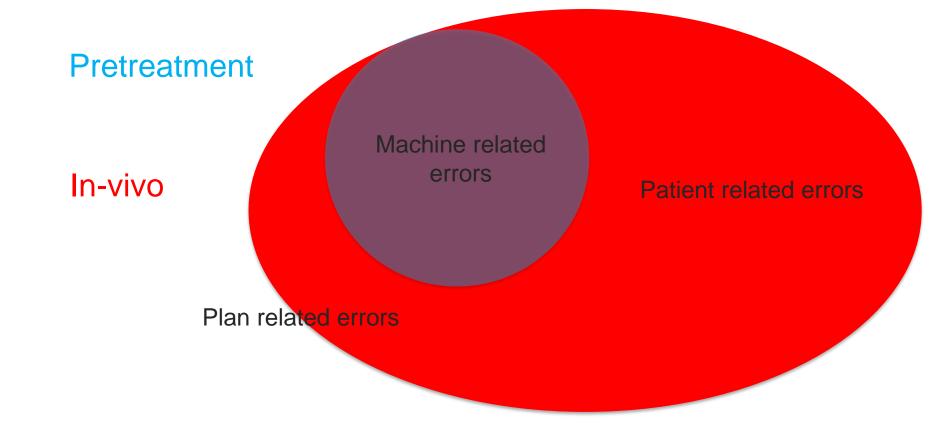
The Future Is Now - EPID In Vivo Dosimetry

Casey Bojechko, PhD, MCCPM Sun Nuclear QA & Dosimetry Symposium 2020 UC San Diego RETHINKING MEDICAL PHYSICS

Disclosures

Receive grant funding from Varian Medical Systems


Outline

- Errors detected by pre-treatment vs in-vivo measurements
 - For ideal detection scenarios and real life practice
- Methods to analyze in-vivo EPID data
 - Forward projection image predictions
 - Back-projection dose estimates
- Current clinical implementation and experience gained from in-vivo use to date
- o How automation aids implementation. Commercial software available
- Requirements for widespread implementations
 - Complementary QA checks needed
- Future clinical uses
 - Real-time error detection
 - Uses in adaptive planning

Outline

- Errors detected by pre-treatment vs in-vivo measurements
 - For ideal detection scenarios and real life practice
- o Methods to analyze in-vivo EPID data
 - Forward projection image predictions
 - Back-projection dose estimates
- Current clinical implementation and experience gained from in-vivo use to date
- o How automation aids implementation. Commercial software available
- o Requirements for widespread implementations
 - Complementary QA checks needed
- o Future clinical uses
 - Real-time error detection
 - Uses in adaptive planning

Error Detection with the EPID

UC San Diego

RETHINKING MEDICAL PHYSICS

Pretreatment

Potential Error	Error Type	References	
Machine-related	Transfer error	Mans et al. (2010), Mijnheer et al. (2015)	
Plan-related	Dose calculation error	Mans et al. (2010), Fidanzio et al. (2015),	
		Mijnheer et al. (2015)	
	Immobilization system not included in the treatment plan	Fidanzio et al. (2015)	
	Bolus material not taken into account	Mijnheer et al. (2015)	Pote
Patient-related: anatomy changes	Changes in atelectasis and pleural effusion	Piermattei et al. (2009), Mans et al. (2010), Persoon et al. (2012), Wendling et al. (2012), Persoon et al. (2013), Fidanzio et al. (2015), Mijnheer et al. (2015)	Pat de
	Variation in patient contour when the patient becomes more relaxed during treatment	Mans et al. (2010), Fidanzio et al. (2015), Peca et al. (2015)	
	Gas pockets in the planning CT scan resulting in an underdose in the PTV during treatment	Camilleri et al. (2014), Cilla et al. (2014), Fidanzio et al. (2015)	
	Weight loss resulting in an overdose in the PTV during treatment	Mans et al. (2010), Camilleri et al. (2014), Cilla et al. (2014, 2016)	
	Incomplete bladder filling resulting in an overdose in the PTV during treatment	Ricketts et al. (2016)	

Potential Error	Error Type	References
Patient-related: delivery errors	Bar of the treatment couch in the entrance beam during treatment	Piermattei et al. (2009), Fidanzio et al. (2015)
	Imperfect immobilization allowing the patient to move during treatment	Hanson et al. (2014), Cilla et al. (2016)
	Wrong patient setup during treatment	Fidanzio et al. (2015), Mijnheer et al. (2015)

Clinical 3D dosimetry in Advanced Radiotherapy. Mijnheer

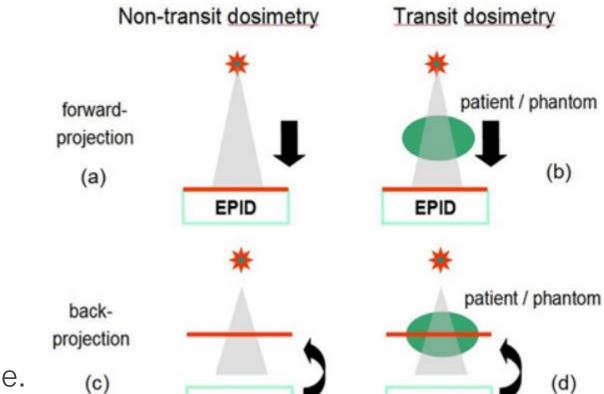
6

UC San Diego

RETHINKING MEDICAL PHYSICS

Outline

- o Errors detected by pre-treatment vs in-vivo measurements
 - For ideal detection scenarios and real life practice
- Methods to analyze in-vivo EPID data
 - Forward projection image predictions
 - Back-projection dose estimates
- Current clinical implementation and experience gained from in-vivo use to date
- o How automation aids implementation. Commercial software available
- o Requirements for widespread implementations
 - Complementary QA checks needed
- o Future clinical uses
 - Real-time error detection
 - Uses in adaptive planning


Measurement Approaches

Non transit dosimetry

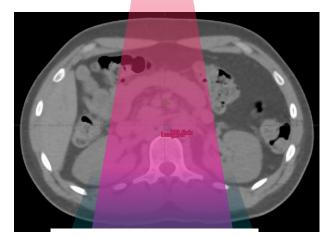
- Make a prediction of EPID image no patient/phantom in the way.
- From EPID image make a prediction of the fluence at isocenter.

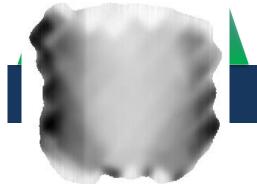
Transit Dosimetry

- Make a prediction of the image.
- From the image make a prediction of the dose.

EPID

EPID


Source

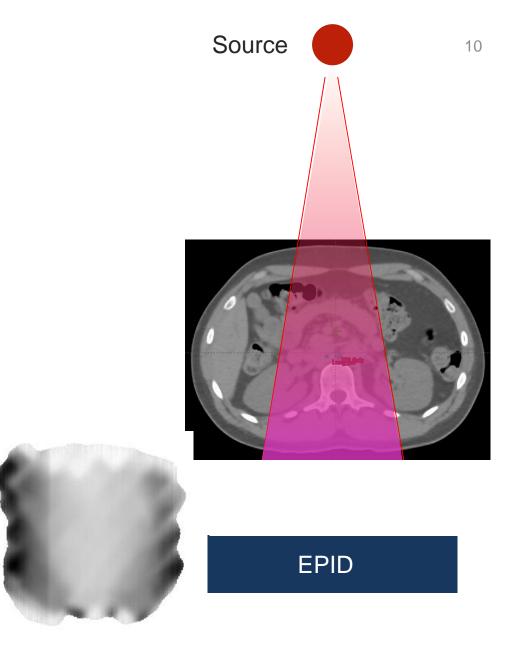

Transit Dosimetry (forward projection)

- Determination of greyscale image at the level of the EPID
 - Primary Fluence

UC San Diego

- Scattered Fluence
- Response of the EPID

Chytyk et al Med Phys 2013

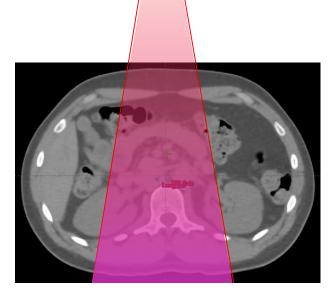

Back Projection (3D)

Reconstruct dose in patient

- From EPID image estimate primary fluence and scattered fluence at EPID level
- Separate primary fluence

UC San Diego

- Back-project primary fluence to incident fluence
- Use incident fluence to estimate dose

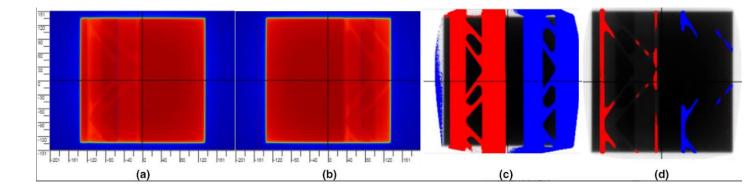


Wendling et al Med Phys 2006

Back Projection (3D)

- EPID image is measured with patients anatomy during treatment.
- However dose is calculated on anatomy acquired during planning.
- Able to detect changes in planned dose.
- Does not calculate delivered dose!
- Need CBCT.

UC San Diego



Source

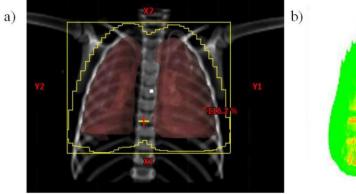

EPID

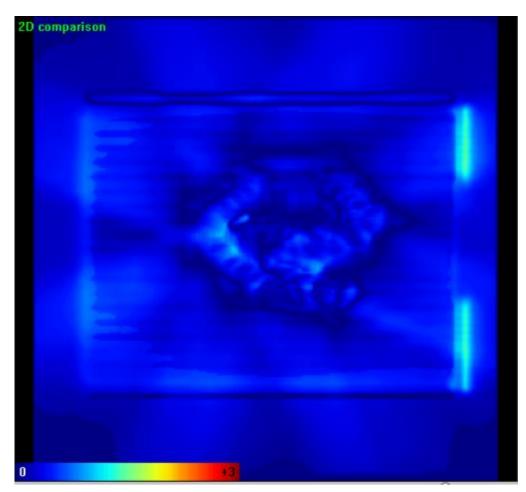
Image Difference

- Compare EPID images day 1 to EPID image day n
- Relative differences

Zhuang, Olch. J Appl Clin Med Phys 2018

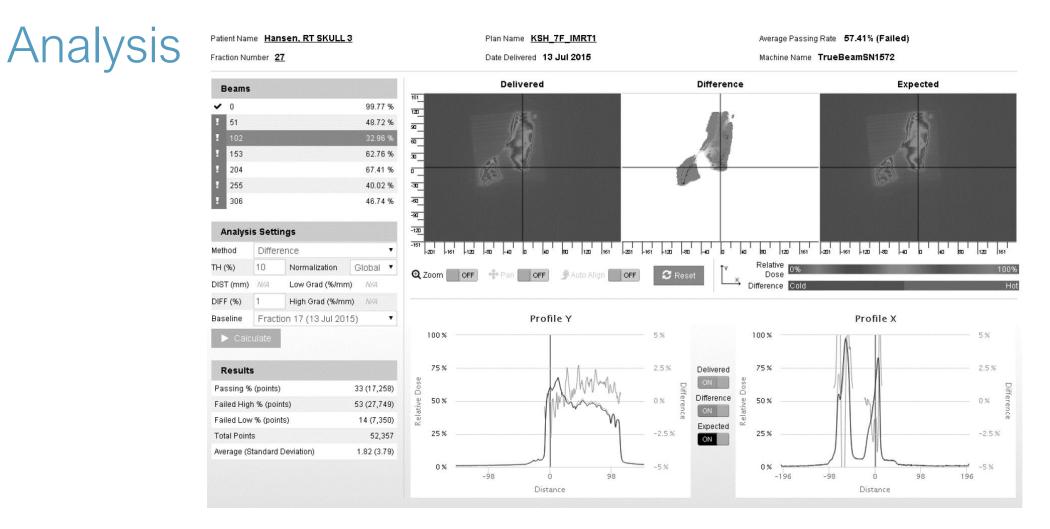
Olch et al Adv. In Rac Onc 2019

Comparisons


Image level

- 0D point comparison
- 2D image comparison
- Patient level

UC San Diego


- 0D point comparison (isocenter)
- 2D plane comparison
- 3D volumetric comparison
- Typically Gamma Comparison

Planar Gamma Evaluation

Pros and Cons

Method	Pros	Cons
Point Dose	 Simple quick algorithms Simple to commission 	 Sensitivity to errors reduced Less information available
3D Dose	 3D dose map Able to reconstruct DVHs 	 More complex to commission

Hsieh et al. Prac Rad Onc, 2017,

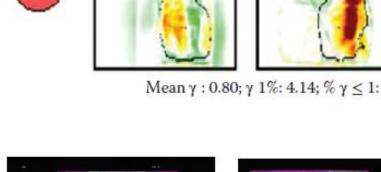
Outline

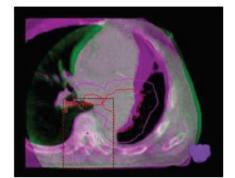
- o Errors detected by pre-treatment vs in-vivo measurements
 - For ideal detection scenarios and real life practice
- o Methods to analyze in-vivo EPID data
 - Forward projection image predictions
 - Back-projection dose estimates
- Current clinical implementation and experience gained from in-vivo use to date
- o How automation aids implementation. Commercial software available
- o Requirements for widespread implementations
 - Complementary QA checks needed
- o Future clinical uses
 - Real-time error detection
 - Uses in adaptive planning

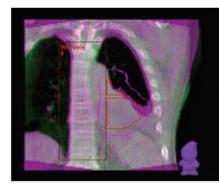
In the Clinic

UC San Diego

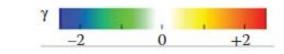
- NKI has been using in-vivo system clinically for a long time.
 - Have replaced pre-treatment with in vivo measurements.
 - Detected 17 major errors 2005-2009 (over 4000 patients)
 - 9 of these errors would have been missed with Pretreatment only

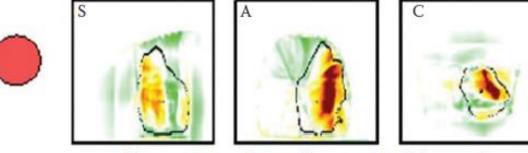

	TYPE OF ERROR	NUMBER OF ERRORS	
Γ	PATIENT ANATOMY	7	
L	ACCIDENTAL PLAN MOD	2	
	PLAN TRANSFER	4	
	SUBOPTIMALLY TUNED TPS	2	
	FAILED DELIVERY	2	
	DOSIMETRICALLY UNDELIVERABLE PLAN	1	
	TOTAL	17	


Mans et al. Med Phys. 37(6) 2010

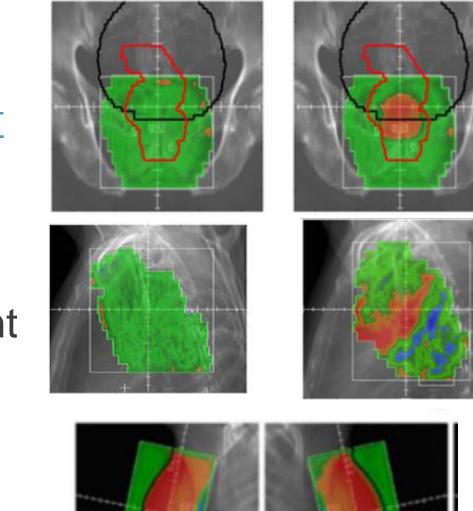

Lung

UC San Diego


- Alert raised by EPID Ο measurement
- Comparison of CBCT Ο (green) and planning CT (purple)
- **Reduction of Atelectasis** \bigcirc
- Replanning scan was Ο made



Clinical 3D dosimetry in Advanced Radiotherapy. Mijnheer



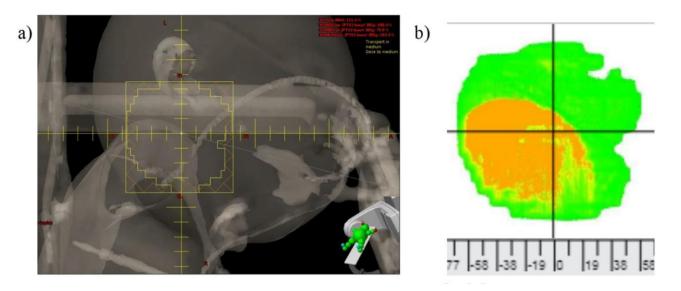
Mean γ : 0.80; γ 1%: 4.14; % $\gamma \leq 1$: 76.2; Δ Disoc: 4.0%

Prostate, Lung, Breast

- Gas bubbles
- Change in atelectasis
- Setup for breast patient

Spine

- 25% decrease in 3D gamma pass rate Ο
- Stent moved into treatment field between Ο fractions

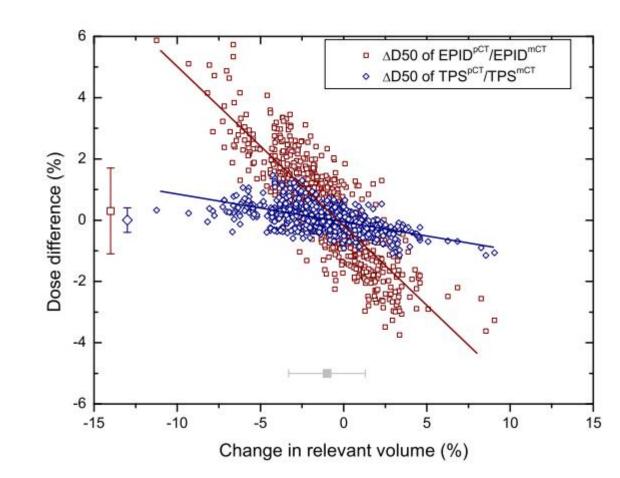


Van Uytven et al. Med Phys 2015

Clinical 3D dosimetry in Advanced Radiotherapy. Mijnheer

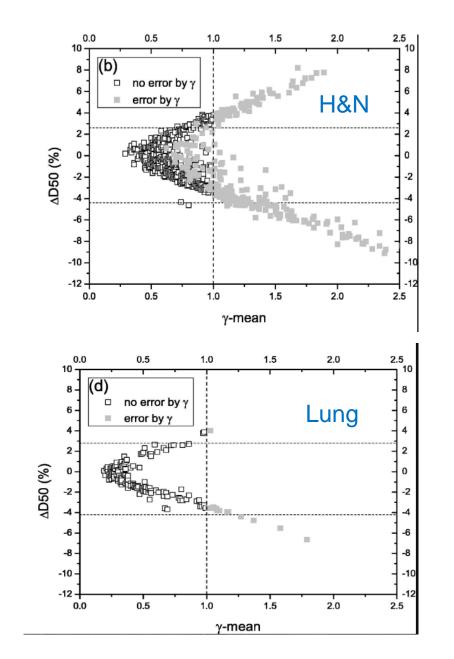
Shoulder

 Image comparison with first fraction shows change in shoulder position

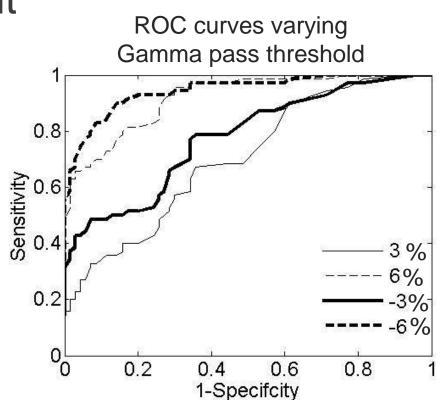

Olch et al. Adv. In Rac Onc 2019

UC San Diego

RETHINKING MEDICAL PHYSICS


Clinical Impact of Errors

- Head and Neck treatments
- Planning CT deformed to CBCT
- $\circ\,$ Change in EPID dose and TPS dose for $\Delta D50\,$
- EPID has enhanced sensitivity


Clinical Impact of Errors

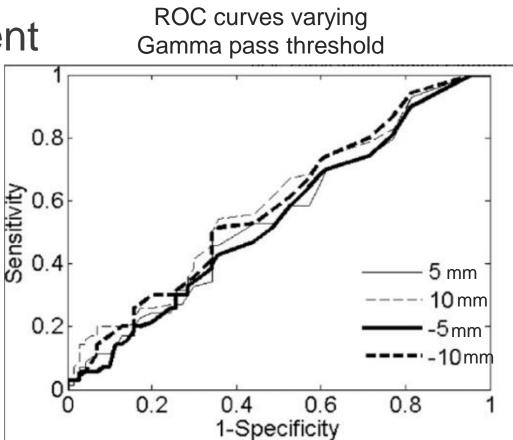
- Tolerance levels on mean gamma and gamma 1%.
- Compare gamma mean and ΔD50 for H&N and Lung
- Good correlation for lung less specific for H&N.

Setting Tolerance Levels

- Model EPIDs sensitivity to different errors
 - Deliver plan, introduce errors in TPS
 - Measures changes in gamma pass rate(3%/3mm)
 - Construct ROC
 - Investigate changes in PTV dose metrics

UC San Diego

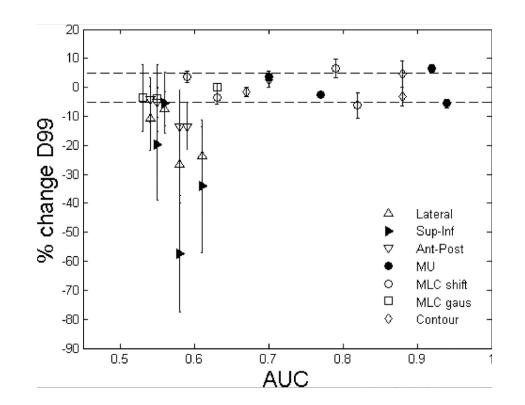
RETHINKING MEDICAL PHYSICS


Bojechko & Ford Med Phys 2015.

Setting Tolerance Levels

- Model EPIDs sensitivity to different errors
 - Deliver plan, introduce errors in TPS
 - Measures changes in gamma pass rate(3%/3mm)
 - Construct ROC

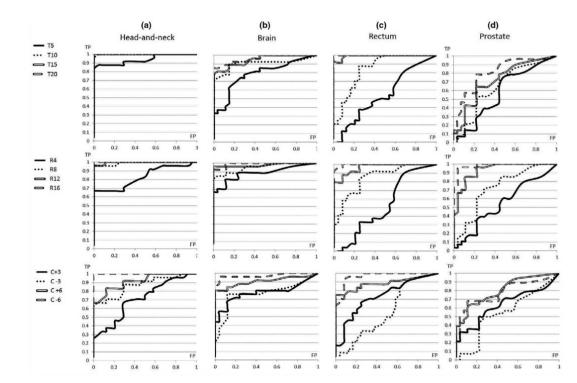
UC San Diego


 Investigate changes in PTV dose metrics

Bojechko & Ford Med Phys 2015.

Clinical Impact of Errors

- ROC analysis, compare AUC vs change in D99.
- Different errors introduced
 - MU scaling
 - MLC shifts
 - Patient contour changes
 - Patient shifts



Clinical Impact of Errors

- Simulated errors in synthetic CT.
- Use various indicators

UC San Diego

- $\Delta Diso, \gamma$ -mean, γ -max, γ -passrate, ΔPTV_{D2} , ΔPTV_{D50} , ΔPTV_{D98}
- Use different in vivo alert criteria per treatment site
- Excellent detection of transitions, rotation, contour changes for expect for prostate sites

I Olaciregui-Ruiz et al Med Phys 2019

RETHINKING MEDICAL PHYSICS

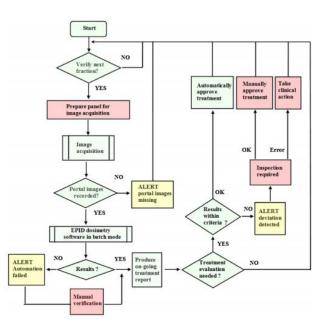
Challenges to Setting Thresholds

- Different dose calculations (0D,2D,3D)
- Different algorithms
- Different DVH parameters (D50, D2, D95)
- Difference treatment sites
- Gamma metrics

Outline

- o Errors detected by pre-treatment vs in-vivo measurements
 - For ideal detection scenarios and real life practice
- o Methods to analyze in-vivo EPID data
 - Forward projection image predictions
 - Back-projection dose estimates
- Current clinical implementation and experience gained from in-vivo use to date
- How automation aids implementation. Commercial software available
- o Requirements for widespread implementations
 - Complementary QA checks needed
- o Future clinical uses
 - Real-time error detection
 - Uses in adaptive planning

Automation


 Automation is necessary for implementation, due to the increased workload of additional analysis

Need to Automate

- Export (images, other data)
- Analysis
- Alerts

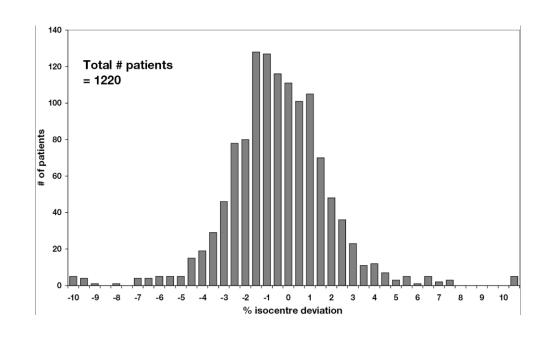
Automation: NKI

- Call verification software after portal images have been recorded
 - Results are available a few minutes after fraction is delivered Alerts raised if a threshold is exceeded.
 - Significantly reduces workload, less error prone.
 - Alerts grouped into 3 Categories
 Limitations of calculation model
 - Patient anatomy changes
 - Other (delivery or planning errors, output deviations...)
- Inspection of alerts 0.25 FTE.

UC San Diego

Olaciregui-Ruiz et al. Phys. Med. Biol. 2013.

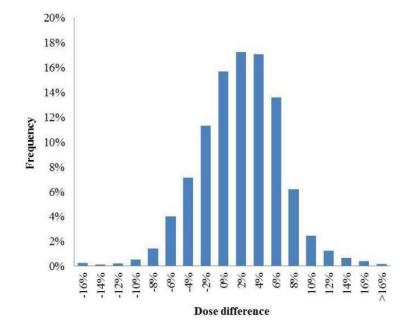
RETHINKING MEDICAL PHYSICS


Hanson et al. Phys. Med. Biol. 2014.

32

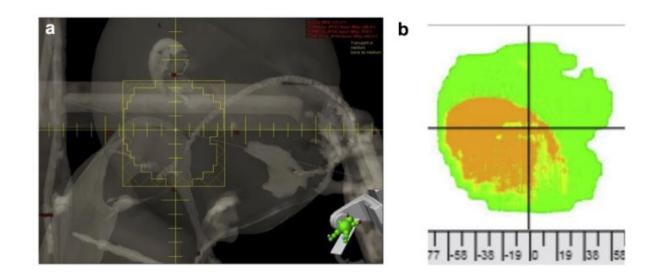
Automation: Royal Marsden

• Based on NKI system


- Compared to TLD measurements less time consuming on unit and analysis. Able to account for deviations based on 2D info
- Replaced nearly all pre-treatment verification
- Flagged when tolerance level is exceeded.

Automation: Institut Curie

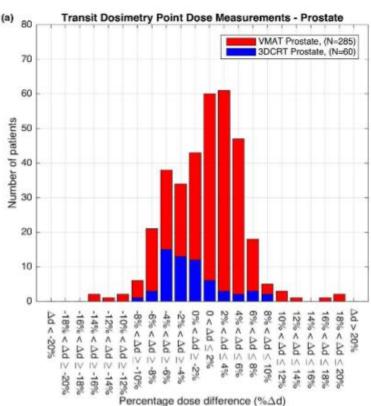
EPIGray


- Dose to point
- IVD one the first 3 fractions of treatment
- Difference between TPS and dose estimate 1.9% +/- 5.2%
- Automating day to day comparisons

Automation: Children's Hospital Los Angeles

• PerFRACTION

- EPID images compared to baseline images
 - Perform gamma analysis for image, fraction, course of treatment
 - Failures due to body position change, internal anatomy change, external device position, unknown source
- Near total automation



UC San Diego

Olch et al Advances In Rac Onc 2019

Automation: Edinburgh Cancer Centre

- Dosimetry Check
- Alert triggered when dose difference between TPS and DC at plan ref point exceeds 10%
 - Majority of alerts for breast patients

Commercial Software

• EPIgray

• Celi et al. J Appl Clin Med Phys 2016

Dosimetry Check

- Gimeno et al. Phys Med 2015,
- Nailon et al Rad Onc Phys 2019
- PerFraction
 - Hsieh et al. Prac Rad Onc, 2017,
 - Zhuang, Olch. J Appl Clin Med Phys 2018,
 - Olch et al. Adv. In Rac Onc 2019
- SOFTDISO
 - Cilla et al 2016, Piermattei et al 2018
- EPIDos
- o IViewDose
- o Adaptivo

Outline

- o Errors detected by pre-treatment vs in-vivo measurements
 - For ideal detection scenarios and real life practice
- o Methods to analyze in-vivo EPID data
 - Forward projection image predictions
 - Back-projection dose estimates
- Current clinical implementation and experience gained from in-vivo use to date
- o How automation aids implementation. Commercial software available
- Requirements for widespread implementations
 - Complementary QA checks needed
- o Future clinical uses
 - Real-time error detection
 - Uses in adaptive planning

Clinical Implementation

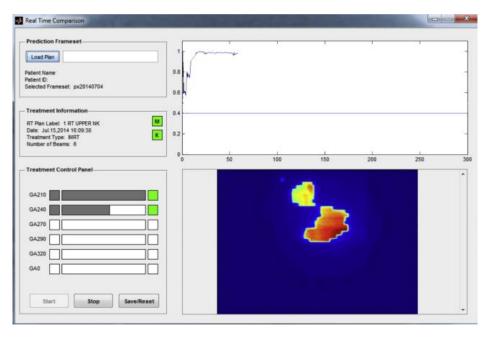
- Selection of system
- Commissioning
- Setting tolerance levels
 - Alert criteria differs from one institution to another
- Follow up actions
 - Policies and procedures for when an alert is raised

Error Types that Still Escape Detection

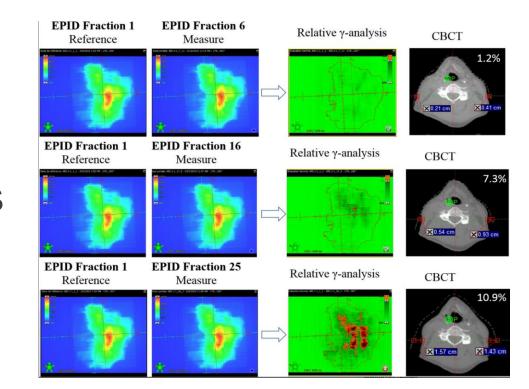
- Prescription Errors
 - Error in plans fractionation, location or total dose
- Incorrect Contouring
 - Portion of contour missing or incorrect volume used for planning
- Errors in field planning parameters/Suboptimal plan creation
 - Error in field parameters made during planning stage
- Error detected after fraction is delivered
 - Not suitable for SBRT, SRS treatments

Outline

- o Errors detected by pre-treatment vs in-vivo measurements
 - For ideal detection scenarios and real life practice
- o Methods to analyze in-vivo EPID data
 - Forward projection image predictions
 - Back-projection dose estimates
- Current clinical implementation and experience gained from in-vivo use to date
- o How automation aids implementation. Commercial software available
- o Requirements for widespread implementations
 - Complementary QA checks needed
- Future clinical uses
 - Real-time error detection
 - Uses in adaptive planning


Real-Time Dosimetry

- Post treatment assessment of some treatments is not clinically useful.
- Diodes/MOSFETS are used to monitor treatments in real time, stop treatment if measured values deviate significantly from planned.


Real-Time Dosimetry

- EPID real-time prediction of images.
- WatchDog Project
 - Reference data set of EPID images is compared to acquired EPID images at a frame rate of 0.1s.
 - Comparison was performed to cumulative frame to gauge overall delivery quality.

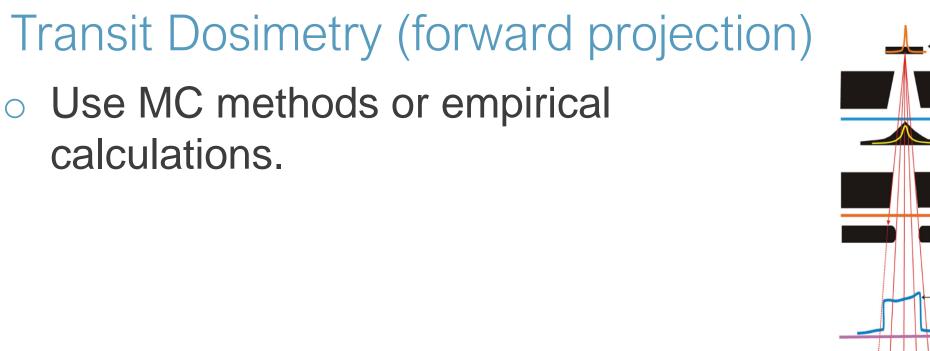
Adaptive Planning

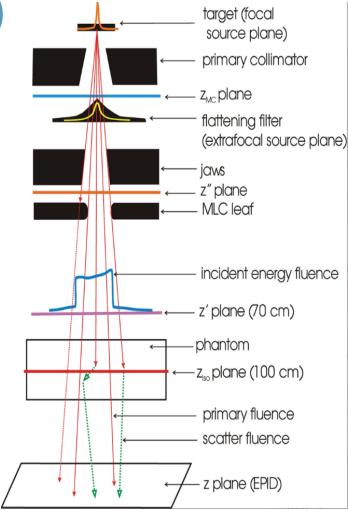
- Analysis of lung and head and neck patients have observed progressive anatomical changes
 - In-vivo dosimetry can provide quantitative metrics
- EPID based verification of OAR doses
- Real time adaptation

Concluding Remarks

UC San Diego

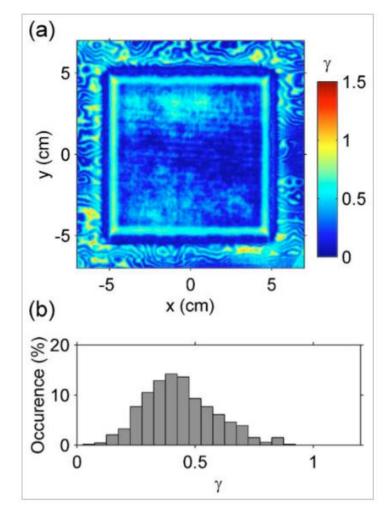
RETHINKING MEDICAL PHYSICS


Additional Resources


- 2016 AAPM Annual Meeting Session: The EPID Strikes Back.
 - Peter Greer, PhD
 - <u>https://www.aapm.org/education/vl/vl.asp?id=11449</u>
- Clinical 3D Dosimetry in Modern Radiation Therapy.
 - In Press, Edited by Ben Mijnheer, PhD

Thank You

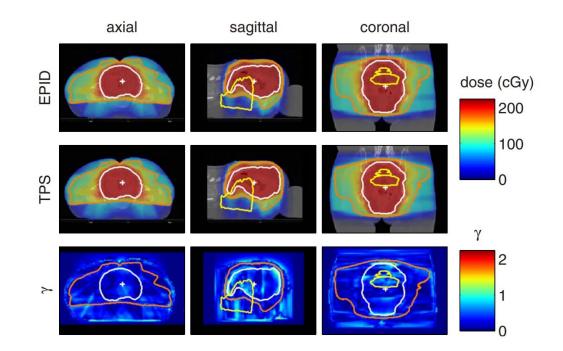
Additional Materials


Chytyk et al Med Phys 2013

UC San Diego

RETHINKING MEDICAL PHYSICS

Back Projection (0D,2D)

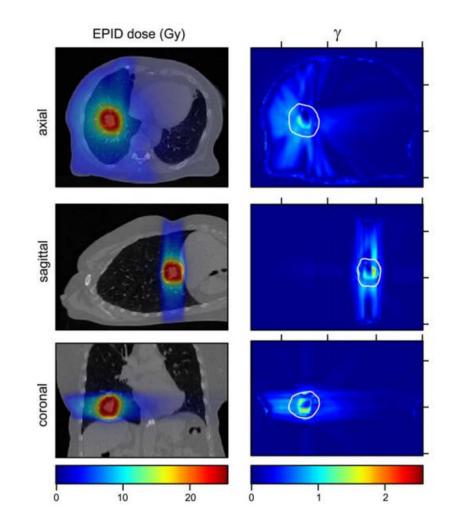

- Determination of dose at point in patient (iso)
- Estimation of planar dose
 - Related imager response to radiological thickness of patient/phantom.

Piermattei et al Med Phys 2008. Wendling et al Med Phys 2006

Back Projection (2D-3D)

- Requires collection of open beam image
- Use EPID image to estimate primary and scatter fluence
- Model attenuation of primary fluence through patient CT
- Reconstruction of 2D dose planes, interpolated to reconstruct 3D dose

UC San Diego

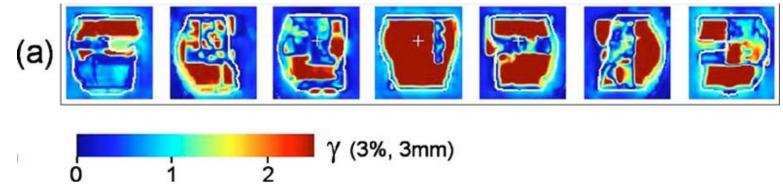

Wendling et al Med Phys 2008

Back Projection VMAT

- Information is washed out over VMAT Arc
- Use Cine images recording gantry angle to backproject dose at various angles
- Technical challenges

UC San Diego

 Gantry angle lag, missing frames, interplay between pulsing and readout.

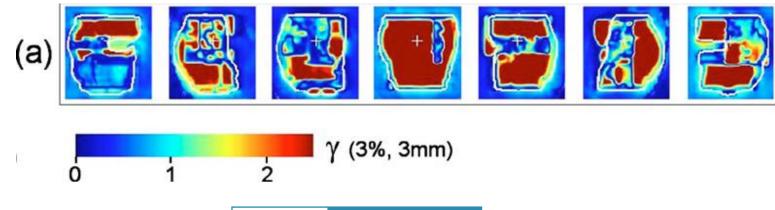


*Mans et al Radiother. Oncol 2010. McCurdy et al Medical Physics 2009

Case Study

• Rectum cancer patient (NKI)

- Prescribed 25 Gy to target volume in 5 fractions.
- 7 IMRT beams
- Plan transferred to Mosaiq, all protocols followed, no abnormalities observed. Majority of control points corrupted (27 out of 35)
- MLC positions and jaw positions mismatched

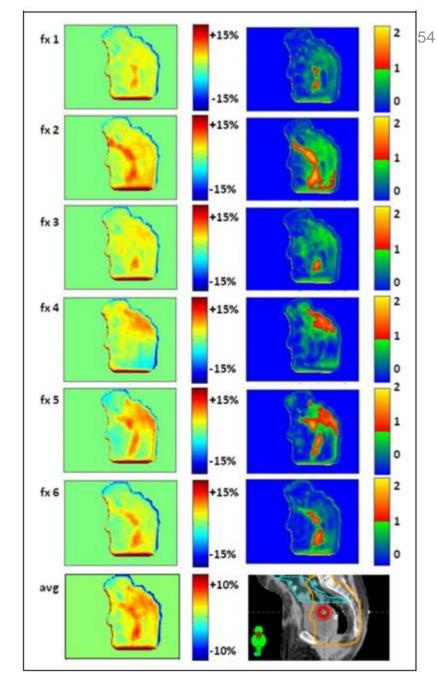

UC San Diego

RETHINKING MEDICAL PHYSICS

Mans et al. Med Phys. 37(6) 2010

Case Study

- EPID dosimetry done during first fraction, analysis done after first fraction
- Would have been detected pre-treatment
- EPID data used to reconstruct dose, used to inform decisions on continuation of plan

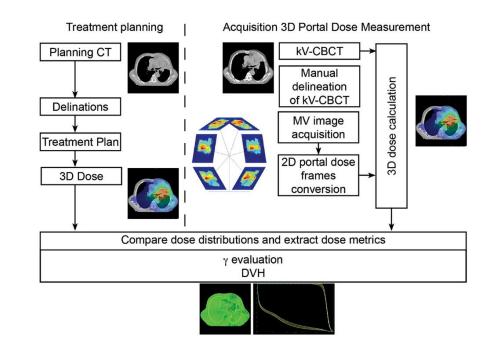


UC San Diego

RETHINKING MEDICAL PHYSICS

Rectum

- Prone rectal treatments
 - Reconstruction of planar dose at isocenter.
 - Persistent bowel gas, changes to bowel dose


UC San Diego

Peca et al. Technol Cancer Res Treat 2017

Automation: Maastro

- 3D dose reconstruction using kv CBCT image. 3D portal dose compared to planned dose. Automatically flagged if gamma criteria is not passed.
- 3D calculated for all patients.

- Study done on atelectasis adaptive protocol
 - If significant change observed CTV is redelineated on CBCT.
 - Discrepancies and changes over time for lung cancer treatments.

