γn〉, 〈pn+1, ε〉)

equals the union of the sets (pathsP(〈p1, γ1〉, 〈p2, ε〉).pathsP(〈p2, γ2〉, 〈p3, ε〉) . . .

pathsP(〈pn, γn〉, 〈pn+1, ε〉)), where “.” denotes elementwise concatenation of sets of

strings, over all possible choices of p2, p3, · · · , pn ∈ P .

Corollary 2.3.6. Let L(N) be the language that can be derived from a non-terminal N . For

a PDS P = (P, Γ, ∆), the set of rule sequences pathsP(〈p1, γ1γ2 · · · γn〉, 〈p, ε〉) is the union

of the sets (L(PopRuleSeq(p1,γ1,p2)).L(PopRuleSeq(p2,γ2,p3)) · · · L(PopRuleSeq(pn,γn,p))) over all

possible choices of p2, p3, · · · , pn ∈ P .

Next, we show that Cor. 2.3.6 is sufficient to compute the pre∗ set. Let L(A) be the set

of configurations accepted by A. We absorb A into the PDS P in order to only consider a

single system as follows:

Definition 2.3.7. Given a PDS P = (P, Γ, ∆) and a P-automaton A = (Q, Γ,→, P, F ),

their combined PDS PA is defined to be (Q, Γ, ∆∪∆′), where ∆′ contains a pop rule 〈p, γ〉 ↪→

〈q, ε〉 for every transition (p, γ, q) in A.

The PDS PA can either operate like P , by using a rule in ∆, or like A, by using a rule in

∆′. Because A has no incoming transitions to states in P (Defn. 2.3.2), a valid rule sequence
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σ of PA (i.e., σ ∈ paths(c, c′) for some configurations c and c′) must be from the set ∆∗(∆′)∗,

i.e., it is a sequence of rules from ∆ followed by a sequence of rules from ∆′. This is because

when a rule in ∆′ is used, the target configuration must have a control state from the set

Q− P , after which a rule in ∆ cannot fire, and rules in ∆′ keep the control state in Q− P .

The first phase, consisting of rules from ∆, is also a valid rule sequence for P ; the second

phase, consisting of rules from ∆′, simulates running automaton A. The following lemma is

based on this observation.

Lemma 2.3.8. Let P = (P, Γ, ∆) be a PDS and A = (Q, Γ,→, P, F ) be a P-automaton.

Let PA be their combined PDS. Then c′ ⇒P c for some c ∈ C, if and only if c′ ⇒PA 〈qf , ε〉

for some qf ∈ F . Consequently, pre∗P(L(A)) = projectP (pre∗PA({〈qf , ε〉 | qf ∈ F})), where

projectP (S) consists of all configurations in S, whose control state is in P .

Given a configuration c, we can compute the set of all rule sequences that take c to a

configuration accepted by A as follows: For each qf ∈ F , apply Cor. 2.3.6 to the PopRuleSeq

grammar of PA, with p = qf , to obtain the set Sqf
of all paths from c to 〈qf , ε〉 in PA. Next,

take a union of these sets over all states in F , and remove the rules in ∆′. The resultant set

is the desired answer.

Because the set of such accepting paths can be unbounded, computing it explicitly may

not be possible. However, the above technique does allow us to get a handle on the set of all

accepting paths. By replacing the rules with other quantities, we can compute other values

of interest. For instance, for weighted pushdown systems, the rules are replaced by weights

to compute the net effect of all paths between two given configurations (Section 2.4.1). If

one is only interested in the set of reachable configurations, then the rules can be replaced

by ε, leading to the grammar shown in Fig. 2.8, which has some interesting properties.

In the PopSeq grammar, PopSeq(p,γ,q) can derive ε if and only if pathsPA(〈p, γ〉, 〈q, ε〉) is

non-empty. Also note the similarity of this grammar with the saturation-based algorithm

prestar presented earlier: each grammar production, which was created because of the rule

r ∈ ∆, corresponds to an instance of saturation rule for r. For example, in prestar, the

rule r = 〈p, γ〉 ↪→ 〈p′, γ′〉 dictates the following: if (p′, γ′, q) is a transition in the current
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Production for each

(1) PopSeq(q,γ,q′) → ε 〈q, γ〉 ↪→ 〈q′, ε〉 ∈ (∆ ∪∆′)

(2) PopSeq(p,γ,q) → PopSeq(p′,γ′,q) 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Q

(3) PopSeq(p,γ,q) → PopSeq(p′,γ′,q′) PopSeq(q′,γ′′,q)

〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, q, q′ ∈ Q

Figure 2.8 The PopSeq grammar for PDS PA.

automaton, then add a transition (p, γ, q); in the grammar, it states that if PopSeq(p′,γ′,q)

can derive ε, then so can PopSeq(p,γ,q). This leads to the following result.

Lemma 2.3.9. The non-terminal PopSeq(p,γ,q) of the grammar shown in Fig. 2.8 can de-

rive ε if and only if the transition (p, γ, q) exists in the final automaton Apre∗ produced by

prestar(A).

Lem. 2.3.9 along with Cor. 2.3.6 justifies the correctness of the prestar algorithm, i.e.,

the fact that L(Apre∗) = pre∗(L(A)).

2.3.4 Solving Post-Reachability on PDSs using Context-Free Gram-
mars

The situation is similar for computing post∗ using context-free grammars, but slightly

more complicated.5 The complication arises from the fact that the PDS has to be massaged

into a different form before we obtain a notion that is analogous to pop sequences.

Let Qmid be a set that contains a state p′γ′ for every push rule 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 in ∆.

Let Pe = (P ∪ Qmid, Γ, ∆e), where ∆e contains every rule from ∆ with zero or one stack

symbols on the right-hand side; and for every push rule r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, ∆e

contains two rules: η1(r) = 〈p, γ〉 ↪→ 〈p′γ′ , γ′′〉 and η2(r) = 〈p′γ′ , ε〉 ↪→ 〈p′, γ′〉. Note that this

allows the addition of rules with no stack symbols on the left-hand side. Such rules can fire

without consuming the top symbol of the stack, i.e., the rule 〈p, ε〉 ↪→ 〈q, γ〉 contributes to

the transition relation of the PDS as follows: 〈p, u〉 ⇒ 〈q, γu〉 for every u ∈ Γ∗.

5Again, the material in this section is adapted from [83].
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Production for each

(1) SameLevelRuleSeq(p′,ε,q) → PushRuleSeq(p,γ,q) r r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆, q ∈ Pe

(2) PushRuleSeq(p′,γ′,q′) → PushRuleSeq(q,γ′,q′) SameLevelRuleSeq(p′,ε,q)

p′ ∈ P, q, q′ ∈ Pe

(3) PushRuleSeq(p′,γ′,q) → PushRuleSeq(p,γ,q) r r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Pe

(4) PushRuleSeq(p′,γ′,p′
γ′ )

→ η2(r) r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 ∈ ∆

(5) PushRuleSeq(p′
γ′ ,γ

′′,q) → PushRuleSeq(p,γ,q) η1(r) r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 ∈ ∆, q ∈ Pe

Figure 2.9 The PushRuleSeq grammar for PDS Pe. The set Pe is defined as (P ∪Qmid)

The non-terminals of the grammar shown in Fig. 2.6 derived a language of rule sequences,

each of which could pop off one symbol from the top of the stack. Now we define a grammar

whose non-terminals derive rule sequences that can push one symbol on the top of the stack.

This grammar is shown in Fig. 2.9.

Lemma 2.3.10. The set of strings derived by the non-terminal PushRuleSeq(p,γ,q) of the

grammar shown in Fig. 2.9 is exactly the set pathsPe
(〈q, ε〉, 〈p, γ〉).

Note that any for any rule sequence of Pe between two configurations 〈p1, u1〉 and 〈p2, u2〉

such that p1, p2 ∈ P , it must have η2(r) and η1(r) adjacent to each other. This is because

once a state changes to be one in Qmid, only a rule of the form η2(r) can fire. We can convert

a valid rule sequence σe ∈ ∆∗
e to one in ∆∗ by replacing the sequence of rules (η1(r); η2(r))

in σe with r. (This is possible because η1 is invertible.)

Similar to Cor. 2.3.6, we can use the PushRuleSeq grammar to find all paths in the set

pathsPe
(〈p, ε〉, 〈pn+1, γn+1 · · · γ1〉).

We define the combined PDS-Automaton system as follows: the PDS ARP is the tuple

(Q ∪ Qmid, Γ, ∆e), where ∆e contains every rule from ∆ with zero or one stack symbols on

the right-hand side; for every push rule 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, ∆e contains two rules: 〈p, γ〉 ↪→

〈p′γ′ , γ′′〉 and 〈p′γ′ , ε〉 ↪→ 〈p′, γ′〉; and for every transition (q, γ, q′) in A, ∆e contains the rule

〈q′, ε〉 ↪→ 〈q, γ〉. A rule sequence in this PDS first generates a configuration in the language
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Production for each

(1) PushSeq(q,γ,q′) → ε (q, γ, q′) ∈ →

(2) SameLevelSeq(p′,ε,q) → PushSeq(p,γ,q) 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆, q ∈ Qe

(3) PushSeq(p′,γ′,q′) → PushSeq(q,γ′,q′) SameLevelSeq(p′,ε,q) p′ ∈ P, q, q′ ∈ Qe

(4) PushSeq(p′,γ′,q) → PushSeq(p,γ,q) 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Qe

(5) PushSeq(p′,γ′,p′
γ′ )

→ ε 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 ∈ ∆

(6) PushSeq(p′
γ′ ,γ

′′,q) → PushSeq(p,γ,q) 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 ∈ ∆, q ∈ Qe

Figure 2.10 The PushSeq grammar for PDS ARP . The set Qe is defined as (Q ∪Qmid)

of A and then fires a rule sequence from Pe. The saturation-based algorithm poststar is in

direct correspondence with the PushRuleSeq grammar when the rules are replaced with ε.

Lemma 2.3.11. The non-terminal PushSeq(p,γ,q) of the grammar shown in Fig. 2.10 can

derive ε if and only if the transition (p, γ, q) exists in the final automaton Apost∗ produced by

poststar(A).

2.4 Weighted Pushdown Systems

A weighted pushdown system is obtained by supplementing a pushdown system with a

weight domain that is a bounded idempotent semiring [82, 10]. Such semirings are powerful

enough to encode finite-state data abstractions such as the one required to encode Boolean

programs, as well as infinite-state data abstractions, such as copy-constant propagation and

affine-relation analysis [60]. The basic idea is to use weights to encode the effect that each

rule has on the data state of the program.

Definition 2.4.1. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1), where

D is a set whose elements are called weights, 0 and 1 are elements of D, and ⊕ (the combine

operation) and ⊗ (the extend operation) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕ is idem-

potent. (D,⊗) is a monoid with the neutral element 1.
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2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.

4. In the partial order v defined by ∀a, b ∈ D, b v a iff a ⊕ b = a, there are no infinite

ascending chains.

In dataflow-analysis terms, D is a set of dataflow transformers, ⊕ is join, ⊗ is transformer

composition, 0 is the infeasible transformer, and 1 is the identity transformer.

The height of a weight domain is defined to be the length of the longest ascending chain

in the domain. For simplicity, when we discuss complexity results, we will assume that the

height is bounded, but WPDSs, and the algorithms in this dissertation, can also be used in

certain cases when the height is unbounded (as long as the condition in Defn. 2.4.1, item 4

is satisfied).

Definition 2.4.2. A weighted pushdown system is a triple W = (P ,S, f) where P =

(P, Γ, ∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring and

f : ∆→ D is a map that assigns a weight to each pushdown rule.

Let σ ∈ ∆∗ be a sequence of rules. Using f , we can associate a value to σ, i.e., if

σ = [r1, . . . , rk], then we define v(σ)
def
= f(r1)⊗ . . .⊗ f(rk). The set of all rule sequences from

a configuration in S to a configuration in T is denoted as paths(S, T ).

Definition 2.4.3. LetW = (P ,S, f) be a WPDS, where P = (P, Γ, ∆), and let S, T ⊆ P×Γ∗

be regular sets of configurations. The interprocedural join-over-all-paths (IJOP) value

IJOP(S, T ) is defined as
⊕
{v(σ) | s ⇒σ t, s ∈ S, t ∈ T}. A set of witnesses ω(S, T ) for

this value is defined as a finite set of paths (rule sequences) {σ1, · · · , σn}, σi ∈ paths(S, T ),

such that ⊕iv(σi) = IJOP(S, T ).

The IJOP value describes the net transformation that occurs when going from one set of

configurations to another. The set of witnesses gives a finite number of paths that together
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justify the reported IJOP value. The WPDS reachability problems, which compute the set

of forward and backward reachable states, are defined as follows.

Definition 2.4.4. Let W = (P ,S, f) be a weighted pushdown system, where P = (P, Γ, ∆),

and let C ⊆ P × Γ∗ be a regular set of configurations. The generalized pushdown pre-

decessor problem GPP(C) is to find for each c ∈ P × Γ∗:

δ(c, C)
def
= IJOP({c}, C)

The generalized pushdown successor (GPS) problem GPS(C) is to find for each

c ∈ P × Γ∗:

δ(C, c)
def
= IJOP(C, {c})

If S is the set of initial configurations of a program then GPS(S) solves for the set of

all reachable states in the program. If T is the set of error configurations (such as ones

that trigger an assertion violation), then GPP(T ) is the set of all states that can lead to

an error configuration. Checking program safety reduces to checking that IJOP(S, T ) 6= 0.

In case it is non-0, ω(S, T ) gives a finite number of counterexamples — valid paths from a

configuration in S to a configuration in T .

To illustrate the above definitions, we show how a Boolean program B with only global

variables can be encoded using a WPDS (P ,S, f). Let G be the set of global states of B. The

weight domain S is (2G×G,∪, ; , ∅, id), where the weights are relations (transformers) on the

set G. Combine is set union, extend is relational composition (composition of transformers),

0 is the empty relation and 1 = id is the identity relation on G. The ICFG of B is encoded

using the PDS P and a statement st that labels edge e of B is encoded as the weight [[st]]

on the rule corresponding to e. An example is shown in Fig. 2.11(a).

The set of all data values that reach a node n can be calculated as follows: let S be

the singleton configuration consisting of the program’s enter node, and let T be the set

{〈p, n u〉 | u ∈ Γ∗}. Let w = IJOP(S, T ). If w = 0, then the node cannot be reached.

Otherwise, w captures the net transformation on the global state from when the program

started. The range of w, i.e., the set {g ∈ G | ∃g′ ∈ G : (g′, g) ∈ w}, is the set of valuations
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〈p, n1〉 ↪→ 〈p, n2〉 w1

〈p, n1〉 ↪→ 〈p, n3〉 w2

〈p, n2〉 ↪→ 〈p, n7 n4〉 1

〈p, n3〉 ↪→ 〈p, n7 n5〉 1

〈p, n4〉 ↪→ 〈p, n6〉 1

〈p, n5〉 ↪→ 〈p, n6〉 1

〈p, n7〉 ↪→ 〈p, n8〉 w3

〈p, n8〉 ↪→ 〈p, ε〉 1

p

pn

acc

n1,1 n2,w1
n3,w2 n4,w4
n5,w5 n6,w6

n7,1
n8,w3
ε,w3

n4,w4

n5,w5
7

p acc

n7,w3
n8,1

n1,w6 n2,w3
n3,w3 n4,1
n5,1 n6,1

w1 = {((v1, v2), (3, v2)) | v1, v2 ∈ V }

w2 = {((v1, v2), (7, v2)) | v1, v2 ∈ V }

w3 = {((v1, v2), (v1, v1)) | v1, v2 ∈ V }

w4 = {((v1, v2), (3, 3)) | v1, v2 ∈ V }

w5 = {((v1, v2), (7, 7)) | v1, v2 ∈ V }

w6 =
{((v1, v2), (3, 3)) | v1, v2 ∈ V }

∪ {((v1, v2), (7, 7)) | v1, v2 ∈ V }

(a) (b) (c)

Figure 2.11 (a) A WPDS that encodes the Boolean program from Fig. 2.2(a). (b) The
result of poststar(〈p, n1〉) and prestar(〈p, n6〉). The final state in each of the automata is

acc. (c) Definitions of the weights used in the figure.

that reach node n. For example, in Fig. 2.11(a), the IJOP weight to node n6 is the weight

w6 shown in Fig. 2.11(c). Its range shows that either x = 3 and y = 3, or x = 7 and y = 7.

Because T can be any regular set, one can also answer stack-qualified queries [83]. For

example, the set of values that arise at node n when its procedure is called from call site m

can be found by setting T = {〈p, n mr u〉 | u ∈ Γ∗}, where mr is the return site for call site

m.

A WPDS with a weight domain that has a finite set of weights, such as the one described

above for Boolean programs, can be encoded as a PDS. However, it is often useful to use

weights because they can be symbolically encoded. Tools such as Moped [85] and Bebop

[6] use BDDs [14] to encode sets of data values, which allows them to scale to a large number

of variables. (Using PDSs for Boolean program verification, without any symbolic encoding,

is generally not a feasible approach.)

Dataflow analysis can also be encoded using WPDSs. The control-flow is encoded using

a PDS, as done for Boolean programs; the dataflow transformer associated an edge becomes

the weight associated with the rule corresponding to that edge; combine is defined as join

of transformers; and extend is defined as the reverse of function composition. In this case,

JOVPn (Defn. 2.1.2) is the same as IJOP({n0}, {〈p, n u〉 | u ∈ Γ∗})(v0), where n0 is the
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entry point of the main procedure and v0 is the initial dataflow value. This encoding is valid

under the restriction that all the dataflow transformers are distributive (over the lattice join)

and do not have any infinite ascending chains. These are the same restrictions used in other

work on interprocedural dataflow analysis [88].

2.4.1 Solving for the IJOP Value

There are two algorithms for solving backward and forward reachability on WPDSs,

called prestar and poststar, respectively (in the unweighted case, these algorithms reduce to

computing the pre∗ and post∗ sets of configurations). Sets of weighted configurations are

symbolically represented using weighted automata.

Definition 2.4.5. Given a WPDS W = (P ,S, f), a W-automaton A is a P-automaton,

where each transition in the automaton is labeled with a weight. The weight of a path in

the automaton is obtained by taking an extend of the weights on the transitions in the path

in either a forward or backward direction, depending on the context in which the automaton

is used. The automaton is said to accept a configuration 〈p, u〉 with weight w, denoted by

A(〈p, u〉), if w is the combine of weights of all accepting paths for u starting from state p in

the automaton. We call the automaton a backward W-automaton if the weight of a path

is read backwards, and a forward W-automaton otherwise.

Let A be an unweighted automaton and L(A) be the set of configurations accepted

by it. Then, prestar(A) produces a forward weighted automaton Apre∗ as output, such that

Apre∗(c) = IJOP({c},L(A)), whereas poststar(A) produces a backward weighted automaton

Apost∗ as output, such that Apost∗(c) = IJOP(L(A), {c}) [83]. These algorithms are similar

to those for PDSs; they only differ in the weight computations.

Notation. In a forwardW-automaton, we say that p
u→ q with weight w if u = γ1γ2 · · · γn,

and there are transitions (pi, γi, pi+1) with weight wi, where p = p1 and q = pn+1, and

w = w1 ⊗ w2 ⊗ · · · ⊗ wn. The same holds for a backward automaton, except that w should

equal wn⊗· · ·⊗w2⊗w1. The operation of adding a transition t with weight w to a weighted

automaton A is carried out as follows: if t does not exist in A, then t is simply added to
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the transition set of A; otherwise, if t exists with weight w′, then t’s weight is updated to

w ⊕ w′.

Algorithm prestar: The forward weighted automaton Apre∗ can be constructed from A

using the following saturation rule: If r = 〈p, γ〉 ↪→ 〈p′, u〉 is a rule in the PDS and p′
u→ q in

the current automaton with weight w, then add a transition (p, γ, q) to the automaton with

weight (f(r)⊗ w).

Algorithm poststar: The backward weighted automaton Apost∗ can be constructed from A

by performing Phase I and then saturating via the rules given in Phase II:

• Phase I. For each pair (p′, γ′) such that P contains at least one rule of the form

〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, add a new state p′γ′ .

• Phase II (saturation phase). (The symbol
γ
 denotes the relation (

ε→)? γ→ (
ε→)?.)

– If r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ and p
γ
 q with weight w in the current automaton,

add a transition (p′, ε, q) with weight w ⊗ f(r).

– If r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p
γ
 q with weight w in the current automaton,

add a transition (p′, γ′, q) with weight w ⊗ f(r).

– If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ and p
γ
 q in the current automaton, add the transitions

(p′, γ′, p′γ′) and (p′γ′ , γ
′′, q) with weights 1 and w ⊗ f(r), respectively.

An efficient implementation of this algorithm dynamically maintains the epsilon closure

of the automaton so that weights under the transition relation
γ
 can be read off

efficiently [83].

Examples are shown in Fig. 2.11(b). One thing to note here is how the poststar automaton

works. The procedure bar is analyzed independently of its calling context (i.e., without

knowing the exact value of x), which generates the transitions between p and pn7 . The

calling context of bar, which determines the input values to bar, is represented by the

transitions that leave state pn7 . This is how, for instance, the automaton records that x = 3

and y = 3 at node n8 when bar is called from node n2.
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We now provide some intuition into why one needs both forwards and backwards au-

tomata. Consider the automaton shown in Fig. 2.11(c). For the poststar automaton, when

one follows a path that accepts the configuration 〈p, n8 n4〉, the transition (p, n8, q) comes

before (q, n4, acc). However, the former transition describes the transformation inside bar,

which happens after the transformation performed in reaching the call site at n4 (which is

stored on (q, n4, acc)). Because the transformation for the calling context happens earlier

in the program, but its transitions appear later in the automaton, the weights are read

backwards. For the prestar automaton, the weight on (p, n4, acc) is the transformation for

going from n4 to n6, which occurs after the transformation inside bar. Thus, it is a forwards

automaton.

These saturation-based algorithms can be applied on weighted automata as well. In that

case, one can prove the following. (Define A(c) to be 0 if A does not accept c.)

Lemma 2.4.6. If A is a forward-weighted automaton and Apre∗ is the result of running

prestar on A, then for every configuration c:

Apre∗(c) =
⊕

c′

{v(σ)⊗A(c′) | σ ∈ paths(c, c′)}

If A is a backward-weighted automaton and Apost∗ is the result of running poststar on A,

then for every configuration c:

Apost∗(c) =
⊕

c′

{A(c′)⊗ v(σ) | σ ∈ paths(c′, c)}

The path summary Algorithm

Once the weighted automata Apre∗ and Apost∗ are computed, we still need to be able to

compute the weight with which they accept a particular configuration, or a set of configura-

tions. Recall that A(c) is defined as the combine of weights of all accepting paths for c. We

define A(C) =
⊕
{A(c) | c ∈ C}. This allows one to solve for IJOP(S, T ) for configuration
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sets S and T by computing either poststar(S)(T ) or prestar(T )(S). The algorithm that can

read off these weights from a weighted automata is called the path summary algorithm.

Definition 2.4.7. For a weighted automaton A, the weight path summary(A) is defined as

A(Γ∗), i.e., the combine over the weights of all accepting paths of A.

The weight A(C) can be computed as path summary(A∩AC), where AC is an unweighted

automaton that accepts the set of configurations C and the intersection operation is carried

out as for unweighted automata, except that the weights of A are retained.

The path summary weight is computed in the same manner as intraprocedural dataflow

analysis (Section 2.1.4). We restrict attention to forward weighted automata. The algorithm

is similar for backward weighted automata. Let A be a forward W-automaton; let Q be its

set of states; and F be its set of final states. Let l(q) be a weight associated with state q ∈ Q.

Initialize l(q) to 0 for all q ∈ Q−F and 1 for q ∈ F . Then use the following saturation rule:

for a transition (p, γ, q) with weight w, update l(p) to l(p) ⊕ (w ⊗ l(q)). Once saturation

finishes, i.e., no weight changes, then path summary(A) = l(q0), where q0 is the unique initial

state of A.

Abstract Grammar Problems

Just as in the case of PDSs, context-free grammars can be used to gain more insight into

WPDS reachability problems. The following presents a weighted problem on context-free

grammars.

Definition 2.4.8. [83] Let (S,t) be a join semilattice. An abstract grammar over (S,t)

is a collection of context-free grammar productions, where each production θ has the form

X0 → gθ(X1, . . . , Xk). Parentheses, commas, and gθ are terminal symbols. Every production

θ is associated with a function gθ : Sk → S. Thus, every string α of terminal symbols derived

in this grammar denotes a composition of functions, and corresponds to a unique value in S,

which we call val(α). Let L(X) denote the strings of terminals derivable from a non-terminal

X. The abstract grammar problem is to compute, for each non-terminal X, the value
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(1) t1 → g1(ε) g1 = w1

(2) t1 → g2(t2) g2 = λx.w2 ⊗ x

(3) t2 → g3(t1) g3 = λx.w3 ⊗ x

(4) t3 → g4(t2) g4 = λx.w4 ⊗ x

Figure 2.12 A simple abstract grammar with four productions.

Production for each

(1) PopSeq(q,γ,q′) → g1(ε) (q, γ, q′) ∈ →0

g1 = 1

(2) PopSeq(p,γ,p′) → g2(ε) r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆

g2 = f(r)

(3) PopSeq(p,γ,q) → g3(PopSeq(p′,γ′,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Q

g3 = λx.f(r)⊗ x

(4) PopSeq(p,γ,q) → g4(PopSeq(p′,γ′,q′),PopSeq(q′,γ′′,q))

g4 = λx.λy.f(r)⊗ x⊗ y r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, q, q′ ∈ Q

Figure 2.13 An abstract grammar problem for solving GPP.

JOD(X) =
⊔

α∈L(X) val(α). This value is called the join-over-all-derivations value for

X.

We define abstract grammars over the meet semilattice (D,⊕), where D is a set of weights.

An example is shown in Fig. 2.12. The non-terminal t3 can derive the string α = g4(g3(g1))

and val(α) = w4 ⊗ w3 ⊗ w1.

The abstract grammar for solving GPP is shown in Fig. 2.13. The grammar has one

non-terminal PopSeqt for each possible transition t ∈ Q× Γ×Q of Apre∗ . It is based on the

unweighted grammar shown in Fig. 2.8, which was shown to capture all paths in a PDS. The

following lemma follows from Lem. 2.3.9.

Lemma 2.4.9. For a transition t in the automaton that results from running prestar(A),

the weight on t is exactly JOD(PopSeqt).

The abstract grammar for solving GPS is shown in Fig. 2.14. The grammar has one

non-terminal PushSeqt for each possible transition t ∈ (Q∪Qmid)×Γ× (Q∪Qmid) of Apost∗ .
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Production for each

(1) PushSeq(q,γ,q′) → h1(ε) (q, γ, q′) ∈ →0

h1 = 1

(2) SameLevelSeq(p′,ε,q) → h2(PushSeq(p,γ,q)) r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆, q ∈ Q

h2 = λx.x⊗ f(r)

(3) PushSeq(p′,γ′,q′) → h2′(PushSeq(q,γ′,q′), SameLevelSeq(p′,ε,q))

p′ ∈ P, q, q′ ∈ Q

h2′ = λx.λy.x⊗ y

(4) PushSeq(p′,γ′,q) → h3(PushSeq(p,γ,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Q

h3 = λx.x⊗ f(r)

(5) PushSeq(p′,γ′,p′
γ′ )

→ h4(ε) 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆

h4 = 1

(6) PushSeq(p′
γ′ ,γ

′′,q) → h5(PushSeq(p,γ,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, q ∈ Q

h5 = λx.x⊗ f(r)

Figure 2.14 An abstract grammar problem for solving GPS.

It is based on the unweighted grammar shown in Fig. 2.10. The following lemma follows

from Lem. 2.3.11.

Lemma 2.4.10. For a transition t in the automaton that results from running poststar(A),

the weight on t is exactly JOD(PushSeqt).

Complexity

The following lemma states the complexity of poststar by the algorithm of Reps et al.

[83], which is the same as the one described earlier, but with a few optimizations. We will

assume that the time to perform an ⊗ and a ⊕ are the same, and use the notation Os(.) to

denote the time bound in terms of semiring operations. The height of a weight domain is

defined to be the length of the longest ascending chain in the domain.
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Lemma 2.4.11. [83] Given a WPDS with PDS P = (P, Γ, ∆), if A = (Q, Γ,→, P, F ) is a P-

automaton that accepts an input set of configurations, poststar produces a backward weighted

automaton with at most |Q|+ |∆| states in time Os(|P ||∆|(|Q0|+ |∆|)H + |P ||λ0|H), where

Q0 = Q\P , λ0 ⊆→ is the set of all transitions leading from states in Q0, and H is the height

of the weight domain.

Approximate Analysis

Among the properties imposed by a weight domain, one important property is distribu-

tivity (Defn. 2.4.1, item 2). This is a common requirement for a precise analysis, which

also arises in various coincidence theorems for dataflow analysis [44, 88, 52]. Sometimes

this requirement is too strict and may be relaxed to monotonicity, i.e., for all a, b, c ∈ D,

a⊗ (b⊕ c) v (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c v (a⊗ c)⊕ (b⊗ c). In such cases, the IJOP

computation may not be precise, but it will be safe under the partial order v.

2.4.2 Weight Domains

This section gives a few weight domains (i.e., bounded idempotent semirings) and the

kind of analysis they permit when used in a WPDS.

Definition 2.4.12. Let B be the set of Boolean values {true, false}. The Boolean weight

domain is defined as (B,∨,∧, false, true).

A Boolean weight domain is the most trivial example of a weight domain. A WPDS with

such a weight domain effectively reduces to its underlying PDS (after deleting rules with 0

weight): IJOP(c1, c2) = true if and only if there is a path in the PDS from c1 to c2. In this

dissertation, when we present an algorithm for WPDSs, the same algorithm can be reworked

for PDSs by considering this weight domain.

Definition 2.4.13. If G is a finite set, then the relational weight domain on G is defined

as (2G×G,∪, ; , ∅, id): weights are binary relations on G, combine is union, extend is relational

composition (“;”), 0 is the empty relation, and 1 is the identity relation on G.
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This weight domain is the one used for encoding Boolean programs, as shown in Section

2.4. Weights in such a semiring can be encoded symbolically, using BDDs [85]. The extend

and combine operations can be implemented efficiently on BDDs.

Definition 2.4.14. The minpath semiring is the weight domain M = (N ∪

{∞},min, +,∞, 0): weights are non-negative integers including “infinity”, combine is min-

imum, and extend is addition.

If all rules of a WPDS are given the weight 1 from this semiring (different from the

semiring weight 1, which is the integer 0), then the IJOP weight between two configurations

is the length of the shortest valid path (shortest valid rule sequence) between them.

Another infinite weight domain, which is based on the minpath semiring, is given in [56]

and was shown to be useful for debugging programs.

The minpath semiring can be combined with a relational weight domain, for example,

to find the shortest (valid) path in a Boolean program (for finding the shortest trace that

exhibits some property).

Definition 2.4.15. A weighted relation on a set S, weighted with semiring (D,⊕,⊗, 0, 1),

is a function from (S × S) to D. The composition of two weighted relations R1 and R2 is

defined as (R1; R2)(s1, s3) = ⊕{w1 ⊗ w2 | ∃s2 ∈ S : w1 = R1(s1, s2), w2 = R2(s2, s3)}. The

union of the two weighted relations is defined as (R1 ∪ R2)(s1, s2) = R1(s1, s2)⊕ R2(s1, s2).

The identity relation is the function that maps each pair (s, s) to 1 and others to 0. The

reflexive transitive closure is defined in terms of these operations, as before. If → is a

weighted relation and (s1, s2, w) ∈→, then we write s1
w−→ s2.

Definition 2.4.16. If S is a weight domain with set of weights D and G is a finite set,

then the relational weight domain on (G,S) is defined as (2G×G→D,∪, ; , ∅, id): weights are

weighted relations on G and the operations are the corresponding ones for weighted relations.

If G is the set of global states of a Boolean program, then the relational weight domain

on (G,M) can be used for finding the shortest trace: for each rule, if R ⊆ G × G is the
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effect of executing the rule on the global state of the Boolean program, then associate the

following weight with the rule:

{g1
1−→ g2 | (g1, g2) ∈ R} ∪ {g1

∞−−→ g2 | (g1, g2) 6∈ R}.

Then, if w = IJOP(C1, C2), the length of the shortest path that starts with global state g

from a configuration in C1 and ends at global state g′ in a configuration in C2, is w(g, g′)

(which would be∞ if no path exists). (Moreover, if a finite-length path does exist, a witness

trace can be obtained to identify the elements of the path.)

2.4.3 Verifying Finite-State Properties

In this section, we give an instance of how property verification can be converted to a

reachability problem, which is a very basic form of assertion checking. We suppose that the

property is given in the form of a finite-state machine and the abstract model of the program

is a WPDS.

The property is supplied as a finite-state automaton that performs transitions on ICFG

nodes. The automaton has a designated error state, and runs (i.e., ICFG paths) that drive

it to the error state are considered potentially erroneous program executions. For instance,

the automaton shown in Fig. 2.15 can be used to verify the absence of null-pointer derefer-

ences (for a pointer p in the program) by matching automaton-edge labels against program

statements on ICFG nodes. For example, we would associate the transition label p = NULL

with every ICFG node that has this statement. The reader is referred to other papers for

more examples of useful finite-state properties [4, 21].

More formally, a program is abstracted to a WPDS W = (P ,S, f), where P = (P, Γ, ∆).

Let the initial configuration of the program be c0. A property automaton A is the tuple

(Q, Γ,→, q0, F ), where Q is a finite set of control states, Γ is the transition alphabet, →⊆

Q× Γ×Q is the transition relation, q0 ∈ Q is the initial state and F ⊆ Q is the set of final

states. A word (in Γ∗) accepted by A is considered to be an erroneous program execution.

The verification problem is to find if there is a path σ inW with non-0 weight, starting from

c0, such that the nodes visited by σ are in the language of A.
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s1
p = NULL

s2
error

s3
p ≠ NULL

p = NULL
p = &v

*p

Figure 2.15 A finite-state machine for checking null-pointer dereferences in a program.
The initial state of the machine is s1. The label “p = &v” stands for the assignment of a
non-null address to the pointer p. We assume that the machine stays in the same state

when it has to transition on an undefined label.

This problem can be solved by taking a cross-product of W and A. Define the relation

Rγ ⊆ Q × Q to be {(q1, q2) | (q1, γ, q2) ∈→}, i.e., Rγ is the projection of the transition

relation of A to only those that fire on γ. Define a WPDS W ′ = (P ,S ′, f ′), where S ′ is

the relational weight domain on (Q,S) (Defn. 2.4.16), and f ′(r) is defined as follows: if

r = 〈p, γ〉 ↪→ 〈p′, u〉 then f ′(r) = {q1
f(r)−−−→ q2 | (q1, q2) ∈ Rγ}.6

A path σ in W , with weight w, is accepted by A if and only if the same path in W ′ has

weight w′ such that (q0, qf , w) ∈ w′ for some qf ∈ F . Consequently,W has a path with non-0

weight, starting from c0, that is accepted by A if and only if (q0, qf , w) ∈ IJOPW ′({c0}, Γ∗)

for some qf ∈ F , and w 6= 0. This shows that solving for the IJOP weight is sufficient to

verify finite-state properties on WPDSs.

6This construction is due to David Melski, and was used in an experimental version of the Path Inspector
[35].
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Chapter 3

Extended Weighted Pushdown Systems

In Chapter 2, we covered some common abstract models and defined the join-over-all-

paths (JOP) value, and several variants (JOVP or IJOP), on those models. The JOP

value, for a node n, is the net transformation over all paths in the model that reach n. From

this value, the set of all reachable states at n (in the model) can be computed, and used

for checking assertions at node n. Thus, it is desirable to compute the precise JOP value.

However, the definition of JOP is declarative in nature and cannot be directly computed

because it involves combining the effect of an unbounded number of paths. However, under

certain conditions, the JOP value can be computed precisely.

Chapter 2 presented two results in this direction. First, it presented the Kam and Ullman

coincidence theorem [44] (Section 2.1) that provides sufficient conditions under which the

JOP value can be calculated for single-procedure dataflow models. This result was extended

to multiple-procedure models by Sharir and Pnueli [88]. Second, the weighted pushdown

system (WPDS) model also specifies certain conditions (namely, that the weights should

come from a bounded-idempotent semiring), which when satisfied, imply that the poststar

and prestar algorithms can be used to precisely compute the JOP weight. However, with

all these models, it is not clear how to encode programs with multiple procedures and local

variables in such a way that all these conditions are satisfied. (Note that we only considered

examples without local variables in Chapter 2.) In this chapter, we study an abstract model

that provides a straightforward way of encoding programs with local variables, and show

how to precisely compute JOP values in the model.
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In dataflow analysis, this challenge of incorporating local variables was addressed by

Knoop and Steffen [52] by extending Sharir and Pnueli’s coincidence theorem to model

the run-time stack of a program. Their work is summarized in Section 3.3. Alternative

techniques for handling local variables have been proposed in [81, 84], but these lose certain

relationships between local and global variables.

As shown in Chapter 2, WPDSs generalize dataflow analysis. For instance, in interproce-

dural dataflow analysis, the JOVP value for a program node represents the set of all possible

reachable states at that node regardless of its calling context. Using WPDSs, one can answer

“stack-qualified queries” that calculate the set of states that can occur at a program point

for a given regular set of calling contexts. Moreover, the ability to represent reachable states

along with their stack contents (in the form of a weighted automaton) will be critical in

designing the algorithms and techniques presented in later chapters.

However, as with Sharir and Pnueli’s coincidence theorem, it is not clear if WPDSs

can handle local variables accurately. In this chapter, we extend the WPDS model to the

Extended-WPDS or EWPDS model, which can accurately encode interprocedural analyses

on programs with local variables and answer stack-qualified queries about them. The EW-

PDS model can be seen as generalizing WPDS in much the same way that Knoop and Steffen

generalized Sharir and Pnueli’s coincidence theorem.

The contributions of the work presented in this chapter can be summarized as follows:

• We give a way of handling local variables in the WPDS model. The advantage of using

WPDSs is that they give a way of calculating IJOP weights that hold at a program

node for a particular calling context (or set of calling contexts). They can also provide

a set of witness program execution paths that justify a reported dataflow value.

• We show that the EWPDS model is powerful enough to capture Knoop and Steffen’s

coincidence theorem. In particular, this means that we can calculate the IJOP value for

any distributive dataflow-analysis problem for which the domain of transfer functions

has no infinite ascending chains.
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• We have extended the WPDS library [49] to support EWPDSs and used it in an

application that calculates affine relationships that hold between registers in x86 code

[3].

• We show how to encode several abstract models using EWPDSs. These abstract mod-

els include Boolean programs (Section 3.5.1), affine programs (Section 3.5.2), and pro-

grams with single-level pointers [61] (Section 3.5.3). This shows that the analysis of all

these models can be carried out using EWPDS reachability algorithms. It also gives

us something new: a way of answering stack-qualified queries on all these models.

The rest of this chapter is organized as follows: Section 3.1 defines the EWPDS model.

Section 3.2 presents algorithms to solve reachability queries in EWPDSs. Section 3.3 presents

Knoop and Steffen’s coincidence theorem for dataflow analysis and shows that the theorem

can also be obtained using EWPDSs. Section 3.4 presents experimental results. Section 3.5

presents various applications of EWPDSs by showing how different abstract models can be

encoded using EWPDSs. Section 3.6 describes related work. Section 3.7 has proofs of the

theorems in this chapter.

3.1 Defining the EWPDS Model

We start by recalling the definitions of reachability problems on WPDSs.

Definition 3.1.1. Let W = (P ,S, f) be a weighted pushdown system, where P = (P, Γ, ∆),

and let C ⊆ P × Γ∗ be a regular set of configurations. The generalized pushdown pre-

decessor (GPP) problem is to find for each c ∈ P × Γ∗:

δ(c)
def
=

⊕
{ v(σ) | σ ∈ paths(c, c′), c′ ∈ C }

The generalized pushdown successor (GPS) problem is to find for each c ∈ P × Γ∗:

δ(c)
def
=

⊕
{ v(σ) | σ ∈ paths(c′, c), c′ ∈ C }

We aim to solve each of these problems on the EWPDS model as well. These require

computing the weight of a rule sequence. Rule sequences, in general, represent interproce-

dural paths in a program, and such paths can have unfinished procedure calls, e.g., when
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the path ends in the middle of a called procedure. To compute the weight of such paths, we

have to maintain information about local variables of all unfinished procedures that appear

on the path.

We allow for local variables to be stored at call sites and then use special merge functions

to appropriately merge them with the value returned by a procedure. Merge functions are

defined as follows:

Definition 3.1.2. A function g : D × D → D is a merge function with respect to a

bounded idempotent semiring S = (D,⊕,⊗, 0, 1) if it satisfies the following properties.

1. Strictness. For all a ∈ D, g(0, a) = g(a, 0) = 0.

2. Distributivity. The function distributes over ⊕ in each argument. For all a, b, c ∈ D,

g(a⊕ b, c) = g(a, c)⊕ g(b, c) and g(a, b⊕ c) = g(a, b)⊕ g(a, c)

3. Path Extension.1 For all a, b, c ∈ D, g(a⊗ b, c) = a⊗ g(b, c).

For a set of pushdown rules ∆, we use ∆i ⊆ ∆ to denote the set of all rules with i stack

symbols on the right-hand side.

Definition 3.1.3. An extended weighted pushdown system is a quadruple We =

(P ,S, f, g) where (P ,S, f) is a weighted pushdown system and g : ∆2 → G assigns a merge

function to each rule in ∆2, where G is the set of all merge functions on the semiring S. We

will write gr as a shorthand for g(r).

Note that a push rule has both a weight and a merge function associated with it. The

merge functions are used to combine the effects of a called procedure with those made by

the calling procedure just before the call. As an example, refer to Fig. 3.1, which is similar

to the dataflow model shown in Fig. 2.1, except that it has local variables as well. The

dataflow values used for this model are environments of the form Env = (Var→ Z>)∪ {⊥},

with join (t) defined pointwise. This model can be encoded as an EWPDS (P ,S, f, g) as

1This property can be too restrictive in some cases; Section 3.2.3 discusses how this property may be
dispensed with. In most cases, however, the path-extension property does hold.
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int y;

void main() {

n1: int a = 5;

n2: y = 1;

n3,n4: f(a);

n5: if(...) {

n6: a = 2;

n7,n8: f(a);

}

n9: ...;

}

void f(int b) {

n10: if(...)

n11: y = 2;

else

n12: y = b;

}

emain

n9: ...

n1: a=5

n3: call f

n4: ret from f

n7: call f

n8: ret from f

n5: if(...)

n6: a=2

λe.e[a a5]

λe.e[y a2]

xmain

λe.e[a aS,b ae(a)]

n2: y=1
ef

xf

n10: if(...)

n11: y=2 n12: y=b

λe.e[y a1]

λe.e[y ae(b)]

λe.e[a a2]
λe.e[a aS,

b ae(a)]

Figure 3.1 A program fragment and its ICFG. For all unlabeled edges, the environment
transformer is λe.e. The statements labeled “...” are assumed not to change any of the

declared variables.

follows: the control-flow of the model is encoded using the PDS P . The weight domain S is

(D,⊕,⊗, 0, 1) where D = (Env → Env) is the set of all environment transformers that are

⊥-strict, i.e., for all d ∈ D, d(⊥) = ⊥. The semiring operations and constants are defined

as follows:

0 = λe.⊥

1 = λe.e

w1 ⊕ w2 = λe.w1(e) t w2(e)

w1 ⊗ w2 = w2 ◦ w1

The weights for the PDS rules are the corresponding edge labels in Fig. 2.1. Merge

functions are two-argument functions on weights. The merge function for call site n3 will
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receive two environment transformers: one that summarizes the effect of the caller from its

entry point to the call site (emain to n3) and one that summarizes the effect of the called

procedure (ef to xf). It then has to output the transformer that summarizes the effect of the

caller from its entry point to the return site (emain to n4). We define it as follows:

g(w1, w2) = if (w1 = 0 or w2 = 0) then 0

else λe.e[a 7→ w1(e)(a), y 7→ (w1 ⊗ w2)(e)(y)]

It copies over the value of the local variable a from the call site, and gets the value of y from

the called procedure. Because the merge function has access to the environment transformer

just before the call, we do not need to pass the value of local variable a into procedure f.

This is achieved by the weight on the call rule at n3 that maps a to >. Moreover, the merge

function also ensures that the local variables of f, which are present in weight w2, do not

get passed into main.

The main change that EWPDSs require over WPDSs is the way the weight of a path

(rule sequence) is calculated because the merge functions have to be incorporated. The

technical difference, formalized below, is that paths have to be “parsed” in EWPDSs to find

matching calls and returns so that the appropriate weights are calculated to be passed to

the merge functions. For instance, consider the path [emain, n1, n2, n3, ef, n10, n11, xf, n4]. We

first need to calculate the weights of the sub-paths [ef, n10, n11, xf] and [emain, n1, n2, n3], and

then pass these weights to the merge function. In WPDSs, there was no such order imposed

in calculating the weight of a path.

To formalize this notion, we redefine the generalized pushdown predecessor and successor

problem by changing how we define the value of a rule sequence. If σ ∈ ∆∗ with σ =

[r1, r2, · · · , rk] then let (r σ) denote the sequence [r, r1, · · · , rk]. Also, let [ ] denote the

empty sequence. Consider the context-free grammar shown in Fig. 3.2. σs is simply R∗
1.

σb represents a balanced sequence of rules that have matched calls (R2) and returns (R0)

with any number of rules from ∆1 in between. σi is just (R2 | σb)
+ in regular-language

terminology, and represents sequences that increase stack height. σd is (R0 | σb)
+ and
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represents rule sequences that decrease stack height. σa can derive any rule sequence. We

will use this grammar to define the value of a rule sequence.

R0 → r (r ∈ ∆0)

R1 → r (r ∈ ∆1)

R2 → r (r ∈ ∆2)

σs → [ ] | R1 | σs σs

σb → σs | σb σb

| R2 σb R0

σi → R2 | σb | σi σi

σd → R0 | σb | σd σd

σa → σd σi

Figure 3.2 Grammar used for parsing rule sequences. The start symbol of the grammar is
σa.

Definition 3.1.4. Given an EWPDS We = (P ,S, f, g) and a rule sequence σ ∈ ∆∗, we

define its value v(σ) by parsing σ according to the grammar of Fig. 3.2 and computing the

weight using its derivation tree as follows:

1. v(r) = f(r)

2. v([ ]) = 1

3. v(σs σs) = v(σs)⊗ v(σs)

4. v(σb σb) = v(σb)⊗ v(σb)

5. v(R2 σb R0) = gR2(1, v(σb)⊗ v(R0))

6. v(σd σd) = v(σd)⊗ v(σd)

7. v(σi σi) = v(σi)⊗ v(σi)

8. v(σd σi) = v(σd)⊗ v(σi)

Here we have used gR2 as a shorthand for gr where r is the terminal derived by R2.

The main thing to note in the above definition is the application of merge functions on

balanced sequences. The path-extension property of merge functions allow us to compute

g(w1, w2) as w1 ⊗ g(1, w2). An alternative grammar is given in Section 3.2.3 when the path

extension property does not hold. Because the grammar presented in Fig. 3.2 is ambiguous,

there might be many parsings of the same rule sequence, but all of them would produce the

same value because the extend operation is associative and there is a unique way to balance

R2s with R0s.

The generalized pushdown problems GPP and GPS for EWPDSs are the same as those

for WPDSs except for the changed definition of the value of a rule sequence. If we let each

merge function be gr(w1, w2) = w1⊗ f(r)⊗w2, then the EWPDS reduces to a WPDS. From
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now on, whenever we talk about generalized pushdown problems in this chapter, we mean

it in the context of EWPDSs.

3.2 Solving Reachability Problems in EWPDSs

In this section, we present algorithms to solve the generalized reachability problems for

EWPDSs. Let We = (P ,S, f, g) be an EWPDS where P = (P, Γ, ∆) is a pushdown system

and S = (D,⊕,⊗, 0, 1) is the weight domain. Let C be a fixed regular set of configurations

that is recognized by a P-automaton A = (Q, Γ,→0, P, F ). We will follow the above notation

throughout this section. As in the case of WPDSs, we will construct a weighted automaton

that represents the set of reachable configurations along with their weights. The automaton

will be the same as the automaton constructed for WPDS reachability (Section 2.4.1) except

for the weights. We will not show the calculation of witness annotations because they are

obtained in exactly the same way as for WPDSs [83]. The reason why the computation is

unchanged is because witnesses record the paths that justify a weight and not how the values

of those paths were calculated.

3.2.1 Solving GPP

To solve GPP, we take as input a P-automaton A that describes the starting set of

configurations. As output, we create a weighted automaton Apre∗ . The algorithm is based

on the saturation rule shown in Fig. 3.3. Starting with the automaton A, we keep applying

this rule until it no longer causes any changes. Termination is guaranteed because there are

a finite number of transitions and there are no infinite ascending chains in a weight domain.

For each transition in the automaton being created, we store the weight on it using function

l. The saturation rule is the same as that for predecessor reachability in ordinary pushdown

systems, except for the weights, and is different from the one for weighted pushdown systems

only in the last case, where a merge function is applied.

Theorem 3.2.1. The saturation rule shown in Fig. 3.3 solves GPP for EWPDSs, i.e., for

a configuration c = 〈p, γ1γ2 · · · γn〉, δ(c,L(A)), defined as IJOP({c},L(A)), is Apre∗(c).
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• If r = 〈p, γ〉 ↪→ 〈p′, ε〉, then update the weight on t = (p, γ, p′) to l(t)← l(t)⊕f(r).

• If r = 〈p, γ〉 ↪→ 〈p′, γ′〉 and there is a transition t = (p′, γ′, q), then update the

weight on t′ = (p, γ, q) to l(t′)← l(t′)⊕ (f(r)⊗ l(t)).

• If r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and there are transitions t = (p′, γ′, q1) and t′ =

(q1, γ
′′, q2), then update the weight on t′′ = (p, γ, q2) to

l(t′′)← l(t′′)⊕

 f(r)⊗ l(t)⊗ l(t′) if q1 6∈ P

gr(1, l(t))⊗ l(t′) otherwise

Figure 3.3 Saturation rule for constructing Apre∗ from A. In each case, if a transition t
does not yet exist, it is treated as if l(t) equals 0.

A proof of this theorem is given in Section 3.7.

3.2.2 Solving GPS

For this section, we shall assume that we can have at most one rule of the form 〈p, γ〉 ↪→

〈p′, γ′γ′′〉 for each combination of p′,γ′, and γ′′. This involves no loss of generality because

we can replace a rule r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 with two rules: (a) r′ = 〈p, γ〉 ↪→ 〈pr, γ
′γ′′〉

with weight f(r) and merge function gr, and (b) r′′ = 〈pr, γ
′〉 ↪→ 〈p′, γ′〉 with weight 1, where

pr is a new state. This replacement does not change the reachability problem’s answers.

Let lookupPushRule be a function that returns the unique push rule associated with a triple

(p′, γ′, γ′′) if there is one.

Before presenting the algorithm, let us consider an operational definition of the value of

a rule sequence. The importance of this alternative definition is that it shows the correspon-

dence with the call semantics of a program. For each interprocedural path in a program, we

define a stack of weights that contains a weight for each unfinished call in the path. Elements

of the stack are from the set D ×D ×∆2 (recall that ∆2 was defined as the set of all push

rules in ∆), where (w1, w2, r) signifies that (i) a call was made using rule r, (ii) the weight

at the time of the call was w1, and (iii) w2 was the weight on the call rule.
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Let STACK = D.(D × D × ∆2)
∗ be the set of all nonempty stacks where the topmost

element is from D and the rest are from (D×D×∆2). We will write an element (w1, w2, r) ∈

D ×D ×∆2 as (w1, w2)r. For each rule r ∈ ∆ of the form 〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ∗, we will

associate a function [[r]] : STACK→ STACK. Let S ∈ (D ×D ×∆2)
∗.

• If r has one symbol on the right-hand side (|u| = 1), then accumulate its weight on

the top of the stack.

[[r]] (w1 S) = ((w1 ⊗ f(r)) S)

• If r has two symbols on the right-hand side (|u| = 2), then save the weight of the push

rule as well as the push rule itself on the stack and start a fresh entry on the top of

the stack.

[[r]] (w1 S) = (1 (w1, f(r))r S)

• If r has no symbols on the right-hand side (|u| = 0), then apply the appropriate

merge function if there is a something pushed on the stack. Otherwise, r represents an

unbalanced pop rule and simply accumulate its weight on the stack.

[[r]] (w1 (w2, w3)r1 S) = ((gr1(w2, w1 ⊗ f(r)) S) (3.1)

[[r]] (w1) = (w1 ⊗ f(r))

Note that we drop the weight w3 of the push rule r1 when we apply the merge function.

This is in accordance with case 5 of Defn. 3.1.4.

For a sequence of rules σ = [r1, r2, · · · , rn], define [[σ]] = [[[r2, · · · , rn]]] ◦ [[r1]]. Let

flatten : STACK→ D be an operation that computes a weight from a stack as follows:

flatten(w1 S) = flatten′(S)⊗ w1

flatten′(( )) = 1

flatten′((w1, w2)r S) = flatten′(S)⊗ (w1 ⊗ w2)

Example 3.2.2. Consider the rule sequence σ corresponding to the path in Fig. 3.1 that goes

from emain to n3 to n11 to xf. If we apply [[σ]] to a stack containing just 1, we get a stack of

height 2 as follows: [[σ]](1) = ((λe.e[y 7→ 2]) (λe.e[a 7→ 5, y 7→ 1], λe.e[a 7→ >, b 7→ e(a)])r),



64

where r is the push rule that calls procedure f at node n3. The top of the stack is the weight

computed inside procedure f, and the bottom of the stack contains a pair of weights: the first

component is the weight computed in main just before the call; the second component is just

the weight of the call rule r. If we apply the flatten operation on this stack, we get the weight

λe.e[a 7→ >, y 7→ 2, b 7→ 5], which is exactly the value v(σ). When we apply the pop rule r′

corresponding to the procedure return at xf to this stack, we get:

[[σ r′]](1) = [[r′]] ◦ [[σ]](1)

= (gr(λe.e[a 7→ 5, y 7→ 1], λe.e[y 7→ 2]))

= (λe.e[a 7→ 5, y 7→ 2])

Again, applying flatten on this stack gives us v(σ r′).

The following lemma formalizes the equivalence between [[σ]] and v(σ).

Lemma 3.2.3. For any valid sequence of rules σ (σ ∈ paths(c, c′) for some configurations c

and c′), [[σ]] (1) = S such that flatten(S) = v(σ).

Corollary 3.2.4. Let C be a set of configurations. For a configuration c, let δS(c) ⊆ STACK

be defined as follows:

δS(C, c) = {[[σ]](1) | σ ∈ paths(c′, c), c′ ∈ C}.

Then: δ(C, c), defined in Defn. 2.4.4, is ⊕{flatten(S) | S ∈ δS(C, c)}.

The above corollary shows that δS(C, c) has enough information to compute δ(C, c) di-

rectly. To solve the pushdown successor problem, we take the input P-automaton A that

describes the starting set of configurations and create a weighted automaton Apost∗ from

which we can read off the value of δ(L(A), c) for any configuration c. The algorithm is

again based on a saturation rule. For each transition in the automaton being created, we

have a function l that stores the weight on the transition. Based on the above operational

definition of the value of a path, we create Apost∗ on pairs of weights, that is, over the

semiring (D × D,⊕,⊗, (0, 0), (1, 1)) where ⊕ and ⊗ are defined component-wise. Also, we

introduce a new state for each push rule. So the states of Apost∗ are Q∪Qmid, where Qmid =

{p′γ′ | 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆}. The saturation rule is shown in Fig. 3.4. To see what the sat-

uration rule does, consider a path in Apost∗ : τ = q1
γ1−−→ q2

γ2−−→ · · · γn−−→ qn+1. As an invariant
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of our algorithm, we have q1 ∈ (P ∪Qmid); q2, · · · , qk ∈ Qmid; and qk+1, · · · , qn+1 ∈ (Q− P )

for some 0 ≤ k ≤ n + 1. This is because of the fact that we never create transitions to a

state in P or from a state in Q− P to a state in Qmid. Define a new transition label l′(t) as

follows:

l′(p, γ, q) = lookupPushRule(p′, γ′, γ) if p ≡ p′γ′

Another invariant of our algorithm is that every transition t to a state in Qmid has l′(t)

defined. Then the path τ describes the STACK vpath(τ) = (l1(t1) l(t2)l′(t2) · · · l(tk)l′(tk))

where ti = (qi, γi, qi+1) and l1(t) is the first component projected out of the weight-pair l(t).

This means that each path in Apost∗ represents a STACK and all the saturation algorithm

does is to make the automaton rich enough to encode all STACKs in δS(L(A), c) for all

configurations c. The first and third cases of the saturation rule can be seen as applying [[r]]

for rules with one and two stack symbols on the right-hand side, respectively. Applying the

fourth case immediately after the second case can be seen as applying [[r]] for pop rules. We

now have the following theorem.

Theorem 3.2.5. The saturation rule shown in Fig. 3.4 solves GPS for EWPDSs. For a

configuration c = 〈p, u〉, we have,

δ(L(A), c) = ⊕{flatten(vpath(σt)) | σt ∈ paths(p, u, qf ), qf ∈ F}

where paths(p, u, qf ) denotes the set of all paths of transitions in Apost∗ that go from p to qf

on input u, i.e. p u−→∗ qf .

A proof of this theorem is given in Section 3.7.

An easy way to compute the combine in Thm. 3.2.5 is to replace the annotation l(t) on

each transition t with l1(t)⊗ l2(t), the extend of the two weight components of l(t), and then

use the path summary algorithm.

3.2.3 Relaxing Merge Function Requirements

Defn. 3.1.2 requires merge functions to satisfy three properties. The first requirement

(strictness) can be easily satisfied and the second requirement of distributivity is essential

for saturation algorithms to work for the GPP and GPS problems. However, in some cases
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• If r = 〈p, γ〉 ↪→ 〈p′, γ′〉 and there is a transition t = (p, γ, q) with an-

notation l(t), then update the annotation on transition t′ = (p′, γ′, q) to

l(t′)← l(t′)⊕ (l(t)⊗ (f(r), 1)).

• If r = 〈p, γ〉 ↪→ 〈p′, ε〉 and there is a transition t = (p, γ, q) with an-

notation l(t), then update the annotation on transition t′ = (p′, ε, q) to

l(t′)← l(t′)⊕ (l(t)⊗ (f(r), 1)).

• If r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and there is a transition t = (p, γ, q) with annotation l(t)

then let t′ = (p′, γ′, qp′,γ′), t′′ = (qp′,γ′ , γ
′′, q) and update annotations on them.

l(t′) ← l(t′)⊕ (1, 1)

l(t′′) ← l(t′′)⊕ (l(t)⊗ (1, f(r)))

• If there are transitions t = (p, ε, q) and t′ = (q, γ′, q′) with annotations l(t) =

(w1, w2) and l(t′) = (w3, w4) then update the annotation on the transition t′′ =

(p, γ′, q′) to l(t′′)← l(t′′)⊕ w where w is defined as follows:

w =

 (glookupPushRule(p′,γ′,γ′′)(w3, w1), 1) if q ≡ p′γ′

l(t′)⊗ l(t) otherwise

Figure 3.4 Saturation rule for constructing Apost∗ from A. In each case, if a transition t′

(or t′′) does not yet exist, it is treated as if l(t′) (or l(t′′)) equals (0, 0).

we might not be able to satisfy the third property of path-extension (Section 3.3 presents

one such case). Let us now consider what happens when merge functions do not satisfy this

property.

The prestar algorithm of Section 3.2.1 (used for creating Apre∗) would still be correct

because it parses rule sequences exactly as described in Defn. 3.1.4, but the poststar algo-

rithm of Section 3.2.2 (used for creating Apost∗) would not work as it utilizes a different
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parsing and relies on the path-extension property for computing the correct value. Instead

of trying to modify the poststar algorithm, we introduce an alternative definition of the

value of a rule sequence that is suited for the cases when merge functions do not satisfy the

path-extension property. The definition involves presenting a slightly more complicated but

intuitive grammar for parsing rule sequences.

Definition 3.2.6. Given an EWPDS We = (P ,S, f, g) where the merge functions do not

satisfy the path-extension property, the value of a rule sequence σ ∈ ∆∗ is calculated in

the same manner as given in Defn. 3.1.4, but we change the productions and valuations of

balanced sequences as follows:

σb′ → [ ] | σb′ σb′

| σb R2 σb R0

σb → σb′ σs

v(σb′ σb′) = v(σb′)⊗ v(σb′)

v(σb R2 σb R0) = gR2(v(σb), v(σb)⊗ v(R0)) (2)

v(σb′ σs) = v(σb′)⊗ v(σs)

The value of a rule sequence as defined above is the same as the value defined by

Defn. 3.1.4 when merge functions satisfy the path-extension property. In the absence of

the property, we need to make sure that each occurrence of a merge function is applied to

the weight computed in the calling procedure just before the call and the weight computed

by the called procedure. We enforce this using Eqn. (2) values that we calculate for rule se-

quences in Section 3.2.2 also do the same in Eqn. (3.1)[Pg. 63]. This means that Lem. 3.2.3

still holds and the poststar algorithm correctly solves this more general version of GPS.

However, the prestar algorithm is closely based on Defn. 3.1.4 and the way that it solves

solves the generalized version of GPP is not based on the above alternative definition.

3.3 Knoop and Steffen’s Coincidence Theorem

In this section, we show how EWPDSs can encode Knoop and Steffen’s coincidence

theorem [52] about interprocedural dataflow analysis in the presence of local variables. We

refer to the IJOP value defined by Knoop and Steffen as the interprocedural-local-join-over-

all-paths (LJOP) value. (Note that we are using different terminology than that used in

[52]. This is to avoid confusion with the other terms defined in the previous chapters.)
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We are given a join semilattice (C,t) that describes dataflow facts and the interprocedural-

control-flow graph of a program (N , E), where NC ,NR ⊆ N are the sets of call and return

nodes, respectively. We are also given a semantic transformer for each node in the program:

[[ ]] : N → (C → C), which represents the effect of executing a statement in the program.

Let STK = C+ be the set of all nonempty stacks with elements from C. STK is used as an

abstract representation of the run-time stack of a program. Define the following operations

on stacks.

newstack : C → STK creates a new stack with a single element

push : STK× C → STK pushes a new element on top of the stack

pop : STK→ STK removes the topmost element of the stack

top : STK→ C returns the topmost element of the stack

We can now describe the interprocedural semantic transformer for each program node:

[[ ]]∗ : N → (STK→ STK). For stk ∈ STK,

[[n]]∗(stk) =



push(pop(stk), [[n]](top(stk))) if n ∈ N − (NC ∪NR)

push(stk, [[n]](top(stk))) if n ∈ NC

push(pop(pop(stk)),Rn(top(pop(stk)), [[n]](top(stk))))

if n ∈ NR

where Rn : C × C → C is a merge function like we have in EWPDSs. It is applied to the

dataflow value computed by the called procedure ([[n]](top(stk))) and the value computed by

the caller at the time of the call (top(pop(stk))). The definition assumes that a dataflow fact

in C contains all information that is required by a procedure so that each transformer has to

look at only the top of the stack passed to it – except for return nodes, where the transformer

looks at the top two elements of the stack. We define a path transformer as follows: if p =

[n1 n2 · · ·nk] is a valid interprocedural path in the program then [[p]]∗ = [[[n2 · · ·nk]]]
∗ ◦ [[n1]]

∗.

This leads to the following definition.

Definition 3.3.1. [52] If s ∈ N is the starting node of a program, then for c0 ∈ C and

n ∈ N , the interprocedural-local-join-over-all-paths value is defined as follows:

LJOPc0(n) = t{[[p]]∗(newstack(c0)) | p ∈ VPaths(s, n)}
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where VPaths(s, n) is the set of all valid interprocedural paths from s to n and join of stacks

is just the join of their topmost values: stk1 t stk2 = top(stk1) t top(stk2).

We now construct an EWPDS We = (P ,S, f, g) to compute this value when C has

no infinite ascending chains, all semantic transformers [[n]] are distributive, and all merge

relationsRn are distributive in each of their arguments. Define a semiring S = (D,⊕,⊗, 0, 1)

as D = [C → C]∪{0}, which consists of the set of all distributive functions on C and a special

function 0. The semiring operations are defined as follows. For a, b ∈ D,

a⊕ b =


a if b = 0

b if a = 0

(a t b) otherwise

a⊗ b =

 0 if a = 0 or b = 0

(b ◦ a) otherwise

1 = λc.c

The pushdown system P is ({p},N , ∆), where ∆ is constructed by including a rule for

each edge in E . First, let Eintra ⊆ E be the intraprocedural edges and Einter ⊆ E be the

interprocedural (call and return) edges. Then include the following rules in ∆.

1. For (n, m) ∈ Eintra, include the rule r = 〈p, n〉 ↪→ 〈p, m〉 with f(r) = [[n]].

2. For n ∈ NC and (n, m) ∈ Einter , where nR ∈ NR is the return site for the call at n,

include the rule r = 〈p, n〉 ↪→ 〈p, m nR〉 with f(r) = [[n]] and

gr(a, b) = λc.Rn(a(c), (a⊗ [[n]]⊗ b⊗ [[nR]])(c)).

3. For n ∈ N , if it is an exit node of a procedure, include the rule r = 〈p, n〉 ↪→ 〈p, ε〉

with f(r) = [[n]].

The merge functions defined above need not satisfy the path-extension property given in

Defn. 3.1.2, but the techniques presented in Section 3.2.3 still allow us to solve GPS. This

leads us to the following theorem.

Theorem 3.3.2. Let A be a P-automaton that accepts just the configuration 〈p, s〉, where

s is the starting point of the program, and let Apost∗ be the automaton obtained by using the

saturation rule shown in Fig. 3.4 on A.
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(1) If δ(L(A), c) is read off Apost∗ in accordance with Thm. 3.2.5 and c0 ∈ C and n ∈ N , we

have:

LJOPc0(n) = [⊕{δ(L(A), 〈q, n u〉) | u ∈ Γ∗}](c0).

(2) If L ⊆ Γ∗ is a regular language of stack configurations then LJOPc0(n, L), which is the

LJOP value restricted to only those paths that end in configurations described by L, can be

calculated as follows:

LJOPc0(n, L) = [⊕{δ(L(A), 〈q, n u〉) | u ∈ L}](c0).

Result (1) in Thm. 3.3.2 shows how an EWPDS can capture Knoop and Steffen’s result.

Result (2) is an extension of their theorem; it gives us a way of performing stack-qualified

queries in the presence of local variables.

In case the semantic transformers [[.]] and Rn are not distributive but only monotonic,

then, in the two equations of Thm. 3.3.2, the right-hand sides safely approximate LJOPc0(n)

and LJOPc0(n, L), respectively.

3.4 EWPDS Experiments

In [3], Balakrishnan and Reps present an algorithm to analyze memory accesses in x86

code. Its goal is to determine an over-approximation of the set of values/memory-addresses

that each register and memory location holds at each program point. The core dataflow-

analysis algorithm used, called value-set analysis (VSA), is not relational, i.e., it does not keep

track of the relationships that hold among registers and memory locations. However, when

interpreting conditional branches, specifically those that implement loops, it is important

to know such relationships. Hence, a separate affine-relation analysis (ARA) is performed

to recover affine relations that hold among the registers at conditional branch points; those

affine relations are then used to interpret conditional branches during VSA. ARA recovers

affine relations involving registers only, because recovering affine relations involving memory

locations would require points-to information, which is not available until the end of VSA.

ARA is implemented by encoding the x86 program as an EWPDS using the weight domain
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from [68]. It is based on machine arithmetic, i.e., arithmetic module 232, and is able to take

care of overflow. (The encoding is similar to the one described in Section 3.5.2.)

Before each call instruction, a subset of the registers is saved on the stack, either by the

caller or the callee, and restored at the return. Such registers are called the caller-save and

callee-save registers. Because ARA only keeps track of information involving registers, when

ARA is implemented using a WPDS, all affine relations involving caller-save and callee-save

registers are lost at a call. We used an EWPDS to preserve them across calls by treating

caller-save and callee-save registers as local variables at a call; i.e., the values of caller-save

and callee-save registers after the call are set to the values before the call and the values of

other registers are set to the values at the exit node of the callee.

The results are shown in Tab. 3.1. The column labeled ‘Branches with useful information’

refers to the number of branch points at which ARA recovered at least one affine relation.

The last column shows the number of branch points at which ARA implemented via an

EWPDS recovered more affine relations when compared to ARA implemented via a WPDS.

Tab. 3.1 shows that the information recovered by EWPDS is better in 30% to 63% of the

branch points that had useful information. The EWPDS version is somewhat slower, but

uses less space; this is probably due to the fact that the dataflow transformer from [68] for

‘spoiling’ the affine relations that involve a given register uses twice the space of a transformer

that preserves such relations.

3.5 Applications of EWPDSs

In this section, we show how different problems can be encoded using EWPDSs. We give

encodings for Boolean programs, affine-relation analysis, and single-level pointer analysis.

All of these encodings benefit from the use of merge functions.

3.5.1 Boolean Programs

Let B be a Boolean program. Let We = (P ,S, f, g) be an EWPDS. We will use We to

encode B. Without loss of generality, we assume that each procedure of B has the same
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Branches with

Memory (MB) Time (s) useful information

Prog Insts Procs Branches Calls WPDS EWPDS WPDS EWPDS WPDS EWPDS Improvement

mplayer2 58452 608 4608 2481 27 6 8 9 137 192 57 (42%)

print 96096 955 8028 4013 61 19 20 23 601 889 313 (52%)

attrib 96375 956 8076 4000 40 8 12 13 306 380 93 (30%)

tracert 101149 1008 8501 4271 70 22 24 27 659 1021 387 (59%)

finger 101814 1032 8505 4324 70 23 24 30 627 999 397 (63%)

lpr 131721 1347 10641 5636 102 36 36 46 1076 1692 655 (61%)

rsh 132355 1369 10658 5743 104 36 37 45 1073 1661 616 (57%)

javac 135978 1397 10899 5854 118 43 44 58 1376 2001 666 (48%)

ftp 150264 1588 12099 6833 121 42 43 61 1364 2008 675 (49%)

winhlp32 179488 1911 15296 7845 156 58 62 98 2105 2990 918 (44%)

regsvr32 297648 3416 23035 13265 279 117 145 193 3418 5226 1879 (55%)

notepad 421044 4922 32608 20018 328 124 147 390 3882 5793 1988 (51%)

cmd 482919 5595 37989 24008 369 144 175 444 4656 6856 2337 (50%)

Table 3.1 Comparison of ARA results implemented using EWPDS versus WPDS.

number of local variables. Let G be the set of valuations of the global variables and Val be

the set of valuations of local variables. The actions of program statements and conditions

are now binary relations on G×Val; thus, the weight domain S is a relational weight domain

on the finite set G× Val (Defn. 2.4.13). The PDS P and weight assignments f are done in

a manner similar to the encoding for dataflow models: P encodes the control flow, and the

weight of a rule that is produced from an edge e is the binary relation of the statement on

e. The weight on a call rule forgets the values of the local variables (under the assumption

that in a Boolean program, local variables of a procedure are uninitialized at the start of the

procedure):

weight on call rule = {(g, l1, g, l2) | g ∈ G, l1, l2 ∈ Val}

This avoid passing the values of local variables from a caller to the callee. The weight on

a return rule does the same to avoid passing values of local variables from the callee to the

caller:



73

weight on return rule = {(g, l1, g, l2) | g ∈ G, l1, l2 ∈ Val}

What remains to be defined are the merge functions.

Because different weights can refer to local variables from different procedures, one cannot

take relational composition of weights from different procedures. The project function is used

to change the scope of a weight. It existentially quantifies out the current transformation

on local variables and replaces it with an identity relation. Formally, it can be defined as

follows:

project(w) = {(g1, l1, g2, l1) | (g1, l1, g2, l2) ∈ w}.

Once the summary of a procedure is calculated as a weight w involving local variables

of the procedure, the project function is applied to it, and the result project(w) is passed to

the callers of that procedure. This makes sure that local variables of one procedure do not

interfere with those of another procedure. Thus, merge functions for Boolean programs all

have the form

g(w1, w2) = w1 ⊗ project(w2).

For encoding Boolean programs with other abstractions, such as finding the shortest

trace, one can use the relational weight domain on (G × Val,M) (Defn. 2.4.16), where M

is the minpath semiring (Defn. 2.4.14). The weights on rules change as follows: if w is the

weight of a rule obtained from the Boolean program (as defined earlier) then replace it with

the following weight that attaches the value 1 ∈M to it:

λ(g1, l1, g2, l2). if (g1, l1, g2, l2) ∈ w then 1 else ∞

The project function on weights from this domain can be defined as follows:

project(w) = λ(g1, l1, g2, l2). if (l1 6= l2) then 0S

else
⊕

M{w(g1, l1, g2, l) | l ∈ L}

Again, the merge functions all have the form g(w1, w2) = w1 ⊗ project(w2).
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n5

n7

n8

x1 = x1+x2
x1 = 0

n1

n2

n6

bar( )

proc barproc foo

n3

bar( )

n4

x2 = 1

x2 = x2+1

Figure 3.5 An affine program that starts execution at node n1. There are two global
variables: x1 and x2.

3.5.2 Affine Relation Analysis

An affine relation is a linear-equality constraint between integer-valued variables. Affine-

relation analysis (ARA) tries to find all affine relationships that hold in the program. An

example is shown in Fig. 3.5. For example, for this program, ARA would infer that x2 = x1+1

at program node n4.

ARA for single-procedure programs was first addresses by Karr [45]. ARA generalizes

other analyses, including copy-constant propagation, linear-constant propagation [84], and

induction-variable analysis [45]. We have used ARA on machine code to find induction-

variable relationships between machine registers (see Section 3.4).

Affine Programs

Interprocedural ARA can be performed precisely on affine programs, and has been the

focus of several papers [67, 68, 36]. Affine programs are similar to Boolean programs, but

with integer-valued variables. First, we restrict our attention to affine programs with only

global variables and show how they can be encoded using WPDSs, and then show how the

addition of locals variables is handled using merge functions.
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If {x1, x2, · · · , xn} is the set of global variables of the program, then all assignments in an

affine program have the form xj := a0 +
∑n

i=1 aixi, where a0, · · · , an are integer constants.

An assignment can also be non-deterministic, denoted by xj := ?, which may assign any

integer to xj. (This is typically used for abstracting assignments that cannot be modeled

as an affine transformation of the variables.) All branch conditions in affine programs are

non-deterministic.

ARA Weight Domain

We briefly describe the weight domain based on the linear-algebra formulation of ARA

from [67]. An affine relation a0 +
∑n

i=1 aixi = 0 is represented using a column vector of size

n + 1: ~a = (a0, a1, · · · , an)t. A valuation of program variables x is a map from the set of

global variables to the integers. The value of xi under this valuation is written as x(i).

A valuation x satisfies an affine relation ~a = (a0, a1, · · · , an)t if a0 +
∑n

i=1 aix(i) = 0. An

affine relation ~a represents the set of all valuations that satisfy it, written as Pts(~a). An

affine relation ~a holds at a program node if the set of valuations reaching that node (in the

concrete collecting semantics) is a subset of Pts(~a).

An important observation about affine programs is that if affine relations ~a1 and ~a2 hold

at a program node, then so does any linear combination of ~a1 and ~a2. For example, one can

verify that Pts(~a1 +~a2) ⊇ Pts(~a1)∩Pts(~a2), i.e., the affine relation ~a1 +~a2 (componentwise

addition) holds at a program node if both ~a1 and ~a2 hold at that node. The set of affine

relations that hold at a program node forms a (finite-dimensional) vector space [67]. This

implies that a (possibly infinite) set of affine relations can be represented by any of its bases;

each such basis is always a finite set.

For reasoning about affine programs, Müller-Olm and Seidl defined an abstraction that

is able to find all affine relationships in an affine program: each statement is abstracted by

a set of matrices of size (n + 1)× (n + 1). A statement xj := a0 +
∑n

i=1 aixi can be written

as x := Ax + b, where x is interpreted as a column vector of size n, A is an (n× n) matrix,

and b is a column vector of size n:
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A =

Ij−1 0

a1 a2 · · · an

0 In−j

b =


0

a0

0


where Ik is the identity matrix of size (k × k), and a0 appears in the jth row of b. Then

this statement is abstracted by a singleton set consisting of the following matrix of size

(n + 1)× (n + 1):

1 bt

0 At

We refer the reader to [67] for the abstraction of other kinds of statements. The set

of matrices obtained in this way form the weakest-precondition transformer on affine rela-

tions for a statement: if a statement is abstracted as the set {m1, m2, · · · , mr}, then the

affine relation ~a holds after the execution of the statement if and only if the affine relations

(m1~a), (m2~a), · · · , (mr~a) hold before the execution of the statement.

Under such an abstraction of program statements, one can define the extend operation

as matrix multiplication of each member of the first set with each member of the second set,

and the combine operation as set union. This is correct semantically, but it does not give

an effective algorithm because the matrix sets can grow in size without bound. However,

the observation that affine relations form a vector space carries over to a set of matrices as

well. One can show that the transformer {m1, m2, · · · , mr} is semantically equivalent to the

transformer {m1, m2, · · · , mr, m}, where m is any linear combination of the mi matrices.

Thus, a set of matrices can be abstracted as the (infinite) set of matrices spanned by them.

Once we have a vector space, we can represent it using any of its bases to get a finite and

bounded representation: a vector space over matrices of size (n + 1)× (n + 1) cannot have

more that (n + 1)2 matrices in any basis.

If M is a set of matrices, let Span(M) be the vector space spanned by them. Let β

be the basis operation that takes a set of matrices and returns a basis of their span. We
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can now define the weight domain. A weight w is a vector space of matrices, which is

represented using any of its bases. Extend of vector spaces w1 and w2 is the vector space

{(m1m2) | mi ∈ wi}. Combine of w1 and w2 is the vector space {(m1 + m2) | mi ∈ wi},

which is the smallest vector space containing both w1 and w2. 0 is the empty set, and 1

is the span of the singleton set consisting of the identity matrix. The extend and combine

operations, as defined above, are operations on infinite sets. They can be implemented by

the corresponding operations on any basis of the weights. The following properties show that

it is semantically correct to operate on the elements in the basis instead of all the elements

in the vector space spanned by them:

β(w1 ⊕ w2) = β(β(w1)⊕ β(w2))

β(w1 ⊗ w2) = β(β(w1)⊗ β(w2))

These properties are satisfied because of the linearity of extend (matrix multiplication dis-

tributes over addition) and combine operations.

Under such a weight domain, IJOP(S, T ) is a weight that is the net weakest-precondition

transformer between S and T . Suppose that this weight has the basis {m1, · · · , mr}. The

affine relation that indicates that any variable valuation might hold at S is ~0 = (0, 0, · · · , 0).

Thus, ~0 holds at S, and the affine relation ~a holds at T iff m1~a = m2~a = · · · = mr~a = ~0. In

other words, ~a is in the nullspaces of each of the mi. The set of all affine relations that hold

at T can be found as the intersection of the null spaces of the matrices m1, m2, · · · , mr.

Incorporating Local Variables

If an affine program has n global variables and no local variables, then the matrices have

size (n + 1) × (n + 1). Assume, without loss of generality, that each procedure has l local

variables. The statements are abstracted as a set of matrices exactly in the same manner as

before, except that the matrices have size (n + l + 1) × (n + l + 1). These matrices can be

divided into four quadrants, as shown below.
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I II

(n + 1)× (n + 1) (n + 1)× l

III IV

l × (n + 1) l × l

The four quadrants of a matrix describe four pieces of the transformation from pre-state to

post-state: the first quadrant encodes the contribution of pre-state values of global variables

to post-state values of global variables; the second quadrant encodes the contribution of pre-

state globals to post-state locals; the third quadrant encodes the contribution of pre-state

locals to post-state globals; and the fourth quadrant encodes the contribution of pre-state

locals to post-state locals.

As for Boolean programs, we will define a merge function using a project function that

quantifies out the local variables and replaces them with the identity transformation. This is

carried out by zero-ing out the second and third quadrants, and changing the fourth quadrant

to the identity matrix. If w is a set of matrices, project(w) is defined as the application of

the following operation on all matrices of w:

m1 m2

m3 m4

7→
m1 0

0 a Il

Here a is the topmost-leftmost element of m1. It is used to make the above operation

linear, which, in turn, makes merge(w1, w2) = w1 ⊗ project(w2) distribute over combine. (A

justification of this operation for quantifying out the local variables can be found in [67].)

Extensions to ARA

ARA can also be performed for modular arithmetic [68] to precisely model machine

arithmetic (which is modulo 2 to the power of the word size). The weight domain is similar

to the one described above.
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3.5.3 Single-Level Pointer Analysis

In this section, we define an EWPDS to find variable aliasing in programs written in a

C-like imperative language that is restricted to single-level pointers (i.e., one cannot have

pointers to pointers).2 This problem was defined and solved by Landi and Ryder [61]. We

first discuss some of the results from [61], and then move on to describe an EWPDS that

finds aliasing in a program. This encoding shows the power of EWPDSs for solving different

kinds of problems. Moreover, it gives us something new: a way of answering stack-qualified

aliasing queries.

We will only to describe the weight domain and merge functions for the EWPDS, because

we already know how to model the control flow of a program as a PDS (Fig. 2.4).

We say that two access expressions a and b are aliased (written as 〈a, b〉) at a particular

program point n if in some program execution they refer to the same memory location

when execution reaches n. We limit access expressions to variables and pointer dereferences

(written as ∗p for an address-valued variable p). Given a program, we want to determine

an overapproximation of all alias pairs that hold at each program point. This problem is

also referred to as may-aliasing. In [61], this is computed in two stages. First, conditional

may-aliasing information is computed, which answers questions of the form: “if all alias pairs

in the set A hold at a program point n1, does the pair 〈a, b〉 hold at point n2?” The second

stage then uses this information to build up the final may-aliasing table.

An important property that results from the fact that we only have single-level pointers is

that for all program points n1 and n2, where n1 is the enter node of the procedure containing

n2, if the alias pair 〈a, b〉 holds at n2 under the assumption that the set A = {A1, · · · , Am}

of alias pairs holds at n1, then either (i) we can prove that 〈a, b〉 holds at n2, assuming that

no alias pair holds at n1; or (ii) there exists a k, 1 ≤ k ≤ m, such that assuming that just Ak

holds at n1 suffices to prove that 〈a, b〉 holds at n2. In other words, we only need to compute

2For languages in which more than one level of indirection is possible, the algorithm for single-level
pointers still provides a safe solution (i.e., an overapproximation) [61].
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conditional may-alias information for each alias pair Ak ∈ A, rather than for each subset of

A.

We say that the alias pair 〈a, .〉 holds at program point n if a is aliased to some access

expression that is not visible (i.e., out of scope) in the procedure containing n. It is not

necessary to know the particular invisible access expression to which a is aliased because a

procedure will always have the same effect on all alias pairs that contain access expression

a and any invisible access expression [61].

For a given program, let V denote the set of all its variables and pointer dereferences.

Assume that all variables have different names (local variables can be prefixed by the name

of the procedure that contains them) so that there are no name conflicts. The set AP =

(V × V )∪ (V × {.})∪ ({.} × V ) is the set of all possible alias pairs. Let AP⊥ = AP ∪ {⊥},

where ⊥ represents the absence of an alias pair.

We now construct a weight domain over the set D = (AP⊥ → 2AP) of all functions

w from AP⊥ to the power set of AP with the following monotonicity restriction: for all

x ∈ AP , w(⊥) ⊆ w(x). Operations on weights will maintain the invariant that alias relations

are symmetric (i.e., if 〈a, b〉 holds, so does 〈b, a〉). Each weight w ∈ D can be efficiently

represented as a one-to-many map from AP⊥ to AP .

An interprocedural path P with weight w means that if we assume 〈a, b〉 to hold at the

beginning of P then all pairs in w(〈a, b〉) hold at the end of path P when the program

execution follows P . The special element ⊥ handles the case when no pair is assumed to

hold at the beginning of the path; w(⊥) is the set of all alias pairs that hold at the end

of the path without assuming that any pair holds at the beginning of the path. Thus, a

weight represents conditional may-aliasing information, which motivates the monotonicity

condition introduced above.
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For all w1 6= 0 6= w2, the semiring operations are defined as follows. For x ∈ AP⊥,

(w1 ⊕ w2)(x) = w1(x) ∪ w2(x)

(w1 ⊗ w2)(x) = w2(⊥) ∪ (∪y∈w1(x)w2(y))

1(x) =

 ∅ if x = ⊥

{x} otherwise

If path P1 has weight w1 and path P2 has weight w2, then the weight w1 ⊗ w2 summarizes

the conditional alias information of the path P1 followed by P2. In particular, (w1 ⊗ w2)(x)

consists of the alias pairs that hold from w2, regardless of the value of w1, together with

the alias pairs that hold from w2 given w1(x). When P1 and P2 have the same starting and

ending points, the weight w1⊕w2 stores conditional aliasing information when the program

execution follows P1 or P2.

(The semiring constant 0 cannot be naturally described in terms of conditional aliasing,

but we can add it to D as a special value that satisfies all properties of Defn. 2.4.1.)

We now consider how to associate a weight to each pushdown rule in the EWPDS that

encodes the program. For a node n that contains a statement of the form x = y, where x

and y are pointers, the weight associated with each rule of the form 〈p, n〉 ↪→ · · · is a map,

where for each x ∈ AP⊥, the first applicable mapping that appears in the list below is used:

〈∗y, b〉 7→ {〈∗x, b〉}

〈a, ∗y〉 7→ {〈a, ∗x〉}

〈∗x, b〉 7→ ∅

〈a, ∗x〉 7→ ∅

〈a, b〉 7→ {〈a, b〉}

⊥ 7→ {〈a, a〉 | a ∈ V } ∪ {〈∗x, ∗y〉, 〈∗y, ∗x〉}

Roughly speaking, this generates the alias pairs 〈∗x, ∗y〉 and 〈∗y, ∗x〉, makes the aliases of ∗y

into aliases of ∗x, and removes the previously existing alias pairs of ∗x (except for 〈∗x, ∗x〉).

To enforce monotonicity on weights, the following closure operation is applied to the map:

cl(w) = λx.(w(x) ∪ w(⊥)). The weights on other rules that represent intraprocedural edges

can be defined similarly (see [61]).
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For a push rule, the weight is determined according to the binding that occurs at the call

site; the definition is presented in Fig. 3.6. All pop rules have the weight 1.

The merge functions associated with push rules reflect the way conditional aliasing in-

formation is computed for return nodes in [61]. Consider the push rule 〈p, callfoo〉 ↪→

〈p, enterbar returnfoo〉, which is a call to procedure bar from foo, and suppose that bindcall

is the weight associated with this rule. For local access expressions l1, l2 of foo and global

access expressions g1, g2, the following must hold.

• The alias pair 〈l1, l2〉 holds at returnfoo only if the pair 〈l1, l2〉 holds at the call node

callfoo.

• The alias pair 〈g1, g2〉 holds at returnfoo only if the pair holds at exitbar.

• The alias pair 〈g1, l1〉 holds at returnfoo only if 〈g1, .〉 holds at exitbar and the invisible

variable is l1. This happens when a pair 〈o1, l1〉 that held at callfoo caused 〈o2, .〉 to

hold at enterbar because of the call bindings (〈o2, .〉 ∈ bindcall(〈o1, l1〉)) and this pair, in

turn, caused 〈g1, .〉 to hold at exitbar.

To encode these facts as weights for an algorithmic description of the merge functions,

we need to define certain weights and operations on them.

• Projection. For a set S ⊆ (V ∪{.}), let wS be a weight that only preserves alias pairs

in S × S: wS(⊥) = ∅ and

wS(〈a, b〉) =

 {〈a, b〉} if a, b ∈ S

∅ otherwise

• Restoration. For an access expression v ∈ V , let wv
S be a weight that changes alias

pairs when v comes back in scope conditional on the set S ⊆ (V ∪ {.}): wv
S(⊥) = ∅

and
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bindn(⊥) =



{〈∗fi, ∗fj〉 | [fi, ai], [fj , aj ], ai = aj}

∪ {〈∗fi, ∗ai〉 | [fi, ai], visiblep(ai)}

∪ {〈∗ai, ∗fi〉 | [fi, ai], visiblep(ai)}

∪ {〈∗fi, .〉 | [fi, ai],¬visiblep(ai)}

∪ {〈., ∗fi〉 | [fi, ai],¬visiblep(ai)}



bindn(〈a, b〉) =



bindn(⊥)

∪ {〈a, b〉 | visiblep(a), visiblep(b)}

∪ {〈a, .〉 | visiblep(a),¬visiblep(b)}

∪ {〈., b〉 | ¬visiblep(a), visiblep(b)}

∪ {〈a, ∗fi〉 | visiblep(a), [fi, ai], ∗ai = b}

∪ {〈., ∗fi〉 | ¬visiblep(a), [fi, ai], ∗ai = b}

∪ {〈∗fi, b〉 | visiblep(b), [fi, ai], ∗ai = a}

∪ {〈∗fi, .〉 | ¬visiblep(b), [fi, ai], ∗ai = a}

∪ {〈∗fi, ∗fj〉 | [fi, ai], [fj , aj ], ∗ai = a, ∗aj = b}



Figure 3.6 A function that models parameter binding for a call at program point n to a
procedure named p. For brevity, we write [f, a] to denote the fact that f is a pointer-valued
formal parameter bound to actual a. Also, visiblep(a) is true if a is visible in procedure p.

wv
S(〈a, b〉) =


{〈a, v〉} if b = . and a ∈ S

{〈v, b〉} if a = . and b ∈ S

∅ otherwise

• Conditional Extend. For an alias pair 〈a, b〉, define ⊗〈a,b〉 to be a binary operation

on weights that calculates the alias pairs that hold at the end of a path as a result of

the fact that 〈a, b〉 held at a point inside the path. For x ∈ AP⊥,

(w1 ⊗〈a,b〉 w2)(x) =

 w2(〈a, b〉) if 〈a, b〉 ∈ w1(x)

w2(⊥) otherwise



84

We can now define the merge functions. If G is the set of global access expressions of

the program, then for a call from a procedure with local access expressions L and binding

weight bindcall (i.e., the weight on the push rule), the merge function is defined as follows

(where Le denotes L ∪ {.}):

g(w1, w2) = if(w1 = 0 or w2 = 0) then 0

else



(w1 ⊗ wLe)

⊕ (w1 ⊗ bindcall ⊗ w2 ⊗ wG)

⊕
⊕

〈a,l〉∈V×Le

((w1 ⊗〈a,l〉 (bindcall ⊗ w2))⊗ wl
G)

⊕
⊕

〈l,a〉∈Le×V

((w1 ⊗〈l,a〉 (bindcall ⊗ w2))⊗ wl
G)


The first term in the combine copies over from the call site the pairs for local access expres-

sions. The second term copies over from the called procedure’s exit site the pairs for global

access expressions. The third and fourth terms, which are combines over all pairs in V ×Le

and Le × V , respectively, account for global-local access expressions, following the strategy

discussed earlier in this section.

After the EWPDS is constructed, we can run a single GPS query on the configuration

set C = {〈p, entermain〉} (where p is the single control location of the EWPDS), and obtain

the may-alias pairs as follows,

may-alias(n) = IJOP(C, {〈p, n u〉 | u ∈ Γ∗})(⊥).

In addition to computing the Landi-Ryder may-alias pairs, we can also answer stack-

qualified queries about may-alias relationships. For instance, we can find out the may-

alias pairs that hold at n1 when execution ends in the stack configuration 〈p, n1n2 · · ·nk〉.

Such queries allow us to obtain more precise information than what is obtained by merely

computing a may-aliasing query for paths that end at n1 with any stack configuration.

3.6 Related Work

Weighted pushdown systems have been used for finding uninitialized variables, live vari-

ables, linear constant propagation, and the detection of affine relationships. In each of these
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cases, local variables are handled by introducing special paths in the transition system of the

PDS that models the program. These paths skip call sites to avoid passing local variables

to the callee. This leads to imprecision by breaking existing relationships between local

and global variables. Besides dataflow analysis, WPDSs have also been used for generalized

authorization problems [87].

A library for WPDSs is available as part of Moped [50]. We have developed our own

implementations of WPDSs: WPDS++ [49] and WALi [47], both of which now support

EWPDSs as well.

Moped [32, 50] has been used for performing relational dataflow analysis, but only for

finite abstract domains. Its basic approach is to embed the abstract transformer of each

program statement into the rules of the pushdown system that models the program. This

contrasts with WPDSs, where the abstract transformer is a separate weight associated with a

pushdown rule. Moped associates global variables with states of the PDS and local variables

with its stack symbols. Then the stack of the PDS simulates the run-time stack of the

program and maintains a different copy of the local variables for each procedure invocation.

A simple pushdown reachability query can be used to compute the required dataflow facts.

The disadvantage of that approach is that it cannot handle infinite-size abstract domains

because then associating an abstract transformer with a pushdown rule would create infinite

pushdown rules. In contrast, an EWPDS is capable of performing an analysis on infinite-size

abstract domains. The domain used for copy-constant propagation in Section 3.1 is one such

example.

Besides dataflow analysis, model-checking of pushdown systems has also been used for

verifying security properties in programs [31, 42, 21]. Like WPDSs, we can use EWPDS for

this purpose, but with added precision that comes due to the presence of merge functions.

The idea behind the transition from a WPDS to an EWPDS is that we attach extra

meaning to each run of the pushdown system. We look at a run as a tree of matching calls

and returns that push and pop values on the run-time stack of the program. This treatment

of a program run has also been explored by Müller-Olm and Seidl [67] in an interprocedural
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dataflow-analysis algorithm to identify the set of all affine relationships that hold among

program variables at each program node. They explicitly match calls and returns to avoid

passing relations involving local variables to different procedures. This allowed us to to

directly translate their work into an EWPDS, which we have used for the experiments in

Section 3.4.

3.7 Proofs

In this section, we give proofs for Thms. 3.2.1 and 3.2.5. In each case, we give an abstract

grammar problem G, similar to the ones shown in Section 2.4.1 for WPDSs, and then show

the following: (i) computing JOD values for G is sufficient for computing IJOP on EWPDSs;

(ii) the saturation-based algorithms compute JOD values for G.

Fix We = (P ,S, f,m) to be an EWPDS, where P = (P, Γ, ∆) is the underlying PDS.

Fix A = (Q, Γ,→0, P, F ) to be a P-automaton. Let mr be the merge function associated

with rule r.

Proof of Thm. 3.2.1

The PopRuleSeq grammar shown in Fig. 2.6 characterizes the set of all paths in a PDS.

For WPDSs, we saw how replacing the rules in the PopRuleSeq grammar with weights led

to an abstract grammar problem (shown in Fig. 2.13) that solves GPP for WPDSs. We

follow a similar strategy for EWPDSs, but we need to consider how a rule sequence is parsed

by the PopRuleSeq grammar, identify balanced rule sequences, and insert merge functions

accordingly.

We say that a non-terminal N1 over-approximates a non-terminal N2 (possibly from a

different context-free grammar) when L(N1) ⊇ L(N2). A grammar G1 over-approximates

a grammar G2 if for every non-terminal of G2, there is a non-terminal of G1 that over-

approximates it.

Consider the grammar shown in Fig. 3.7. We call it the accepting rule-sequence grammar

for GPP. The productions from case 1 to 4 are from the PopRuleSeq grammar for the
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Production for each

(1) PopRuleSeq(q,γ,q′) → ε (q, γ, q′) ∈→0

(2) PopRuleSeq(p,γ,p′) → r r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆

(3) PopRuleSeq(p,γ,q) → r PopRuleSeq(p′,γ′,q) r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ P

(4) PopRuleSeq(p,γ,q) → r PopRuleSeq(p′,γ′,q′) PopRuleSeq(q′,γ′′,q)

r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, q, q′ ∈ P

(5) AcceptingRuleSeq[pγ1γ2 · · · γn] → PopRuleSeq(p,γ1,q1)PopRuleSeq(q1,γ2,q2) · · ·PopRuleSeq(qn−1,γn,qn)

p ∈ P, γi ∈ Γ, qi ∈ Q for 1 ≤ i ≤ n, qn ∈ F

Figure 3.7 The AcceptingRuleSeq grammar for GPP, given PDS P and automaton A.

PDS PA (Defn. 2.3.7), but the set of terminals is restricted to be only ∆, i.e., we replace

the rules that are produced from A with ε (in case 1 of the grammar). The productions

from case 5 add a new set of non-terminals. From Cor. 2.3.6 and Lem. 2.3.8, one can

show that L(AcceptingRuleSeq[pγ1γ2 · · · γn]) equals the set of all rule sequences that take the

configuration 〈p, γ1 · · · γn〉 to a configuration in A, i.e., it equals {pathsP(〈p, γ1 · · · γn〉, c) |

c ∈ L(A)}.

The grammar shown in Fig. 3.8 (call it Gover) over-approximates the accepting rule-

sequence grammar when we remove the AcceptingRuleSeq non-terminals. This is easy to

prove. The grammar Gover is obtained as follows: for each production in Fig. 3.7, except for

the ones in case 5, replace the non-terminal PopRuleSeqt with A, if t ∈ (P ×Γ×P ), or with

B if t ∈ P × Γ× (Q− P ), or with C if t ∈ (Q− P )× Γ× (Q− P ); a PDS rule r is replaced

with Ri if it has i stack symbols in its right-hand side.

One can show that L(A) ⊆ (L(σb) R0) and L(B) ⊆ (R2 ∪ L(σb))
∗, where σb is the non-

terminal from Fig. 3.2 that derives balanced sequences. Thus, L(PopRuleSeqt) ⊆ (L(σb) R0)

for t ∈ P × Γ × P , and L(PopRuleSeqt) ⊆ (R2 ∪ L(σb))
∗ for t ∈ P × Γ × (Q − P ). One

can also show that L(AcceptingRuleSeq[c]) ⊆ (L(A)∗L(B)+). Moreover, (R2A) can only

derive balanced sequences. The two instances of R2A in the grammar Gover are where merge

functions have to be slipped in—and both such instances come from case 4 productions of

the accepting rule-sequence grammar.
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Non-terminal Over-approximates

PopRuleSeqt for t in

A P × Γ× P

B P × Γ× (Q− P )

C (Q− P )× Γ× (Q− P )

A → R0 | R1 A | R2 A A

B → ε | R1 B | R2 B C | R2 A B

C → ε

Figure 3.8 A grammar that over-approximates the grammar shown in Fig. 3.7.

Based on the above observations about the rule sequences that can be derived from

the non-terminals of the accepting rule-sequence grammar, we construct the abstract gram-

mar shown in Fig. 3.9. It is similar to the abstract grammar for solving GPP on WPDSs

(Fig. 2.13). Case 4 in Fig. 3.9 corresponds to the productions A→ R2 A A and B → R2 A B

of Gover, thus, uses a merge function. Case 5 corresponds to the production B → R2 B C,

and does not use a merge function because the call rule R2 cannot have any matching return

rule in the rule sequence derived from (B C).

By our construction, JOD(PopSeq(p,γ,q)) = IJOPWe(paths(〈p, γ〉, 〈q, ε〉)). Moreover,

JOD(AcceptingSeq[pγ1γ2 · · · γn]) = δWe(paths(〈p, γ1 · · · γn〉,L(A)))

The saturation procedure shown in Fig. 3.3 solves the abstract grammar of Fig. 3.9 for

PopSeq non-terminals. Thus, when the saturation procedure finishes, the weight on transi-

tion t is wt if and only if wt = JOD(PopSeqt). (See also Lem. 2.4.9.) Moreover, if Apre∗

is the resulting automaton, then Apre∗(〈p, γ1 · · · γn〉) = JOD(AcceptingSeq[pγ1γ2 · · · γn]) be-

cause the productions for AcceptingSeq are only computing the weight of accepting paths in

Apre∗ . This proves that Apre∗(c) = δWe(c,L(A)).

Proof of Thm. 3.2.5

The proof of Thm. 3.2.5 uses an argument similar to the one used in the proof of

Thm. 3.2.1. To simplify the proof, we assume that the weight on a call rule is always
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Production for each

(1) PopSeq(q,γ,q′) → g1(ε) (q, γ, q′) ∈ →0

g1 = 1

(2) PopSeq(p,γ,p′) → g2(ε) r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆

g2 = f(r)

(3) PopSeq(p,γ,q) → g3(PopSeq(p′,γ′,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Q

g3 = λx.f(r)⊗ x

(4) PopSeq(p,γ,q) → g4(PopSeq(p′,γ′,q′),PopSeq(q′,γ′′,q))

r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, q ∈ Q, q′ ∈ P

g4 = λx.λy.mr(1, x)⊗ y

(5) PopSeq(p,γ,q) → g5(PopSeq(p′,γ′,q′),PopSeq(q′,γ′′,q))

r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, q, q′ ∈ (Q− P )

g5 = λx.λy.f(r)⊗ x⊗ y

(6) AcceptingSeq[pγ1γ2 · · · γn]→ g6(PopSeq(p,γ1,q1),PopSeq(q1,γ2,q2), · · · ,PopSeq(qn−1,γn,qn))

p ∈ P, γi ∈ Γ, qi ∈ Q for 1 ≤ i ≤ n, qn ∈ F

g6 = λx1 · · ·λxn.x1 ⊗ · · · ⊗ xn

Figure 3.9 An abstract grammar problem for solving GPP on EWPDSs.

1. An EWPDS W1
e that does not satisfy this restriction can always be converted to one, say

W2
e , that does satisfy it as follows:

1. The semiring of W2
e is over pairs of weights with the operations defined componen-

twise, i.e., the semiring is ((D, D),⊕p,⊗p, (0, 0), (1, 1)), where both ⊗p and ⊕p are

componentwise ⊗ and ⊕, respectively.

2. For every call rule r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 in W1
e with weight f(r) and merge func-

tion mr, add the rules r1 = 〈p, γ〉 ↪→ 〈p, γr〉 and r2 = 〈p, γr〉 ↪→ 〈p′, γ′ γ′′〉 to W2
e

with weights (1, f(r)) and (1, 1), respectively. The rule r2 has the merge function

λ(x1, x2).λ(y1, y2).(mr(x1, y1), 1).
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Production for each

(1) PushRuleSeq(q,γ,q′) → ε (q, γ, q′) ∈→0

(2) SameLevelRuleSeq(p′,ε,q) → PushRuleSeq(p,γ,q) r r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆, q ∈ Qe

(3) PushRuleSeq(p′,γ′,q′) → PushRuleSeq(q,γ′,q′) SameLevelRuleSeq(p′,ε,q)

p′ ∈ P, q, q′ ∈ Qe

(4) PushRuleSeq(p′,γ′,q) → PushRuleSeq(p,γ,q) r r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Qe

(5) PushRuleSeq(p′,γ′,p′
γ′ )

→ ε r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 ∈ ∆

(6) PushRuleSeq(p′
γ′ ,γ

′′,q) → PushRuleSeq(p,γ,q) r r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 ∈ ∆, q ∈ Qe

(7) AcceptingRuleSeq[pγ1γ2 · · · γn] → PushRuleSeq(p,γ1,q1) · · ·PushRuleSeq(qn−1,γn,qn)

p ∈ P, γi ∈ Γ, qi ∈ Qe, for 1 ≤ i ≤ n, qn ∈ F

Figure 3.10 The AcceptingRuleSeq grammar for GPS, given PDS P and automaton A.
The set Qe is defined as (Q ∪Qmid)

3. For every other rule r of W1
e , add r to W2

e with weight (f(r), 1).

The pairing of weights that occurs in poststar is because of the above construction (but

the transitions on the new stack symbols γr remain implicit).

The accepting rule-sequence grammar for GPS is shown in Fig. 3.10. The grammar

that overapproximates it is shown in Fig. 3.11, and its language is shown in Fig. 3.12. The

occurrences of (D E) and (C E) is where merge functions have to be applied. The abstract

grammar that solves GPS is shown in Fig. 3.13. Again, this abstract grammar justifies the

saturation procedure of Fig. 3.4: the latter is simply computing JOD values for the former.
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Non-terminal Over-approximates

PushRuleSeqt for t in

A P × Γ× (Q− P )

B P × Γ×Qmid

C Qmid × Γ× (Q− P )

D Qmid × Γ×Qmid

E P × {ε} ×Qmid

F P × {ε} × (Q− P )

G (Q− P )× Γ× (Q− P )

A → ε | A R1 | C E | F

B → ε | B R1 | D E

C → A R2

D → B R2

E → G B R0

F → G A R0

G → ε

Figure 3.11 A grammar that over-approximates the grammar shown in Fig. 3.10.

Non-terminal Language is over-approximated by

A (R0 | σb)
∗

B σb

C (R0 | σb)
∗ R2

D σb R2

E σb R0

F (R0 | σb)
∗ R0

Figure 3.12 The language of strings derivable from the non-terminals of the grammar
shown in Fig. 3.11. Here σb is non-terminal of Fig. 3.2 that derives balanced sequences.
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Production for each

(1) PushSeq(q,γ,q′) → g1(ε) (q, γ, q′) ∈→0

g1 = 1

(2) SameLevelSeq(p′,ε,q) → g2(PushSeq(p,γ,q)) r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆, q ∈ Qe

g2 = λx.x⊗ f(r)

(3a) PushSeq(p′,γ′′,q′) → g3(PushSeq(q,γ′′,q′), SameLevelSeq(p′,ε,q))

p′ ∈ P, q′ ∈ Qe, q = pγ′ ∈ Qmid, r = lookupPushRule(p, γ′, γ′′)

g3 = λx.λy.mr(y, x)

(3b) PushSeq(p′,γ′′,q′) → g′3(PushSeq(q,γ′′,q′), SameLevelSeq(p′,ε,q))

p′ ∈ P, q′ ∈ Qe, q 6∈ Qmid

g′3 = λx.λy.y ⊗ x

(4) PushSeq(p′,γ′,q) → g4(PushSeq(p,γ,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, q ∈ Qe

g4 = λx.x⊗ f(r)

(5) PushSeq(p′,γ′,p′
γ′ )

→ g5(ε) r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 ∈ ∆

g5 = 1

(6) PushSeq(p′
γ′ ,γ

′′,q) → g6(PushSeq(p,γ,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉 ∈ ∆, q ∈ Qe

g6 = λx.x

(7) AcceptingSeq[pγ1γ2 · · · γn] → g7(PushSeq(p,γ1,q1), · · · ,PushSeq(qn−1,γn,qn))

p ∈ P, γi ∈ Γ, qi ∈ Qe, for 1 ≤ i ≤ n, qn ∈ F

g7 = λx1 · · ·λxn.xn ⊗ · · · ⊗ x1

Figure 3.13 An abstract grammar problem for solving GPS in an EWPDS. mr is the
merge function associated with rule r.
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Chapter 4

Faster Interprocedural Analysis Using WPDSs

The previous chapter described various abstract models and their analyses for finding

the set of reachable states. At the heart of all these analyses, and some others [81, 84, 88, 9,

33, 85], is a chaotic-iteration strategy. These analyses are saturation based: they use some

set of rules in order to saturate the currently inferred set of reachable states. The analyses

simply state that the rules can be applied in any order (e.g., see Section 2.3.2). Thus, their

implementations are free to choose the rules in any order. The strategy of choosing any rule

at random is called the chaotic-iteration strategy.

v1

v2

v3

v4

v5

v6

Figure 4.1 A
simple dataflow
model that has a
graph with a loop.

For instance, many standard algorithms for dataflow analysis are

worklist-based. They start with an initial value at the entry node and, at

each step, propagate changes to a successor node by picking an outgoing

edge at random. Consider running this strategy on the dataflow model

shown in Fig. 4.1. Suppose each edge in the graph is labeled with a

dataflow transformer, and we want to solve for the JOP value for all

paths from node v1 to node v6. Also suppose that the loop (v1 v2 v3)

requires 10 iterations around the loop to reach a fixpoint.

If the algorithm starts at node v1 and propagates changes to v2,

then v3 and so on to v6 before taking the backedge from v3 to v1, the

algorithm would end up performing 6 × 10 = 60 operations (assuming

one operation for propagating changes across a single edge). The ideal

way of computing the JOP value is to first saturate the loop and then
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go outside it, i.e., the changes are propagated within the loop until a fixpoint is reached,

and then propagated to nodes v4, v5 and v6 just once. This requires only 3 × 10 + 3 = 33

operations.

The general observation is that the iteration order matters for the total running time

of a saturation-based analysis. Tarjan gave an efficient iteration order for finite graphs

[91, 90] that applies to single-procedure dataflow models. We extend that algorithm to the

interprocedural setting. To provide a common setting to discuss most of the above-mentioned

analyses, we use WPDSs to describe our improvement to the chaotic-iteration strategy. Our

techniques also apply to EWPDSs. Besides speeding up reachability, our techniques also

help in witness generation, differential propagation, and incremental computation (Section

4.2).

Tarjan’s algorithm [91, 90] works by efficiently converting a graph into a regular ex-

pression. Evaluating the regular expression (under an appropriate interpretation in which

expression concatenation is interpreted as ⊗ and expression union is interpreted as ⊕) is

sufficient to solve for the desired JOP weight. Our technique generalizes this algorithm to

programs with multiple procedures as follows: for every procedure p, we introduce a variable

Xp, which represents the summary of the procedure, i.e., the net effect of all (valid) paths

that go from the entry of the procedure to its exit. Next, we replace procedure calls with

their summary, i.e., a call to a procedure p in the ICFG is replaced with an intraprocedural

edge labeled with Xp. This results in a collection of graphs, one for each procedure. Next, we

use Tarjan’s algorithm to obtain a set of equations: the graph for procedure p is converted

to an equation Xp = rp, where rp is the regular expression for the graph. The expressions

may depend on unknown variables. For example, if procedure p calls procedures q and s,

then rp may contain variables Xq and Xs.

The resulting equations can be solved using a chaotic-iteration strategy: for each pro-

cedure j, initialize the variable Xj to ⊥ (or the semiring weight 0); next, pick an equation

Xi = ri, evaluate the expression ri and update the value of Xi; and repeat until the values

of all variables stop changing. This strategy would, however, give up most of the benefit of
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using the regular expressions. We give an order in which the equations should be solved,

and also show how to speed up multiple evaluations of the same expression. This results in

an efficient interprocedural-analysis algorithm.

We also show how to reduce a WPDS reachability problem (Defn. 2.4.4) to a problem

on graphs that can be solved in a similar fashion as above. When the PDS underlying the

WPDS is obtained from an ICFG using the standard encoding (Fig. 2.4) then the graphs

coincide with the control-flow graphs of the procedures in the ICFG.

The contributions of the work presented in this chapter can be summarized as follows:

• We present a new reachability algorithm for WPDSs and EWPDSs that improves on

previously known algorithms for PDS reachability. The algorithm is asymptotically

faster when the PDS is regular (decomposes into a single graph), and offers substantial

improvement in the general case as well. (Section 4.1)

• The algorithm is demand-driven, and computes only that information needed for an-

swering a particular user query. It has an implicit slicing stage where it disregards

parts of the program not needed for answering the user query.

• We show that other analysis questions, namely witness tracing, differential propagation

and incremental analysis, carry over to the new approach. (Section 4.2)

• We carried out experiments on three very different applications that use WPDSs and

obtained substantial speedups for each of them. (Section 4.3)

The rest of this chapter is organized as follows: Section 4.1 presents our algorithm for

solving reachability queries on WPDSs and EWPDSs. Section 4.2 describes algorithms

for witness tracing, differential propagation and incremental analysis. Section 4.3 presents

experimental results. Section 4.4 describes related work.
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4.1 Solving WPDS Reachability Problems

In this section, we show how to speed up backward reachability on WPDSs (i.e., GPP;

Defn. 2.4.4). Solving forward reachability is similar, but slightly more complicated.

Recall that solving GPP involves computing the join-over-all-derivations (JOD) value

over the abstract grammar shown in Fig. 2.13. We will convert the JOD problem into one of

computing join-over-all-valid-paths (JOVP) over a graph similar to the ICFG, and then use

graph-based techniques. Our technique applies to solving GPS in exactly the same fashion

by using the abstract grammar for GPS. (We use GPP in this section because its abstract

grammar is smaller.)

In this section, fix W = (P ,S, f) as the WPDS, where P = (P, Γ, ∆) is a pushdown

system and S = (D,⊕,⊗, 0, 1) is the weight domain. Let the initial set of configurations be

ones that are accepted by the P-automaton A = (Q, Γ,→0, P, F ).

Definition 4.1.1. A (directed) hypergraph is a generalization of a directed graph in which

generalized edges, called hyperedges, can have multiple sources, i.e., the source of an edge is

an ordered set of vertices. A transition dependence graph (TDG) for a grammar G is a

hypergraph whose vertices are the non-terminals of G. There is a hyperedge from (t1, · · · , tn)

to t if G has a production with t on the left-hand side and t1 · · · tn are the non-terminals that

appear (in order) on the right-hand side.

If we construct the TDG of the grammar shown in Fig. 2.13 when the underlying PDS is

obtained from an ICFG, and the initial set of configurations is {〈p, ε〉 | p ∈ P} (or →0= ∅),

then the TDG is almost identical to the ICFG (with the edges reversed). There are two

differences in the way procedure calls are represented: the TDG has no analog of exit-

node-to-return-node edges, and one of the predecessors of a call-node is the corresponding

return-node. Fig. 4.2 shows an example (disregard the edge labels, nodes ts1 and ts2 and the

dotted edges in Fig. 4.2(c) for now). This can be observed from the fact that except for the

PDS states in Fig. 2.13, the transition dependencies are almost identical to the dependencies

encoded in the pushdown rules, which in turn come from ICFG edges; e.g., in Fig. 4.2, the
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emain

p = NULL

loc1 = false

flag = false

call foo

ret. foo

exitmain

n1

n2

n3

n4

n5

efoo

i = 100

loc2 = true

if(!flag)

if(i > 0)

i = i – 1

*p = i

loc2 = false

exitfoo

t f

t f

n6

n7

n8

n9

n10

n11

n12

(1) 〈p, n1〉 ↪→ 〈p, n2〉

(2) 〈p, n2〉 ↪→ 〈p, n3〉

(3) 〈p, n3〉 ↪→ 〈p, n6 n4〉

(4) 〈p, n4〉 ↪→ 〈p, n5〉

(5) 〈p, n5〉 ↪→ 〈p, ε〉

(6) 〈p, n6〉 ↪→ 〈p, n7〉

(7) 〈p, n7〉 ↪→ 〈p, n8〉

(8) 〈p, n8〉 ↪→ 〈p, n9〉

(9) 〈p, n8〉 ↪→ 〈p, n12〉

(10) 〈p, n9〉 ↪→ 〈p, n10〉

(11) 〈p, n9〉 ↪→ 〈p, n11〉

(12) 〈p, n10〉 ↪→ 〈p, n9〉

(13) 〈p, n11〉 ↪→ 〈p, n12〉

(14) 〈p, n12〉 ↪→ 〈p, ε〉

(p, n1, p)

(p, n2, p)

(p, n3, p)

(p, n4, p)

(p, n5, p)

(p, n6, p)

(p, n7, p)

(p, n8, p)

(p, n9, p)

(p, n10, p)

(p, n11, p)

(p, n12, p)ts1

ts2

w1

w2

w4

w5

w6

w7

w8

w10w12

w13

w14

w11

w9

w3⊗t6

(a) (b) (c)

Figure 4.2 (a) An ICFG. The e and exit nodes represent entry and exit points of
procedures, respectively. The program statement are only written for illustration purposes.
Dashed edges represent interprocedural control flow. (b) A PDS system that models the

control flow of the ICFG. (c) The TDG for the WPDS whose underlying PDS is shown in
(b), assuming that rule number i has weight wi. The non-terminal PopSeq(p,γ,p′) is shown as
simply (p, γ, p′). Let tj stand for the node (p, nj, p). The thick bold arrows form a single
hyperedge. Nodes ts1 and ts2 are root nodes, and the dashed arrow is a summary edge.

ICFG edge (n1, n2) corresponds to the transition dependence ((t2), t1), and the call-return

pair (n3, n6) and (n12, n4) in the ICFG corresponds to the hyperedge ((t4, t6), t3).

For such PDSs, which are obtained from ICFGs, constructing the TDGs might seem

unnecessary (because the ICFG was already available) but it allows us to generalize to an

arbitrary initial set of configurations, which defines a region of interest in the program. More-

over, PDSs can encode a larger range of constructs than an ICFG, such as setjmp/longjmp

in C programs. However, it is still convenient to think of a TDG as an ICFG. In the rest of

this chapter, we illustrate the issues using the TDG of the grammar in Fig. 2.13. We reduce

the join-over-all-derivation problem on the grammar to a join-over-all-valid-paths problem

on its TDG.
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4.1.1 Intraprocedural Iteration

We first consider TDGs of a special form: consider the intraprocedural case, i.e., there

are no hyperedges in the TDG (and correspondingly no push rules in the PDS). As an

example, assume that the TDG in Fig. 4.2 has only the part corresponding to procedure

foo() without any hyperedges. In such a TDG, if an edge ((t1), t) was inserted because of

the production t → g(t1) for g = λx.x⊗ w for some weight w, then label this edge with w.

Next, insert a special node ts into the TDG, and for each production of the form t → g(ε)

with g = w, insert the edge ((ts), t) and label it with weight w. ts is called a root node. This

gives us a graph with weights on each edge.1 Define the weight of a path in this graph in the

standard (but reversed) way: the weight of a path is the extend of weights on its constituent

edges in the reverse order. It is easy to see that JOD(t) =
⊕
{v(η) | η ∈ paths(ts, t)}, where

paths(ts, t) is the set of all paths from ts to t in the TDG and v(η) is the weight of the path

η. To solve for JOD, we could still use chaotic iteration, but instead we will make use of

Tarjan’s path-expression algorithm [90].

Problem 1. Given a directed graph G and a fixed vertex s, the single-source path ex-

pression (SSPE) problem is to compute a regular expression that represents paths(s, v) for

all vertices v in the graph. The syntax of regular expressions is as follows: r ::= ∅ | ε | e |

r1 ∪ r2 | r1.r2 | r∗, where e stands for an edge in G.

We can use any algorithm for SSPE to compute regular expressions for paths(ts, t), which

gives us a complete description of the set of paths that we need to consider. Moreover,

the Kleene-star operator in the regular expressions identifies loops in the TDG. Let ⊗c be

the reverse of ⊗, i.e., w1 ⊗c w2 = w2 ⊗ w1. To compute JOD(t), we interpret the regular

expression for paths(ts, t) as an expression over the weight domain: replace each edge e with

its weight, ∅ with 0, ε with 1, ∪ with ⊕, . with ⊗c; and then evaluate the expression. The

weight w∗ is computed as 1⊕w ⊕ (w ⊗w)⊕ · · · ; because of the no-infinite-ascending-chain

property of the semiring, this iteration converges. The two main advantages of using regular

1A hypergraph reduces to a graph when all hyperedges have a single source node.
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expressions to compute JOD(t) are: First, loops are identified in the expression, and the

evaluation of an expression is forced to saturate a loop before exiting it. Second, we can

compute w∗ faster than using the normal iteration sequence. For this, observe that

(1⊕ w)n = 1⊕ w ⊕ w2 ⊕ · · · ⊕ wn

where exponentiation is defined using ⊗, i.e., w0 = 1 and wi = w ⊗ w(i−1). Then w∗ can be

computed by repeatedly squaring (1⊕w) until it converges. If w∗ = 1⊕w⊕· · ·⊕wn then it

can be computed in O(log n) operations. A chaotic-iteration strategy would take O(n) steps

to compute the same value. In other words, having a closed representation of loops provides

an exponential speedup.2

Tarjan’s path-expression algorithm solves the SSPE problem efficiently. It uses domi-

nators to construct the regular expressions for SSPE. This has the effect of computing the

weight on the dominators of a node before computing the weight on the node itself. This

avoids unnecessary propagation of weights to the node (which is the case, for instance, when

one exits a loop too early). Given a graph with m edges (or m grammar productions in our

case) and n nodes (or non-terminals), regular expressions for paths(ts, t) can be computed for

all nodes t in time O(m log n) when the graph is reducible. Evaluating these expressions will

take an additional O(m log n log h) semiring operations, where h is the height of the semir-

ing.3 These expressions are represented using shared DAGs, i.e., expressions for paths(ts, t1)

and paths(ts, t2) can share common sub-expressions, even when t1 6= t2. The combined size

of all the regular expressions is bounded by the time taken to find the expressions; i.e., the

combined size is O(m log n).

Because most high-level languages are well-structured, their ICFGs are mostly reducible.

When the graph is not reducible, the running time degrades to O((m log n+k) log h) semiring

operations, where k is the sum of the cubes of the sizes of dominator-strong components of the

2This assumes that each semiring operation takes the same amount of time. In the absence of any
assumption on the semiring being used, we aim to decrease the number of semiring operations. In some cases,
e.g., BDD-based weight domains, repeated squaring may not reduce the overall running time. However, the
user can supply a procedure for computing w∗ whenever there is a more efficient way of computing it than
by using simple iteration sequence [63].

3As usual, we assume the height to be bounded while discussing complexity results.
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graph. In the worst case, k can be O(n3). In our experiments, we seldom found irreducibility

to be a problem: k/n was a small constant. A pure chaotic-iteration strategy would take

O(m h) semiring operations in the worst case. Comparing these complexities, we can expect

the algorithm that uses path expressions to be much faster than chaotic iteration, and the

benefit will be greater as the height of the semiring increases.

4.1.2 Interprocedural Iteration

We now generalize our algorithm to any TDG. For each hyperedge ((t1, t2), t), delete it

from the graph and replace it with the edge ((t1), t). This new edge is called a summary edge,

and node t2 is called an out-node. Out-nodes will be used to represent the summary weight

of a procedure. For example, in Fig. 4.2, we would delete the hyperedge ((t4, t6), t3) and

replace it with ((t4), t3). The new edge is called a summary edge because it crosses a call-site

(from a return node to a call node) and will be used to summarize the effect of a procedure

call. Node t6 is an out-node and will supply the summary weight of procedure foo. The

resultant TDG is a collection of connected graphs, with each graph roughly corresponding

to a procedure. In Fig. 4.2, the transitions that correspond to procedures main and foo get

split. Each connected graph is called an intragraph. For each intragraph, we introduce a

root node as before, and add edges from the root node to all nodes that have ε-productions.

The weight labels are also added as before. For a summary edge ((t1), t) obtained from a

hyperedge ((t1, t2), t) with associated production function g = λx.λy.w⊗ x⊗ y, label it with

w ⊗ t2, or t2 ⊗c w.

This gives us a collection of intragraphs with edges labeled with either a weight or a

simple expression over an out-node. To solve for the JOD value, we construct a set of

regular equations, which we call out-node equations. For an intragraph G, let tG be its

unique root node. Then, for each out-node to in G, construct the regular expression for

all paths in G from tG to to, i.e., for paths(tG, to). In this expression, replace each edge

with its corresponding label. If the resulting expression is r and it contains labels t1 to tn,

then add the equation to = r(t1, · · · , tn) to the set of out-node equations. Repeat this for
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all intragraphs. For example, for the TDG shown in Fig. 4.2, assuming that t1 is also an

out-node, we would obtain the following out-node equations.4

t6 = w14.(w9 ⊕ w13.w11.(w12.w10)
∗.w8).w7.w6

t1 = w5.w4.(t6.w3).w2.w1

Here we have used . as a shorthand for ⊗c.

The resulting set of out-node equations describe all hyperpaths in the TDG to an out-

node from the collection of all root nodes. Hence, the JOD value of the out-nodes is the

least fix-point of these equations (with respect to v of Defn. 2.4.1(4)).

One way to solve these equations is by using chaotic iteration: start by initializing each

out-node with 0 (the least element in the semiring) and update the values of out-nodes by

repeatedly solving the equations until they converge. However, learning from our previous

observations, we give a direction to the iteration strategy. This can be done using regular

expressions on the dependence graph of the equations as follows. For each equation to =

r(t1, · · · , tn), produce the edges ti → to, 1 ≤ i ≤ n and construct a graph from these edges.

Label each edge with the expression (r) that it came from. Assume any out-node to be the

source node and construct a regular expression to all other nodes using SSPE again. These

expressions give the order in which equations have to be evaluated. For example, consider

the following set of equations on three out-nodes:

t1 = r1(t1, t3) t2 = r2(t1) t3 = r3(t2)

Then a possible regular expression for paths from t1 to itself would be (r1 ∪ r2.r3.r1)
∗. This

suggests that to solve for t1 we should use the following evaluation strategy: evaluate r1,

update t1, then evaluate r2, r3, and r1, and update t1 again — repeating this until the

solution converges.

In our implementation, we use a simpler strategy that still turns out to be efficient in

practice. We take a strongly connected component (SCC) decomposition of the dependence

graph and solve all equations in one component, using chaotic-iteration, before moving on

to the equations in the next component (in a topological order). This is efficient because

4The equations might be different depending on how the SSPE problem was solved, but all such equations
would have the same solution.
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SCCs in the dependence graph correspond to a set of mutually recursive procedures and

these groups tend to be quite small in practice.

Each regular expression in the out-node equations summarizes all paths in an intragraph,

and can be quite large. Therefore, we want to avoid evaluating them repeatedly while solving

the equations. To this end, we incrementally evaluate the regular expressions: only that part

of an expression is reevaluated that contains a modified out-node. The algorithm is given in

Fig. 4.4. Whenever this algorithm is used on a regular expression, the whole expression may

be traversed, but it only performs weight operations on nodes such that the sub-expression

rooted at that node contains a modified out-node.

A regular expression is represented using its abstract-syntax tree (AST), where leaves

are weights or out-nodes, and internal nodes correspond to ⊕, ⊗, or ∗. A possible AST for

the regular expression for out-node t1 of Fig. 4.2 is shown in Fig. 4.3. Whenever the value

of out-node t6 is updated, one only needs to reevaluate the weight of subtrees at a4, a3, and

a1, and update the value of out-node t1 to the weight at a1.

⊗

⊗ ⊗

w1 w2 ⊗ ⊗

w3 t6 w4 w5

a1

a2 a3

a4 a5

Figure 4.3 An AST for w5.w4.(w3 ⊗ t6).w2.w1. Internal nodes for ⊗c are converted into ⊗
nodes by reversing the order of its children. Internal nodes in this AST have been given

names a1 to a5.

One complication that we face here is that the ASTs actually have a shared-DAG repre-

sentation to allow different expressions to share common sub-expressions. (This is a require-

ment of Tarjan’s path-expression algorithm.) Thus, our algorithm needs to take care of two

aspects: it should benefit from the sharing in the DAGs as much as possible, and it must

also be able to identify the part of an expression that is modified when the weight of an
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out-node is updated. For this, we maintain, at each DAG node, two integers, last change

and last seen, as well as the weight weight of the subdag rooted at the node. We assume

that all regular expressions share the same leaves for out-nodes. We keep a global counter

update count that is incremented each time the weight of some out-node is updated. Our

incremental evaluation algorithm is shown in Fig. 4.4. After calling evaluate(r), the weight

r.weight is the correct updated weight of expression r, no matter how many times the

weights of out nodes were updated since the last call to evaluate on r.

For a node, the counter last change records the last value of update count for which the

weight of its subdag changed, and the counter last seen records the value of update count

when the subdag was reevaluated. When the weight of an out-node is changed, its corre-

sponding leaf node is updated with that weight, update count is incremented, and both of

the out-node’s counters (last change and last seen) are set to update count.

This incremental-evaluation algorithm is used as follows: we solve the out-node equations

in the same order as described earlier, but as the algorithm iterates over the equations, when-

ever it picks an equation t = r, it calls evaluate(r) to compute the weight of r incrementally;

next, it updates the value of t to this weight and increments update count. These steps are

repeated for each out-node equation.

Once we solve for the values of the out-nodes, we can change the out-node labels on

summary edges in the intragraphs and replace them with their corresponding weight. Then

the JOD values for other nodes in the TDG can be obtained as in the intraprocedural version

by considering each intragraph in isolation.

The time required for solving this system of equations depends on the reducibility of

the intragraphs. Let SG be the time required to solve SSPE on intragraph G, i.e., SG =

O(m log n+k) where k is O(n3) in the worst-case, but is ignorable in practice. If the equations

do not have any cyclic dependencies (corresponding to no mutually recursive procedures)

then the running time is
∑

G SG log h, where the sum ranges over all intragraphs, because each

equation has to be solved exactly once. In the presence of recursion, we use the observation

that the weight of each subdag in a regular expression can change at most h times while
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1 procedure evaluate(r)

2 begin

3 if r.last seen == update count then

4 return;

5 case r = w, r = to return;

6 case r = r∗1

7 evaluate(r1)

8 if r1.last change > r.last seen then

9 w = (r1.weight)
∗

10 if r.weight 6= w then

11 r.last change = r1.last change

12 r.weight = w

13 r.last seen = update count

14 case r = r1 � r2

15 evaluate(r1)

16 evaluate(r2)

17 m = max{r1.last change, r2.last change}

18 if m > r.last seen then

19 w = r1.weight � r2.weight

20 if r.weight 6= w then

21 r.last change = m

22 r.weight = w

23 r.last seen = update count

24 end

Figure 4.4 Incremental evaluation algorithm for regular expressions. Here � stands for
either ⊕ or ⊗.

the equations are being solved. Because the size of a regular expression obtained from an

intragraph G is bounded by SG, the worst-case time for solving the equations is
∑

G SG h.
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This bound is very pessimistic and is actually worse than that of chaotic iteration. Here

we did not make use of the fact that incrementally reevaluating regular expressions is much

faster than reevaluating them from scratch. For a regular expression with one modified out-

node, we only need to perform semiring operations for each node from the out-node leaf to

the root of the expression. For a nearly balanced regular expression tree, this path to the

root can be as small as log SG. Empirically, we found that incrementally reevaluating the

expression required many fewer operations than reevaluating the expression from scratch.

Unlike with chaotic iteration, where the weights of all TDG nodes are computed, we

only need to compute the weights on out-nodes. The weights for the rest of the nodes

can be computed lazily by evaluating their corresponding regular expression when needed.

For applications that just require the weight for a few TDG nodes, this gives us additional

savings. We also limit the computation of weights of out-nodes to only those intragraphs

that contain a TDG node whose weight is required. This corresponds to slicing the out-node

equations with respect to the user query, which rules out computation in procedures that

are irrelevant to the query. Moreover, the algorithm can be executed on multi-processor

machines by assigning each intragraph to a different processor. The only communication

required between the processors would be the weights on out-nodes while they are being

saturated.

4.1.3 Solving EWPDS Reachability Problems

Reachability problems for EWPDSs are also based on abstract grammars, similar to the

ones for WPDSs. Thus, we can easily adapt our algorithm to EWPDSs. The abstract

grammar for GPP and GPS on EWPDSs are shown in Figs. 3.9 and 3.13, respectively.

These grammars only differ from those for WPDSs in the application of the merge func-

tion. This difference can be handled as follows: to solve GPP, for hyperedges in the TDG

corresponding to case 4 of Fig. 3.9, if to is the out-node, then label the corresponding sum-

mary edge with mr(1, to) (in keeping with the production function g4). We use EWPDSs in

our experiments.



106

4.2 Solving other WPDS Problems

In this section, we give algorithms for some important PDS problems: witness tracing,

differential propagation, and incremental analysis. Of these three, only witness tracing and

differential propagation have been discussed before for WPDSs [83].

4.2.1 Witness Tracing

For program-analysis tools, if a program does not satisfy a property, it is often useful

to provide a justification of why the property was not satisfied. In terms of WPDSs, it

amounts to reporting a set of paths, or rule sequences, that together justify the reported

weight for a configuration. Formally, using the notation of Defn. 2.4.4, the witness tracing

problem for GPP(C) is to find, for each configuration c, a set ω(c) ⊆
⋃

c′∈C

paths(c, c′) such

that
⊕

σ∈ω(c)

v(σ) = δ(c, C). This definition of witness tracing does not impose any restrictions

on the size of the reported witness set because any compact representation of the set suffices

for most applications. The algorithm for witness tracing for GPP [83] requires O(|Q|2 |Γ| h)

memory. Our algorithm only requires O(|ON | D h) memory, where |ON | is the number of

out-nodes and D is the maximum number of out-nodes that appear on the right-hand side of

an out-node equation. Typically, |ON | is the number of procedures, which is much smaller

than |Γ|, and D is the maximum number of call sites in any procedure, which is usually

a small constant. One can consider (|ON |D) to be roughly the size of the call graph of a

program. Essentially, the idea behind our algorithm is to perform a two-level staging, where

only a subset of the witness information needs to be kept in memory, and the rest can be

computed on demand.

In our new GPP algorithm, we already compute regular expressions that describe all

paths in an intragraph. In the intragraphs, we label each edge with not just a weight, but

also the rule that justifies the edge. Push rules will be associated with summary edges and

pop rules with edges that originate from a root node. Edges from the root node that were

inserted because of production (1) in Fig. 2.13 are not associated with any rule (or with an
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empty rule sequence). After solving SSPE on the intragraphs, we can replace each edge with

the corresponding rule label. This gives us, for each out-node, a regular expression in terms

of other out-nodes that captures the set of all rule sequences that can reach that out-node.

While solving the out-node equations, we record the weights on out-nodes; i.e., when we

solve the equation to = r(t1, · · · , tn), we record the weights on t1, · · · , tn — say w1, · · · , wn —

whenever the weight on to changes to, say, wo, by saving the tuple (to, wo, t1, w1, · · · , tn, wn)

to memory. Then the set of rule sequences to create transition to with weight wo is given

by the expression r (where we replace TDG edges with their rule labels) by replacing each

out-node ti with the regular expression for all rule sequences used to create ti with weight wi

(obtained recursively). This gives a regular expression for the witness set of each out-node.

Witness sets for other transitions can be obtained by solving SSPE on the intragraphs by

replacing out-node labels with their witness-set expression.

We only require O(|ON | D h) space for recording witnesses because we just have to

remember the history of weights on out-nodes, and each piece of information is at most a

(2D + 2)-ary tuple.

4.2.2 Differential Propagation

The general framework of WPDSs can sometimes be inefficient for certain analysis. While

executing GPP, when the weight of a transition changes from w1 to w2 = w1 ⊕ w, the new

weight w2 is propagated to other transitions. However, because the weight w1 had already

been propagated, this will do extra work by propagating w1 again when only w (or a part of

w) needs to be propagated. This simple observation can be incorporated into WPDSs when

the semiring weight domain has a special subtraction operation (called diff, denoted by —̇ )

[83]. The diff operator must satisfy the following properties: For each a, b, c ∈ D,
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a⊕ (b —̇ a) = a⊕ b (4.1)

(a —̇ b) —̇ c = a —̇ (b⊕ c) (4.2)

a⊕ b = a ⇐⇒ b —̇ a = 0 (4.3)

For example, for the relational weight domain (Defn. 2.4.13), set difference (when rela-

tions are considered to be sets of tuples) satisfies all of the above properties.

We make use of the diff operation while solving the set of regular equations. In addition to

incrementally computing the regular expressions, we also incrementally compute the weights.

When the weight of an out-node changes from w1 to w2, we associate its corresponding leaf

node with the change w2 —̇ w1. This change is then propagated to other nodes. If the

weight of expressions r1 and r2 are w1 and w2, respectively,and they change by d1 and d2,

then the weights of the following kinds of expressions change as follows:

r1 ∪ r2 : d1 ⊕ d2

r1.r2 : (d1 ⊗c d2)⊕ (d1 ⊗c w2)⊕ (w1 ⊗c d2)

r∗1 : (w1 ⊕ d1)
∗ —̇ w∗

1

There is no better way of computing the change for Kleene-star (chaotic iteration suffers

from the same problem), but we can use the diff operator to compute the Kleene-star of a

weight as shown in Fig. 4.5.

Theorem 4.2.1. The procedure Kleene-star, defined in Fig. 4.5, when applied to weight w,

returns w∗.

Proof. The proof is by induction. But, first, we need some auxiliary properties of diff.

a —̇ b = 0 and b —̇ a = 0 =⇒ (a = b) (4.4)

(a⊕ b) —̇ a = (b —̇ a) (4.5)

Eqn. (4.4): This follows from Eqn. (4.3): a —̇ b = 0 implies (b ⊕ a) = b and b —̇ a = 0

implies that (a⊕ b) = a. Because ⊕ is commutative, a = b.
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1 procedure Kleene-star(w)

2 begin

3 wstar = del = 1

4 while del 6= 0

5 temp = del ⊗ w

6 del = temp —̇ wstar

7 wstar = wstar ⊕ temp

8 return wstar

9 end

Figure 4.5 Procedure for computing the Kleene-star of a weight using the diff operation
on weights.

Eqn. (4.5): To prove this equality, we will show that (lhs —̇ rhs) = 0 and (rhs —̇ lhs) = 0.

Then Eqn. (4.4) shows that lhs = rhs.

((a⊕ b) —̇ a) —̇ (b —̇ a) = (a⊕ b) —̇ (a⊕ (b —̇ a)) by Eqn. (4.2)

= (a⊕ b) —̇ (a⊕ b) by Eqn. (4.1)

= 0 by Eqn. (4.3)

(b —̇ a) —̇ ((a⊕ b) —̇ a) = b —̇ (a⊕ ((a⊕ b) —̇ a)) by Eqn. (4.2)

= b —̇ (a⊕ b) by Eqn. (4.1)

= 0 by Eqn. (4.3)

Let Sn(w) = 1 ⊕ w ⊕ w2 ⊕ · · · ⊕ wn, where S0(w) = 1, and S−1(w) = 0. Then note

that Sn(w) = 1 + (w ⊗ Sn−1(w)) for all n ≥ 0. The invariant in Fig. 4.5 is that whenever

execution reaches line 4 for the nth time, wstar = Sn(w) and del = (Sn(w) —̇ Sn−1(w)). We

will prove this invariant by induction, but it is easy to see that if this invariant holds, and

the while loop terminates, then wstar = w∗.

The base case is n = 1, and is easy to establish. The inductive case is proved as follows.

The variable wstar is updated in the loop body to wstar⊕ (del⊗ w). This equals:
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Sn(w)⊕ (Sn(w) —̇ Sn−1(w))⊗ w

= (1⊕ w ⊗ Sn−1(w))⊕ (Sn(w) —̇ Sn−1(w))⊗ w

= 1⊕ (w ⊗ (Sn−1(w)⊕ (Sn(w) —̇ Sn−1(w))))

= 1⊕ (w ⊗ (Sn−1(w)⊕ Sn(w)))

= 1⊕ (w ⊗ Sn(w))

= Sn+1(w)


(∗)

The variable del is updated in the loop body to (del⊗ w) —̇ wstar. This equals:

((Sn(w) —̇ Sn−1(w))⊗ w) —̇ Sn(w)

= (Sn(w)⊕ ((Sn(w) —̇ Sn−1(w))⊗ w)) —̇ Sn(w) by Eqn. (4.5)

= Sn+1(w) —̇ Sn(w) by (∗)

4.2.3 Incremental Analysis

An incremental algorithm for verifying finite-state properties on ICFGs was given by

Conway et al. [22]. We can use the methods presented in this chapter to generalize their al-

gorithm to WPDSs. An incremental approach to verification has the advantage of amortizing

the verification time across program development or debugging time.

We consider two cases: addition of new rules and deletion of existing ones. In each

case, we work at the granularity of intragraphs. Let W be the original WPDS for which we

have already computed the out-node equations E and solved them. Let W ′ be the WPDS

obtained from W after making some changes to it.

First, consider the addition of new rules. In this case, the fix-point solution of the out-

node equations monotonically increases and we can reuse all of the existing computation.

We identify the intragraphs that changed (i.e., they have more edges) because of the new

rules. Next, we recompute the regular expressions for out-nodes in those intragraphs and
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add them to the set of out-node equations E.5 Then we solve the equations as described in

Section 4.1.2, but after setting different initial weights for the out-nodes. In the algorithm

described in Section 4.1.2, the initial weights of all out-nodes were 0. For the incremental

algorithm, set the initial weights of out-nodes that appear in E to be the weight obtained

after solving E, and set the initial weights of new out-nodes (i.e., ones that did not appear

in E) to 0. This leverages the existing information to reach a fix-point sooner.

Deletion of a rule requires more work. Again, we identify the changed intragraphs and

recompute the out-node equations for them. We call out-nodes in these intragraphs modified

out-nodes. Next, we construct the dependence graph of the out-node equations as described

in Section 4.1.2. We perform an SCC decomposition of this graph and topologically sort

the SCCs. Then the weights for all out-nodes that appear before the first SCC that has

a modified out-node need not be changed. Thus, we set the value of these out-nodes to

be the weights obtained after solving E. We recompute the solution for other out-nodes in

topological order, and stop as soon as the new weights agree with previous weights. This

is done as follows. We start with out-nodes in the first SCC that has a modified out-node;

initialize the weights of all out-nodes in this SCC to be 0, and solve the out-nodes equations

for the SCC. If the new weight of an out-node is different from its previously computed

weight, all out-nodes in later SCCs that are dependent on it are marked as modified. We

repeat this procedure until there are no more modified out-nodes.

The advantage of doing incremental analysis in our framework is that very little infor-

mation has to be stored between analysis runs: we only need to store the computed weights

for out-nodes.

4.3 Experiments

We compare our algorithm from Section 4.1 against the ones from [83] and Section 3.2 (for

WPDSs and EWPDSs, respectively), which are implemented in WPDS++ [49]. We refer to

5There are incremental algorithms for SSPE as well, but we have not used them because solving SSPE
for a single intragraph is usually very fast.
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the implementation of our algorithm as FWPDS (F stands for “fast”). WPDS++ supports

an optimized iteration strategy (over chaotic iteration) where the user can supply a priority-

ordering on stack symbols, which is used by chaotic iteration to choose the transition with

least priority first. We refer to this version as BFS-WPDS++ and supply it with a breadth-

first ordering on the ICFG obtained by treating it as an ordinary graph. BFS-WPDS++

almost always performs better than WPDS++ with chaotic iteration.

To measure end-to-end performance, FWPDS only computes the weight on transitions of

the output automaton (corresponding to TDG nodes) that are required by the application.

We also report the time taken to compute the weight on all transitions and refer to this

as FWPDS-Full. A comparison with FWPDS-Full will give an indication of “application-

independent” improvement provided by our approach because it computes the same amount

of information as the previous WPDS algorithms. However, we measure speedups using

FWPDS running times to show the potential of using lazy-evaluation in a real setting.

FWPDS-Full uses a left-associative evaluation order for computing weights of regular ex-

pressions. It is also worth noting that repeated squaring for computing w∗ did not cause any

appreciable difference compared with using a simple iterative method.

We tested FWPDS on three applications that use (E)WPDSs. In each, we perform

GPS on the (E)WPDS with the entry point of the program as the initial configuration.

The first application performs affine-relation analysis (ARA) on x86 programs [60]. An x86

program is translated into a WPDS to find affine relationships between machine registers.

The application only requires affine relationships at branch points [3]. The results are shown

in Tab. 4.1. Over all the experiments we performed, FWPDS provided an average speedup

of 1.8× (i.e., reduced running time by 44%) over BFS-WPDS++.

The second application, BTrace, is for debugging [56]. It performs path optimization on

C programs: given a set of ICFG nodes, called critical nodes, it tries to find a shortest ICFG

path that touches the maximum number of these nodes. The path starts at the entry point

of the program and stops at a given failure point in the program. FWPDS only computes
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Time (s) Speedup

Prog Insts # Procs WPDS++ BFS-WPDS++ FWPDS-Full FWPDS

mplayer2 40052 385 2.11 1.30 1.17 0.69 1.88

print 75539 697 1.23 1.02 0.77 0.41 2.49

find 76240 703 11.03 8.17 6.99 4.58 1.78

attrib 76380 703 2.52 2.11 1.57 0.89 2.37

doskey 77983 716 2.27 1.83 1.15 0.75 2.44

xcopy 87000 780 22.28 15.78 13.68 8.80 1.79

sort 89291 840 13.47 11.16 10.00 6.34 1.76

more 90792 860 17.42 11.92 10.54 7.02 1.70

tracert 95459 870 9.83 8.16 7.03 4.45 1.83

finger 96123 893 11.14 7.94 7.13 4.44 1.79

rsh 100935 941 18.31 13.17 11.65 7.47 1.76

javac 101369 944 20.12 16.20 14.65 9.25 1.75

lpr 110301 1011 14.83 11.75 10.57 7.06 1.66

java 112305 1049 24.77 20.19 19.01 11.97 1.69

ftp 130255 1253 22.84 15.13 14.23 8.98 1.68

winhlp32 157634 1612 25.51 19.61 17.32 11.00 1.78

regsvr32 225857 2789 58.70 38.83 37.15 24.65 1.58

cmd 230481 2317 69.19 46.33 52.38 34.87 1.33

notepad 239408 2911 54.08 40.80 41.85 26.50 1.54

Table 4.1 Comparison of ARA results. The last column show the speedup (ratio of
running times) of FWPDS versus BFS-WPDS++. The programs are common Windows

executables, and the experiments were run on 3.2 Ghz P4 machine with 4GB RAM.

the weight at the failure point. As shown in Tab. 4.2, FWPDS performs much better than

BFS-WPDS++ for this application, and the overall speedup was 3.6×.

The third application is Moped [50], which is a model checker for Boolean programs.

It uses its own WPDS library for performing reachability queries (which is, again, based

on the chaotic-iteration strategy). Weights are binary relations on valuations of Boolean

variables, and are represented using BDDs. We measure the performance of FWPDS against
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Time (s) Speedup

Prog ICFG nodes # Procs BFS-WPDS++ FWPDS-Full FWPDS

uucp 16973 139 4.7 3.3 2.9 1.60

mc 78641 676 5.4 5.2 3.1 1.72

make 40667 204 15.1 7.7 5.8 2.58

indent 28155 104 19.6 28.2 15.9 1.24

less 33006 359 22.4 8.6 5.3 4.19

patch 27389 133 70.2 23.2 17.1 4.09

gawk 86617 401 72.7 64.5 45.1 1.61

wget 44575 399 318.4 58.9 27.0 11.77

Table 4.2 Comparison of BTrace results. The last column shows speedup of FWPDS
over BFS-WPDS++. The critical nodes were chosen at random from ICFG nodes and the

failure site was set as the exit point of the program. The programs are common Unix
utilities, and the experiments were run on 2.4 GHz P4 machine with 4GB RAM.

this library using a set of programs (and an error configuration for each program) supplied

by S. Schwoon. We compute the set of all variable valuations that can hold at the error

configuration by computing its JOP weight. As shown in Tab. 4.3, FWPDS is 2 to 5 times

faster than Moped.

Moped can also be asked to stop as soon as it finds out that the error configuration is

reachable (instead of exploring all paths that lead to the error configuration). In that case,

when the error configuration was reachable, Moped performed much better than FWPDS,

often completing in less than a second. This is expected because the evaluation strategy used

by FWPDS is oriented towards finding the complete weight (JOD value) on a transition.

For example, it might be better to avoid saturating a loop completely and propagate par-

tially computed weights in the hope of finding out that the error configuration is reachable.

However, when the error configuration is unreachable, or when the abstraction-refinement

mode in Moped is turned on, it explores all paths in the program and computes the JOD

value of all transitions. In such situations, it is likely to be better to use FWPDS.
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Prog Moped FWPDS-Full FWPDS Speedup

bugs5 13.11 13.03 7.25 1.81

slam-fixed 32.67 19.23 13.3 2.46

slam 6.32 5.21 3.27 1.93

unified-serial 37.10 19.65 12.46 2.98

iscsi1 29.15 27.12 14.08 2.07

iscsi10 178.22 59.63 31.29 5.70

Table 4.3 Moped results. The last column shows speedup of FWPDS over Moped. The
programs were provided by S. Schwoon, and are not yet publically available.

Incremental Analysis

We also measure the advantage of doing an incremental analysis for BTrace. Similar

to the experiments performed in [22], we delete a procedure from a program, solve GPS,

then reinsert the procedure and look at the time that it takes to solve GPS incrementally.

We compare this time with the time that it takes to compute the solution from scratch.

We repeated this for all procedures in a given program, and discarded those runs that did

not affect at least one other procedure. The results are shown in Tab. 4.4, which shows an

average speed up by a factor of 6.5.

Prog Procs #Recomputed Incremental (sec) Scratch (sec) Improvement

less 359 91 1.66 8.6 5.18

mc 676 70 0.41 5.2 12.68

uucp 139 36 2.00 3.3 1.65

Table 4.4 Results for incremental analysis for BTrace. The third column gives the
average number of procedures for which the solution had to be recomputed. The fourth

and fifth columns report the time taken by the incremental approach and by
recomputation from scratch (using FWPDS), respectively.
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4.4 Related Work

The basic strategy of using a regular expression to describe a set of paths has been

used previously for dataflow analysis of single-procedure programs [91]. The only work that

we are aware of that uses this technique for multi-procedure programs is by Ramalingam

[79]. However, there the regular expressions were used for a particular analysis (namely,

execution-frequency analysis) and the technique was motivated by the special requirements

of execution-frequency analysis when creating procedure summaries, rather than efficiency.

There has been other work on improving over the chaotic-iteration strategy, but these

have mostly been restricted to single-procedure programs. The work on node-listing algo-

rithms [46] and Bourdoncle’s weak topological ordering (wto) [13] assign a priority to each

node of a graph such that nodes with lower priority in the worklist must be processed be-

fore nodes with higher priority. In the tool CS/x86, G. Balakrishnan extended Bourdoncle’s

technique to interprocedural analysis using a two-part priority scheme: one part was the wto

priority; the other part was based on the call graph [2].

The focus of our work has been on addressing interprocedural analysis. Our techniques

apply to any problem that can be encoded as a WPDS, and showed how various enhance-

ments (incremental computation of regular expressions, computing lazily, etc.) contribute

to creating a faster analysis. At the intraprocedural level, we chose to make use of Tarjan’s

path-expression algorithm instead of the other techniques mentioned above. This was be-

cause we were able to leverage the compactness of the regular-expression representation at

the interprocedural level as well (by computing them incrementally, lazily, etc.). It would

be interesting to explore how node-listing algorithms and Bourdoncle’s technique could be

used interprocedurally.

There has been a host of previous work on incremental program analysis as well as on

interprocedural automata-based analysis [22]. The incremental algorithm we have presented

is similar to the algorithm in [22], but generalizes it to WPDSs and is thus applicable in

domains other than finite-state property verification. A key difference with their algorithm
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is that they explore the property automaton on-the-fly as the program is explored. Encoding

the property automaton into a WPDS (Section 2.4.3) requires the whole automaton before

the program is explored. While such an encoding has the benefit of being amenable to

symbolic approaches, it can be disadvantageous when the property automaton is large but

only a small part of the property space is relevant for the program.
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Chapter 5

Error Projection

Abstraction refinement has been shown to be useful both for finding bugs and for es-

tablishing properties of programs (Section 1.1.1). This technique has been implemented in

a number of verification tools, including SLAM [4], BLAST [37], and MAGIC [18]. In this

chapter, we show how to improve the abstraction-refinement process by making maximum

possible use of a given abstraction before moving to more refined abstractions.

We accomplish this by computing error projections and annotated error projections. An

error projection is the set of program nodes N such that for each node n ∈ N , there exists

an error path that starts from the entry point of the program and passes through n. By

definition, an error projection describes all of the nodes that are members of paths that lead

to a specified error in the model, and no more. This allows an automated verification tool

(or a human debugging code manually) to focus their efforts on only the nodes in the error

projection: every node not in the error projection does not contribute to the (apparent) error

(with respect to the property being verified). Tools such as SLAM only need to refine the

part of the program that is inside the projection.

Annotated error projections are an extension of error projections. An annotated error

projection adds two annotations to each node n in the error projection: 1) A counterexample

(i.e., a path that fails) that passes through n; 2) a set of data values (memory-configuration

descriptors) that describes the conditions necessary at n for the program to fail. The goal

is to give back to the user—either an automated tool or human debugger—more of the

information discovered during the verification process.
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From a theoretical standpoint, an error projection solves a combination of forward and

backward analyses. The forward analysis computes the set of program states Sfwd that are

reachable from program entry; the backward analysis computes the set of states Sbck that can

reach an error at certain pre-specified nodes. Under a sound abstraction of the program, each

of these sets provides a strong guarantee: only states in Sfwd can ever arise in the program,

and only states in Sbck can ever lead to error. Error projections ask the natural question

of combining these guarantees to compute the set of states Serr = Sfwd ∩ Sbck containing

all states that can both arise during program execution, and lead to error. In this sense,

an error projection is making maximum use of the given abstraction—by computing the

smallest envelope of states that may contribute to program failure.

Computation of this intersection turns out to be non-trivial because the two sets Sfwd

and Sbck may be infinite. In Section 5.2 and Section 5.3, we show how to compute this set

efficiently and precisely for WPDSs. The techniques that we use are general, and apart from

the application of finding error projections, we discuss additional applications in Section 5.5.

The contributions of the work presented in this chapter can be summarized as follows:

• We define the notions of error projection and annotated error projection. These projec-

tions divide the program into a correct and an incorrect part such that further analysis

need only be carried out on the incorrect part.

• We give a novel combination of forward and backward analyses for multi-procedural

programs using weighted automata and use it for computing (annotated) error projec-

tions (Section 5.2 and Section 5.3). We also show that our algorithms can be used for

solving various other problems in program verification (Section 5.5).

• Our experiments show that we can efficiently compute error projections (Section 5.4).

The remainder of this chapter is organized as follows: Section 5.1 motivates the diffi-

culty in computing (annotated) error projections and illustrates their utility. Section 5.2

and Section 5.3 give the algorithms for computing error projections and annotated error
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projections, respectively. Section 5.4 presents our initial experiments. Section 5.5 covers

other applications of our algorithms. Section 5.6 discusses related work.

5.1 Examples

Consider the program shown in Fig. 5.1. Here x is a global unsigned integer variable, and

assume that procedure foo does not change the value of x. Also assume that the program

abstraction is a Boolean abstraction in which integers (only x in this case) are modeled using

8 bits, i.e., the value of x can be between 0 and 255 with saturated arithmetic. This type of

abstraction is used by Moped [85], and happens to be a precise abstraction for this example.

start

x = 5 x = 8 x = 9

call foo

ret. foo

call foo

ret. foo

call foo

ret. foo

if(x == 10)

error

x = x + 2 x = x + 3 x = x + 1

fooenter

fooexit

…

n1

c1

r1

n4

n

n2

c2

r2

n5

n3

c3

r3

n6

n7

f1

f2

(1) 〈p, start〉 ↪→ 〈p, n1〉 id

(2) 〈p, n1〉 ↪→ 〈p, c1〉 {( , 5)}

(3) 〈p, c1〉 ↪→ 〈p, f1 r1〉 id

(4) 〈p, r1〉 ↪→ 〈p, n4〉 id

(5) 〈p, n4〉 ↪→ 〈p, n7〉 {(i, i + 2)}

(6) 〈p, start〉 ↪→ 〈p, n2〉 id

(7) 〈p, n2〉 ↪→ 〈p, c2〉 {( , 8)}

(8) 〈p, c2〉 ↪→ 〈p, f1 r2〉 id

(9) 〈p, r2〉 ↪→ 〈p, n5〉 id

(10) 〈p, n5〉 ↪→ 〈p, n7〉 {(i, i + 3)}

(11) 〈p, start〉 ↪→ 〈p, n3〉 id

(12) 〈p, n3〉 ↪→ 〈p, c3〉 {( , 9)}

(13) 〈p, c3〉 ↪→ 〈p, f1 r3〉 id

(14) 〈p, r3〉 ↪→ 〈p, n6〉 id

(15) 〈p, n6〉 ↪→ 〈p, n7〉 {(i, i + 1)}

(16) 〈p, n7〉 ↪→ 〈p, error〉 {(10, 10)}

(17) 〈p, f1〉 ↪→ 〈p, n〉 id

(18) 〈p, n〉 ↪→ 〈p, f2〉 id

(19) 〈p, f2〉 ↪→ 〈p, ε〉 id

(a) (b)

Figure 5.1 (a) An example program and (b) its corresponding WPDS. Weights, shown in
the last column, are explained in Section 5.2.

The program has an error if node error is reached. The two paths on the left that set

the value of x to 5 or 8 are correct paths, and the one on the right, which sets the value of x
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to 9, goes to error. The error projection is shaded in the figure. An error projection need

not be restricted to a single trace (e.g., if foo had multiple paths then the error projection

would include multiple traces). An annotated error projection will additionally tell us that

the value of x at node n inside foo has to be 9 on an error path passing through this node.

Note that the value of x can be 5 or 8 on other paths that pass through n, but they do not

lead to the error node.

It is non-trivial to deduce these facts about the value of x at node n. An interprocedural

forward analysis starting from start will show that the value of x at node n is in the set

{5, 8, 9}. A backward interprocedural analysis starting from error concludes that the value

of x at n has to be in the set {7, 8, 9} in order to reach error. Intersecting the sets obtained

from forward and backward analysis only gives an over-approximation of the annotated error

projection values. In this case, the intersection is {8, 9}, but x can never be 8 on a path

leading to error. The over-approximation occurs because, in the forward analysis, the value

of x is 8 only when the call to foo occurs at call site c2, but in the backward analysis, a path

that reaches n with x = 8 and goes to error must have had the call to foo from call site c1.

This mismatch in the calling context leads to the observed over-approximation.

Such a complication also occurs while computing non-annotated error projections: to see

this, assume that the edge leading to node n is predicated by the condition if(x!=9). Then,

node n can be reached from start, and there is a path starting at n that leads to error,

but both of these cannot occur together.

Formally, a node is in the error projection if and only if the associated value set computed

for the annotated projection is non-empty. In this sense, computing an error projection is a

special case of computing the annotated version. However, we still discuss error projections

separately because (i) computing them is easier, as we see later (computing annotations

requires one extra trick), and (ii) they can very easily be cannibalized by existing tools such

as SLAM in their abstraction-refinement phase: when an abstraction needs to be refined,

only the portion inside the error projection needs to be rechecked. We illustrate this point

in more detail in the next example.
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numUnits : int;

level : int;

void getUnit() {

[1]      canEnter: bool := F;

[2]      if (numUnits = 0) {

[3]        if (level > 10) {

[4]          NewUnit();

[5]          numUnits := 1;

[6]          canEnter := T;

}

} else 

[7]          canEnter := T;

[8]      if (canEnter)

[9]        if (numUnits = 0)

[10]        assert(F);

else

[11]        gotUnit();

}

void getUnit() {

[1]      ...

[2]      if (?) {

[3]        if (?) {

[4]          ... 

[5]          ...

[6]          ...

}

} else 

[7]          ...

[8]      if (?)

[9]        if (?)

[10]        ...

else

[11]        ...

}

nU0: bool;

void getUnit() {

[1]      ...

[2]      if (nU0) {

[3]        if (?) {

[4]          ... 

[5]          nU0 := F;

[6]          ...

}

} else 

[7]          ...

[8]      if (?)

[9]        if (nU0)

[10]        ...

else

[11]        ...

}

nU0: bool;

void getUnit() {

[1]      cE: bool := F;

[2]      if (nU0) {

[3]        if (?) {

[4]          ... 

[5]          nU0 := F;

[6]          cE := T;

}

} else 

[7]          cE := T;

[8]      if (cE)

[9]        if (nU0)

[10]        ...

else

[11]        ...

}

P B1 B2 B3

Figure 5.2 An example program P and its abstractions as Boolean programs. The “· · · ”
represents a “skip” or a no-op. The part outside the error projection is shaded in each case.

Fig. 5.2 shows an example program and several abstractions that SLAM might produce.

This example is given in [7] to illustrate the SLAM refinement process. SLAM uses predicate

abstraction to create Boolean programs as described earlier in Section 1.1.1. We will show

the utility of error projections for abstraction refinement using this example.

First, recall the SLAM refinement process. In Fig. 5.2, the property of interest is the

assertion on line 10. We want to verify that line 10 is never reached (“assert(F )” always

triggers an assertion violation). The first abstraction B1 is created without any predicates.

It only reflects the control structure of P . Reachability analysis on B1 (assuming getUnit

is program entry) shows that the assertion is reachable. This results in a counterexample,

whose subsequent analysis reveals that the predicate {numUnits = 0} is important. Program

B2 tracks that predicate using variable nU0. Reachability analysis on B2 reveals that the

assertion is still reachable. Now predicate {canEnter = T} is added, to produce B3, which
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tracks the predicate’s value using variable cE. Reachability analysis on B3 reveals that the

assertion is not reachable, hence it is not reachable in P .

The advantage of using error projections is that the whole program need not be abstracted

when a new predicate is added. Analysis on B1 and B2 fails to prove that the whole program

is correct, but error projections may reveal that at least some part of the program is correct.

The parts outside the error projections (and hence correct) are shaded in the figure. Error

projection on B1 shows that line 11 cannot contribute to the bug, and need not be considered

further. Therefore, when constructing B2, we need not abstract that statement with the new

predicate. Error projection on B2 further reveals that lines 3 to 6 and line 7 do not contribute

to the bug (the empty else branch to the conditional at line 3 still can). Thus, when B3 is

constructed, this part need not be abstracted with the new predicate. B3, with the shaded

region of B2 excluded, reduces to a very simple program, resulting in reduced effort for its

construction and analysis.

Annotated error projections can further reduce the analysis cost. Suppose there was some

code between lines 1 and 2, possibly relevant to proving the program to be correct, that does

not modify numUnits. After constructing B2, the annotated error projection would tell us

that in this region of code, nU0 can be assumed to be true, because otherwise the assertion

cannot be reached. This might save half of the theorem prover calls needed to abstract that

region of code when using multiple predicates (because every predicate whose value is not

fixed doubles the cost of abstracting program statements).

While this example did not require an interprocedural analysis, placing any piece of code

inside a procedure would necessitate its use. We show how to compute error projections

when WPDSs or EWPDSs are used as the model of a program. Because Boolean programs

can be encoded using EWPDSs, our techniques would be able to find the error projections

shown in Fig. 5.2.

Standard interprocedural analyses do not say anything about calling contexts associated

with different reachable values of variables. As we saw earlier, a mismatch in the calling

context can lead to an over-approximation in the error projection. Because of the need
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n id
r1 {(_,5)}

r2 {(_,8)}

r3 {(_,9)}

n id r1 {(8,10)}

r2 {(7,10)}

r3 {(9,10)}

Figure 5.3 Parts of the poststar and prestar automaton, respectively.

for reasoning about the calling contexts, the automata-based reachability algorithms for

(E)WPDSs offer a distinct advantage over other algorithms. The next section shows how to

combine the automata obtained from backward and forward reachability analysis on WPDSs

to compute (annotated) error projections. This technique is generalized for EWPDSs in

Section 5.2.1.

5.2 Computing an Error Projection

As a running example, we use the WPDS of Fig. 5.1(b) that models the program shown

in Fig. 5.1(a). This WPDS uses a relational weight domain over the set V = {0, 1, · · · , 255},

corresponding to an 8-bit encoding for the values of variable x (as explained in Section

5.1). The weight {( , 5)} is shorthand for the set {(i, 5) | i ∈ V }; {(i, i + 1)} stands for

{(i, i + 1) | i ∈ V } (with saturated arithmetic); and id stands for the identity relation on V .

Let AS and AT be (unweighted) automata that accept the sets S and T , respec-

tively. Recall that IJOP(S, T ) = poststar(AS)(T ) = prestar(AT )(S). For the program

shown in Fig. 5.1, parts of the automata produced by poststar({start}) and prestar(error

Γ∗) are shown in Fig. 5.3 (only the part important for node n is shown). Using

these, we get IJOP({start}, n Γ∗) = {( , 5), ( , 8), ( , 9)} and IJOP(n Γ∗, error Γ∗) =

{(7, 10), (8, 10), (9, 10)}. Here, (γ Γ∗) stands for the set {γ c | c ∈ Γ∗}.

We now define an error projection using WPDSs as our model of programs. Usually, a

WPDS created from a program has a single PDS state. Even when this is not the case, the

states can be pushed inside the weights to get a single-state WPDS. We use this to simplify

the discussion: PDS configurations are just represented as stacks (Γ∗).
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Also, we concern ourselves with assertion checking. We assume that we are given a target

set of control configurations T such that the program model exhibits an error only if it can

reach a configuration in that set. One way of accomplishing this is to convert every asser-

tion of the form “assert(E)” into a condition “if(!E) then goto error” (assuming !E is

expressible under the current abstraction), and instantiate T to be the set of configurations

(error Γ∗). We also assume that the weight abstraction has been constructed such that a

path σ in the PDS is infeasible if and only if its weight v(σ) is 0. Therefore, under this

model, the program has an error only when it can reach a configuration in T with a path of

non-0 weight.

Definition 5.2.1. Given S, the set of starting configurations of the program, and a target

set of configurations T , a program node γ ∈ Γ is in the error projection EP(S, T ) if

and only if there exists a path σ = σ1σ2 such that v(σ) 6= 0 and s ⇒σ1 c ⇒σ2 t for some

s ∈ S, c ∈ γΓ∗, t ∈ T .

We calculate the error projection by computing a constrained form of the join-over-all-

paths value, which we call a weighted chopping query.

Definition 5.2.2. Given regular sets of configurations S (source), T (target), and C (chop);

a weighted chopping query is to compute the following weight:

WC(S, C, T ) =
⊕
{v(σ1σ2) | s⇒σ1 c⇒σ2 t, s ∈ S, c ∈ C, t ∈ T}

It is easy to see that γ ∈ EP(S, T ) if and only if WC(S, γ Γ∗, T ) 6= 0. We now show how to

solve these queries. First, note that WC(S, C, T ) 6= IJOP(S, C)⊗IJOP(C, T ). For example,

in Fig. 5.1, if foo was not called from c3, and S = {start}, T = (error Γ∗), C = (n Γ∗)

then IJOP(S, C) = {( , 5), ( , 8)} and IJOP(C, T ) = {(7, 10), (8, 10)}, and their extend is

non-empty, whereas WC(S, C, T ) = ∅. This is exactly the problem mentioned in Section 5.1.

A first attempt at solving weighted chopping is to use the identity WC(S, C, T ) =⊕
{IJOP(S, c) ⊗ IJOP(c, T ) | c ∈ C}. However, this only works when C is a finite set

of configurations, which is not the case if we want to compute an error projection. We can
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solve this problem using the automata-theoretic constructions described in the previous sec-

tion. Let AS be an unweighted automaton that represents the set S, and similarly for AC

and AT . The following two algorithms, given in different columns, are valid ways of solving

a weighted chopping query.

Algorithm Double-poststar

1. A1 = poststar(AS)

2. A2 = (A1 ∩ AC)

3. A3 = poststar(A2)

4. A4 = A3 ∩ AT

5. WC(S, C, T ) = path summary(A4)

Algorithm Double-prestar

1. A1 = prestar(AT )

2. A2 = (A1 ∩ AC)

3. A3 = prestar(A2)

4. A4 = A3 ∩ AS

5. WC(S, C, T ) = path summary(A4)

Proof. We prove correctness of the double-poststar algorithm. A proof for double-prestar is

similar. From the properties of poststar (Lem. 2.4.6), we know that:

A2(c) =

 0 if c 6∈ C⊕
{v(σ1) | s⇒σ1 c, s ∈ S} if c ∈ C

⇒ A3(t) =
⊕
{A2(c)⊗ v(σ2) | c⇒σ2 t}

=
⊕
{
⊕
{v(σ1)⊗ v(σ2) | s⇒σ1 c, s ∈ S} | c ∈ C, c⇒σ2 t}

=
⊕
{v(σ1)⊗ v(σ2) | s⇒σ1 c⇒σ2 t, s ∈ S, c ∈ C}

=
⊕
{v(σ1σ2) | s⇒σ1 c⇒σ2 t, s ∈ S, c ∈ C}

⇒ path summary(A4) = A3(T )

=
⊕
{v(σ1σ2) | s⇒σ1 c⇒σ2 t, s ∈ S, c ∈ C, t ∈ T}

= WC(S, C, T )

The running time of these algorithms is proportional to the size of AC , not the size of C.

An error projection is computed by solving a separate weighted chopping query for each

node γ in the program. This means that the source set S and the target set T remain fixed,

but the chop set C keeps changing. Unfortunately, the two algorithms given above have a

major shortcoming: only their first steps can be carried over from one chopping query to the
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next; the rest of the steps have to be recomputed for each node γ. As shown in Section 5.4,

this approach is very slow, and the algorithm discussed next is about 3 orders of magnitude

faster.

To derive a better algorithm for weighted chopping that is more suited for computing

error projections, let us first look at the unweighted case (i.e., the weighted case where the

weight domain just contains the weights 0 and 1). Then WC(S, C, T ) = 1 if and only if

(post∗(S)∩pre∗(T ))∩C 6= ∅. This procedure just requires a single intersection operation for

different chop sets. Computation of both post∗(S) and pre∗(T ) have to be done just once.

We generalize this approach to the weighted case.

First, we need to define what we mean by intersecting weighted automata. Let A1 and

A2 be two weighted automata. Define their intersection A1 C A2 to be a function from

configurations to weights, which we later compute in the form of a weighted automaton,

such that (A1CA2)(c) = A1(c)⊗A2(c).
1 Define (A1CA2)(C) =

⊕
{(A1CA2)(c) | c ∈ C},

as before. Based on this definition, if Apost∗ = poststar(AS) and Apre∗ = prestar(AT ), then

WC(S, C, T ) = (Apost∗ CApre∗)(C).

Let us give some intuition into why intersecting weighted automata is hard. For A1 and

A2 as above, the intersection is defined to read off the weight from A1 first and then extend

it with the weight from A2. A naive approach would be to construct a weighted automaton

A12 as the concatenation of A1 and A2 (with epsilon transitions from the final states of A1 to

the initial states of A2) and let (A1CA2)(c) = A12(c c). However, computing (A1CA2)(C)

for a regular set C requires computing join-over-all-paths in A12 over the set of paths that

accept the language {(c c) | c ∈ C} because the same path (i.e., c) must be followed in both

A1 and A2. This language is neither regular nor context-free, and we do not know of any

method that computes join-over-all-paths over a non-context-free set of paths.

The trick here is to recognize that weighted automata have a direction in which weights

are read off. We need to intersect Apost∗ with Apre∗ , where Apost∗ is a backward automaton

1Note that the operator C is not commutative in general, but we still call it intersection because the
construction of A1 CA2 resembles the one for intersection of unweighted automata.
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and Apre∗ is a forward automaton. If we concatenate these together but reverse the second

one (i.e., reverse all its transitions and interchange its initial and final states), then we get a

purely backward weighted automaton and we only need to solve for join-over-all-paths over

the language {(c cR) | c ∈ C} where cR is c written in the reverse order. This language can be

defined using a linear context-free grammar with production rules of the form “X → γY γ”,

where X and Y are non-terminals. The following section uses this intuition to derive an

algorithm for intersecting two weighted automata.

Intersecting Weighted Automata

Let Ab = (Qb, Γ,→b, P, Fb) be a backward weighted automaton and Af = (Qf , Γ,→f

, P, Ff ) be a forward weighted automaton. We proceed with the standard automata-

intersection algorithm: Construct a new automaton Abf = (Qb × Qf , Γ,→, P, Fb × Ff ),

where we identify the state (p, p), p ∈ P with p, i.e., the P -states of Abf are states of the

form (p, p), p ∈ P . The transitions of this automaton are computed by matching on stack

symbols. If tb = (q1, γ, q2) is a transition in Ab with weight wb and tf = (q3, γ, q4) is a transi-

tion in Af with weight wf , then add transition tbf = ((q1, q3), γ, (q2, q4)) to Abf with weight

λz.(wb ⊗ z ⊗ wf ). We call this type of weight a functional weight and use the capital letter

W (possibly subscripted) to distinguish them from normal weights. Functional weights are

special functions on weights: given a weight w and a functional weight W = λz.(w1⊗z⊗w2),

W (w) = (w1 ⊗ w ⊗ w2). The automaton Abf is called a functional automaton.

We define extend on functional weights as reversed function composition. That is, if

W1 = λz.(w1 ⊗ z ⊗ w2) and W2 = λz.(w3 ⊗ z ⊗ w4), then W1 ⊗W2 = W2 ◦W1 = λz.((w3 ⊗

w1)⊗ z ⊗ (w2 ⊗ w4)), and is thus also a functional weight. However, the combine operator,

defined as W1⊕W2 = λz.(W1(z)⊕W2(z)), does not preserve the form of functional weights.

Hence, functional weights do not form a semiring. We now show that this is not a handicap,

and we can still compute Ab CAf as required.

Because Abf is obtained from an intersection operation, every path in it that is of the

form (q1, q2)
c−→∗ (q3, q4) is in one-to-one correspondence with paths q1

c−→∗ q3 in Ab and
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q2
c−→∗ q4 in Af . Using this fact, we get that the weight of a path in Abf will be a function

of the form λz.(wb⊗ z⊗wf ), where wb and wf are the weights of the corresponding paths in

Ab and Af , respectively. In this sense, Abf is constructed based on the intuition given in the

previous section: the functional weights resemble grammar productions “X → γY γ” for the

language {(c cR)} with weights replacing the two occurrences of γ, and their composition

resembles the derivation of a string in the language. (Note that in “X → γY γ”, the first γ

is a letter in c, whereas the second γ is a letter in cR. In general, the letters will be given

different weights in Ab and Af .)

Formally, for a configuration c and a weighted automaton A, define the predicate

accPath(A, c, w) to be true if there is an accepting path in A for c that has weight w,

and false otherwise (note that we only need the extend operation to compute the weight of

a path). Similarly, accPath(A, C, w) is true iff accPath(A, c, w) is true for some c ∈ C. Then

we have:

(Ab CAf )(c) = Ab(c)⊗Af (c)

=
⊕
{wb ⊗ wf | accPath(Ab, c, wb), accPath(Af , c, wf )}

=
⊕
{wb ⊗ wf | accPath(Abf , c, λz.(wb ⊗ z ⊗ wf ))}

=
⊕
{λz.(wb ⊗ z ⊗ wf )(1) | accPath(Abf , c, λz.(wb ⊗ z ⊗ wf ))}

=
⊕
{W (1) | accPath(Abf , c, W )}

Similarly, we have (Ab C Af )(C) =
⊕
{W (1) | accPath(Abf , C,W )} =

⊕
{W (1) |

accPath(Abf ∩ AC , Γ∗, W )}, where AC is an unweighted automaton that accepts the set

C, and this can be obtained using a procedure similar to path summary . The advantage of

the way we have defined Abf is that we can intersect it with AC (via ordinary intersection)

and then run path summary over it, as we show next.

Functional weights distribute over (ordinary) weights, i.e., W (w1⊕w2) = W (w1)⊕W (w2).

Thus, path summary(Abf ) can be obtained merely by solving an intraprocedural join-over-

all-paths over distributive transformers starting with the weight 1, which is completely stan-

dard: Initialize l(q) = 1 for initial states, and set l(q) = 0 for other states. Then, until a
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n [id . z . id]
r1 [{(_,5)} . z . {(8,10)}]

r2 [{(_,8)} . z . {(7,10)}]

r3 [{(_,9)} . z . {(9,10)}]

Figure 5.4 Functional automaton obtained after intersecting the automata of Fig. 5.3.

fixpoint is reached, for a transition (q, γ, q′) with weight W , update the weight on state q′ by

l(q′) := l(q′)⊕W (l(q)). Then path summary(Abf ) is the combine of the weights on the final

states. Termination is guaranteed because we still have weights associated with states, and

functional weights are monotonic. Because of the properties satisfied by Abf , we use Abf as

a representation for (Ab CAf ).

This allows us to solve WC(S, C, T ) = (Apost∗ CApre∗)(C). That is, after a preparation

step to create (Apost∗CApre∗), one can solve WC(S, C, T ) for different chop sets C just using

intersection with AC followed by path summary , as shown above. Fig. 5.4 shows an example.

For short, the weight λz.(w1 ⊗ z ⊗ w2) is denoted by [w1.z.w2]. Note how the weights for

different call sites get appropriately paired in the functional automaton.

It should be noted that this technique applies only to the intersection of a forward

weighted automaton with a backward one, because in this case we are able to get around the

problem of computing join-over-all-paths over a non-context-free set of paths. Algorithms

for intersecting two forward or two backward automata will be discussed in Section 6.5.1.

5.2.1 Computing Error Projections for EWPDSs

Computing error projections for EWPDSs is slightly harder than for WPDSs for the

following reason: for a rule sequence σ = σ1σ2, v(σ) 6= v(σ1)⊗ v(σ2) because an unbalanced

call at the end of σ1 may match with an unbalanced return in the beginning of σ2, in

which case, a merge function has to be applied. Thus, WC(S, {c}, T ) 6= IJOP(S, {c}) ⊗

IJOP({c}, T ).

Our solution for computing an error projection for EWPDSs is also based on “intersect-

ing” the weighted automata Apost∗ = poststar(S) and Apre∗ = prestar(T ). However, it turns
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out that, in general, Apost∗ does not retain enough information about the unbalanced calls.

We restrict the set S to be just the starting configuration of the program, i.e., S = {〈p, emain〉}

(or any singleton set with a configuration with one stack symbol).

The intersection operation for weighted automata is carried out in the same manner as

for WPDSs, but instead of always creating functional weights of the form λz.(w1 ⊗ z ⊗w2),

we may also create weights of the form λz.(m(w1, z) ⊗ w2) as well, where m is a merge

function. We explain our strategy through an example, and then give the algorithm.

(1) 〈p, start〉 ↪→ 〈p, c1〉 w1

(2) 〈p, start〉 ↪→ 〈p, c2〉 w2

(3) 〈p, start〉 ↪→ 〈p, c3〉 w3

(4) 〈p, c1〉 ↪→ 〈p, f1 r1〉 w4

(5) 〈p, c2〉 ↪→ 〈p, f1 r2〉 w5

(6) 〈p, c3〉 ↪→ 〈p, f1 r3〉 w6

(7) 〈p, r1〉 ↪→ 〈p, error〉 w7

(8) 〈p, r2〉 ↪→ 〈p, error〉 w8

(9) 〈p, r3〉 ↪→ 〈p, error〉 w9

(10) 〈p, f1〉 ↪→ 〈p, n〉 w10

(11) 〈p, n〉 ↪→ 〈p, f2〉 w11

(12) 〈p, f2〉 ↪→ 〈p, ε〉 w12

n   w10

r1 w1 ⊗ w4

r2 w2 ⊗ w5

r3 w3 ⊗ w6

w11 ⊗ w12 r1 w7

r2 w8

r3 w9

n

(b) (c)

n   [w10 . z . w11 ⊗ w12]
r1 [w1 ⊗ w4 . z . w7]

r2 [w2 ⊗ w5 . z . w8]

r3 [w3 ⊗ w6 . z . w9]

(d)

n   [w10 . z . w11 ⊗ w12]
r1 [m1(w1, z) . w7]

r2 [m2(w2, z) . w8]

r3 [m3(w3, z) . w9]

(e)

(a)

Figure 5.5 (a) A WPDS. (b),(c) Parts of the poststar and prestar automata, respectively.
(d) Functional automaton obtained after intersecting the automata shown in (b) and (c).
(e) Functional automaton for an EWPDS when the call rule at ci is associated with merge

function mi.



132

Consider the example shown in Fig. 5.5, which is a reworking of the example shown in

Fig. 5.1. Let S = {〈p, start〉} and T = {〈p, error〉}. The weights have been left unspecified

so that we can track their contribution to the weights in the functional automaton that is

shown in Fig. 5.5(d). Let us call this automaton Afunc.

The functional weight Afunc(〈p, n r1〉) applied to 1 equals (w1⊗w4⊗w10⊗w11⊗w12⊗w7)

(which equals WC(S, {〈p, n r1〉}, T )). The weight on the transition with stack symbol n

summarizes the set of all paths from f1 to n (weight w10) and n to the exit of the procedure,

including the return rule (weight w11⊗w12). Putting these together, the weight (w10⊗w11⊗

w12) is the summary of the procedure starting at f1. Similarly, the two components of the

functional weight on the transition for r1 are the weights of the paths from start to c1,

including the call (weight w1 ⊗ w4), and from r1 to error (weight w7), respectively. This

functional weight summarizes paths from start to error with a hole, which is filled by the

variable z, and represents the summary of a called procedure. Thus, the functional weight

on the transition for r1 must apply a merge function.

Let We be an EWPDS obtained by associating merge function mi with call rule

rule 〈p, ci〉 ↪→ 〈p, f1 ri〉 in the WPDS shown in Fig. 5.5(a). For We, the weight

WC(S, {〈p, n r1〉}, T ) is m1(w1, w10 ⊗ w11 ⊗ w12) ⊗ w7. The functional automaton shown

in Fig. 5.5(e) computes exactly this weight for 〈p, n r1〉. Next, we outline the algorithm for

constructing this automaton.

Let Apoststar = poststar(S) and Apre∗ = prestar(T ). The set of states of Apre∗ is (P ∪QT ),

where QT is the set of states of the automaton that represents T . The set of states of Apost∗

is (P ∪ Qmid ∪ QS), where QS is the set of states of the automaton that represents S. To

distinguish the two occurrences of P in these sets, we label the former as PT and the latter

as PS. To simplify the discussion, we assume that the weight on a call rule is always 1.

(The construction given in Section 3.7 shows how one can convert an EWPDS that does not

satisfy this restriction into one that does satisfy it.) The functional automaton is constructed

as before, except for the weights on transitions. For each transition t1 = (q1, γ, q2) of Apost∗
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with weight w1 and transition t2 = (q3, γ, q4) of Apre∗ with weight w2, add a transition to

(Apost∗ CApre∗) as follows:

1. If t1 ∈ (Qmid × Γ × Qmid) or t1 ∈ (Qmid × Γ × QS) then let q1 = p′γ′ and r =

lookupPushRule(p′, γ′γ). Add transition ((q1, q3), γ, (q2, q4)) to the functional automa-

ton with weight λz.(mr(w1, z)⊗ w2).

2. In all other cases, add transition ((q1, q3), γ, (q2, q4)) to the functional automaton with

weight λz.(w1 ⊗ z ⊗ w2).

The reader can verify that this algorithm will produce the automaton shown in Fig. 5.5(e),

after removing the states that cannot be reached from the initial state, or cannot reach a

final state.

A justification of this algorithm is based on the types of rule sequences captured by a

transition in Apost∗ and Apre∗ , which are given in Section 3.7 (Figs. 3.8 and 3.11). We recall

the results of that section and show them pictorially in Fig. 5.6(a) and (b). (They have been

simplified using the restriction imposed on S.) Fig. 5.6(a) can be read as follows: the weight

on a transition t ∈ (Qmid × Γ × Qmid) summarizes the weights of rule sequences derivable

from (σbR2), i.e., ones that have a balanced sequence followed by a call rule; a transition

t ∈ PS × Γ × QS summarizes rule sequences derivable from σb; and so on. Similarly for

Fig. 5.6(b). Taking the intersection of these automata, one gets the automaton shown in

Fig. 5.6(c). Let us call this automaton Ae.

The initial states of Ae are PS × PT and the final states belong to QS ×QT . The states

PS ×QT cannot be reached from the initial states, and QS × PT cannot reach a final state.

As a consequence, these states, and their transitions, have not been shown in the figure.

We will show that a merge function needs to be applied if and only if a transition starting

from a state in Qmid × PT is taken. (Because these are exactly the transitions created in

item 1 of the algorithm outlined above, proving this claim shows that our construction is

correct.) Intuitively, our claim holds because a merge function is applied during poststar

when a state is in Qmid (last case of Fig. 3.4) and is applied during prestar when a state is
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PS QS

Qmid

σb

σb
σb R2

σb R2

PT QT(R2 |σb)*

σb R0 ε

(a) (b)

PS x PT QS x QT

Qmid x PT
Qmid x QT

[σb . z . (R2 |σb)*]

[σbR2.z.σbR0]
[σbR2.z.ε]

[σb . z . (R2 |σb)*]

[σbR2.z.σbR0]

[σbR2 . z . (R2 |σb)*]

(c)

Figure 5.6 (a) Rule sequences for Apost∗ . (b) Rule sequences for Apre∗ . (c) Rule sequences
for the functional automaton Apost∗ CApre∗ .

in P (last case of Fig. 3.3). Thus, in the functional automaton, both conditions have to be

satisfied (i.e., a state must lie in Qmid × PT ) for a merge function to be applied.

The annotations on the transitions of Ae are like functional weights. Every path in Ae

can be associated with a rule sequence that the path represents, in a manner similar to the

way one calculates the weight of a path in a functional automaton. However, instead of
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starting with weight 1 (which is done for reading weights out of a functional automaton),

one starts with the empty rule sequence ε. For instance, if one takes a transition t1 from a

state in PS × PT to a state in Qmid × PT and then t2 to another state in Qmid × PT , the net

rule sequence for (t1t2) is the following:

(λz.(σbR2 z σbR0) (λz.(σb z σbR0) ε))

= (λz.(σbR2 z σbR0) (σbσbR0))

= (λz.(σbR2 z σbR0) (σbR0))

= (σbR2(σbR0)σbR0)

= (σbR0)

Here we have simplified expressions using the grammar of Fig. 3.2: we replace (σb σb)

with σb, and (R2 σb R0) with σb, because each denote a balanced sequence.

One can prove that for all paths in Ae that start from an initial state and end in a state

in Qmid × PT , the rule sequence of that path is (σb R0), i.e., it has one unbalanced return in

the end. When one takes any transition starting in Qmid × PT , the rule sequence becomes

(λz.(σbR2 z σbR0) (σb R0)) or (λz.(σbR2 z (R2|σb)
∗) (σb R0)). In each case, the leftmost

R2 of the functional weight matches with the R0 of the incoming rule sequence, and a merge

function needs to be applied.

5.3 Computing an Annotated Error Projection

An annotated error projection adds more information to an error projection by associating

each node in the error projection with (i) at least one counterexample that goes through

that node and (ii) the set of data values that may arise on a path doomed to fail in the

future.

5.3.1 Computing Witnesses

Given source set S and target set T , previous work on WPDSs allows the computation

of a finite set of paths, called witnesses, {σi | 1 ≤ i ≤ n} such that ⊕i{v(σi)} = IJOP(S, T )
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[83]. The same result holds for path summary on weighted as well as functional automata:

we can find a finite set of paths in the automaton that justifies the weight returned by

path summary (we say that a set of paths justifies a weight w if the combine of their weights

is equal to w). We make use of this technology in this section.

Suppose we find that γ is in the error projection. Then, we know that WC(S, C, T ) 6= 0,

where C = γΓ∗. We will find a path from some configuration s ∈ S to some configuration

t ∈ T that goes through some c ∈ C, with non-0 weight, in two stages. In the first stage, we

find c. In the second stage, we find the path through c.

Let AC be the unweighted automaton that accepts the language C, and A∩ = (Apost∗ C

Apre∗)∩AC . Then path summary(A∩) = WC(S, C, T ) 6= 0. Using witness generation, we can

find at least one path in A∩ whose weight is not 0. A path in this automaton corresponds

to a configuration c with A∩(c) 6= 0. This, in turn, implies that c ∈ C and there is a path in

the WPDS from S to T through c with non-0 weight.

Again, using standard witness generation, we can find a set of witness {σi}1≤i≤n for

Apost∗(c) = IJOP(S, c) and a set of witnesses {ρj}1≤j≤m for Apre∗(c) = IJOP(c, T ), respec-

tively. The concatenation of these witnesses {σiρj}1≤j≤m
1≤i≤n justifies IJOP(S, c)⊗ IJOP(c, T ).

(The concatenation is a constant-time operation because a witness set is represented using

a DAG.) Therefore, one of these witnesses is a path with non-0 weight and serves as the

desired witness for node γ. The same procedure can be repeated for each node in the error

projection. Finding witnesses is not a very expensive operation, but it adds a fair amount of

overhead to the execution of poststar and prestar (although their worst-case running times

do not change).

One optimization that witnesses allow is that if we obtain σ as a witness for a node γ

in the error projection, then for every node γ′ such that a configuration c ∈ γ′Γ∗ occurs in

σ, γ′ must also be in the error projection. Therefore, while computing an error projection,

if we find γ to be in the error projection, then we can find a witness for it and immediately

include in the error projection every such γ′.
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5.3.2 Computing Data Values

In this section, we discuss algorithms for computing the data values for nodes in an error

projection. The technique that we present applies to relational weight domains (Defn. 2.4.13).

Note that the value of WC(S, C, T ) does not say anything about the required set of values

at C: for Fig. 5.1, WC(S, n Γ∗, T ) = {( , 10)} but the required memory configuration at n is

{9}.

Let V be a finite set of memory configurations, i.e., an element of V abstracts a collection

of valuations of program variables. In terms of dataflow analysis, V is a set of dataflow

facts. In terms of Boolean programs, V is the set of valuations of Boolean variables. If the

Boolean program is obtained using predicate abstraction, an element of V is a valuation v

of all predicates, which represents an abstraction for all program states that satisfy those

predicates or their negated form, according to v (see Section 1.1.2).

Let (D,⊕,⊗, 0, 1) be the relational weight domain on V . For weights w,w1, w2 ∈ D,

define Rng(w) to be the range of w, Dom(w) to be the domain of w and Com(w1, w2) =

Rng(w1) ∩ Dom(w2). For a node γ ∈ EP(S, T ), we compute the following subset of V :

Vγ = {v ∈ Com(v(σ1), v(σ2)) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈ γΓ∗, t ∈ T}. If v ∈ Vγ, then

there must be a path in the program model that leads to an error such that the abstract

store v arises at node γ.

5.3.2.1 An Explicit Algorithm

First, we show how to check for membership in the set Vγ. Conceptually, we place a

bottleneck at node γ, using a special weight, to see if there is a feasible path that can

pass through the bottleneck at γ with abstract store v, and then continue on to the error

configuration. Let wv = {(v, v)}. Note that v ∈ Com(w1, w2) iff w1 ⊗ wv ⊗ w2 6= 0. Let

Apost∗ = poststar(AS),Apre∗ = prestar(AT ) and AC be their intersection. Then v ∈ Vγ iff

there is a configuration c ∈ γΓ∗ such that IJOP(S, c)⊗wv⊗IJOP(c, T ) 6= 0 or, equivalently,

Apost∗(c)⊗ wv ⊗Apre∗(c) 6= 0. To check this, we use the functional automaton AC again. It

is not hard to check that the following holds for any weight w:
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Apost∗(c)⊗ w ⊗Apre∗(c) =
⊕
{W (w) | accPath(AC, c, W )}

Then v ∈ Vγ iff
⊕
{W (wv) | accPath(AC, γΓ∗, W )} 6= 0. Again, this is computable using

path summary : Intersect AC with an unweighted automaton that accepts γΓ∗, then run

path summary , but initialize the weight on the initial states of AC with wv instead of 1.

This gives us an algorithm for computing Vγ, but its running time is proportional to |V |,

which might be very large. In the case of predicate abstraction, |V | is exponential in the

number of predicates, but the weights (transformers) can be efficiently encoded using BDDs.

For example, the identity transformer on V can be encoded with a BDD of size log |V |. To

avoid losing the advantages of using BDDs, we now present a symbolic algorithm.

5.3.2.2 A Symbolic Algorithm

Let Y = {yv | v ∈ V } be a fresh set of variables. We switch our weight domain from

being V × V to V × Y × V . We write weights in the new domain with superscript e.

Intuitively, the triple (v1, y, v2) denotes the transformation of v1 to v2 provided the variable

y is “true”. Combine is still defined to be union and extend is defined as follows: we
1⊗we

2 =

{(v1, y, v2) | (v1, y, v3) ∈ we
1, (v3, y, v2) ∈ we

2}. Also, 1
e

= {(v, y, v) | v ∈ V, y ∈ Y } and

0
e
= ∅. Define a symbolic identity ide

s as {(v, yv, v) | v ∈ V }. Let Var(we) = {v | (v1, yv, v2) ∈

we for some v1, v2 ∈ V }, i.e., the set of values whose corresponding variable appears in we.

Given a weight in V ×V , define ext(w) = {(v1, y, v2) | (v1, v2) ∈ w, y ∈ Y }, i.e., all variables

are added to the middle dimension. Note that 1
e
= ext(1). We will use the middle dimension

to remember the “history” when composition is performed: for weights w1, w2 ∈ V × V , it

is easy to prove that Com(w1, w2) = Var(ext(w1)⊗ ide
s ⊗ ext(w2)). Therefore, Vγ = Var(we

γ)

where, we
γ =

⊕
{ext(v(σ1))⊗ ide

s ⊗ ext(v(σ2)) | s⇒σ1 c⇒σ2 t, s ∈ S, c ∈ γΓ∗, t ∈ T}. This

weight is computed by replacing all weights w in the functional automaton with ext(w) and

running path summary over paths accepting γΓ∗, and initializing initial states with weight

ide
s. The advantages of this algorithm are: the weight ext(w) can be represented using the

same-sized BDD as the one for w (the middle dimension is “don’t-care”); and the weight ide
s

can be represented using a BDD of size O(log |V |).
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For our example, the weight we
n read off from the functional automaton shown in Fig. 5.4

is {( , y9, 10)}, which gives us Vn = {9}, as desired.

5.4 Experiments

We carried out experiments to measure two aspects of using error projections. First, we

measured the efficiency of our error-projection algorithm. To put the numbers in perspective,

we compared the time taken to compute an error projection against the time taken by a

reachability query, which provides a measure of the amount of overhead that the error-

projection computation can add to an abstraction-refinement loop. Second, we measured

the sizes of the computed error projections. An error-projection size of 50% implies, roughly,

a 2× speedup for all further rounds of refinement, because half of the program was proved

correct and would not be considered subsequently. Our results were encouraging in both

respects.

We added the error-projection algorithm to Moped [85], a model checker for Boolean

programs. We changed the implementation of Moped so that it first encodes a Boolean

program as an EWPDS, and then uses reachability queries to check assertions in the program.

We measured the time needed to solve WC(S, nΓ∗, T ) for all program nodes n using

the algorithms from Section 5.2: one that uses functional automata and the double-prestar

algorithm. Although we report the size of the error projection, we could not validate how

useful it was because only the model (and not the source code) was available to us.

The results are shown in Tab. 5.1. The table can be read as follows: the first two

columns give the program names, and the number of nodes in the program. The Boolean

programs were provided to us by S. Schwoon. They were created by SLAM as a result of

performing predicate abstraction on real driver source code, but the original source code was

not available to us.

The next three columns give the error-projection size relative to program size, and times

to compute poststar(S) and prestar(T ), respectively. Columns six and seven give the running

time for solving WC(S, nΓ∗, T ) for all nodes n using functionals and using double-prestar,
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respectively, after the initial computation of poststar(S) and prestar(T ) was completed, i.e.,

the time reported for functionals is the time taken to intersect Apost∗ and Apre∗ and read

off values from it; and the time reported for double-prestar is the time taken by lines 2–

5 of the algorithm. Because the double-prestar method is so slow, we did not run these

examples to completion; instead, we report the time for solving the weighted chop query

for only 1% of the blocks and multiply the resulting number by 100. Column eight shows

the ratio of the running time for using functionals (column six) against the time taken to

compute post∗(S) + pre∗(T ) (column four + column five). The last column shows the ratio

of the running time for the entire functional computation (column four + column five +

column six) against the entire double-prestar computation (column five + column seven).

All running times are in seconds. The experiments were run on a 3GHz P4 machine with

2GB RAM.

WC(S, nΓ∗, T ) Functional vs.

Prog Nodes Error Proj. post∗(S) pre∗(T ) Functional Double-pre∗ Reach Double-pre∗

(sec) (sec) (sec) (sec) (sec) (sec)

iscsiprt16 4884 0% 79 1.8 3.5 5800 0.04 69

pnpmem2 4813 0% 7 4.1 8.8 16000 0.79 804

iscsiprt10 4824 46% 0.28 0.36 1.6 1200 2.5 536

pnpmem1 4804 65% 7.2 4.5 9.2 17000 0.79 814

iscsi1 6358 84% 53 110 140 750000 0.88 2476

bugs5 36972 99% 13 2 170 85000 11.3 459

Table 5.1 Moped results: The Boolean programs were provided by S. Schwoon. S is the
entry point of the program, and T is the error configuration set. An error projection of size

0% means that the program is correct.

Discussion

As can be seen from the table, using functionals is about three orders of magnitude faster

than using the double-pre∗ method. Also, as shown in column eight, computation of the error

projection compares fairly well with running a single forward or backward analysis (at least
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for the smaller programs). To some extent, this implies that error-projection computation

can be incorporated into model checkers without adding significant overhead.

The sizes of the error projections indicate that they might be useful in model checkers.

Simple slicing, which only deals with the control structure of the program (and no weights)

produced more than 99% of the program in each case, even when the program was correct.

The result for the last program bugs5, however, does not seem as encouraging due to

the large size of the error projection. We do not have the source code for this program, but

investigating the model reveals that there is a loop that calls several procedures that contain

most of the code, and the error can occur inside the loop. If the loop resets its state when

looping back, the error projection would include everything inside the loop or called from

it. This is because for every node, there is a path from the loop head that goes through the

node, then loops back to the head, with the same data state, and then goes to error.

This seems to be a limitation of error projections and perhaps calls for similar techniques

that only focus on acyclic paths (paths that do not repeat a program state). However, for

use inside a refinement process, error projections still give the minimal set of nodes that

is sound with respect to the property being verified (focusing on acyclic paths need not be

sound, i.e., the actual path that leads to error might actually be cyclic in an abstract model).

5.5 Additional Applications

The techniques presented in Section 5.2 and Section 5.3 give rise to several other appli-

cations of our ideas. In each case, we run one poststar query and one prestar query to obtain

automata Ab and Af , respectively, and then create Abf = (Ab C Af ). Let BW(wbot, γ) be

the weight obtained from the functional automaton Abf intersected with (γ Γ∗) and bottle-

neck weight wbot. (The bottleneck weight used in Section 5.3.2.1 was wv and the one used

in Section 5.3.2.2 was ide
s, respectively.) This weight can be computed for all nodes γ in

roughly the same time as the error projection (which computes BW(1, γ)).
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Multi-threaded Programs

KISS [78] is a system that can detect errors in concurrent programs that arise in at most

two context switches. The two-context-switch bound enables verification using a tool that

can only handle sequential programs. To convert a concurrent program into one suitable

for a sequential analysis, KISS adds nondeterministic function calls to the main method of

thread 2 after each statement of thread 1. Likewise it adds nondeterministic function returns

after each statement of thread 2. It also ensures that a function call from thread 1 to thread

2 is only performed once. This technique essentially results in a sequential program that

mimics the behavior of a concurrent program (with two threads) for two context switches.

Using our techniques, we can extend KISS to determine all of the nodes in thread 1

where a context switch can occur that leads to an error later in thread 1. One way to do

this is to use nondeterministic calls and returns as KISS does and then compute the error

projection. However, due to the automata-theoretic techniques we employ, we can omit the

extra additions. The following algorithm shows how to do this:

1. Create AC = Apost∗ CApre∗ for thread 1.

2. Let A2 be the result of a poststar query from main for process 2. Let w =

path summary(A2); w represents the state transformation caused by the execution

steps spent in thread 2.

3. For each program node γ of thread 1, let wγ = BW(w, γ) be the weight obtained from

functional automaton AC of thread 1. By using w as the bottleneck weight, we account

for the two context switches (from thread 1 to 2 and from 2 back to 1); w summarizes

the effect produced while thread 2 has control. If wγ 6= 0 then an error can occur in

the program when the first context switch occurs at node γ in thread 1.

Then this process can be repeated after interchanging the roles of thread 1 and thread 2.

This allows thread 2 the first chance to execute. Using this algorithm, we can determine all

the nodes where a context switch must occur for an error to (eventually) arise.
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Error Reporting

The model checker SLAM [4] used a technique presented in [5] to identify error causes

from counterexample traces. Their main idea is to remove “correct” transitions from the error

trace; the remaining transitions indicate the cause of the error. These correct transitions

were obtained by a backward analysis from non-error configurations. However, no restrictions

were imposed that these transitions also be reachable from the entry point of the program.

Thus, their technique may remove too many transitions and fail to localize the error. Using

annotated error projections, we can limit the correct transitions to ones that are both forward

reachable from program entry and backward reachable from the non-error configurations.

5.6 Related Work

The combination of forward and backward analysis has a long history in abstract inter-

pretation, going back to Cousot’s thesis [23]. It has been also been used in model checking

[62] and in interprocedural analysis [41]. In this chapter, we have shown how forward and

backward approaches can be combined precisely in the context of interprocedural analysis

performed with WPDSs; our experiments show that this approach is significantly faster than

a more straightforward one.

With model checkers becoming more popular, there has been considerable work on ex-

plaining the results obtained from a model checker in an attempt to localize the fault in the

program [20, 5]. These approaches are complimentary to ours. They build on information

obtained from reachability analysis performed by the model checker and use certain heuris-

tics to isolate the root cause of the bug. Error projections seek to maximize information

that can be obtained from the reachability search so that other tools can take advantage of

this gain in precision. This chapter focused on using error projections inside an abstraction-

refinement loop. The second application in Section 5.5 briefly shows how they can be used

for fault localization. It would be interesting to explore further use of error projections for

fault localization.
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Such error-reporting techniques have also been used outside model checking. Kremenek et

al. [54] use statistical analysis to rank counterexamples found by the xgcc[28] compiler. Their

goal is to present to the user an ordered list of counterexamples sorted by their confidence

rank.

The goal of both program slicing [93] and our work on error projection is to compute a set

of nodes that exhibit some property. In our work, the property of interest is membership in

an error path, whereas in the case of program slicing, the property of interest is membership

in a path along data and control dependence edges. Slicing and chopping have certain

advantages—for instance, chopping filters out statements that do not transmit effects from

source s to target t. These techniques have been generalized by Hong et al. [39], who show

how to perform more precise versions of slicing and chopping using predicate-abstraction and

model checking. However, their methods are intraprocedural, whereas our work addresses

interprocedural analysis.

Mohri et al. investigated the intersection of weighted automata in their work on natural-

language recognition [64, 65]. For their weight domains, the extend operation must be

commutative. We do not require this restriction.
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Chapter 6

Interprocedural Analysis of Concurrent Programs Un-

der a Context Bound

The analysis of concurrent programs is a challenging problem. While, in general, the

analysis of both concurrent and sequential programs is undecidable, what makes concurrency

hard is the fact that even for simple program models, the presence of concurrency makes

their analysis computationally very expensive. When the model of each thread is a finite-

state automaton, the analysis of such systems is PSPACE-complete; when the model is a

pushdown system, the analysis becomes undecidable [80]. This is unfortunate because it

does not allow the advancements made on such models in the sequential setting, i.e., when

the program has only one thread, to be applied in the presence of concurrency.

Another consequence of the above result is that the analysis of concurrent programs

that may contain recursion is undecidable. Even in the absence of recursion, designing

an interprocedural analysis, i.e., an analysis that can precisely reason about the call-return

semantics of a procedure call, becomes hard. As a consequence, to deal with concurrency

soundly, most analyses give up precise handling of procedures and become context-insensitive.

Alternatively, tools can use inlining to unfold multi-procedure programs into single-procedure

ones. This approach cannot handle recursive programs, and can cause an exponential blowup

in the size for non-recursive ones.

Because interprocedural analyses have proven to be very useful for sequential programs

[4, 83, 81, 84], it is desirable to have the same kind of precision even for concurrent programs.
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A different way to sidestep the undecidability of analyzing concurrent recursive programs

is to limit the amount of concurrency by bounding the number of context switches, where

a context switch is defined as the transfer of control from one thread to another. Such an

abstraction has proven to be useful for program analysis because many bugs can be found

in a few context switches [78, 77, 70, 59]. We use the term context-bounded analysis (CBA)

to refer to the general approach of analyzing recursive and concurrent programs under a

context bound.

CBA does not impose any bound on the execution length between context switches.

Thus, even under a context bound, the analysis still has to consider the possibility that the

next switch takes place in any one of the (possibly infinite) states that may be reached after

a context switch. Because of this, CBA still considers many concurrent behaviors [70].

In previous work, Qadeer and Rehof [77] showed that CBA is decidable when program

threads are modeled using pushdown systems (i.e., for recursive programs under a finite-

state abstraction of program data). In this chapter, we generalize their result to weighted

pushdown systems (i.e., to recursive programs under infinite-state data abstractions), and

also provide a new symbolic algorithm for the finite-state case.

Our goal is to be able to take any abstraction used for interprocedural analysis of sequen-

tial programs and directly extend it to handle context-bounded concurrency. Our main result

follows in the spirit of coincidence theorems in dataflow analysis (for sequential programs)

[44, 88, 52]. We give conditions on the abstractions under which CBA can be precisely solved,

along with an algorithm. In addition to the usual conditions required for precise interproce-

dural analysis of sequential programs, we require the existence of a tensor product (defined

in Section 6.5). We show that these conditions are satisfied by a class of abstractions, thus

giving precise algorithms for CBA with those abstractions. These include finite-state ab-

stractions, such as the ones used for verification of Boolean programs in model checking [4],

as well as infinite-state abstractions, such as affine-relation analysis (ARA) [67]. Note that

without a context bound, reasoning about concurrent programs under these abstractions is

undecidable [80, 66].
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We show that when a WPDS is used to model each thread of a concurrent program, CBA

can be precisely carried out for the program, provided tensor products exist for the weights.

Motivation

Context-bounded analysis is not sound because it does not capture all of the behaviors

of a program; however, it has been shown to be useful for program analysis. KISS [78], a

verification tool for CBA with a fixed context bound of 2, found numerous bugs in device

drivers. A study with an explicit-state model checker [70], which works on programs with a

closed environment, found more bugs with slightly higher context bounds. It also showed that

the amount of additional state space covered decreases with each increment of the context

bound. Thus, even a small context bound is sufficient to cover many program behaviors,

and proving safety under a context bound should provide confidence towards the reliability

of the program.

Unlike the above-mentioned work, this dissertation addresses CBA with any given context

bound and with different program abstractions (including ones that would cause explicit-

state model checkers not to terminate).

In Chapter 7, we add to the above results on the utility of CBA. Using a symbolic model

checker that works on programs with an open environment, we showed that many bugs can

be found in a few context switches. Motivated by these reasons, our goal is to develop

analyses that are sound under a context bound.

Previous work has only considered CBA for a restricted set of abstractions. Having the

ability to do CBA with other abstractions can be useful for analyzing concurrent programs.

For example, it can be useful to combine CBA with ARA. This is illustrated by the program

snippet in Fig. 6.1. Here, multiple threads share the circular buffer q in a producer (enq)

consumer (deq) fashion. Using CBA with ARA with modular arithmetic [68], one can

prove (under a given context bound) that (hd - tl - cnt) % SIZE = 0 provided SIZE is

a prime power. ARA generalizes analyses like copy-constant propagation, linear-constant
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propagation, and induction-variable analysis. It can be used to find invariants, such as the

one shown above, to do verification or to increase the precision of other analyses.

Elem q[SIZE];

int hd = cnt = tl = 0;

Elem deq() {

while(true) {

atomic {

if(cnt > 0) {

Elem e = q[hd];

hd = (hd+1)%SIZE;

cnt--; 

return e;

}

}}}

void enq(Elem e) {

while(true) {

atomic {

if( cnt < SIZE) {

q[tl] = e;

tl = (tl+1)%SIZE;

cnt ++;

break;

}

}}}

Figure 6.1 A concurrent program that manages a circular queue.

The context bound used for CBA can be increased iteratively to consider more effects

of concurrency and to analyze more program behaviors. This has the added advantage

of finding bugs in the fewest context switches needed to trigger them. It is reasonable to

consider a bug that arises only after a greater number of context switches to be “harder”

than a bug that requires fewer context switches. Thus, CBA allows additional concurrency

to be considered “on-demand” by increasing the context bound.

Challenges and Techniques

Between consecutive context switches, a concurrent program acts like a sequential pro-

gram because only one thread is executing. However, a recursive thread can reach an infinite

number of states before the next context switch because it has an unbounded stack. CBA

has to consider the possibility of a context switch occurring at any one of these states.

The Qadeer-Rehof (QR) algorithm uses PDSs to encode program threads. The set of

reachable states of a PDS can be represented using an automaton [15] (see Section 2.3.2).

The QR algorithm makes use of this result to get a handle on all reachable states between

context switches. However, to explore all possible context switches, it crucially relies on the

finiteness of the data abstraction because it enumerates all reachable data states at a context

switch.
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Our first step is to develop a new algorithm for the case of PDSs. Our motivation is to

have an algorithm that is more likely to generalize to handle other abstractions. The new

algorithm (Section 6.3) represents the effect of executing a thread (a PDS) from any arbitrary

state using a finite-state transducer. The transducer accepts a pair (c1, c2) if a thread, when

started in state c1, can reach state c2. Caucal [17] showed that such transducers can be

constructed for PDSs. This is a more general result than the one on reachability in PDSs

that was used in the QR algorithm. Next, to describe the behavior of the entire program with

multiple threads, these transducers are composed. One transducer composition is performed

for each context switch.

We then generalize this algorithm for WPDSs (Section 6.4 and Section 6.5). The weights

(or the data abstraction) add several complications. We define weighted transducers to

capture the reachability relation of WPDSs. We show that a weighted transducer can always

be constructed for a WPDS (no such result was known previously). The next step is to

compose these transducers. While weighted automata and transducers have been considered

in the literature before, the weights are assumed to have much stronger properties (especially

commutativity, which defeats the purpose of CBA by making thread interleavings redundant,

as we shall see later). For program analysis, we only have weaker properties on weights. To

compose weighted transducers, we require that weight domains provide a tensor-product

operation (Section 6.5). Tensor products have been used previously in program analysis for

combining abstractions [71]. However, we use them in a different context and for a completely

different purpose. In particular, previous work has used them for combining abstractions

that are to be performed in lock-step; in contrast, we use them to stitch together the data

state before a context switch with the data state after a context switch. This is non-trivial

because the data state is correlated with an (unbounded) program stack.

By using WPDSs, not only do we obtain new algorithms for infinite-state abstractions,

but also symbolic algorithms for finite-state abstractions. The latter algorithms avoid the

enumeration that the QR algorithm performs at a context switch.

The contributions of the work presented in this chapter can be summarized as follows:
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• We give sufficient conditions under which CBA is decidable, along with an algorithm.

This generalizes previous work on CBA of PDSs [77]. Our result also proves that CBA

can be decided for affine-relation analysis, i.e., we can precisely find all affine relation-

ships between program variables that hold at a particular point in the (concurrent)

program. We use WPDSs as our program model, and the weights encode the program’s

data abstraction. By using WPDSs, we can also answer “stack-qualified” queries [83],

which ask for the set of values that may arise at a program point in a given calling

context, or in a regular set of calling contexts.

• We show that for WPDSs, the reachability relation can be encoded using a weighted

transducer (Section 6.4), generalizing a previous result for PDSs by Caucal [17].

• We give precise algorithms for composing weighted transducers (Section 6.5), when

tensor products exist for the weights. This generalizes previous work on manipulating

weighted automata and transducers [64, 65]. We also show a class of abstractions that

satisfies this property.

• We discuss implementation issues for realizing CBA in Section 6.6. We show that for

PDSs, CBA is NP-complete. Our algorithm, based on transducers, does have a large

complexity, but it is more amenable to symbolic techniques such as using BDDs (in

the finite-state case) than the QR algorithm.

The rest of the chapter is organized as follows. In Section 6.1, we formally define CBA.

In Section 6.2, we discuss previous work on CBA under a finite-state data abstraction. In

Section 6.3, we present our algorithm for PDSs, which is based on transducers. The later

sections generalize this result to WPDSs. In Section 6.4, we give an efficient construction for

transducers for WPDSs. In Section 6.5, we show how weighted transducers can be composed.

In Section 6.6, we discuss implementation issues for CBA. In Section 6.7, we discuss related

work. A further generalization of CBA is discussed in Chapter 7.
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6.1 Problem Definition

Notation. A binary relation on a set S is a subset of S × S. If R1 and R2 are binary

relations on S, then their relational composition (R1; R2) is defined as {(s1, s3) | ∃s2 ∈

S, (s1, s2) ∈ R1, (s2, s3) ∈ R2}. If R is a binary relation, Ri is the relational composition of R

with itself i times, and R0 is the identity relation on S. R∗ = ∪∞i=0R
i is the reflexive-transitive

closure of R.

The Unweighted Case

First, we define CBA under a finite-state data abstraction, i.e., when PDSs are used

as the abstract model of threads. To distinguish this case from the general one, and in

keeping with the nomenclature used in previous work, we call CBA under a finite-state data

abstraction context-bounded model checking (CBMC).

The abstract model for CBMC is a concurrent PDS, defined as sequence of PDSs,

(P1,P2, · · · ,Pn), Pi = (P, Γi, ∆i), which have the same set of control locations (P ). A

configuration of this model is a tuple (p, u1, · · · , un), where p ∈ P , ui ∈ Γ∗i . The transition

system of this model, which is a binary relation on the set of all such configurations, is

defined as follows. Let the transition relation of Pi be ⇒i. If 〈p, ui〉 ⇒i 〈p′, u′i〉, then we say

(p, u1, · · · , ui, · · · , un)⇒c
i (p′, u1 · · · , u′i, · · · , un). The union of ⇒c

i for all i = 1 to n defines

the transition relation for the CBMC model, i.e., it defines a single execution step of the

model.

Concurrent PDSs can encode finite-state data abstractions of recursive concurrent pro-

grams. Consider a concurrent Boolean program, defined as a set of Boolean programs, one for

each thread, in which the global variables are shared between the threads. (Thus, any of the

threads can modify the global variables and their own copy of the local variables, but they

cannot directly read from or write to local variables of other threads.) Synchronization be-

tween threads can be easily implemented, e.g., by using global variables to implement locks.
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Such models are a natural description of recursive concurrent programs with a finite-state

data abstraction. We do not consider dynamic creation of threads in our model.1

Concurrent Boolean programs can be encoded using a concurrent PDS. Let B be a

concurrent Boolean program with n threads t1, t2, · · · , tn. Let G be the set of global states

of B (valuations of global variables) and Li be the set of local states of ti, which includes

valuation of local variables as well as the program stack (as described in Section 2.2). Then

the state space of B consists of the global state paired with local states of each of the threads,

i.e., the set of states is G× L1 × · · · × Ln.

Let Pti be the PDS that encodes the Boolean program ti (Section 2.3). Because different

threads share the same global variables, the PDSs Pti have the same set of control locations

(which is G). Then the concurrent PDS PB = (Pt1 ,Pt2 , · · · ,Ptn) encodes B. It is easy to

see that the transition relation of PB describes a single execution step of B.

The CBMC problem is to find the set of reachable states of a concurrent PDS

(P1,P2, · · · ,Pn) under a bound on the number of context switches. Formally, let k be

the bound on context switches. The execution of a concurrent program can be decomposed

to a sequence of execution contexts. In an execution context, one thread has control and it

executes a finite number of steps. The execution context changes at a context switch and

control is passed to a different thread. For k context switches, there must be k +1 execution

contexts. Let ⇒ec be (∪n
i=1(⇒c

i)
∗), the transition relation that describes the effect of one

execution context. Then the CBMC problem is to find the set of reachable states in the

transition relation given by (⇒ec)k+1. Note that while a bound is placed on the number of

context switches, no bound is placed on the length of an individual execution context.

Analysis of concurrent Boolean programs is undecidable [80], i.e., it is not possible to

verify if a given state is reachable under the transition system (⇒ec)∗ or not, but Qadeer

and Rehof showed that CBMC, i.e., reachability under (⇒ec)k+1 for a fixed k, is decidable.

1Dynamic creation up to n threads can be encoded in the model [77]. Moreover, for CBA that considers
k context switches, n can be bounded by k because other threads would never get a chance to run.
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The Weighted Case

Now we define CBA in the general case, i.e., when WPDSs are used as the abstract model

for each thread.

The transition relation of a WPDS is a weighted relation (Defn. 2.4.15) over the set of

PDS configurations. For configurations c1 and c2, if r1, · · · , rm are all the rules such that

c1 ⇒ri c2, then (c1, c2,⊕if(ri)) is in the weighted relation of the WPDS. In a slight abuse

of notation, we will use ⇒ and its variants for the weighted transition relation of a WPDS.

Note that the weighted relation⇒∗ maps the configuration pair (c1, c2) to IJOP({c1}, {c2}).

The CBA problem is the same as the one for CBMC, except that all relations are weighted.

This means that each thread is modeled as a WPDS and their underlying PDSs have the

same set of control states.

Given the weighted relation R = (⇒ec)k+1, the set of initial configurations S and a set of

final configurations T , we want to be able to solve for R(S, T ) = ⊕{R(s, t) | s ∈ S, t ∈ T}.

This captures the net transformation on the data state between S and T : it is the combine

over the values of all paths involving at most k context switches that go from a configuration

in S to a configuration in T . Our results from Section 6.4 and Section 6.5 allow us to solve

for this value when S and T are regular sets of configurations.

This problem definition allows one to precisely encode concurrent Boolean programs (with

variations such as finding the shortest trace), as well as concurrent affine programs, when

each only have global variables. (The extension to local variables requires that the threads

be modeled using EWPDSs, which is left as future work.)

For example, consider two copies of the program in Fig. 2.2(a) running in parallel. Let

the CFG nodes of the second copy be Γ′ = {n′1, · · · , n′8}, to distinguish them from those of

the first copy. With k = 2, S = {〈p, n1, n
′
1〉} (the starting configuration of the program),

T = {〈p, n6, u
′〉 | u′ ∈ (Γ′)∗} (thread 1 is at n6 and thread 2 can have any stack), and R as

above, the weight R(S, T ) is a relation with range {(3, 3), (3, 7), (7, 3), (7, 7)}, meaning that

these valuations of (x, y) are possible at some configuration in T .
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6.2 Context Bounded Model Checking

In this section, we describe the Qadeer-Rehof (QR) algorithm for CBMC. It works under

the assumption that the set G is finite. Under such an abstraction, the only source of

unboundedness is the program stack.

The algorithm proceeds by iteratively increasing the number of execution contexts.

Within one execution context, the global state can be considered local to the executing

thread because it is the only thread that accesses it. At a context switch, the global state

is synchronized with other threads so that they have the same view of the shared memory.

The algorithm needs G to be finite to be able to explore all possibilities at a context switch.

We only give an overview of the QR algorithm, presenting it mostly in terms of explicit

state spaces and just touch on a few aspects of a PDS-based implementation. A complete

description of the PDS-based implementation is given in [77].

If Si ⊆ Li is a set of local states, then let (g, S1, S2, · · · , Sn) be the set of states

{(g, l1, · · · , ln) | li ∈ Si}. We use the symbol η as a shorthand for such a set of states.

The QR algorithm is a worklist-based algorithm. An item on the worklist is a pair (η, i), de-

noting that the set of states η is reachable in up to i context switches. Initially, the worklist

contains (ηinit, 0), where ηinit is the starting set of states for the program. Then the algorithm

repeats the following steps until the worklist is empty.

1. Select and remove an item (η, i) from the worklist. If i = k, then the context bound

has been reached, so pick another item.

2. Let η = (g, S1, · · · , Sn). For each j from 1 to n, repeat steps 3 and 4.

3. Using a thread-local analysis on tj, find the set of states that tj can reach when started

from the set of states (g, Sj). Let this set be Rj, i.e., (g, Sj) ⇒∗
tj

Rj. In PDS terms,

Rj = post∗tj((g, Sj)). Write Rj as ∪m
p=1(gp, R

p
j ). This implies that thread tj can change

the global state from g to gp and itself reach some local state in Rp
j .
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(g00, S0, T0)

(R, T0)

R = post1*(g00, S0)

(g11, S1, T0) (g12, S2, T0) (g1m, Sm, T0)...

R’ = post2*(g12, T0)

(S2, R’)
... ...

R = { (g11, S1), (g12, S2), …, (g1m, Sm) }

R’ = { (g21,T1), (g22,T2), …, (g2p,Tp) }

(g21, S2, T1) (g22, S2, T2) (g2p, S2, Tp)
...

...

Figure 6.2 The computation of the QR algorithm, for two threads, shown schematically in
the form of a tree. The shaded boxes are just temporary placeholders and are not inserted
into the worklist. The thick arrows correspond to Step 3 and other arrows correspond to
Step 4. The set of tuples at level i of the tree correspond to all states reached in i context

switches.

4. For each gp produced in the above step, the set of states ηp =

(gp, S1, · · · , Sj−1, R
p
j , Sj+1, · · · , Sn) are reachable in up to i + 1 context switches.

Insert (ηp, i + 1) into the worklist.

Steps 3 and 4 take a starting set of states η and produce all states that are reachable in

one execution context. First, a thread tj is picked that gets to execute in that context. Then

step 3 finds all states that execution of tj can produce. For each of the global states gp that

can be produced, it is passed to all other threads at the context switch in step 4. The set of

tuples (η, i) with i = k represent the set of all reachable states. The computation performed

by this algorithm is depicted in Fig. 6.2 in the form of a tree.

An important aspect of the algorithm is the way it manipulates set of states. An item

on the worklist is of the form (g, S1, · · · , Sn), representing a set of states. The global state g

is kept explicit because it is required for synchronization across threads at a context switch.

The local states need not be kept explicit, and they are collected in the sets Si. This is

important because the set of local states can be infinite. In the PDS-based implementation,

the sets Si are kept in symbolic form using automata (Defn. 2.3.2). The poststar algorithm
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works on these representations, mapping automata (capturing starting configurations) to

automata (capturing reachable configurations).

6.3 A New Algorithm for CBMC Using Transducers

The QR algorithm fails to generalize to infinite-state abstractions because of its require-

ment to keep the global state explicit in the worklist items. After each context switch, the

algorithm does a “fan-out” proportional to the size of the global state space |G| (see Fig. 6.2)

to pass the global state to all other threads. This is also true for the PDS-based implemen-

tation of the QR algorithm. The algorithm presented in this section avoids such a fan-out

(and will be extended to infinite-state abstractions in Section 6.4 and Section 6.5).

The QR algorithm makes several calls to poststar to compute the forward reachable states

in a single thread. This is crucial to be able to work with infinite sets of configurations.

However, the disadvantage is that poststar requires a starting set of configurations to find

all of the reachable configurations. Creation of this starting set is what forces the fan-out

operation to alternate with calls to poststar.

A similar problem arises in interprocedural analysis of sequential programs: a procedure

can get called from multiple places with multiple different input values. Instead of reanalyz-

ing the procedure for each input value, it is analyzed independently of the calling context to

create a summary. This summary concisely describes the effect of executing the procedure

in any calling context, in terms of the relation between input to the procedure and its out-

put. Similarly, instead of reanalyzing a thread every time it receives control after a context

switch, we create a summary for it. The difficulty is that the “input” here is a starting set of

configurations, and the “output” is the reachable sets of configurations; again, the summary

must be relation-valued. Because both of these sets can be infinite, we need the summary

to be representable symbolically.

Our approach to generalizing the QR algorithm (for both finite-state and infinite-state

data abstractions) is based on the following observation:
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Observation 1. One can construct an appropriate summary of a thread’s behavior using a

finite-state transducer (an automaton with input and output tapes).

Definition 6.3.1. A finite-state transducer τ is a tuple (Q, Σi, Σo, λ, I, F ), where Q is a

finite set of states, Σi and Σo are input and output alphabets, λ ⊆ Q×(Σi∪{ε})×(Σo∪{ε})×Q

is the transition relation, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final

states. If (q1, a, b, q2) ∈ λ, written as q1
a/b−−→ q2, we say that the transducer can go from

state q1 to q2 on input a, and outputs the symbol b. Given a state q ∈ I, we say that the

transducer can accept a string σi ∈ Σ∗
i with output σo ∈ Σ∗

o if there is a path from state q

to a final state that takes input σi and outputs σo. The language of the transducer L(τ) is

defined as the following subset of Σ∗
i × Σ∗

o : {(σi, σo) | the transducer can output string σo

when the input is σi}.

Given a PDS P , one can construct a transducer τP whose language equals ⇒∗, the

transitive closure of P ’s transition relation: The transducer accepts a pair (c1, c2) if a thread,

when started in state c1, can reach state c2. This result was first given by Caucal [17],

but it was not accompanied with a complexity result, except that it was polynomial time.

Our construction of transducers for WPDSs (strictly more general than Caucal’s result)

makes use of recent advancements in the analysis of (W)PDSs [9, 30, 85, 83] for an efficient

construction. Because such transducers are of general importance, we give a complexity

result. The following theorem is derived from Thm. 6.4.4 given in Section 6.4.

Theorem 6.3.2. Given a PDS P = (P, Γ, ∆), a transducer τP can be constructed such that

it accepts input (p1 u1) and outputs (p2 u2) if and only if 〈p1, u1〉 ⇒∗ 〈p2, u2〉. Moreover, this

transducer can be constructed in time O(|P ||∆|(|P ||Γ|+|∆|)) and has at most |P |2|Γ|+|P ||∆|

states.

The advantage of using transducers is that they are closed under relational composition.

Lemma 6.3.3. Given transducers τ1 and τ2 with input and output alphabet Σ, one can

construct a transducer (τ1; τ2) such that L(τ1; τ2) = L(τ1);L(τ2), where the latter “;” denotes
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composition of relations. Similarly, if A is an automaton with alphabet Σ, one can construct

an automaton τ1(A) such that its language is the image of L(A) under L(τ1), i.e., the set

{u ∈ Σ∗ | ∃u′ ∈ L(A), (u′, u) ∈ L(τ1)}.

Both of these constructions are carried out in a manner similar to automaton intersection

[40]. For composing transducers, for each transition p
a/b−−→ q in τ1 and transition p′

b/c−−→ q′

in τ2, add the transition (p, p′)
a/c−−→ (q, q′) to their composition. For transducer-automaton

application, each transition p
a/b−−→ q in τ1 is matched with transition p′ a−→ q′ in A to produce

transition (p, p′) b−→ (q, q′) in τ1(A). One can also take the union of transducers (union of

their languages) in a manner similar to union of automata.

Coming back to CBMC, each thread is represented using a PDS. Thus, we can construct a

transducer τti for the transition relation of thread ti, i.e., for⇒∗
i . By extending τti to perform

the identity transformation on stack symbols of threads other than ti (using transitions of

the form p
γ/γ−−−→ p), we obtain a transducer τ c

ti
for (⇒c

i)
∗. Next, a union of these transducers

gives τ ec, which represents ⇒ec. Performing the composition of τ ec k times with itself gives

us a transducer τ that represents (⇒ec)k+1. If an automaton A captures the set of starting

states of the concurrent program, τ(A) gives a single automaton for the set of all reachable

states in the program (under the context bound).

We believe that the above algorithm provides a better basis for implementing a tool

for CBMC than the QR algorithm. In particular, the new algorithm avoids the fan-out

step, which—as we show below—allows it to be extended to infinite-state data abstractions.

To make this extension, we represent (recursive) programs with infinite-state abstractions

using WPDSs. Extending our algorithm to WPDSs presents two challenges: one is the

construction of a weighted transducer for a WPDS, and the other is the composition of two

weighted transducers. These issues are addressed in Section 6.4 and Section 6.5, respectively.

6.4 Weighted Transducers

In this section, we show how to construct a weighted transducer for the weighted relation

⇒∗ of a WPDS. We defer the definition of a weighted transducer to a little later in this
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〈p1, γ1 γ2 γ3 · · · γn〉 ⇒σ1 〈p2, γ2 γ3 · · · γk+1 γk+2 · · · γn〉

⇒σ2 〈p3, γ3 · · · γk+1 γk+2 · · · γn〉

· · ·

⇒σk 〈pk+1, γk+1 γk+2 · · · γn〉

⇒σk+1 〈pk+2, u1 u2 · · ·uj γk+2 · · · γn〉

Figure 6.3 A path in the PDS’s transition relation; ui ∈ Γ, j ≥ 1, k < n.

section (Defn. 6.4.3). Our solution uses the following observation about paths in a PDS’s

transition relation. Every path σ ∈ ∆∗ that starts from a configuration 〈p1, γ1γ2 · · · γn〉

can be decomposed as σ = σ1σ2 · · ·σkσk+1 (see Fig. 6.3) such that 〈pi, γi〉 ⇒σi 〈pi+1, ε〉 for

1 ≤ i ≤ k, and 〈pk+1, γk+1〉 ⇒σk+1 〈pk+2, u1u2 · · ·uj〉: every path has zero or more pop phases

(σ1, σ2, · · · , σk) followed by a single growth phase (σk+1):

1. Pop-phase: A path such that the net effect of the pushes and pops performed along

the path is to take 〈p, γu〉 to 〈p′, u〉, without looking at u ∈ Γ∗. Equivalently, it can

take 〈p, γ〉 to 〈p′, ε〉.

2. Growth-phase: A path such that the net effect of the pushes and pops performed

along the path is to take 〈p, γu〉 to 〈p′, u′u〉 with u′ ∈ Γ+, without looking at u ∈ Γ∗.

Equivalently, it can take 〈p, γ〉 to 〈p′, u′〉.

Intuitively, this holds because for a path to look at γ2, it must pop off γ1. If it does not

pop off γ1, then the path is in a growth phase starting from γ1. Otherwise, the path just

completed a pop phase. We construct the transducer for a WPDS by computing the net

transformation (weight) implied by these phases. First, we define two procedures:

1. pop : P × Γ× P → D is defined as follows:

pop(p, γ, p′) =
⊕
{v(σ) | 〈p, γ〉 ⇒σ 〈p′, ε〉}

2. grow : P × Γ→ ((P × Γ+)→ D) is defined as follows:

grow(p, γ)(p′, u) =
⊕
{v(σ) | 〈p, γ〉 ⇒σ 〈p′, u〉}
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Note that grow(p, γ) = poststar(〈p, γ〉), where the latter is interpreted as a function from

configurations to weights that maps a configuration to the weight with which it is accepted,

or 0 if it is not accepted. The following lemmas give efficient algorithms for computing the

above quantities.

Lemma 6.4.1. Let A = (P, Γ, ∅, P, P ) be a P-automaton that represents the set of config-

urations C = {〈p, ε〉 | p ∈ P}. Let Apop be the forward weighted-automaton obtained by

running prestar on A. Then pop(p, γ, p′) is the weight on the transition (p, γ, p′) in Apop.

We can generate Apop in time Os(|P |2|∆|H), and it has at most |P | states.

Proof. This follows directly from Lem. 2.3.4 and its weighted version described in Section

2.4.1. However, we give a slightly informal, but intuitive, proof here. We use the fact that

the saturation-based implementation of prestar (Section 2.4.1) is correct.

The lemma runs prestar on the empty automaton, i.e., one with no transitions, which

represents the configuration set C = {〈p, ε〉 | p ∈ P}. Let β be a stack symbol not in Γ, and

Ap
β be an automaton with two states {p, q}, q 6∈ P and a single transition (p, β, q). Let q

be the final state of this automaton. Because β 6∈ Γ, running prestar on Ap
β will return the

same automaton as the one returned by running prestar on the empty automaton, except for

the extra transition (p, β, q) (because no rule can match β). Ap
β represents the configuration

set {〈p, β〉}, and therefore, Ap
β(〈p′, γ β〉) = pop(p′, γ, p) according to the definition of pop.

However, Ap
β(〈p′, γ β〉) is exactly the weight on the transition (p′, γ, p) because the only path

in Ap
β that accepts (γ β) starting in state p′ is the one that follows transitions (p′, γ, p) and

(p, β, q). The result follows by repeating the argument for all p ∈ P .

Lemma 6.4.2. Let AF = (Q, Γ,→, P, F ) be a P-automaton, where Q = P ∪ {qp,γ | p ∈

P, γ ∈ Γ} and p γ−→ qp,γ for each p ∈ P, γ ∈ Γ. Then A{qp,γ} represents the configuration

〈p, γ〉. Let A be this automaton where we leave the set of final states undefined. Let Agrow

be the backward weighted-automaton obtained from running poststar on A (poststar does not

need to know the final states). If we restrict the final states in Agrow to be just qp,γ (and

remove all states that do not have an accepting path to the final state), we obtain a backward
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weighted-automaton Ap,γ = poststar(〈p, γ〉) = grow(p, γ). We can compute Agrow in time

Os(|P ||∆|(|P ||Γ|+ |∆|)H), and it has at most |P ||Γ|+ |∆| states.

Proof. The proof is similar to the one given for Lem. 6.4.1. Let β 6∈ Γ be a new stack symbol.

Let Ap,γ
β be the automaton A with an extra state qf and an extra transition (qp,γ, β, qf ). Let

qf be the final state of this automaton. Ap,γ
β represents the configuration set {〈p, γ β〉}. The

automaton returned by poststar(Ap,γ
β ) would then represent the configuration set grow(p, γ)

with β appended at the end of the stack. The proof follows from the fact that running

poststar on Ap,γ
β is the same as running it on A (for all p and γ) with the exception of the

extra β-transition.

The advantage of the construction presented in Lem. 6.4.2 is that it just requires a single

poststar query to compute all of the Ap,γ, instead of one query for each p ∈ P and γ ∈ Γ.

Because the standard poststar algorithm builds an automaton that is larger than the input

automaton (Lem. 2.4.11), Agrow has many fewer states than those in all of the individual

Ap,γ automata put together.

Fig. 6.4(b) and (c) show the Agrow and Apop automata for a simple WPDS constructed

over the minpath semiring (Defn. 2.4.14).

The idea behind our approach is to use Apop to simulate the first phase where the PDS

pops off stack symbols. With reference to Fig. 6.3, the transducer consumes γ1 · · · γk from

the input tape. When the transducer (non-deterministically) decides to switch over to the

growth phase, and is in state pk+1 in Apop with γk+1 being the next symbol in the input,

it passes control to Apk+1,γk+1
to start generating the output u1 · · ·uj. Then it moves into

an accept phase where it copies the untouched part of the input stack (γk+2 · · · γn) to the

output.

This can be optimized by avoiding a separate copy of Ap,γ for each γ. Let Ap be the same

as Agrow, but with final states restricted to {qp,γ | γ ∈ Γ}, and unreachable states appropri-

ately pruned (see Fig. 6.4(d) and (e)). The transducer we construct will non-deterministically

guess the stack symbol γ from which the growth phase starts, pass control to Ap, and then
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(a)

〈p1, a〉 ↪→ 〈p1, a b〉 1

〈p1, a〉 ↪→ 〈p2, b〉 1

〈p2, b〉 ↪→ 〈p2, ε〉 1

(b)
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Figure 6.4 Weighted transducer construction: (a) A simple WPDS with the minpath
semiring. (b) The Agrow automaton. Edges are labeled with their stack symbol and weight.

(c) The Apop automaton. (d) The Ap1 automaton obtained from Agrow. (e) The Ap2

automaton obtained from Agrow. The unnamed state in (c) and (d) is an extra state added
by the poststar algorithm used in Lem. 6.4.2. (f) The weighted transducer. The boxes

represent “copies” of Apop, Ap1 and Ap2 as required by steps 2 and 3 of the construction.
The transducer paths that accept input (p1 a) and output (p2 bn), for n ≥ 2, with weight n

are highlighted in bold.

verify that the guess was correct when it reaches the final state qp,γ in Ap. As a result, we

just need |P | copies of Agrow.

Note that Apop is a forward-weighted automaton, whereas Agrow is a backward-weighted

automaton. Therefore, when we mix them together to build a transducer, we must allow it to

switch directions for computing the weight of a path. Consider Fig. 6.3; a PDS rule sequence

consumes the input configuration from left to right (in the pop phase), but produces the

output stack configuration u from right to left (as it pushes symbols on the stack). Because

we need the transducer to output u1 · · ·uj from left to right, we need to switch directions

for computing the weight of a path. For this, we define partitioned transducers.
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Definition 6.4.3. A partitioned weighted finite-state transducer τ is a tuple

(Q, {Qi}2i=1,S, Σi, Σo, λ, I, F ) where Q is a finite set of states, {Q1, Q2} is a partition of

Q, S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring, Σi and Σo are input and output

alphabets, λ ⊆ Q×D× (Σi ∪ {ε})× (Σo ∪ {ε})×Q is the transition relation, I ⊆ Q1 is the

set of initial states, and F ⊆ Q2 is the set of final states. We restrict the transitions that

cross the state partition: if (q, w, a, b, q′) ∈ λ and q ∈ Ql, q
′ ∈ Qk and l 6= k, then l = 1, k = 2

and w = 1. Given a state q ∈ I, the transducer accepts a string σi ∈ Σ∗
i with output σo ∈ Σ∗

o

if there is a path from state q to a final state that takes input σi and outputs σo.

For a path η that goes through states q1, · · · , qm, such that the weight of the ith transition is

wi, and all states qi are in Qj for some j, then the weight of this path v(η) is w1⊗w2⊗· · ·⊗wm

if j = 1 and wm⊗wm−1⊗ · · · ⊗w1 if j = 2, i.e., the state partition determines the direction

in which we perform extend. For a path η that crosses partitions, i.e., η = η1η2 such that

each ηj is a path entirely inside Qj, then v(η) = v(η1)⊗ v(η2).

In this chapter, we refer to partitioned weighted transducers as weighted transducers, or

simply transducers when there is no possibility of confusion. Note that when the extend

operator is commutative, partitioning is unnecessary.

Let St(A) denote the set of states of an automaton A. Because each of Apop and Ap have

P as a subset of their set of states, we distinguish them by referring to a state q ∈ St(Apop)

by qpop and q ∈ St(Ap) by qp.

Given a WPDS W , we construct the desired weighted transducer τW using the steps

given below. τW has states {qi, qf}∪St(Apop)∪ (
⋃

p∈P St(Ap)), input alphabet P ∪Γ, output

alphabet P ∪ Γ, weight domain the same as W , initial state qi, and final state qf . Its state

partition is Q1 = {qi}∪St(Apop) and Q2 = {qf}∪(
⋃

p∈P St(Ap)). The part of the transducer

contained in Q1 simulates the pop phase, and the part contained in Q2 simulates the growth

phase, including the part where the untouched part of the stack is copied to the output tape.

Transitions to τW are added as follows (an example is given in Fig. 6.4):

1. For each state p ∈ P , add the transition (qi, p/ε, ppop) with weight 1 to τW .
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2. For each transition (p1
pop, γ, p2

pop) with weight w in Apop add the transition

(p1
pop, (γ/ε), p2

pop) with the same weight to τW , i.e., copy over Apop.

3. For each transition (qp, γ
′, q′p) in each automaton Ap add the transition (qp, (ε/γ

′), q′p)

with the same weight to τW , i.e., copy over each of the Ap.

4. For each q, q′ ∈ P , add the transition (qpop, (ε/q
′), q′p) with weight 1 to τW . This

transition permits a switch from the pop phase to the growth phase. At this point,

we just know that the growth phase begins in state q and ends in state q′. This step

guesses the stack symbol from which the growth phase starts. The next step verifies

that our guess was correct.

5. For each final state qp,γ ∈ St(Ap), add the transition (qp,γ, (γ/ε), qf ) with weight 1 to

τW . This transition verifies that γ was on the input tape, and we just completed the

growth phase starting from γ.

6. For each p, q ∈ P , add the transition (qp, (ε/ε), qf ) with weight 1 to τW . This transition

allows us to skip the growth phase by going directly to the final state.

7. For each γ ∈ Γ, add the transition (qf , (γ/γ), qf ) with weight 1 to τW . This part of the

transducer copies over the untouched part of the input tape to the output tape.

Theorem 6.4.4. When the transducer τW , as constructed above, is given input (p z),

p ∈ P, z ∈ Γ∗, then the combine over the values of all paths in τW that output the string

(p′ z′) is precisely IJOP({〈p, z〉}, {〈p′, z′〉}). Moreover, this transducer can be constructed

in time Os(|P ||∆|(|P ||Γ|+ |∆|)H), has at most |P |2|Γ|+ |P ||∆| states and at most |P |2|∆|2

transitions.

Proof. The proof is based on the observation made in Fig. 6.3. Suppose that we have

a path in the PDS transition relation from 〈p, γ1γ2 · · · γn〉 to 〈pk+1, uγk+2 · · · γn〉 that can

be broken down as shown in Fig. 6.5. Then in the transducer, we can take the path

starting at qi that first takes the transition (qi, (p/ε), ppop) (Step 1 of the construction)
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〈p, γ1γ2 · · · γn〉 ⇒∗ 〈p1, γ2 · · · γn〉 w1

⇒∗ 〈p2, γ3 · · · γn〉 w2

⇒∗ · · ·

⇒∗ 〈pk, γk+1 · · · γn〉 wk

⇒∗ 〈pk+1, uγk+2 · · · γn〉 wk+1

Figure 6.5 A path in the PDS’s transition relation with corresponding weights of each step.

and moves into state p of Apop. Then it successively takes the transitions (p1, (γ2/ε), p2),

(p2, (γ3/ε), p3), · · · , (pk−1, (γk/ε), pk) (Step 2), all the time staying inside Apop. If the weight

of the ith such transition is wi, then wi v wi. This follows from Lem. 6.4.1. Next, the trans-

ducer can take transition (pk, (ε/pk+1), pk+1) (Step 4) and move into Apk
. Then it can take

a path that outputs u and move into state qpk,γk+1
. There is one such path because Apk

can

accept u starting in state pk+1 (representing the configuration 〈pk+1, u〉) when the final state

is qpk,γk+1
(Lem. 6.4.2). Moreover, wk+1 v the combine of weights of all such paths in the

transducer. After this, the transducer can take transition (qpk+1,γk+1
, (γk+1/ε), qf ) (Step 5)

and copy the stack (γk+2 · · · γn) on to the output tape in the final state qf (Step 7). The path

we just described took input 〈p, z〉 = (p γ1γ2 · · · γn) and output 〈p′, z′〉 = (pk+1 uγk+2 · · · γn)

as required, and the weight of the path shown in Fig. 6.5 (w1⊗w2⊗· · ·⊗wk+1) is v combine

of weights of all paths in the transducer with this behavior. Note that there is a correspond-

ing path in the transducer (that uses transitions inserted in Step 6) when the path shown in

Fig. 6.5 has no growth phase. Thus, IJOP(〈p, z〉, 〈p′, z′〉) v τW((p z), (p′ z′)).

To argue the other direction, the reasoning is similar. A path in the transducer must

start in state qi, then move into Apop, then into Ap (for some p ∈ P ) and then move to state

qf . Keeping track of the input and output required for this path, we can build the WPDS

path as in Fig. 6.5. Using Lemmas 6.4.1 and 6.4.2, IJOP(〈p, z〉, 〈p′, z′〉) w the weight of such

a path in the transducer. Thus, IJOP(〈p, z〉, 〈p′, z′〉) w τW((p z), (p′ z′)).
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Usually the WPDSs used for modeling programs have |P | = 1 and |Γ| < |∆|. In that

case, constructing a transducer has similar complexity and size as running a single poststar

query.

6.5 Composing Weighted Transducers

Composition of unweighted transducers is straightforward, but this is not the case

with weighted transducers. For a weighted transducer τ , let L(τ) be a weighted relation

(Defn. 2.4.15) that contains (ci, co, w) if and only if w is the combine of the weights of all

paths in τ that take input ci and output co.

Composition of weighted transducers is defined as follows: given two weighted transducers

τ1 and τ2, construct another weighted transducer τ3 such that L(τ3) = L(τ1);L(τ2), where

the composition operator “;” denotes composition of weighted relations (Defn. 2.4.15).

We begin with a slightly simpler problem on weighted automata. The machinery that

we develop for this problem will be used for composing weighted transducers.

6.5.1 The Sequential Product of Two Weighted Automata

Given forward-weighted automata A1 and A2, we define their sequential product as an-

other weighted automaton A3 such that for any configuration c, A3(c) = A1(c) ⊗ A2(c).

More generally, we want the following identity for any regular set of configurations C:

A3(C) =
⊕
{A3(c) | c ∈ C} =

⊕
{A1(c) ⊗ A2(c) | c ∈ C}. (In this section, we assume

that configurations consist of just the stack and |P | = 1.) This problem is the special case

of transducer composition when a transducer only has transitions of the form (γ/γ). For the

Boolean weight domain (Defn. 2.4.12), it reduces to unweighted automaton intersection (with

words accepted with weight 0 being considered as words not accepted by the automaton).

Note that this is a different version of the weighted-automaton intersection problem that

was solved for computing an error projection (Section 5.2). For computing error projections,

we only needed to take the sequential product of a forward-weighted automaton (obtained

as a result of running poststar) with a backward-weighted automaton (obtained as a result of
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p

a, w1 b, w2

d, w3

p

a, w4 b, w5

d, w6

(p,p)

a, (w1,w4) b, (w2,w5)

q1
q2 (q1,q2)

d, (w3,w6)

A1 A2 A3

Figure 6.6 Forward-weighted automata. Their final states are q1, q2, and (q1, q2),
respectively.

running prestar). Moreover, the result of this operation was a functional automaton, which

is not a weighted automaton. In this section, we work with same-direction automata, and

the resulting automaton A3 that we compute is still a valid weighted automaton (but with a

different weight domain), thus enabling us to take its sequential product with other weighted

automata (over the same weight domain). The solution in this section is more general than

the one presented earlier in Section 5.2. We show later, in Section 6.5.3, that this technique

also generalizes to take the sequential production of automata with different directions.

To take the sequential product of weighted automata, we start with the algorithm for

intersecting unweighted automata. This is done by taking transitions (q1, γ, q2) and (q′1, γ, q′2)

in the respective automata to produce ((q1, q
′
1), γ, (q2, q

′
2)) in the new automaton. We would

like to do the same with weighted transitions: given weights of the matching transitions, we

want to compute a weight for the created transition. In Fig. 6.6, intersecting automata A1

and A2 produces A3 (ignore the weights for now). Automaton A3 should accept (a b) with

weight A1(a b)⊗A2(a b) = w1 ⊗ w2 ⊗ w4 ⊗ w5.

One way of achieving this is to pair the weights while intersecting (as shown in A3 in

Fig. 6.6). Matching the transitions with weights w1 and w4 produces a transition with

weight (w1, w4). For reading off weights, we need to define operations on paired weights.

Define extend on pairs (⊗p) to be componentwise extend (⊗). Then A3(a b) = (w1, w4)⊗p

(w2, w5) = (w1⊗w2, w4⊗w5). Taking an extend of the two components produces the desired

answer. Thus, this A3 together with a read-out operation in the end (that maps a weight

pair to a weight) is a first attempt at constructing the sequential product of A1 and A2.

Because the number of accepting paths in an automaton may be infinite, one also

needs a combine (⊕p) on paired weights. The natural attempt is to define it componen-

twise. However, this is not precise. For example, if C = {c1, c2} then A3(C) should be
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(A1(c1) ⊗ A2(c1)) ⊕ (A1(c2) ⊗ A2(c2)). However, using componentwise combine, we would

get A3(C) = A3(c1)⊕p A3(c2) = (A1(c1)⊕A1(c2),A2(c1)⊕A2(c2)). Applying the read-out

operation (extend of the components) gives four terms
⊕
{(A1(ci)⊗A2(cj)) | 1 ≤ i, j ≤ 2},

which includes cross terms like A1(c1) ⊗ A2(c2). The same problem arises also for a single

configuration c if A3 has multiple accepting paths for it.

Under certain circumstances there is an alternative to pairing that lets us compute pre-

cisely the desired sequential product of weighted automata:

Definition 6.5.1. The nth sequentializable tensor product (n-STP) of a weight do-

main S = (D,⊕,⊗, 0, 1) is defined as another weight domain St = (Dt,⊕t,⊗t, 0t, 1t) with

operations � : Dn → Dt (called the tensor operation) and DeTensor : Dt → D such that for

all wj, w
′
j ∈ D and t1, t2 ∈ Dt,

1. �(w1, w2, · · · , wn)⊗t �(w′
1, w

′
2, · · · , w′

n) = �(w1 ⊗ w′
1, w2 ⊗ w′

2, · · · , wn ⊗ w′
n)

2. DeTensor(�(w1, w2, · · · , wn)) = (w1 ⊗ w2 ⊗ · · · ⊗ wn) and

3. DeTensor(t1 ⊕t t2) = DeTensor(t1)⊕ DeTensor(t2).

When n = 2, we write the tensor operator as an infix operator. Note that because of the

first condition in the above definition, 1t = �(1, · · · , 1) and 0t = �(0, · · · , 0). Intuitively,

one may think of the tensor product of i weights as a kind of generalized i-tuple of those

weights. The first condition above implies that extend of weight-tuples must be carried out

componentwise. The DeTensor operation is the “read-out” operation that puts together

the tensor product by taking extend of its components. The third condition is the key.

It distinguishes the tensor product from a simple tupling operation. It requires that the

DeTensor operation distribute over the combine of the tensored domain, which pairing does

not satisfy.

If a 2-STP exists for a weight domain, then we can take the product of weighted au-

tomata for that domain: if A1 and A2 are the two input automata, then for each tran-

sition (p1, γ, q1) with weight w1 in A1, and transition (p2, γ, q2) with weight w2 in A2,
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add the transition ((p1, p2), γ, (q1, q2)) with weight (w1 � w2) to A3. The resulting au-

tomaton satisfies the property: DeTensor(A3(c)) = A1(c) ⊗ A2(c), and more generally,

DeTensor(A3(C)) =
⊕
{A1(c)⊗A2(c) | c ∈ C}. Thus, with the application of the DeTensor

operation, A3 behaves like the desired automaton for the product of A1 and A2. A similar

construction and proof hold for taking the product of n automata at the same time, when

an n-STP exists.

The proof follows from the definitions. Let accPath(Ai, σu, w) be a predicate that denotes

that σu is a path in Ai from its initial state to a final state that accepts the word u, and w

is the weight of the path (computed by performing extends of weights on transitions in the

path, in order). Because of the way the automata-intersection algorithm is carried out, we

know that paths that accept a word u in A3 are in one-to-one correspondence with paths

that accept u in A1 and paths that accept u in A2. If σi
u is an accepting path for u in Ai

(i = 1, 2), then we can uniquely determine an accepting path 〈σ1
u, σ

2
u〉 for u in A3, and vice

versa. These properties can be used to prove that if accPath(A3, 〈σ1
u, σ

2
u〉, w) holds, then

w = w1 � w2 such that accPath(Ai, σ
i
u, wi) hold for i = 1, 2. This gives us:

DeTensor(A3(C))

= DeTensor(⊕t{w | accPath(A3, σc, w), c ∈ C})

= ⊕{DeTensor(w) | accPath(A3, σc, w), c ∈ C}

= ⊕{DeTensor(w1 � w2) | accPath(Ai, σ
i
c, wi), c ∈ C,

i = 1, 2, σc = 〈σ1
c , σ

2
c 〉}

= ⊕{w1 ⊗ w2 | accPath(Ai, σ
i
c, wi), c ∈ C, i = 1, 2}

= ⊕{A1(c)⊗A2(c) | c ∈ C}
With the application of the DeTensor operation at the end, A3 behaves like the desired

automaton for the product of A1 and A2. A similar construction and proof hold for taking

the product of n automata at the same time, when an n-STP exists.

Before generalizing to composition of transducers, we show that n-STP exists, for all n,

for a class of weight domains. This class includes the one needed to perform affine-relation

analysis (Section 3.5.2).
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6.5.2 Sequentializable Tensor Product

We say that a weight domain is commutative if its extend is commutative. STP is easy to

construct for commutative domains (tensor is extend, and DeTensor is identity). This result

is somewhat expected: the difficulty in taking the sequential product of weighted automata

A1 and A2 is that while the input word (or configuration) is read synchronously by them,

their weights have to be read off in sequence (first A1(c), then A2(c))). When extend is

commutative, the weights can be read off synchronously as well.

However, commutative domains are not useful for CBA. Under a commutative extend,

interference from other threads can have no effect on the execution of a thread. However,

such domains still play an important role in constructing STPs. We show that STPs can be

constructed for matrix domains built on top of a commutative domain.

Definition 6.5.2. Let Sc = (Dc,⊕c,⊗c, 0c, 1c) be a commutative weight domain. Then a

matrix weight domain on Sc of order n is a weight domain S = (D,⊕,⊗, 0, 1) such that

D is the set of all matrices of size n× n with elements from Dc; ⊕ on matrices is element-

wise ⊕c; ⊗ of matrices is matrix multiplication; 0 is the matrix in which all elements are 0c;

1 is the identity matrix (1c on the primary diagonal and 0c everywhere else).

The reader can verify that S, as defined above, is indeed a bounded idempotent semiring

(even when Sc is not commutative). Let B be the Boolean weight domain with elements

1B and 0B. The relational weight domain (Defn. 2.4.13) on a set G = {g1, g2, · · · , g|G|},

is a matrix weight domain on B of order |G|: a binary relation on G can be represented

as a matrix such that the (i, j) entry of the matrix is 1B if and only if (gi, gj) is in the

relation. Relational composition then corresponds to matrix multiplication. Similarly, the

relational weight domain on (G,Sc) (Defn. 2.4.16) is a matrix weight domain on Sc of order

|G|, provided Sc is commutative.
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The advantage of looking at weights as matrices is that it gives us essential structure to

manipulate for constructing the STP. We need the following operation on matrices: the Kro-

necker product [95] of two matrices A and B, of sizes n1×n2 and n3×n4, respectively, is a ma-

trix C of size (n1 n3)×(n2 n4) such that C(i, j) = A(i div n3, j div n4)⊗B(i mod n3, j mod n4),

where matrix indices start from zero, and “div” is integer division. It is much easier to un-

derstand this definition pictorially (writing A(i, j) as aij):

C =


a00B · · · a0(n2−1)B

...
. . .

...

a(n1−1)0B · · · a(n1−1)(n2−1)B


The Kronecker product, written as �, is an associative operation. Moreover, it is well

known that for matrices A, B, C,D with elements that have commutative multiplication,

(A�B)⊗ (C �D) = (A⊗ C)� (B ⊗D).

Note that the Kronecker product m = m1 � m2 has all pairwise products of elements

from m1 and m2. We will rearrange the entries of m1�m2, using only linear transformations

to obtain m1 ⊗m2. Let m1 and m2 be matrices of size k × k, so that m is of size k2 × k2.

Let p(l,i) be a matrix of size k × k2 such that all of its entries are 0, except for the

(l, i)th entry, which is 1. Let q(j,r) be a matrix of size k2 × k such that all of its entries are

0, except for the (j, r)th entry, which is 1. Then the matrix m
(l,r)
(i,j) = (p(l,i) m q(j,r)), where

juxtaposition denotes matrix multiplication, selects the (i, j)th entry of m and moves it to the

(l, r)th entry of a k×k matrix. All other entries of the resultant matrix are 0. Moreover, the

transformation from m to m
(l,r)
(i,j) is linear, i.e., it distributes over matrix addition (combine).

Let Zn = {0, 1, · · · , n− 1}. Let S be a subset of (Zk2 ×Zk2)× (Zk×Zk). We define S to

map from the index of an entry in m = m1�m2 to its position in the product m1⊗m2, if it

exists. For instance, m(2k, k − 1) = m1(2, 0)⊗m2(0, k − 1), which contributes to the entry

(m1⊗m2)(2, k−1), i.e., it is one of the summands in the sum that defines (m1⊗m2)(2, k−1).

Thus, we include ((2k, k − 1), (2, k − 1)) in S. Formally, S is defined as follows:
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{((i, j), (l, r)) | l = (i div k), r = (j mod k), and (j div k = i mod k)}

We are now ready to define the DeTensor operation. For any matrix m, define the

expression θm to be the following:

θm =
⊕

((i,j),(l,m))∈S

m
(l,m)
(i,j)

By construction, θm1�m2 = (m1 ⊗m2). This can be generalized to multiple matrices to

obtain an expression θm of the same form as above, such that θm1�···�mn = m1 ⊗ · · · ⊗mn.

The advantage of having an expression of this form is that θm1⊕m2 = θm1 ⊕ θm2 (because

matrix multiplication distributes over their addition, or combine).

Theorem 6.5.3. A n-STP exists on matrix domains for all n. If S is a matrix domain of

order r, then its n-STP is a matrix domain of order rn with the following operations: the

tensor product of weights is defined as their Kronecker product, and the DeTensor operation

is defined as λm.θm.

The necessary properties for the tensor operation follow from those for Kronecker product

and the expression θm. Commutativity of the underlying semiring is needed to show property

1 of Defn. 6.5.1: it is necessary to rearrange a product (w1 ⊗c w′
1 ⊗c w2 ⊗c w′

2) as (w1 ⊗c

w2⊗c w′
1⊗c w′

2). This also implies that the tensor operation is associative and one can build

weights in the nth STP from a weight in the (n − 1)th STP and the original matrix weight

domain by taking the Kronecker product. This, in turn, implies that the sequential product

of n automata can be built from that of the first (n− 1) automata and the last automaton.

The same holds for composing n transducers. Therefore, the context-bound can be increased

incrementally, and the transducer constructed for (⇒ec)k can be used to construct one for

(⇒ec)k+1.

The weight domain for ARA (Section 3.5.2) is not quite a matrix weight domain, but

it is similar. The weights are sets of matrices over integers, which have a commutative

multiplication. Extend is elementwise matrix multiplication and combine is elementwise
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matrix addition. Therefore, defining the tensor and DeTensor operations as for the matrix

domains (but elementwise), we obtain most of the desired properties. However, just as for

interprocedural ARA one needed to prove two properties to show that combine and extend

can be carried out on the basis instead of the whole vector space, one needs to prove the

same for tensor and DeTensor: for weights w1, w2,

β(w1 � w2) = β(β(w1)� β(w2))

β(DeTensor(w1)) = β(DeTensor(β(w1)))

These properties follow quite trivially from the linearity of Kronecker product and the

DeTensor operator (both distribute over addition).

6.5.3 Composing Transducers

If our weighted transducers were unidirectional (completely forwards or completely back-

wards) then composing them would be the same as taking the product of weighted automata:

the weights on matching transitions would get tensored together. However, our transduc-

ers are partitioned, and have both a forwards component and a backwards component. To

handle the partitioning, we need additional operations on weights.

Definition 6.5.4. Let S = (D,⊕,⊗, 0, 1) be a weight domain. Then a transpose operation

on this domain is defined as (.)T : D → D such that for all w1, w2 ∈ D, wT
1 ⊗wT

2 = (w2⊗w1)
T

and it is its self inverse: (wT
1 )T = w1. An n-transposable STP (TSTP) on S is defined

as an n-STP along with another de-tensor-like operation: TDeTensor : Dn → D such that

TDeTensor(�(w1, w2, · · · , wn)) = w1 ⊗ wT
2 ⊗ w3 ⊗ wT

4 ⊗ · · ·w′
n, where w′

n = wn if n is odd

and wT
n if n is even.

TSTPs always exist for matrix domains: the transpose operation is just the matrix-

transpose operation, and the TDeTensor operation can be defined using an expression similar

to that for DeTensor. We can use TSTPs to remove the partitioning. Let τ be a partitioned

weighted transducer on S, for which a transpose exists, as well as a 2-TSTP. The partitioning

on the states of τ naturally defines a partitioning on its transitions as well (a transition is



174

said to belong to the partition of its source state). Replace weights w1 in the first (forwards)

partition with (w1 � 1), and weights w2 in the second (backwards) partition with (1� wT
2 ).

This gives a completely forwards transducer τ ′ (without any partitioning). The invariant is

that for any sets of configurations S and T , τ(S, T ), which is the combine over all weights

with which the transducer accepts (s, t), s ∈ S, t ∈ T , equals TDeTensor(τ ′(S, T )).

This can be extended to compose partitioned weighted transducers. Composing n trans-

ducers requires a 2n-TSTP. First, each transducer is converted to a non-partitioned one

over the 2-TSTP domain. Then input/output labels are matched just as for unweighted

transducers, and the weights are tensored together.

Theorem 6.5.5. Given n weighted transducers τ1, · · · , τn on a weight domain with 2n-

TSTP, the above construction produces a weighted transducer τ such that for any sets of

configurations S and T , TDeTensor(τ(S, T )) = R(S, T ), where R is the weighted composition

of L(τ1), · · · ,L(τn).

Putting it all together

Using the construction from Section 6.4, we can construct a transducer τi for the

(weighted) transition relation of thread ti, i.e., for ⇒∗
i . By extending τi to perform the

identity transformation on stack symbols of threads other than ti (using transitions of the

form p
γ/γ−−−→ p with weight 1), we obtain a transducer τ c

i for (⇒c
i)
∗. Next, a union of these

transducers gives τ ec, which represents ⇒ec. Performing the weighted composition of τ ec k

times with itself gives us a transducer τ that represents (⇒ec)k+1.

If automaton AS represents the set of starting states of a program, τ(AS) provides a

weighted automaton A that describes all reachable states (under the context bound), i.e.,

the weight A(t) gives the net transformation in data state in going from S to t (0 if t is not

reachable).

For instance, to see how all this works out, consider a concurrent program with two

threads. Furthermore, suppose that the WPDSs for the two threads have a single PDS

control state p. In this case, the composition (τ e
1 ; τ e

2 ) represents all behaviors with one
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context switch, in which t1 executes before t2. We know that τ e
1 (〈p, c1, c2〉, 〈p, c′1, c2〉) =

IJOPt1({〈p, c1〉}, {〈p, c′1〉}), and similarly for τ e
2 . Next, the transducer (τ e

1 ; τ e
2 ) accepts the

composition of the weighted languages of τ e
1 and τ e

2 . Thus,

(τ e
1 ; τ e

2 )(〈p, c1, c2〉, 〈p, c′1, c′2〉) = IJOPt1({〈p, c1〉}, {〈p, c′1〉})⊗ IJOPt2({〈p, c2〉}, {〈p, c′2〉})

which exactly characterizes the set of all behaviors with one context switch in which t1

executes before t2. Next, consider the transducer ((τ e
1 ; τ e

2 ); (τ e
1 ; τ e

2 )). This accepts the input-

output pair (〈p, c1, c2〉, 〈p, c′1, c′2〉) with the following weight:

⊕
c′′1 ,c′′2

(τ e
1 ; τ e

2 )(〈p, c1, c2〉, 〈p, c′′1, c′′2〉)⊗ (τ e
1 ; τ e

2 )(〈p, c′′1, c′′2〉, 〈p, c′1, c′2〉)

=
⊕

c′′1 ,c′′2

 IJOPt1({〈p, c1〉}, {〈p, c′′1〉})⊗ IJOPt2({〈p, c2〉}, {〈p, c′′2〉})

⊗ IJOPt1({〈p, c′′1〉}, {〈p, c′1〉})⊗ IJOPt2({〈p, c′′2〉}, {〈p, c′2〉})


This weight summarizes the next effect of all paths with three context switches in which

the threads execute in the order: t1, t2, t1, t2.

6.6 Implementing CBA

This chapter developed novel machinery that shows how precise CBA can be carried out

for various abstractions, including infinite-state abstractions. These algorithms may have

practical value, as well. The QR algorithm requires an explicit fan-out proportional to |G|

for each context switch, which can be very large. To some extent, this huge complexity is

unavoidable, as shown by the following result.

Theorem 6.6.1. The language {〈M, 0k, c1, c2〉 | M is a concurrent PDS, c1 and c2 are

configurations of M , and c1(⇒ec)k+1c2} is NP-complete.

Proof. [Sketch] The proof follows from two earlier pieces of work. Ramalingam [80] showed

that reachability in multi-threaded programs with synchronization primitives is undecidable

by giving a reduction from Post’s correspondence problem (PCP) [74]. We also know that
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bounded-PCP is NP-complete [34, Problem SR11]. It is easy to see that a program can use

shared memory and a bounded number of context switches to simulate a similar number of

synchronization steps. Thus, Ramalingam’s reduction can be used to give a reduction from

bounded-PCP to CBMC. This proves NP-hardness of CBMC.

Next, we show that CBMC is in NP. First, guess a k-tuple of PDS control states (or

global states) (p1, · · · , pk), which will represent the history of global states at all the context

switches. Next, we run the QR algorithm, but instead of performing a fan-out on the set of

all reachable global states, restrict the fan-out at level i+1 of the computation tree (Fig. 6.2)

to just the states that contain the global state pi. This means that the computation tree is

pruned to one single branch. The running time of QR then becomes polynomial (because it

only requires k +1 poststar queries). If the set of reachable states reported by this algorithm

includes the target c2, then output “yes”, otherwise output “no”. It is easy to see that this

non-deterministic algorithm solves CBMC in polynomial time.

Note that the analysis of sequential Boolean programs is PSPACE-complete (in the size of

the Boolean program; the above result is in terms of the size of the PDS), but tools [85, 6, 37]

are able to handle them efficiently, essentially, by using BDDs to encode weights (or binary

relations). The fan-out operation of the QR algorithm requires explicit enumeration of

global states, which destroys the sharing that existed in the BDDs. Our algorithm, based on

transducers, requires no fan-out, and BDD-encoded valuations never need to be enumerated.

We used matrix domains only to prove the existence of STPs. Weights need not be

represented using matrices. If binary relations are represented using BDDs, then taking

their tensor product reduces to concatenating BDDs (and doubling the number of BDD

variables), which is a linear-time operation. Composing k transducers would produce BDDs

with k times the variables (a linear increase). The disadvantage of our algorithm is that

the transducers we create have |Γ| number of states (where Γ is the set of program control

locations) and, consequently, the final transducer may have |Γ|k number of states. However,

considering the fact that solving CBA just requires one query on this large transducer, we
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can use techniques such as building it lazily [64] or exploiting the symmetric structure of

compositions (the same transducer is composed each time).

The next chapter builds on some of the ideas discussed in this chapter to design a scalable

algorithm for CBA that is able to do verification of real concurrent programs.

6.7 Related Work

CBA of bounded-heap-manipulating Boolean programs is given in [11]. It encodes such

Boolean programs using PDSs, and then uses the QR algorithm. The same encoding could

be used with either of our (unweighted or weighted) transducer-based algorithms, instead of

the QR algorithm.

Reachability analysis of concurrent recursive programs has also been considered in [10,

72, 19]. These tackle the problem by computing over-approximations of the execution paths

of the program, whereas here we compute under-approximations (bounded context) of the

reachable configurations. Analysis under restricted communication policies (in contrast to

shared memory) has also been considered [12, 43].

Constructing transducers. As mentioned in the introduction, a transducer construc-

tion for solving reachability in PDSs was given earlier by Caucal [17]. However, the construc-

tion was given for prefix-rewriting systems in general and is not accompanied by a complex-

ity result, except for the fact that it runs in polynomial time. Our construction for PDSs,

obtained as a special case of the construction given in Section 6.4, is quite efficient. The

technique, however, seems to be related. Caucal constructed the transducer by exploiting the

fact that the language of the transducer is a union of the relations (pre∗(〈p, γ〉), post∗(〈p, γ〉))

for all p ∈ P and γ ∈ Γ, with an identity relation appended onto them to accept the un-

touched part of the stack. This is similar to our decomposition of PDS paths (see Fig. 6.3).

Construction of a transducer for WPDSs has not been considered before. This was crucial

for developing an algorithm for general CBA.

The pop-function used in Section 6.4 represents summary information about paths, and

is similar to the use of composed transformer functions from [25], summary functions from
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[88], summary edges from [81], and summary micro-functions from [84]. In all of these cases,

information is tabulated that summarizes the net effect of following all possible paths from

certain kinds of sources to certain kinds of targets. The path information is pre-computed

and added to a structure that is used for answering queries.

One difference between our work and the aforementioned work is that in all of the latter

the paths summarized are same-level valid paths (paths in which pushes and pops match

as in a language of balanced parentheses), whereas the pop-function summarizes paths that

result in the net loss of a stack symbol. In this respect, the pop-function is more like the

“unbalanced-by-1” summarization information used in the simulation technique for testing

membership of a string in the language accepted by a 2NDPDA (2-way non-deterministic

PDA) [1]. Note that the “unbalanced-by-1” nature of the pop-function is what makes it useful

in an automaton construction (i.e., the popped symbol corresponds to a letter consumed by

the automaton).

Composing transducers. There is a large body of work on weighted automata and

weighted transducers in the speech-recognition community [64, 65]. However, the weights in

their applications usually satisfy many more properties than those of a semiring, including

the existence of an inverse and commutativity of extend. We refrain from making such

assumptions.

Tensor products have been used previously in program analysis for combining abstractions

[71]. We use them in a different context and for a different purpose. In particular, previous

work has used them for combining abstractions that are performed in lock-step; in contrast,

we use them to stitch together the data state before a context switch with the data state

after a context switch.
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Chapter 7

Reducing Concurrent Analysis Under a Context Bound

to Sequential Analysis

This chapter presents a second result towards our goal of automatically extending anal-

yses for sequential programs to analyses for concurrent programs under a bound on the

number of context switches. Chapter 6 showed that the existence of a tensor-product oper-

ation automatically enabled precise CBA of various program models (namely, all those that

could be encoded using a weighted pushdown system). In this chapter, we present a more

direct way of obtaining algorithms for CBA that does not require tensor products.

Let us recall the existing results on CBA. The decidability of CBA, when each program

thread is abstracted as a pushdown system (PDS) was shown in [77]. This result was extended

to PDSs with bounded heaps in [11]. Our work, which was described in Chapter 6, extended

the result to weighted PDSs (WPDSs). All of this work required devising new algorithms.

Moreover, each of the algorithms have certain disadvantages towards realizing a practical

implementation.

In the sequential setting, model checkers, such as those described in [6, 85, 37], use

symbolic techniques in the form of binary decision diagrams (BDDs) for scalability. With

the CBA algorithms of [77, 11], it is not clear if symbolic techniques can be applied. Those

algorithms require the enumeration of all reachable states of the shared memory at a context

switch. This can potentially be very expensive. However, those algorithms have the nice

property that they only consider those states that actually arise during valid (abstract)

executions of the model. (We call this lazy exploration of the state space.)
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The results presented in Chapter 6 extend the algorithm of [77] to use symbolic tech-

niques. However, the disadvantage there is that it requires computing auxiliary information,

in the form of a transducer, for exploring the reachable state space. (We call this eager

exploration of the state space.) The transducer summarizes the effect of executing a thread

from any control location to any other control location, and hence may consider many more

program behaviors than can actually occur in a valid execution of the program (whence the

term “eager”).

This contrast between lazy and eager approaches can also be illustrated by considering

interprocedural analysis of sequential programs: for a procedure, it is possible to construct

a summary for the procedure that describes the effect of executing it for any possible inputs

to the procedure (eager computation of the summary). It is also possible to construct the

summary lazily (also called partial transfer functions [69]) by only describing the effect

of executing the procedure for input states under which it is called during the analysis

of the program. The former (eager) approach has been successfully applied to Boolean

programs [6], but the latter (lazy) approach is often desirable in the presence of more complex

abstractions, especially those that contain pointers (based on the intuition that only a few

aliasing scenarios occur during abstract execution). Interprocedural analysis frameworks, like

the Sharir and Pnueli tabulation algorithm [88], the Reps-Horwitz-Sagiv graph reachability

approach [81], and others [84] are also lazy. The option of switching between eager and lazy

exploration exists in some model checkers [6, 50].

Contributions

The work presented in this chapter makes three main contributions. First, we show how

to reduce a concurrent program to a sequential one that simulates all its executions for a

given number of context switches. This has the following advantages:
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• It allows one to obtain algorithms for CBA using different program abstractions. We

specialize the reduction to Boolean programs (Section 7.2), PDSs (Section 7.3), sym-

bolic PDSs (Section 7.4), and WPDSs (Section 7.5). The reduction for Boolean pro-

grams shows that the use of PDS-based technology, which seemed crucial in previous

work, is not necessary: standard interprocedural algorithms [81, 88, 52] can also be

used for CBA. Moreover, it allows one to carry over symbolic techniques designed for

sequential programs to CBA.

• Our reduction provides a way to harness existing abstraction techniques to obtain

new algorithms for CBA. The reduction introduces symbolic constants and assume

statements. Thus, any sequential analysis that can deal with these two features can

be extended to handle concurrent programs as well (under a context bound).

Symbolic constants are only associated with the shared data in the program. When

only a finite amount of data is shared between the threads of a program (e.g., there are

only a finite number of locks), any sequential analysis, even of programs with pointers

or integers, can be extended to perform CBA of concurrent programs. When the shared

data is not finite, our reduction still applies; for instance, numeric analyses, such as

polyhedral analysis [27], can be applied to CBA of concurrent programs.

• For the case in which a PDS is used to model each thread, we obtain better asymp-

totic complexity than previous algorithms, just by using the standard PDS algorithms

(Section 7.3).

• The reduction shows how to obtain algorithms that scale linearly with the number of

threads (whereas previous algorithms scaled exponentially).

Second, we show how to obtain a lazy symbolic algorithm for CBA on Boolean programs

(Section 7.6). This combines the best of previous algorithms: the algorithms of [77, 11] are

lazy but not symbolic, and the algorithm presented in Chapter 6 is symbolic but not lazy.
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Third, we implemented both eager and lazy algorithms for CBA on Boolean programs.

We report the scalability of these algorithms on programs obtained from various sources and

also show that most bugs can be found in a few context switches (Section 7.7).

The rest of this chapter is organized as follows: Section 7.1 gives a general reduction

from concurrent to sequential programs; Section 7.2 specializes the reduction to Boolean

programs; Section 7.3 specializes the reduction to PDSs; Section 7.4 specializes the reduction

to symbolic PDSs; Section 7.5 specializes the reduction to WPDSs; Section 7.6 gives a

lazy symbolic algorithm for CBA on Boolean programs; Section 7.7 reports experiments

performed using both eager and lazy versions of the algorithms presented in this chapter;

Section 7.8 discusses related work. Proofs can be found in Section 7.9.

7.1 A General Reduction

This section gives a general reduction from concurrent programs to sequential programs

under a given context bound. This reduction transforms the non-determinism in control,

which arises because of concurrency, to non-determinism on data. (The motivation is that

the latter problem is understood much better than the former one.)

The execution of a concurrent program proceeds in a sequence of execution contexts,

defined as the time between consecutive context switches during which only a single thread

has control. We do not consider dynamic creation of threads, and assume that a concurrent

program is given as a fixed set of threads, with one thread identified as the starting thread.

Suppose that a program has two threads, T1 and T2, and that the context-switch bound

is 2K − 1. Then any execution of the program under this bound will have up to 2K ex-

ecution contexts, with control alternating between the two threads, informally written as

T1; T2; T1; · · · . Each thread has control for at most K execution contexts. Consider three

consecutive execution contexts T1; T2; T1. When T1 finishes executing the first of these, it

gets swapped out and its local state, say l, is stored. Then T2 gets to run, and when it is

swapped out, T1 has to resume execution from l (along with the global store produced by

T2).
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The requirement of resuming from the same local state is one difficulty that makes anal-

ysis of concurrent programs hard—during the analysis of T2, the local state of T1 has to be

remembered (even though it is unchanging). This forces one to consider the cross product

of the local states of the threads, which causes exponential blowup when the local state

space is finite, and undecidability when the local state includes a stack. An advantage of

introducing a context bound is the reduced complexity with respect to the size |L| of the

local state space: the algorithms of [77, 11] scale as O(|L|5); and the one from Chapter 6

scales as O(|L|K). Our algorithm, for PDSs (Section 7.3), is O(|L|). (Strictly speaking, in

each of these, |L| is the size of the local transition system.)

The key observation is the following: for analyzing T1; T2; T1, we modify the threads so

that we only have to analyze T1; T1; T2, which eliminates the requirement of having to drag

along the local state of T1 during the analysis of T2. For this, we assume the effect that

T2 might have on the shared memory, apply it while T1 is executing, and then check our

assumption after analyzing T2.

Consider the general case when each of the two threads have K execution contexts. We

refer to the state of shared memory as the global state. First, we guess K−1 (arbitrary) global

states, say s1, s2, · · · , sK−1. We run T1 so that it starts executing from the initial state s0

of the shared memory. At a non-deterministically chosen time, we record the current global

state s′1, change it to s1, and resume execution of T1. Again, at a non-deterministically

chosen time, we record the current global state s′2, change it to s2, and resume execution of

T1. This continues K−1 times. Implicitly, this implies that we assumed that the execution of

T2 will change the global state from s′i to si in its ith execution context. Next, we repeat this

for T2: we start executing T2 from s′1. At a non-deterministically chosen time, we record the

global state s′′1, we change it to s′2 and repeat K−1 times. Finally, we verify our assumption:

we check that s′′i = si+1 for all i between 1 and K − 1. If these checks pass, we have the

guarantee that T2 can reach state s if and only if the concurrent program can have the global

state s after K execution contexts per thread.
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The fact that we do not alternate between T1 and T2 implies the linear scalability with

respect to |L|. Because the above process has to be repeated for all valid guesses, our

approach scales as O(|G|K), where G is the global state space. In general, the exponential

complexity with respect to K may not be avoidable because the problem is NP-complete

when the input has K written in unary (Thm. 6.6.1). However, symbolic techniques can be

used for a practical implementation.

We show how to reduce the above assume-guarantee process into one of analyzing a

sequential program. We add more variables to the program, initialized with symbolic con-

stants, to represent our guesses. The switch from one global state to another is made by

switching the set of variables being accessed by the program. We verify the guesses by

inserting assume statements at the end.

7.1.1 The reduction

Consider a concurrent program P with two threads T1 and T2 that only has scalar vari-

ables (i.e., no pointers, arrays, or heap).1 We assume that the threads share their global

variables, i.e., they have the same set of global variables. Let VarG be the set of global

variables of P . Let 2K − 1 be the bound on the number of context switches.

The result of our reduction is a sequential program P s. It has three parts, performed

in sequence: the first part T s
1 is a reduction of T1; the second part T s

2 is a reduction of T2;

and the third part, Checker, consists of multiple assume statements to verify that a correct

interleaving was performed. Let Li be the label preceding the ith part. P s has the form

shown in the first column of Fig. 7.1.

The global variables of P s are K copies of VarG. If VarG = {x1, · · · , xn}, then let

Vari
G = {xi

1, · · · , xi
n}. The initial values of Vari

G are a set of symbolic constants that

represent the ith guess si. P s has an additional global variable k, which will take values

between 1 and K + 1. It tracks the current execution context of a thread: at any time P s

1Such models are often used in model checking and numeric program analysis.
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Program P s st ∈ Ti Checker

L1 : T s
1 ;

L2 : T s
2 ;

L3 : Checker;

if k = 1 then

τ(st, 1);

else if k = 2 then

τ(st, 2);

· · ·

else if k = K then

τ(st, K);

end if

if k ≤ K and ∗ then

k ++;

end if

if k = K + 1 then

k = 1;

goto Li+1

end if

for i = 1 to K − 1 do

for j = 1 to n do

assume (xi
j = vi+1

j );

end for

end for

Figure 7.1 The reduction for general concurrent programs under a context bound 2K − 1.
In the second column, ∗ stands for a nondeterministic Boolean value.

can only read and write to variables in Vark
G. The local variables of T s

i are the same as

those of Ti.

Let τ(x, i) = xi. If st is a program statement in P , let τ(st, i) be the statement in which

each global variable x is replaced with τ(x, i), and the local variables remain unchanged.

The reduction constructs T s
i from Ti by replacing each statement st by what is shown in the

second column of Fig. 7.1. The third column shows Checker. Variables Var1
G are initialized

to the same values as VarG in P . Variable xi
j, when i 6= 1, is initialized to the symbolic

constant vi
j (which is later referenced inside Checker), and k is initialized to 1.
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Because local variables are not replicated, a thread resumes execution from the same

local state it was in when it was swapped out at a context switch.

The Checker enforces a correct interleaving of the threads. It checks that the values

of global variables when T1 starts its i + 1st execution context are the same as the values

produced by T2 when T2 finished executing its ith execution context. (Because the execution

of T s
2 happens after T s

1 , each execution context of T s
2 is guaranteed to use the global state

produced by the corresponding execution context of T s
1 .)

The reduction ensures the following property: when P s finishes execution, the variables

VarK
G can have a valuation s if and only if the variables VarG in P can have the same

valuation after 2K − 1 context switches.

Symbolic constants

One way to deal with symbolic constants is to consider all possible values for them (eager

computation). We show instances of this strategy for Boolean programs (Section 7.2) and

for PDSs (Section 7.3). Another way is to lazily consider the set of values they may actually

take during the (abstract) execution of the concurrent program, i.e., only consider those

values that pass the Checker. We show an instance of this strategy for Boolean programs

(Section 7.6).

7.1.2 Multiple threads

If there are n threads, n > 2, then a precise reasoning for K context switches would

require one to consider all possible thread schedulings, e.g., (T1; T2; T1; T3), (T1; T3; T2; T3),

etc. There are O((n−1)K) such schedulings. Previous analyses [77, 11] enumerate explicitly

all these schedulings, and thus have O((n − 1)K) complexity even in the best case. We

avoid this exponential factor as follows: we only consider the round-robin thread schedule

T1; T2; · · ·Tn; T1; T2; · · · for CBA, and bound the length of this schedule instead of bounding

the number of context switches. Because a thread is allowed to perform no steps during

its execution context, CBA still considers other schedules. For example, when n = 3, the
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schedule T1; T2; T1; T3 will be considered while analyzing a round-robin schedule of length

6 (in the round-robin schedule, T3 does nothing in its first execution context, and T2 does

nothing in its second execution context).

Setting the bound on the length of the round-robin schedule to nK allows CBA to

consider all thread schedulings with K context switches (as well as some schedulings with

more than K context switches). Under such a bound, a schedule has K execution contexts

per thread.

The reduction for multiple threads proceeds in a similar way to the reduction for two

threads. The global variables are copied K times. Each thread Ti is transformed to T s
i , as

shown in Fig. 7.1, and P s calls the T s
i in sequence, followed by Checker. Checker remains the

same (it only has to check that the state after the execution of T s
n agrees with the symbolic

constants).

The advantages of this approach are as follows: (i) we avoid an explicit enumeration

of O((n − 1)K) thread schedules, thus, allowing our analysis to be more efficient in the

common case; (ii) we explore more of the program behavior with a round-robin bound of

nK than with a context-switch bound of K; and (iii) the cost of analyzing the round-robin

schedule of length nK is about the same (in fact, better) than what previous analyses take

for exploring one schedule with a context bound of K (see Section 7.3). These advantages

allow our analysis to scale much better in the presence of multiple threads than previous

analyses. Our implementation tends to scale linearly with respect to the number of threads

(Section 7.7).

In the rest of this chapter, we only consider two threads because the extension to multiple

threads is straightforward for round-robin scheduling.
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7.1.3 Ability of the reduction to harness different analyses for
CBA

The reduction introduces assume statements and symbolic constants. Any sequential

analysis that can deal with these two features can be extended to handle concurrent programs

as well (under a context bound).

Any abstraction prepared to interpret program conditions can also handle assume state-

ments. Certain analysis, such as affine-relation analysis (ARA) over integers cannot make use

of the reduction: the presence of assume statements makes the ARA problem undecidable

[67]. The reduction presented in Section 7.5 avoids introducing assume statements.

It is harder to make a general claim about whether most sequential analyses can handle

symbolic constants. A variable initialized with a symbolic constant can be treated safely as an

uninitialized variable; thus, any analysis that considers all possible values for an uninitialized

variable can, in some sense, accommodate symbolic constants.

Another place where symbolic constants are used in sequential analyses is to construct

summaries for recursive procedures. Eager computation of a procedure summary is similar to

analyzing the procedure while assuming symbolic values for the parameters of the procedure.

It is easy to see that our reduction applies to concurrent programs that only share finite-

state data. In this case, the symbolic constants can only take on a finite number of values.

Thus, any sequential analysis can be extended for CBA merely by enumerating all their

values (or considering them lazily using techniques similar to the ones presented in Section

7.6). This implies that sequential analyses of programs with pointers, arrays, and/or integers

can be extended to perform CBA of such programs when only finite-state data (e.g., a finite

number of locks) is shared between the threads.

The reduction also applies when the shared data is not finite-state, although in this case

the values of symbolic constants cannot be enumerated. For instance, the reduction can take

a concurrent numeric program (defined as one having multiple threads, each manipulating

some number of potentially unbounded integers), and produce a sequential numeric program.
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Then most numeric analyses, such as polyhedral analysis [27], can be applied to the program.

Such analyses are typically able to handle symbolic constants.

7.2 The Reduction for Boolean Programs

For ease of exposition, we assume that all procedures of a Boolean program have the

same number of local variables. Furthermore, the global variables can have any value when

program execution starts, and similarly for the local variables when a procedure is invoked.

Let G be the set of valuations of the global variables, and L be the set of valuations of the

local variables. A program data-state is an element of G × L. Each program statement st

of the Boolean program can be associated with a relation [[st]] ⊆ (G × L) × (G × L) such

that (g0, l0, g1, l1) ∈ [[st]] when the execution of st on the state (g0, l0) can lead to the state

(g1, l1).

7.2.1 Analysis of sequential Boolean programs

In this section, we recall analyses for sequential Boolean programs. The goal of analyzing

Boolean programs is to compute the set of data-states that can reach a program node. This

is done using the rules shown in Fig. 7.2 [6]. These rules follow standard interprocedural

analyses [81, 88]. Let entry(f) denote the entry node of procedure f, proc(n) denote the

procedure that contains node n, ep(n) denote entry(proc(n)); let exitnode(n) denote a pred-

icate on nodes that is true when n is the exit node of its procedure. Let Pr be the set of

procedures of the program, which includes a distinguished procedure main. The rules of

Fig. 7.2 compute three types of relations: Hn(g0, l0, g1, l1) denotes the fact that if (g0, l0) is

the data state at entry(n), then the data state (g1, l1) can reach node n; Sf is the summary

relation for procedure f, which captures the net transformation that an invocation of the

procedure can have on the global state; Rn is the set of data states that can reach node n.

All relations are initialized to be empty.
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First phase Second phase

g ∈ G, l ∈ L, f ∈ Pr
R0

Hentry(f)(g, l, g, l)

Hn(g0, l0, g1, l1) n
st−−→ m (g1, l1, g2, l2) ∈ [[st]]

R1
Hm(g0, l0, g2, l2)

Hn(g0, l0, g1, l1) n
call f()−−−−−−→ m Sf(g1, g2)

R2
Hm(g0, l0, g2, l1)

Hn(g0, l0, g1, l1) exitnode(n) f = proc(n)
R3

Sf(g0, g1)

g ∈ G, l ∈ L
R4

Rentry(main)(g, l)

Rep(n)(g0, l0) Hn(g0, l0, g1, l1)
R5

Rn(g1, l1)

Rn(g0, l0) n
call f()−−−−−−→ m l ∈ L

R6
Rentry(f)(g0, l)

Hn(g0, l0, g1, l1) n
call f()−−−−−−→ m l2 ∈ L

R7
Hentry(f)(g1, l2, g1, l2)

Hn(g0, l0, g1, l1)
R8

Rn(g1, l1)

Figure 7.2 Rules for the analysis of Boolean programs.

Eager analysis. Rules R0 to R6 describe an eager analysis. The analysis proceeds in two

phases. In the first phase, the rules R0 to R3 are used to saturate the relations H and S.

In the next phase, this information is used to build the relation R using rules R4 to R6.

Lazy analysis. Let rule R′0 be the same as R0 but restricted to just the main procedure.

Then the rules R′0,R1,R2,R3,R7,R8 describe a lazy analysis. The rule R7 restricts the

analysis of a procedure to only those states it is called in. As a result, the second phase gets

simplified and consists of only the rule R8.

Practical implementations [6, 50] use BDDs to encode each of the relations H, S, and R

and the rule applications are changed into BDD operations. For example, rule R1 is simply

the relational composition of relations Hn and [[st]], which can be implemented efficiently

using BDDs.

7.2.2 Context-bounded analysis of concurrent Boolean programs

Concurrent Boolean programs were defined in Section 6.1. We can apply the reduction

presented in Section 7.1 on a concurrent Boolean program to obtain a sequential Boolean

program by making the following changes to the reduction: (i) the variable k is modeled
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using a vector of log(K) Boolean variables, and the increment operation is implemented using

a simple Boolean circuit on these variables; (ii) the if conditions are modeled using assume

statements; and (iii) the symbolic constants are modeled using additional (uninitialized)

global variables that are not modified in the program. Running any sequential analysis

algorithm, and projecting out the values of the Kth set of global variables from Rn gives the

precise set of reachable global states at node n in the concurrent program.

The worst-case complexity of analyzing a Boolean program P is bounded by

O(|P ||G|3|L|2), where |P | is the number of program statements. Thus, using our approach, a

concurrent Boolean program Pc with m threads, and K execution contexts per thread (with

round-robin scheduling), can be analyzed in time O(K|Pc|(K|G|K)3|L|2|G|K): the size of the

sequential program obtained from Pc is K|Pc|; it has the same number of local variables, and

its global variables have K|G|K number of valuations. Additionally, the symbolic constants

can take |G|K number of valuations, adding an extra multiplicative factor of |G|K . The

analysis scales linearly with the number of threads (|Pc| is O(m)).

This reduction actually applies to any model that works with finite-state data, which

includes Boolean programs with references [8, 75]. In such models, the heap is assumed to

be bounded in size. The heap is included in the global state of the program, hence, our

reduction would create multiple copies of the heap, initialized with symbolic values. Our

experiments (Section 7.7) used such models.

Such a process of duplicating the heap can be expensive when the number of heap con-

figurations that actually arise in the concurrent program is very small compared to the total

number of heap configurations possible. The lazy version of our algorithm (Section 7.6)

addresses this issue.

7.3 The Reduction for PDSs

The motivation for presenting the reduction for PDSs is that it allows one to apply the

numerous algorithms developed for PDSs to concurrent programs under a context bound.
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For each 〈p, γ〉 ↪→ 〈p′, u〉 ∈ (∆1 ∪∆2) and for all pi ∈ P, k ∈ {1, · · · , K}:

〈(k, p1, · · · , pk−1, p, pk+1, · · · , pK), γ〉 ↪→ 〈(k, p1, · · · , pk−1, p
′, pk+1, · · · , pK), u〉

For each γ ∈ Γj and for all pi ∈ P, k ∈ {1, · · · , K}:

〈(k, p1, · · · , pK), γ〉 ↪→ 〈(k + 1, p1, · · · , pK), γ〉

〈(K + 1, p1, · · · , pK), γ〉 ↪→ 〈(1, p1, · · · , pK), ej+1 γ〉

Figure 7.3 PDS rules for Ps.

For instance, one can use backward analysis of PDSs to get a backward analysis on the

concurrent program, or even compute error projections (Chapter 5) of concurrent programs.

Concurrent PDSs were defined in Section 6.1. In this section, we only consider concurrent

PDSs with two threads. Let the concurrent PDS be (P1,P2), where Pi = (P, Γi, ∆i). Let⇒i

be the transition system of Pi and let⇒c
i be its extension to configurations of the concurrent

PDS (also defined in Section 6.1). Let the context-switch bound be 2K − 1, so that each

thread gets K chances to execute.

We will reduce (P1,P2) to a single PDS Ps = (Ps, Γs, ∆s). Let Ps be the set of all K + 1

tuples whose first component is a number between 1 and K, and the rest are from the set

P , i.e., Ps = {1, · · · , K} × P × P × · · · × P . This set relates to the reduction from Section

7.1 as follows: an element (k, p1, · · · , pK) ∈ Ps represents that the value of the variable k is

k; and pi encodes a valuation of the variables Vari
G. When Ps is in such a state, its rules

only modify pk.

Let ei ∈ Γi be the starting node of the ith thread. Let Γs be the disjoint union of Γ1, Γ2

and an additional symbol {e3}. Ps does not have an explicit checking phase. The rules ∆s

are defined in Fig. 7.3.

We deviate slightly from the reduction presented in Section 7.1 by changing the goto

statement, which passes control from the first thread to the second, into a procedure call.

This ensures that the stack of the first thread is left intact when control is passed to the

next thread. Furthermore, we assume that the PDSs cannot empty their stacks, i.e., it is
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not possible that 〈p, e1〉 ⇒∗
P1
〈p′, ε〉 or 〈p, e2〉 ⇒∗

P2
〈p′, ε〉 for all p, p′ ∈ P (in other words, the

main procedure should not return). This can be enforced by introducing new symbols e′i, e
′′
i

in Pi such that e′i calls ei, pushing e′′i on the stack, and ensuring that no rule can fire on e′′i .

Theorem 7.3.1. Starting execution of the concurrent PDS (P1,P2) from the state

〈p, e1, e2〉 can lead to the state 〈p′, c1, c2〉 under the transition system ((⇒c
1)
∗; (⇒c

2)
∗)K

if and only if there exist states p2, · · · , pK ∈ P such that 〈(1, p, p2, · · · , pK), e1〉 ⇒Ps

〈(1, p2, p3, · · · , pK , p′), e3 c2 c1〉.

Note that the checking phase is implicit in the statement of Thm. 7.3.1. (One can also

make the PDS Ps have an explicit checking phase, starting at node e3.) A proof is given in

Section 7.9.

Complexity. Using our reduction, one can find the set of all reachable configurations of the

concurrent PDS (P1,P2) in time O(K2|P |2K |Proc||∆1 + ∆2|), where |Proc| is the number of

procedures in the concurrent PDS2 (see Section 7.9). Using backward reachability algorithms,

one can verify if a given configuration in reachable in time O(K3|P |2K |∆1 + ∆2|). Both

these complexities are asymptotically better than those of previous algorithms for PDSs

[77], including the one presented in Chapter 6. Note that the complexity for backward

reachability is linear in the program size |∆1 + ∆2|.

A similar reduction works for multiple threads as well (under round-robin scheduling).

Moreover, the complexity of finding all reachable states under a bound of nK with n threads,

using a standard PDS reachability algorithm, is O(K3|P |4K |Proc||∆|), where |∆| = Σn
i=1|∆i|

is the total number of rules in the concurrent PDS.

This reduction produces a large number of rules (O(|P |K |∆|)) in the resultant PDS, but

we can leverage work on symbolic PDSs (SPDSs) [85] to obtain a symbolic implementation.

2The number of procedures of a PDS is defined as the number of symbols appearing as the first of the
two stack symbols on the right-hand side of a call rule.
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7.4 The Reduction for Symbolic PDSs

A symbolic pushdown system (SPDS) is a triple (P , G, val), where P = ({p}, Γ, ∆) is

a single-state PDS, G is a finite set, and val : ∆ → (G × G) assigns a binary relation on

G to each PDS rule. val is extended to a sequence of rules as follows: val([r1, · · · , rn]) =

val(r1); val(r2); · · · ; val(rn). For a rule sequence σ ∈ ∆∗ and PDS configurations c1 and c2, we

say c1 ⇒σ c2 if applying those rules on c1 results in c2. The reachability question is extended

to computing the join-over-all-paths (JOP) value between two sets of configurations:

JOP(C1, C2) =
⋃
{val(σ) | c1 ⇒σ c2, c1 ∈ C1, c2 ∈ C2}

PDSs and SPDSs have equivalent theoretical power; each can be converted to the other.

SPDSs are used for efficiently analyzing PDSs. For a PDS P = (P, Γ, ∆), one constructs

an SPDS as follows: it consists of a PDS ({p}, Γ, ∆′) and G = P . The rules ∆′ and their

assigned relations are defined as follows: for each γ ∈ Γ, u ∈ Γ∗, include rule 〈p, γ〉 ↪→ 〈p, u〉

with the relation {(p1, p2) | 〈p1, γ〉 ↪→ 〈p2, u〉 ∈ ∆}, if the relation is non-empty. The SPDS

captures all state changes in the relations associated with the rules. Under this conversion:

〈p1, u1〉 ⇒P 〈p2, u2〉 if and only if (p1, p2) ∈ JOP({〈p, u1〉}, {〈p, u2〉}).

The advantage of using SPDSs is that the relations can be encoded using BDDs, and

operations such as relational composition and union can be performed efficiently using BDD

operations. This allows scalability to large data-state spaces [85]. (SPDSs can also encode

part of the local state in the relations, but we do not consider that issue in this section.)

The reverse construction can be used to encode an SPDS as a PDS: given an SPDS

(({p}, Γ, ∆), G, val), construct a PDS P = (G, Γ, ∆′) with rules: {〈g1, γ〉 ↪→ 〈g2, u〉 | r =

〈p, γ〉 ↪→ 〈p, u〉, r ∈ ∆, (g1, g2) ∈ val(r)}. Then (g1, g2) ∈ JOP({〈p, u1〉}, {〈p, u2〉}) if and

only if 〈g1, u1〉 ⇒∗ 〈g2, u2〉.

Context-bounded analysis of concurrent SPDSs

A concurrent SPDS with two threads consists of two SPDSs S1 = (({p}, Γ1, ∆1), G, val1)

and S2 = (({p}, Γ1, ∆1), G, val1) with the same set G. The transition relation ⇒c= (⇒∗
1;⇒∗

2

)K , which describes all paths in the concurrent PDS for 2K − 1 context switches, is defined



195

in the same manner as for PDS, using the transition relations of the two PDSs. Let 〈p, e1, e2〉

be the starting configuration of the concurrent SPDS. The problem of interest is to compute

the following relation for a given set of configurations C:

RC = JOP(〈p, e1, e2〉, C) =
⋃
{val(σ) | 〈p, e1, e2〉 ⇒σ

c c, c ∈ C}.

A concurrent SPDS can be reduced to a single SPDS using the constructions presented

earlier: (i) convert the SPDSs Si to PDSs Pi; (ii) convert the concurrent PDS system (P1,P2)

to a single PDS Ps; and (iii) convert the PDS Ps to an SPDS Ss. The rules of Ss will have

binary relations on the set GK (K-fold Cartesian product of G). Recall that the rules of Ps

change the global state in only one component. Thus, the BDDs that represent the relations

of rules in Ss would only be log(K) times larger than the BDDs for relations in S1 and S2

(the identity relation on n elements can be represented with a BDD of size log(n) [85]).

Let C ′ = {〈p, e3 u2 u1〉 | 〈p, u1, u2〉 ∈ C}. On Ss, one can solve for the value R =

JOP(〈p, e1〉, C ′). Then RC = {(g, g′) | ((g, g2, · · · , gK), (g2, · · · , gK , g′)) ∈ R} (note the

similarity to Thm. 7.3.1).

7.5 The Reduction for WPDSs

A concurrent WPDS is defined as a set of WPDSs, one for each thread. The problem of

CBA for concurrent WPDSs was defined in Section 6.1.

In this section, we only consider concurrent WPDSs with two threads. Moreover, we

restrict each WPDS to have a single control state in the underlying PDS. A WPDS that

does not satisfy this restriction can be converted to one that does satisfy it by appropriately

changing the weight domain (similar to the conversion from a PDS to a symbolic PDS).

Let the concurrent WPDS be (W1,W2), where Wi = (Pi,S, fi), and Pi = ({p}, Γi, ∆i).

Let K be the number of execution contexts per thread. We will reduce (W1,W2) to a single

WPDS Ws over a different weight domain using the tensor-product operation. Let SK be

the Kth-STP (Defn. 6.5.1) of S. For weight domains, the tensor-product operation serves

the same role as the duplication of shared variables that was used in Section 7.1 to keep
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For each rule 〈p, γ〉 ↪→ 〈p, u〉 ∈ (∆1 ∪∆2) with weight w and for all k ∈ NK :

〈k, γ〉 ↪→ 〈k, u〉 with weight ec(k, w)

For each γ ∈ Γj and for all k ∈ NK :

〈k, γ〉 ↪→ 〈k + 1, γ〉 with weight 1

〈K + 1, γ〉 ↪→ 〈1, ej+1 γ〉 with weight 1

Figure 7.4 WPDS rules for Ws.

track of the shared state at each context switch. The DeTensor operation will serve the role

of the Checker.

Let NK = {1, 2, · · · , K}. The WPDS Ws is defined as (Ps,SK , fs), where Ps =

(NK , Γs, ∆s). (The control states of Ps will keep track of the current execution context.)

Define a function ec : NK × S → SK as follows:

ec(i, w) = �(1, · · · , 1︸ ︷︷ ︸
i−1

, w, 1, · · · , 1︸ ︷︷ ︸
K−i

)

ec(i, w) takes the tensor of K weights, where w appears in the ith position.

Let ei ∈ Γi be the start node of the ith thread. Let Γs be the disjoint union of Γ1, Γ2 and

an additional symbol {e3}. Ws does not have an explicit checking phase. The rules ∆s are

defined in Fig. 7.4.

As in Section 7.3, we assume that the PDSs P1 and P2 cannot empty their stacks, i.e., it

is not possible that 〈p, e1〉 ⇒∗
P1
〈p, ε〉 or 〈p, e2〉 ⇒∗

P2
〈p, ε〉.

Theorem 7.5.1. In the concurrent WPDS (W1,W2), the net effect of all paths

that go from 〈p, e1, e2〉 to 〈p, c1, c2〉 with K execution contexts per thread is exactly

DeTensor(IJOPWs(〈1, e1〉, 〈1, e3 c2 c1〉)), where the DeTensor operation is for the K-STP

SK.
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7.6 Lazy CBA of Concurrent Boolean Programs

In the reduction presented in Section 7.2, the analysis of the generated sequential program

had to assume all possible values for the symbolic constants. The lazy analysis has the

property that at any time, if the analysis considers the K-tuple (g1, · · · , gK) of valuations of

the symbolic constants, then there is at least one valid execution of the concurrent program

in which the global state is gi at the end of the ith execution context of the first thread, for

all 1 ≤ i ≤ K.

The idea is to iteratively build up the effect that each thread can have on the global

state in its K execution contexts. Note that T s
1 (or T s

2 ) does not need to know the values

of Vari
G when i > k. Hence, the analysis proceeds by making no assumptions on the

values of Vari
G when i > k. When k is incremented to k + 1 in the analysis of T s

1 , it

consults a table E2 that stores the effect that T s
2 can have in its first k execution contexts.

Using that table, it figures out a valuation of Vark+1
G to continue the analysis of T s

1 , and

stores the effect that T s
1 can have in its first k execution contexts in table E1. These

tables are built iteratively. More precisely, if the analysis can deduce that T s
1 , when started

in state (1, g1, · · · , gk), can reach the state (k, g′1, · · · , g′k), and T s
2 , when started in state

(1, g′1, · · · , g′k) can reach (k, g2, g3, · · · , gk, gk+1), then an increment of k in T s
1 produces the

global state s = (k + 1, g′1, · · · , g′k, gk+1). Moreover, s can be reached when T s
1 is started in

state (1, g1, · · · , gk+1) because T s
1 could not have touched Vark+1

G before the increment that

changed k to k + 1. The algorithm is shown in Fig. 7.5. The entities used in it have the

following meanings:

• Let Ḡ = ∪K
i=1G

i, where G is the set of global states. An element from the set Ḡ is

written as ḡ. Let L be the set of local states.

• The relation Hj
n is related to program node n of the jth thread. It is a subset of

Ḡ×{1, · · · , K}× Ḡ×L×{1, · · · , K}× Ḡ×L. If Hj
n(ḡ0, k1, ḡ1, l1, k2, ḡ2, l2) holds, then

each of the ḡi are an element of Gk2 (i.e., a k2-tuple of global states), and the thread Tj

is in its k2
th execution context. Moreover, if the valuation of Vari

G, 1 ≤ i ≤ k2, was ḡ0
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when T s
j (the reduction of Tj) started executing, and if the node ep(n), the entry node

of the procedure containing n, could be reached in data state (k1, ḡ1, l1), then n can

be reached in data state (k2, ḡ2, l2), and the variables Vari
G, i > k2 are not touched

(hence, there is no need to know their values). Note that this means that ep(n) was

reached in the k1
th execution context of Tj and n was reached in the k2

th execution

context.

• The relation Sf captures the summary of procedure f.

• The relations Ej store the effect of executing a thread. If Ej(k, ḡ0, ḡ1) holds, then

ḡ0, ḡ1 ∈ Gk, and the execution of thread T s
j , starting from ḡ0 can lead to ḡ1, without

touching variables in Vari
G, i > k.

• The function check(k, (g1, · · · , gk), (g
′
1, · · · , g′k)) returns g′k if gi+1 = g′i for 1 ≤ i ≤ k−1,

and is undefined otherwise. This function checks for the correct transfer of the global

state from T2 to T1 at a context switch.

• Let [(g1, · · · , gi), (gi+1, · · · gj)] = (g1, · · · , gj). We sometimes write g to mean (g), i.e.,

[(g1, · · · , gi), g] = (g1, · · · , gi, g).

Understanding the rules. The rules R′1,R′2,R′3, and R′7 describe intra-thread computa-

tion, and are similar to the corresponding unprimed rules in Fig. 7.2. The rule R10 initializes

the variables for the first execution context of T1. The rule R12 initializes the variables for

the first execution context of T2. The rules R8 and R9 ensure proper hand-off of the global

state from one thread to another. These two are the only rules that change the value of

k. For example, consider rule R8. It ensures that the global state at the end of the k2
th

execution context of T2 is passed to the (k2 +1)th execution context of T1, using the function

check. The value g returned by this function represents a reachable valuation of the global

variables when T1 starts its (k2 + 1)th execution context.

The following theorem shows that the relations E1 and E2 are built lazily, i.e., they only

contain relevant information. A proof is given in Section 7.9.
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Hj
n(ḡ0, k1, ḡ1, l1, k2, [ḡ2, g3], l3) n

st−−→ m (g3, l3, g4, l4) ∈ [[st]]
R′1

Hj
m(ḡ0, k1, ḡ1, l1, k2, [ḡ2, g4], l4)

Hj
n(ḡ0, k1, ḡ1, l1, k2, ḡ2, l2) n

call f()−−−−−−→ m Sf(k2, [ḡ2, ḡ], k2 + i, [ḡ3, ḡ′])
R′2

Hj
m([ḡ0, ḡ], k1, [ḡ1, ḡ], l1, k2 + i, [ḡ3, ḡ′], l2)

Hj
n(ḡ0, k1, ḡ1, l1, k2, ḡ2, l2) exitnode(n) f = proc(n)

R′3Sf(k1, ḡ1, k2, ḡ2)

Hj
n(ḡ0, k1, ḡ1, l1, k2, ḡ2, l2) n

call f()−−−−−−→ m l3 ∈ L
R′7

Hj
entry(f)

(ḡ0, k2, ḡ2, l3, k2, ḡ2, l3)

H1
n(ḡ0, k1, ḡ1, l1, k2, ḡ2, l2) E2(k2, ḡ2, ḡ3) g = check(ḡ0, ḡ3)

R8
H1

n([ḡ0, g], k1, [ḡ1, g], l1, k2 + 1, [ḡ2, g], l2)

H2
n(ḡ0, k1, ḡ1, l1, k2, ḡ2, l2) E1(k2 + 1, [g3, ḡ2], [ḡ0, g4])

R9
H2

n([ḡ0, g4], k1, [ḡ1, g4], l1, k2 + 1, [ḡ2, g4], l2)

g ∈ G, l ∈ L, e = entry(main)
R10

H1
e (g, 1, g, l, 1, g, l)

Hj
n(ḡ0, k1, ḡ1, l1, k2, ḡ2, l2)

R11
Ej(k2, ḡ0, ḡ2)

E1(1, g0, g1), l ∈ L
R12

H2
e2

(g1, 1, g1, l, 1, g1, l)

Figure 7.5 Rules for lazy analysis of concurrent Boolean programs with two threads.

Theorem 7.6.1. After running the algorithm described in Fig. 7.5,

E1(k, (g1, · · · , gk), (g
′
1, · · · , g′k)) and E2(k, (g′1, · · · , g′k), (g2, · · · , gk, g)) hold if and only

if there is an execution of the concurrent program with 2k− 1 context switches that starts in

state g1 and ends in state g, and the global state is gi at the start of the ith execution context

of T1 and g′i at the start of the ith execution context of T2. The set of reachable global states

of the program in 2K − 1 context switches are all g ∈ G such that E2(K, ḡ1, [ḡ2, g]) holds.

Multiple threads. In the presence of multiple threads, we fix round-robin scheduling, and

impose a bound K on the number of execution contexts per thread.

The analysis rules remain similar to the ones for two threads, with Ei relations summa-

rizing the behavior of the ith thread. The only difference is the following: in the presence

of two threads, for a thread, say T1, one only needs to consult E2 to find the global state

for the next execution context (rule R8). In the presence of r threads, r > 2, for a thread

Ti, one needs to consult each of Ei+1, Ei+2, · · · , Er, E1, · · · , Ei−1, in order. For this, we
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1 ≤ k ≤ K ḡ ∈ Gk

R13
Er

after(k, ḡ, ḡ)

Ei(k, ḡ0, ḡ1) Ei
after(k, ḡ1, ḡ2) 1 < i ≤ r

R15
Ei−1

after(k, ḡ0, ḡ2)

Ei
before(k, ḡ0, ḡ1) Ei(k, ḡ1, ḡ2) 1 ≤ i < r

R16
Ei+1

before(k, ḡ0, ḡ2)

1 ≤ k ≤ K ḡ ∈ Gk

R14
E1

before(k, ḡ, ḡ)

Ei
before(1, g0, g1), l ∈ L, e = entry(Ti)

R17
Hi

e(g1, 1, g1, l, 1, g1, l)

Hi
m(ḡ0, k1, ḡ1, l1, k2, ḡ2, l2) Ei

after(k2, ḡ2, ḡ3) Ei
before(k2 + 1, [g4, ḡ3], [ḡ0, g])

R18
Hi

m([ḡ0, g], k1, [ḡ1, g], l1, k2 + 1, [ḡ2, g], l2)

Figure 7.6 Rules for lazy analysis of concurrent Boolean programs with r threads.

build relations Ei
after and Ei

before that summarize the effect of Ti+1, · · · , Tr and T1, · · · , Ti−1,

respectively.

The analysis rules for multiple threads includeR′1,R′2,R′3,R′7, andR11 from Fig. 7.5. The

rest of the rules are shown in Fig. 7.6. Rules R13 and R14 initialize Er
after and E1

before to the

identity relation, respectively. Rules R15 and R16 compute these relations compositionally.

Rule R17 generalizes rules R10 and R12 of Fig. 7.5. Rule R18 generalizes rules R8 and R9 of

Fig. 7.5. Note that the use of check in R8 is made implicitly in R18. For instance, consider

the case when i = 1 in R18. Then E1
before is the identity relation on the global-state vectors.

Thus, [g4, ḡ3] = [ḡ0, g], which implies that g = check(ḡ0, ḡ3).

7.7 Experiments

We implemented both the lazy and eager analyses for concurrent Boolean programs

by extending the model checker Moped [50]. These implementations find the set of all

reachable states of the shared memory after a given number of context switches. We could

have implemented the eager version using a source-to-source transformation; however, we

took a different approach because it allows us to switch easily between the lazy and eager

versions. Both versions are based on the rules shown in Fig. 7.5.
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In the lazy version, the rules are applied in the following order: (i) The H relations

are saturated for execution context k; (ii) Then the E relations are computed for k; (iii)

then rules R8 and R9 are used to initialize the H relations for execution context k + 1 and

the process is repeated. In this way, the first step can be performed using the standard

(sequential) reachability algorithm of Moped. Thm. 7.6.1 allows us to find the reachable

states directly from the E relations.

The eager version is implemented in a similar fashion, except that it uses a fixed set of E

relations that include all possible global state changes. Once the H relations are computed,

as described above, then the E relations are reinitialized using rule R11. Next, the following

rule, which encodes the Checker phase, computes the set of reachable states (assuming that

K is the given bound on the number of execution contexts).

E1(K, ḡ0, ḡ1) E2(K, ḡ1, ḡ2) g = check(ḡ0, ḡ2)
Checker

Reachable(g)

Our implementation supports any number of threads. It uses round-robin scheduling

with a bound on the number of execution context per thread, as described in Section 7.1.2.

All of our experiments, discussed below, were performed on a 2.4GHz machine with

3.4GB RAM running Linux version 2.6.18-92.1.17.el5.

BlueTooth driver model. First, we report the results for a model of the BlueTooth

driver, which has been used in several past studies [78, 19, 89]. The driver model can have

multiple threads, where each thread requests the addition or the removal of devices from the

system, and checks to see if a user-defined assertion can fail. We used this model to test

the scalability of our tool with respect to the number of threads, as well as the number of

execution contexts per thread. The results are shown in Fig. 7.7. The model has 8 shared

global variables, at most 7 local variables per procedure, 5 procedures but no recursion, and

37 program statements.

It is interesting to note that the eager analysis is faster than the lazy analysis in some

cases (when there are a large number of threads or execution contexts). The running times

for symbolic techniques need not be proportional to the number of states explored: even
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Figure 7.7 Experiments with the BlueTooth driver model. Each thread tries to either start
or stop the device. (a) Running time when the number of execution contexts per thread is

fixed at 4. (b) Running time when the number of threads is fixed at 3.

when the eager analysis explores more behaviors than the lazy version, its running time is

shorter because it is able to exploit more symmetry in the search space, and the resulting

BDDs are small.

The graph in Fig. 7.7(b) shows the exponential dependence of the running time on the

number of execution contexts. The graph in Fig. 7.7(a) shows the expected linear dependence

of the running time on the number of threads, until the number of threads is 8. We believe

that the sharp increase is due to BDDs getting large enough so that operations on them do

not entirely fit inside the BDD-cache.

Binary search tree. We also measured the performance of our techniques on a model

of a concurrent binary search tree, which was also used in [89]. (Because our model was

hand-coded, and the model used in [89] was automatically extracted from Java code, our

results are not directly comparable.) This model has a finite heap, and a thread either tries

to insert a value, or search for it in the tree. The model has 72 shared global variables,

at most 52 local variables per procedure, 15 procedures, and 155 program statements. The

model uses recursion.
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Threads Execution contexts per thread

Inserters Searchers 2 3 4 5 6

1 1 6.1 21.6 84.5 314.8 1054.8

2 1 11.9 46.8 211.9 832.0 2995.6

2 2 14.1 64.4 298.0 1255.4 4432.1

Figure 7.8 Lazy context-bounded analysis of the binary search tree model. The table
reports the running time for various configurations in seconds.

The eager version of the algorithm timed out on this model for most settings. This may

be because the analysis has to consider symbolic operations on the heap, which results in

huge BDDs. The results for the lazy version are reported in Fig. 7.8. They show trends

similar to the BlueTooth driver model: a linear increase in running time according to the

number of threads, and an exponential increase in running time according to the number of

execution contexts per thread.

BEEM benchmark suite. The third set of experiments consisted of common concurrent

algorithms, for which finite, non-recursive models were obtained from the BEEM benchmark

suite [73]. We hand-translated some of the Spin models into the input language of Moped.

These models do not exploit the full capabilities of our tool because they all have a single

procedure. We use these models for a more comprehensive evaluation of our tool. All

examples that we picked use a large number of threads. As before, the eager version timed

out for most settings, and we report the results for the lazy version.

The benchmark suite also has buggy versions of each of the test examples. The bugs

were introduced by perturbing the constants in the correct version by ±1 or by changing

comparison operators (e.g., > to ≥, or vice versa). Interestingly, the bugs were found within

a budget of 2 or 3 execution contexts per thread. (Note that this may still involve multiple

context switches.)
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The results are reported in Fig. 7.9. To put the numbers in perspective, we also give the

time required by Spin to enumerate all reachable states of the program. These are finite-

state models, meant for explicit-state model checkers; however, Spin ran out of memory on

three of the eight examples.

The CBA techniques presented in this chapter, unlike explicit-state model checkers, do

not look for repetition of states: if a state has been reached within k context switches, then

it need not be considered again if it shows up after k + i context switches. In general, for

recursive programs, this is hard to check because the number of states that can arise after a

context switch may be infinite. However, it would still be interesting to explore techniques

that can rule out some repetitions.

Predicate-abstraction based Boolean programs. Our fourth set of experiments use

the concurrent Boolean programs generated using the predicate abstraction performed by

DDVerify [96]. We use this set of experiments to validate two hypotheses: first, most bugs

manifest themselves in a few context switches; second, our tool, based on CBA, remains

competitive with current verification tools when it is given a reasonable bound on the number

of context switches.

First, we briefly describe how DDVerify operates. When given C source code,

DDVerify performs predicate abstraction to produce an abstract model of the original

program. This model is written out as a concurrent Boolean program and fed to the model

checker Boppo, or in the input language of Smv and fed to Smv. DDVerify uses Smv

by default because it performs better then Boppo on concurrent models [96]. If the model

checker is able to prove the correctness of all assertions in the model, the entire process

succeeds (no bugs). If the model checker returns a counterexample, then it is checked con-

cretely, and if it is spurious, then the abstraction is refined to create a new abstract model

and this repeats. DDVerify checks for a number of different properties on the source code

separately. (The abstract models produced by DDVerify have a single procedure and very

few local variables. Thus, these experiments do not exploit the full capabilities of CBA as

well.)
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Name Inst #gvars #lvars #Threads #EC Time (s) Spin (s)

Anderson pos 11 4 6 2 52.46 OOM

N=6,ERROR=0

Anderson neg 11 4 6 2 54.90 OOM

N=6,ERROR=1

Bakery pos 17 7 4 2 5.87 28.5

N=4,MAX=7

Bakery neg 17 7 4 2 13.88 44.2

N=4,MAX=5

Peterson pos 25 7 4 3 5.46 3.05

N=4

Peterson neg 25 7 4 3 25.72 OOM

N=4,ERROR=1

Msmie pos 23 1 20 2 47.94 31.0

N=5,S=10,M=10

Msmie neg 13 1 13 2 1.29 1.04

N=5,S=10,M=10

Figure 7.9 Experiments on finite-state models obtained from the BEEM benchmark suite.
The names, along with the given parameter values uniquely identify the program in the

test suite. The columns, in order, report: the name; buggy (neg) or correct (pos) version;
number of shared variables; number of local variables per thread; number of threads;

execution context budget per thread; running time of our tool in seconds; and the time
needed by Spin to enumerate the entire state space. “OOM” stands for Out-Of-Memory.

We now describe the experimental setup. We chose 6 drivers among the ones provided

with the distribution of DDVerify. For each driver, we chose some properties at random

and let DDVerify run normally using Smv as its model checker, but we saved the Boolean

programs that it produced at each iteration. For each driver and each property, we collected

the Smv files and the Boolean programs produced during the last iteration. The experiments

were conducted on these files. We gave our tool a budget of 2 threads and 4 execution contexts
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Figure 7.10 Scatter plot of the running times of our tool (CBA) against Smv on the files
obtained from DDVerify. Different dots are used for the cases when the files had a bug
(neg) and when they did not have a bug (pos). For the “neg” dots, the number of context

switches before a bug was found is shown alongside the dot. The median speedup was
about 30×. Lines indicating 1× and 30× speedups are also shown as dashed and dotted

lines, respectively.

per thread. A scatter plot of the running times is shown in Fig. 7.10 and the aggregate times

for proving all chosen properties for a given driver are reported in Fig. 7.11.

Two things should be noted from the results. First, whenever a model was buggy, our tool

could find it within the budget given to it. This validates our hypothesis that bugs manifest

in few context switches. Second, our tool was much faster than Smv on these benchmarks,

with speedups of up to 120×; our tool was slower on only one example. As shown by the

dotted line in Fig. 7.10, the median speedup was about 30×.

7.8 Related Work

A reduction from concurrent programs to sequential programs was given in [78] for the

case of two threads and two context switches (it has a restricted extension to multiple threads
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Name Inst Time (s) Smv (s) Speedup # CS

applicom pos 1.3 147.1 117.7

neg 33.0 147.1 15.1 [1, 3]

generic nvram pos 2.3 88.1 38.3

gpio pos 280.6 92.8 0.33

neg 106.8 299.6 2.8 [1, 6]

machzwd pos 0.9 103.4 120.2

neg 85.6 4214.7 49.2 [0, 6]

nwbutton pos 0.19 2.8 14.6

neg 0.88 26.1 29.7 [1, 6]

toshiba pos 3.8 197.1 52.4

neg 192.8 243.43 1.3 [1, 6]

Figure 7.11 Experiments on concurrent Boolean programs obtained from DDVerify. The
columns, in order, report: the name of the driver; buggy (neg) or correct (pos) version, as
determined by Smv; running time of our tool in seconds; the running time of Smv; speedup
of our tool against Smv; and the range of the number of context switches after which a bug

was found. Each row summarizes the time needed for checking multiple properties.

as well). In such a case, the only thread interleaving is T1; T2; T1. The context switch from T1

to T2 is simulated by a procedure call. Then T2 is executed on the program stack of T1, and

at the next context switch, the stack of T2 is popped off to resume execution in T1. Because

the stack of T2 is destroyed, the analysis cannot return to T2 (hence the context bound of

2). Their algorithm cannot be generalized to an arbitrary context bound.

A symbolic algorithm for context-bounded analysis was presented recently by Suwimon-

teerabuth et al. [89]. An earlier algorithm by Qadeer and Rehof [77] required enumeration

of all reachable global states at a context switch. Suwimonteerabuth et al. identify places

where such an enumeration is not required, essentially by finding different abstract states

that the program model cannot distinguish. This enables symbolic computation to some
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extent. However, in the worst case, the algorithm still requires enumeration of all reachable

states.

Analysis of message-passing concurrent systems, as opposed to ones having shared mem-

ory, has been considered in [19]. They bound the number of messages that can be commu-

nicated, similar to bounding the number of contexts.

There has been a large body of work on verification of concurrent programs. Some

recent work is [38, 76]. However, CBA is different because it allows for precise analysis of

complicated program models, including recursion. As future work, it would be interesting

to explore CBA with the abstractions used in the aforementioned work.

7.9 Proofs

7.9.1 Proof of Thm. 7.3.1

(⇐) First, we show that a path of the concurrent program can be simulated by a

path in the sequential program. (In this proof, we will deviate from the notation of the

theorem to make the proof more clear.) Let c0 = e1, and d0 = e2. If the configura-

tion 〈p0, c0, d0〉 can lead to 〈p2K , cK , dK〉 under the transition system (⇒∗
1;⇒∗

2)
K , then we

show that there exist states p2, p4, · · · , p2K−2 ∈ P such that 〈(1, p0, p2, · · · , p2K−2), c0〉 ⇒Ps

〈(1, p2, p4, · · · , p2K), e3 dK cK〉.

If a sequence of rules σ take a configuration c to a configuration c′ under the tran-

sition system ⇒, then we say c ⇒σ c′. For a rule r ∈ ∆i, r = 〈p, γ〉 ↪→ 〈p′, u〉, let

rs[k, p1, · · · , pk−1, pk+1, · · · pK ] ∈ ∆s be the rule 〈(k, p1, · · · , pk−1, p
′, pk+1, · · · , pK), γ〉 ↪→

〈(k, p1, · · · , pk−1, p
′, pk+1, · · · , pK), u〉. We extend this notation to rule sequences as well,

and drop the pi, when they are clear from the configuration the rules are applied on. Let

rinc[k] stand for a rule of Ps that increments the value of k (note that it can fire with anything

on the top of the stack). Let r1→2 stand for the rules that call from the first PDS to the

second, and r2→3 stand for the rules that call e3.

A path in (⇒∗
1;⇒∗

2)
K can be broken down at each switch from ⇒1 to ⇒2, and from

⇒2 to ⇒1. Hence, there must exist ci, di, 1 ≤ i ≤ K − 1; pj, 1 ≤ j ≤ 2K − 1; and σh,
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〈p0, c0, d0〉

⇒σ1
1 〈p1, c1, d0〉

⇒σ2
2 〈p2, c1, d1〉

⇒σ3
1 〈p3, c2, d1〉

⇒σ4
2 〈p4, c2, d2〉

· · ·

⇒σ2K−1

1 〈p2K−1, cK , dK−1〉

⇒σ2K
2 〈p2K , cK , dK〉

〈(1, p0, p2, · · · , p2K−2), c0〉

⇒σs
1[1] 〈(1, p1, p2, p4, · · · , p2K−2), c1〉

⇒rinc[1] 〈(2, p1, p2, p4, · · · , p2K−2), c1〉

⇒σs
3[2] 〈(2, p1, p3, p4, · · · , p2K−2), c2〉

⇒rinc[2] 〈(3, p1, p3, p4, · · · , p2K−2), c2〉

· · ·

⇒rinc[K−1] 〈(K, p1, p3, p5, · · · , p2K−3, p2K−2), cK−1〉

⇒σs
2K−1[K] 〈(K, p1, p3, p5, · · · , p2K−3, p2K−1), cK〉

⇒rinc[K] 〈(K + 1, p1, p3, p5, · · · , p2K−3, p2K−1), cK〉

⇒r1→2 〈(1, p1, p3, p5, · · · , p2K−1), d0 cK〉

⇒σs
2[1] 〈(1, p2, p3, p5, · · · , p2K−1), d1 cK〉

⇒rinc[1] 〈(2, p2, p3, p5, · · · , p2K−1), d1 cK〉

· · ·

⇒rinc[K−1] 〈(K, p2, p4, p6, · · · , p2K−2, p2K−1), dK−1 cK〉

⇒σs
2K [K] 〈(K, p2, p4, p6, · · · , p2K−2, p2K), dK cK〉

⇒rinc[K] 〈(K + 1, p2, p4, p6, · · · , p2K−2, p2K), dK cK〉

⇒r2→3 〈(1, p2, p4, p6, · · · , p2K−2, p2K), e3 dK cK〉

(a) (b)

Figure 7.12 Simulation of a concurrent PDS run by a single PDS. For clarity, we write ⇒
to mean ⇒Ps in (b).

1 ≤ h ≤ 2K, such that a path in the concurrent program can be broken down as shown in

Fig. 7.12(a). Then the path shown in Fig. 7.12(b) is a valid run of Ps that establishes the

required property.

(⇒) For the reverse direction, a path σ in ⇒Ps , from 〈(1, p0, p2, · · · , p2K−2), c0〉 to

〈(1, p2, p4, · · · , p2K), e3 dK cK〉 can be broken down as σ = σA r1→2 σB r2→3. (This is because
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one must use the rules r1→2 and r2→3, in order, to push e3 on the stack, after which no rules

can fire.) Hence we must have the following (for some states p1, p3, · · · , p2K−1):

〈(1, p0, p2, · · · , p2K−2), c0〉 ⇒σA
Ps

〈(K + 1, p1, p3, · · · , p2K−1), cK〉

⇒r1→2
Ps

〈(1, p1, p3, · · · , p2K−1), d0 cK〉

⇒σB
Ps

〈(K + 1, p2, p4, · · · , p2K), dK cK〉

⇒r2→3
Ps

〈(1, p2, p4, · · · , p2K), e3 dK cK〉

Because σA changes the value of k from 1 to K + 1, it must have K + 1 uses of rinc.

Hence, it can be written as: σA = σs
1[1] rinc[1] σs

3[2] rinc[2] · · · rinc[K − 1] σs
2K−1[K] rinc[K].

Because only σs[i] can change the ith state component, we must have the following:

〈(1, p0, p2, · · · , p2K−2), c0〉 ⇒
σs
1[1]
Ps

〈(1, p1, p2, · · · , p2K−2), c1〉

⇒rinc[1]
Ps

〈(2, p1, p2, · · · , p2K−2), c1〉

· · ·

⇒σs
2K−1[K]

Ps
〈(K, p1, p3, · · · , p2K−1), cK〉

⇒rinc[K]
Ps

〈(K + 1, p1, p3, · · · , p2K−1), cK〉

Similarly, σB = σs
2[1] rinc[1] σs

4[2] rinc[2] · · · rinc[K − 1] σs
2K [K] rinc[K]. The reader can

verify that the rule sequence σ1 σ2 · · ·σ2K−1 σ2K describes a path in (⇒∗
1;⇒∗

2)
K and takes

the configuration 〈p0, c0, d0〉 to 〈p2K , cK , dK〉.

7.9.2 Complexity argument for Thm. 7.3.1

A PDS can have infinite number of configurations. Hence, sets of configurations are

represented using automata [85]. We do not go into the details of such automata, but

only present the running-time complexity arguments. Given an automata A, and a PDS

(Pin, Γin, ∆in), the set of configurations forward reachable from those represented by A can

be calculated in time O(|Pin||∆in|(|Q| + |Pin||Procin|) + |Pin|| →A |), where Q is the set of

states of A, and→A is the set of its transitions [85]. We call the algorithm from [85] poststar,

and its output, which is also an automaton, poststar(A).
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For the PDS Ps, obtained from a concurrent PDS with n threads (P1,P2, · · · ,Pn),

|Ps| = K|P |K , |∆s| = K|P |K−1|∆|, |Procs| = |Proc|, where ∆ = ∪n
i=1∆i and |Proc| =∑n

i=1 |Proci|. To obtain the set of forward reachable configurations from 〈p, e1, e2, · · · , en〉,

we will solve poststar(A) for each A that represents the singleton set of configurations

{〈(1, p, p2, · · · , pK), e1〉}, i.e., |P |K−1 separate calls to poststar. In the result, we can project

out all configurations that do not have (1, p2, · · · , pK , p′) as their state, for some p′. Directly

using the above complexity result, we get a total running time of O(K3|P |4K |∆||Proc|). For

the case of two threads, we use a more sophisticated argument to calculate the running time.

When asking for the set of reachable configurations of Ps, we are only interested in

some particular configurations: when starting from 〈(1, p, p2, · · · , pK), e1〉, we only want

configurations of the form 〈(1, p2, · · · , pK , p′), u〉. Hence, when we run poststar, starting

from the above configuration, we remove some rules from ∆s: we remove all rules with left-

hand side 〈(k, p′2, p
′
3, · · · , p′K , p′), γ〉 if γ ∈ Γ2 and pi 6= p′i for some i between 1 and k − 1,

both inclusive. We statically know that removing such rules would not affect the result.

Further, we make two observations about the algorithm from [85]: (i) if an automaton

A is split into two automata A1 and A2, such that the union of the transitions (represented

configurations) of A1 and A2 equals the set of transitions (represented configurations) of A,

then the running time of poststar(A) is strictly smaller than than the sum of the running

times of poststar(A1) and poststar(A2). (ii) splitting the set of PDS rules ∆ into two (∆1

and ∆2) such that no rule in ∆1 can fire after a rule of ∆2 is applied, then the running time of

poststar∆2
(poststar∆1

(A)) is the same as the running time of poststar∆(A), where the poststar

algorithm is subscripted with the set of rules it operates on. Using these two observations,

we show that running poststar using Ps takes less time than the above-mentioned complexity.

Let ∆i ⊆ ∆s be the set of rules that operate when the first component of the state

(the value of k) is i, and ∆call ⊆ ∆s be the set of rules that call to e2 (from Γ1)

or e3. We know that any path in Ps can be decomposed into a rule sequence from

S = ∆1∗ ∆2∗ · · ·∆K∗
∆call ∆1∗ ∆2∗ · · ·∆K∗

∆call. Using observation (ii) above, we break

the running of poststar on ∆s into a series operating on each of the above sets, in order.
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Iter Num | → | Time Split |Q|

1 1 1 |P |2|∆||Proc| |P | |P ||Proc|

2 |P | |P ||∆||Proc| 2|P |2|∆||Proc| |P | 2|P ||Proc|

i |P |i−1 (i− 1)|P ||∆||Proc| 2(i− 1)|P |2|∆||Proc| |P | i|P ||Proc|

K |P |K−1 (K − 1)|P ||∆||Proc| 2(K − 1)|P |2|∆||Proc| |P | K|P ||Proc|

Table 7.1 Running times for different stages of poststar on Ps.

Next, after running poststar on one of ∆i∗ , we split the resultant automaton A into as many

automata as the number of states in the configurations of A, e.g., if A represents the set

{〈p̄1, c1〉, 〈p̄2, c2〉, 〈p̄2, c3〉}, then we split it into two automata representing the sets {〈p̄1, c1〉}

and {〈p̄2, c2〉, 〈p̄2, c3〉}, respectively. Observation (i) shows that this splitting only increases

the running time.

Tab. 7.1 shows the running time for performing poststar on the first K of the ∆i∗ from S.

The column “Iter” shows which ∆i is being processed. The column “Num” is the number

of poststar that have to be run using ∆i. The column “| → |” shows the upper bound on

the number of transitions in the automaton poststar is run on. The column “Time” is the

running time of poststar on such automata. The column “Split” is an upper bound on the

the number of automata the result is split into, and the last column in the number of states

in each of the resultant automata. For example, there are |P |i−1 number of invocations to

poststar with rule set ∆i, each on an automata with at most (i− 1)|P ||∆||Proc| transitions,

taking time 2(i− 1)|P |2|∆||Proc|. Each result is split into |P | different automata, each with

at most i|P ||Proc| states. The reader can inductively verify the correctness of the table.

Thus, this requires a total running time of O(K|P |K+1|∆||Proc|). Next, we use the rules

in ∆call and repeat the above process for the last K of the sequence S. However, in this case,

no splitting is necessary, because we know the desired target state, and have already removed

some rules from ∆s. For example, if the initial state chosen was (1, p, p2, · · · , pK), and after

performing the computation of Tab. 7.1, we obtain an automaton A that has the single state
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(1, p′1, · · · .p′K) for all configurations represented by it. After processing A with ∆1 suppose

the result is A′. There is no need to split A′ because of the rules removed from ∆2. The

rules of ∆2 would only fire on configurations that have the state (2, p2, p
′
2, p

′
3, · · · , p′K). Thus,

splitting is not necessary, and the time required to process each of the |P |K−1 automata

obtained from Tab. 7.1 using ∆i is 2(K + i − 1)|P |2|∆||Proc|. Hence, the time required

to process the entire S is O(K2|P |K+1|∆||Proc|). Because we have to repeat for |P |K−1

initial states, the running time of poststar on Ps with two threads can be bounded by

O(K2|P |2K |∆||Proc|).

Backward analysis from a set of configurations represented by an automaton A with |Q|

states can be performed in time O(K|P |2K(K|P |K + |Q|)2|∆|) for multiple threads, and

O(K|P |2K(K|P |+ |Q|)2|∆|) for two threads.

7.9.3 Proof of Thm. 7.6.1

For proving Thm. 7.6.1, we will make use of the fact that our reduction to a (sequential)

Boolean program is correct. Let T s
1 be the reduction of the first thread, and T s

2 be the

reduction of the second thread. First, we show that given an execution ρ of T s
1 , and certain

facts about E2 (which summarizes the effect of the second thread), ρ can be simulated by

the subset of rules from Fig. 7.5 that apply to the first thread. Formally, suppose that ρ is

the execution shown in Fig. 7.13 (where n0 is the entry point of the thread).

The execution ρ is broken at the points where the value of k is incremented. Note that

this execution implies that in the concurrent program the global state, when T1 begins its

ith execution context, is gi, and when T2 begins its ith execution context, it is g′i. Further,

suppose that the following facts hold: E2(i, (g′1, g
′
2, · · · , g′i), (g2, g3, · · · , gi)) for 1 ≤ i ≤ k−1.

Given these, we will show that rules for the first thread can be used to establish that

H1
nk

((g1, · · · , gk), k1, ḡ, l, k, (g′1, · · · , g′k), l′) holds, for some k1, ḡ, l and l′.

Corresponding to the execution ρ, there would be a sequence of deductions, using the

rules from Fig. 7.2 on T s
1 that derives the state at nk. These rules simply perform an

interprocedural analysis on T s
1 (the symbolic constants can take any value when program
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n0 : (1, g1, g2, · · · , gk, gk+1, · · · , gK , l0)

⇓

n1 : (1, g′1, g2, · · · , gk, gk+1, · · · , gK , l1)

⇓

n1 : (2, g′1, g2, · · · , gk, gk+1, · · · , gK , l1)

⇓

n2 : (2, g′1, g
′
2, · · · , gk, gk+1, · · · , gK , l2)

⇓
...

⇓

nk−1 : (k − 1, g′1, g
′
2, · · · , g′k−1, gk, gk+1, · · · , gK , lk−1)

⇓

nk : (k, g′1, g
′
2, · · · , g′k, gk+1, · · · , gK , lk)

Figure 7.13 An execution in T s
1 .

execution starts). We formalize the notation of using these rules on T s
1 . Let the rules operate

on the relations Hs and Ss. These relations are of the form: Hs
n([k1, ḡ1], l1, [k2, ḡ2], l2), which

semantically means that if the data state at ep(n) was ([k1, ḡ1], l1), then the data state at n

can be ([k2, ḡ2], l2).; and the summary relation would be Ss
f([k1, ḡ1], [k2, ḡ2]). For a statement

st in T1, its translation in T s
1 encodes the transformer:

{((k, g1, · · · , gk, · · · , gK), l, (k, g1, · · · , g′k, · · · , gK), l′) | (gk, l, g
′
k, l

′) ∈ st, 1 ≤ k ≤ K}

Additionally, one has a self-loop edge associated with a transformer that increments the

value of k: {([k, ḡ], l, [k + 1, ḡ], l) | 1 ≤ k ≤ K}. Given a proof tree π for ρ, we build a proof

tree π′ using rules of Fig. 7.5 by induction on the bottom-most rule of π.

When k = 1 in ρ, the conversion is straightforward: just replace a rule R in π with

the primed rule R′ from Fig. 7.5. An example is shown in Fig. 7.14 for a program path
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π1 =

[1, [g0, ḡ]] ∈ Gs, l0 ∈ L
R0

Hs
n0

([1, [g0, ḡ]], l0, [1, [g0, ḡ]], l0) n0
st1−−−→ n1 (g0, l0, g1, l1) ∈ [[st1]]

R1
Hs

n1
([1, [g0, ḡ]], l0, [1, [g1, ḡ]], l1)

π2 =

π1

Hs
n1

([1, [g0, ḡ]], l0, [1, [g1, ḡ]], l1) n1
call f−−−−−→ n2

R7
Hs

n3
([1, [g1, ḡ]], l2, [1, [g1, ḡ]], l2) n3

st2−−−→ n4 (g1, l2, g2, l3) ∈ [[st2]]
R1

Hs
n3

([1, [g1, ḡ]], l2, [1, [g2, ḡ]], l3)

π =

π1

Hs
n1

([1, [g0, ḡ]], l0, [1, [g1, ḡ]], l1) n1
call f−−−−−→ n2

π2

Sf([1, [g1, ḡ]], [1, [g2, ḡ]])
R2

Hs
n2

([1, [g0, ḡ]], l0, [1, [g2, ḡ]], l1)

π′1 =

g0 ∈ G, l0 ∈ L
R10

H1
n0

(g0, 1, g0, l0, 1, g0, l0) n0
st1−−−→ n1 (g0, l0, g1, l1) ∈ [[st1]]

R′1
H1

n1
(g0, 1, g0, l0, 1, g1, l1)

π′2 =

π′1

H1
n1

(g0, 1, g0, l0, 1, g1, l1) n1
call f−−−−−→ n2

R′7
H1

n3
(g0, 1, g1, l2, 1, g1, l2) n3

st2−−−→ n4 (g1, l2, g2, l3) ∈ [[st2]]
R′1

H1
n3

(g0, 1, g1, l2, 1, g2, l3)

π′ =

π′1

H1
n1

(g0, 1, g0, l0, 1, g1, l1) n1
call f−−−−−→ n2

π′2

Sf(1, g1, 1, g2)
R′2

H1
n2

(g0, 1, g0, l0, 1, g2, l1)

Figure 7.14 An example of converting from proof π to proof π′. For brevity, we use st to
mean a statement in the thread T1 (and not its translated version in T s

1 ).

n0
st1−−→ n1

call f−−−−→ n2, where the call to f takes the path n3
st2−−→ n4. Let (g1, · · · , gk+i)|k =

(g1, · · · , gk).

The induction hypothesis is as follows: given ρ, as shown in Fig. 7.13, if there is a

proof tree π that derives Hs
nk

([k1, ḡ], l, [k, (g′1, · · · , g′k, gk+1, · · · , gK)], l′) then one can derive
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H1
nk

((g1, · · · , gk), k1, ḡ|k, l, k, (g′1, · · · , g′k), l′). Note that in this case, the last (K−k1) compo-

nents of ḡ must be (gk1+1, · · · , gK) because T s
1 could not have modified them. We have already

proved the base case above. Fix ḡinit = (g1, · · · , gk) and ḡfinal = (g′1, · · · , g′k, gk+1, · · · , gK).

The bottom-most rule of π can be R1,R2 or R7. For the rule R1, one can either use a

statement transformer, or increment the value of k. All these cases, and the way to obtain

π′ are shown in Fig. 7.15.

One can prove a similar result for T s
2 . Note that H1

nk
(ḡinit, k1, ḡ|k, l, k, ḡfinal|k, l′) implies

E1(k, ḡinit, ḡfinal|k). Thus, these results are sufficient to prove one side of the theorem: given

an execution of the concurrent program, we can obtain executions of T s
1 and T s

2 , and then

use the above results together to show that the rules in Fig. 7.5 can simulate the execution

of the concurrent program.

Going the other way is similar. A deduction on H1 can be converted into

an interprocedural path of T s
1 . The rule R8 corresponds to incrementing the

value of k, and must be used a bounded number of times in a derivation of

H1 fact. The E2 assumptions used in a derivation have to be of the form

E2(1, g′1, g2), E
2(2, (g′1, g

′
2), (g2, g3)), · · · , E2(i, (g′1, · · · , g′i), (g2, · · · , gi+1)). This is because the

second component of H1 is only extended, but never modified, and once k is incremented, the

first k components cannot be modified either. Now, we can use the conversions of Fig. 7.15

in the opposite direction to prove the reverse direction of the theorem.
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(a)

π

Hs
nk

([k1, ḡ], l, [k − 1, ḡfinal], l
′) nk

k++−−−−→ nk
R1

Hs
nk

([k1, ḡ], l, [k, ḡfinal], l
′)

π′
(IH)

H1
nk

(ḡinit|k−1, k1, ḡ|k−1, l, k − 1, ḡfinal|k−1, l′)

(assumption)

E2(k − 1, (g′1, · · · , g′k−1), (g2, · · · , gk))
R8

H1
nk

(ḡinit, k1, ḡ|k, l, k, ḡfinal|k, l′)
(b)

π

Hs
n([k1, ḡ], l, [k, (g′1, · · · , g′k−1, g′′k , gk+1, · · · , gK)], l′′) n

st−−→ nk (g′′k , l′′, g′k, l′) ∈ [[st]]
R1

Hs
nk

([k1, ḡ], l, [k, ḡfinal], l
′)

π′
(IH)

H1
n(ḡinit, k1, ḡ|k, l, k, (g′1, · · · , g′k−1, g′′k ), l′′) n

st−−→ nk (g′′k , l′′, g′k, l′) ∈ [[st]]
R8

H1
nk

(ḡinit, k1, ḡ|k, l, k, ḡfinal|k, l′)
(c)

π

Hs
n([k1, ḡ], l0, [k, ḡfinal], l1) n

call f()−−−−−−→ m l ∈ L
R7

Hs
entry(f)

([k, ḡfinal], l, [k, ḡfinal], l)

π′
(IH)

H1
n(ḡinit, k1, ḡ|k, l0, k, ḡfinal|k, l1) n

call f()−−−−−−→ m l ∈ L
R′7

H1
entry(f)

(ḡinit, k, ḡfinal|k, l, k, ḡfinal|k, l)

(d)

π1

Hs
n([k1, ḡ], l, [k2, ḡ′], l′) n

call f()−−−−−−→ nk

π2

Hs
m([k2, ḡ′], l1, [k, ḡfinal], l2)

R3
Ss
f ([k2, ḡ′], [k, ḡfinal]) R2

Hs
nk

([k1, ḡ], l, [k, ḡfinal], l
′)

π′1
(IH)

H1
n(ḡinit|k2 , k1, ḡ|k2 , l, k2, ḡ′|k2 , l′) n

call f()−−−−−−→ nk

π′2
(IH)

H1
m(ḡinit, k2, ḡ′|k, l1, k, ḡfinal|k, l2)

R′3
S1
f ([k2, ḡ′|k, k, ḡfinal|k)

R′2
H1

nk
(ḡinit, k1, ḡ|k, l, k, ḡfinal|k, l′)

Figure 7.15 Simulation of run ρ using rules in Fig. 7.5. In case (a), gk = check(ḡinit|k−1,
(g2, · · · , gk)) and g′k = gk (because ρ does not edit these set of variables). In case (d),
exitnode(m) holds, f = proc(m), k1 ≤ k2 ≤ k, the k2 + 1 to k components of ḡ′ are

(gk2+1, · · · , gk) because it arises when k = k2, and the k1 + 1 to k components of ḡ are
(gk1+1, · · · , gk) for the same reason.
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Chapter 8

Conclusions

A program-verification technique aims to gain certain knowledge about a program’s be-

havior to determine whether some program execution can be faulty, or whether no faulty

executions are possible. Such techniques are becoming increasingly important as software

gets larger, more complex, and often hard to reason about manually. This dissertation gives

several techniques that can reason about two important aspects of a program: procedures

(and procedure calls) and concurrency.

We follow the common design of program-verification tools in which verification is split

into two phases: an abstraction phase, which produces an abstract model, and an analysis

phase, which precisely reasons about the abstract model. The contributions of this disserta-

tion are to give expressive abstract models that can easily encode programs with procedures

and concurrency, and efficient analysis algorithms for these models. Thus, to solve a new

verification problem, one only needs to encode the problem using one of our abstract models,

and then analyze the model using one of our algorithms.

Analysis of Sequential Programs

In Chapter 3, we defined Extended Weighted Pushdown Systems (EWPDSs). We demon-

strated the power of EWPDSs by showing that several problems can be solved using EW-

PDSs, including Boolean program verification, affine-relation analysis, and single-level alias

analysis. We gave efficient algorithms for analyzing EWPDSs. One of the advantages of us-

ing EWPDSs is that it supports stack-qualified queries. In our previous work [56], we showed
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the importance of using stack-qualified queries in the context of debugging: the stack trace

at the point of a program crash is an important clue about what the program execution did

before failing. Obtaining information from the program model that is specific to the stack

trace requires a stack-qualified query.

In Chapter 4, we gave an algorithm, called FWPDS, for faster analysis of WPDSs and

EWPDSs. Because FWPDS applies to abstract models, it improves the running time of

any application based on these abstract models. We observed 1.8× to 3.6× speedups in

three different applications that used EWPDSs without requiring any fine-tuning for an

application. These applications were: (i) the debugging application mentioned above, which

searches for a particular path in the control-flow graph of a program; (ii) an analysis that

finds a set of affine relations in x86 programs; and (iii) an assertion checker for Boolean

programs. In Chapter 5, we showed how to answer more expressive queries on EWPDSs,

which compute what we call error projections. An error projection is the set of all nodes

that lie on an error trace in the abstract model. Computing an error projection can help

speed up abstraction-refinement-based techniques.

All of the techniques mentioned above, namely EWPDSs, FWPDSs, and error projec-

tions, are implemented as a library and available for download as part of the WALi package

[47]. We have also addressed the problem of speeding up multiple (E)WPDS queries [57],

and that is included with WALi as well.

Analysis of Concurrent Programs

The above work is on interprocedural analysis of sequential programs. In Chapters 6 and

7, we presented techniques for the analysis of multi-procedure concurrent programs. Because

such analyses are undecidable, even for simple abstractions, we explored the area of context-

bounded analysis (CBA), where the number of context-switches between different threads is

bounded. We show that given an interprocedural analysis for sequential programs, one can

automatically extend it to perform CBA of concurrent programs, under certain conditions.
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In Chapter 6, we showed that when each thread of a concurrent program is modeled

using a WPDS, and a tensor-product operation exists for the weights, CBA of the program

can be carried out effectively. The algorithm for CBA has two key steps. First, each thread

is analyzed separately to build a weighted transducer that captures the effect of executing

the thread without interruption from other threads. In particular, a thread T is converted

into a weighted transducer τT that represents the following relation:

{(s1, s2) | execution of T starting from state s1 can lead to state s2 }.

We also showed how to construct such a transducer for a WPDS. This provides a strong

characterization of the behaviors of a WPDS. Second, the transducers from each of the

threads are composed as many times as the context bound K, resulting in the net effect

of executing the concurrent program for K context switches. From this, one can find the

set of all reachable states within K context switches and verify properties of the program

under that bound. The importance of this result is that one has to do little work to obtain

an algorithm for CBA: one has to show that each thread can be (soundly) modeled using a

WPDS (which one would have to do even for sequential analysis) and that a tensor operation

exists for the weights.

A topic left for future work is to extend these results to EWPDSs as well. The difficulty

lies in finding a tensor-like operation for merge functions.

In Chapter 7, we gave a practical algorithm for CBA of concurrent programs. We showed

that given a concurrent program P and a context bound K, one can create a sequential

program PK such that the analysis of PK is sufficient for CBA of P under the bound K.

This reduction is a source-to-source transformation, and requires no assumptions nor extra

work on the part of the user, except for the identification of thread-local data.

We implemented the technique on Boolean programs to create the first known imple-

mentation of CBA. Using this tool, we conducted a study on concurrent Linux drivers and

showed that most bugs could be found (1) in a few context switches and (2) much faster

than previous approaches.
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One interesting aspect of the reduction from the concurrent program P to the sequential

program PK is how the program execution changes. An execution of P is split into pieces

(one for each execution context), and then rearranged (so that the pieces for each thread

are put together). Extra checks are put in place to ensure that no spurious behaviors are

introduced. The technique of allowing actions to happen in a different order, but at the

same time using constraints to ensure that the semantics is preserved, allowed us to reduce

the complexity of CBA and make it linear in the size of the local state space. This technique

may be useful in contexts other than CBA as well.

Follow-up Work. Because our reduction is a source-to-source transformation, one

can apply several different techniques, developed for sequential programs, to concurrent

programs. Our implementation of CBA, which applies to Boolean programs, uses a BDD-

based solver. In a follow-up work by others, our reduction was extended and applied to C

programs [55]. They used an SMT-based solver to do partial verification of the sequential

program produced as a result of the reduction.

As future work, it would be interesting to study further extensions of our reduction. A

key factor that affects scalability is the size of shared memory because the shared state has

to be recorded at each context switch. In languages like C, the shared memory cannot be

determined statically. Thus, it would be useful to design a technique that identifies the

shared memory on-the-fly as the program is analyzed.

In follow-up work by yet another group, our reduction was extended to a “lazy” reduction

[92]. The sequential program PK produced by their reduction has the property that the

analysis of PK permits a lazy analysis similar to one we presented in Section 7.6.

Techniques for Weighted Systems

One of the themes of the work presented in the dissertation—and one of the areas in which

it makes a contribution that extends beyond program verification—is the development of

techniques and algorithms for manipulating weighted automata and weighted transducers.

Both WPDSs, and EWPDSs are based on Pushdown Systems (PDSs), which provide a
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convenient abstraction for the program’s runtime stack. Modeling the stack is important for

programs with procedures because it allows precise reasoning about the call-return semantics

of procedure calls.

Algorithms for PDSs are based on automata-theoretic techniques. The set of all reachable

states of a PDS can be captured using a finite-state machine. This allows one to leverage

the vast existing knowledge about finite-state machines to design various analyses of PDSs.

However, the situation changes when dealing with WPDSs and EWPDSs. The set of all

reachable states of such models can only be captured using weighted automata. Thus, one

no longer has the same rich collection of techniques available as one has for unweighted

automata.

This dissertation presented several new algorithms for weighted automata. For instance,

in Chapter 5, we gave a method to intersect two weighted automata under the restriction

that one automaton is a forward-weighted automaton and the other is a backward-weighted

automaton. The algorithm allowed us to intersect the set of forward-reachable states from

the start of the program with the backward-reachable states from an error point in the

program to compute an error projection. In Chapter 6, we further extended this result to

show how to intersect any two weighted automata, provided that a tensor-product operation

exists for weights. The result was then generalized to composition of weighted transducers,

which provided an algorithm for CBA.

These results on weighted automata are general and form the building blocks of some

of the verification techniques described in the dissertation. They may be useful for solving

other verification or program-analysis problems. Moreover, these results are of interest in

their own right, and should be applicable to problems outside the areas of verification and

program analysis.
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