7 Analog-Digital-Conversion

7.1 Components of A/D-Converters

Sample and hold circuit, Quantisation

7.2 Flash A/D-Converter

7.3 Iterative A/D-Converter

7.4 A/D-Converter with an Intermediate Quantity

7.5 Sigma-Delta-Converter

7.6 Errors by A/D-Converters

Sampling

P. 7-3

Sampling

$$\mathbf{x}_{a}(t) = \mathbf{x}_{e}(t) \sum_{k=-\infty}^{+\infty} \delta(t - kT_{0})$$

Sampling Periode
$$T_0 = \frac{1}{f_{Sampl}}$$

Fourier Transformation

$$x_e(t) \circ \longrightarrow X_e(\omega) = \int_{-\infty}^{\infty} x_e(t) e^{-j\omega t} dt$$

Inverse Fourier Transformation

$$x_e(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_e(\omega) e^{j\omega t} dt$$

Multiplication in Time Domain \rightarrow Convolution in Frequency Domain

$$x(t) u(t) \longrightarrow X(\omega) * U(\omega) = \int_{-\infty}^{\infty} X(\omega') U(\omega - \omega') d\omega'$$

Sampling

$$\begin{aligned} x_{\theta}(t) & \longrightarrow & X_{\theta}(\omega) \\ \sum_{k=-\infty}^{+\infty} \delta(t-kT_{0}) & \longrightarrow & \frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left(f-\frac{n}{T_{0}}\right) \\ & T_{0} : \text{Sampling Periode} \end{aligned}$$

$$\begin{aligned} x_{a}(t) &= x_{e}(t) \sum_{k=-\infty}^{+\infty} \delta(t - kT_{0}) \quad & \longleftarrow \quad X_{a}(t) = X_{e}(t) * \frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left[f - \frac{n}{T_{0}} \right] \\ &= \int_{-\infty}^{\infty} \left\{ \frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left[u - \frac{n}{T_{0}} \right] \right\} X_{e}(t - u) du \\ \end{aligned}$$

$$(Changing Summation and Integral) \quad &= \frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left[u - \frac{n}{T_{0}} \right] X_{e}(t - u) du \\ \end{aligned}$$

$$(Dirac-Function) \quad &= \frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} X_{e}\left(f - \frac{n}{T_{0}} \right) \end{aligned}$$

Sampling

P. 7-6

Chair for Measurement and Sensor Technology

P. 7-7

7.1 Components of A/D-Converters Sampling

Example Convolution with a Dirac Pulse

Chair for Measurement and Sensor Technology

Sampling

Example Convolution with a Dirac Pulse

Chair for Measurement and Sensor Technology

P. 7-10

Anti-aliasing-Filter

$$f > \frac{f_{Sampl}}{2}$$
 Pre-filtering no overlapping!

The slow rate of the Filter should be considered!

C should have a low value, so that fast changing signals can be followed

N-Digits digital number

	2-digits number	N-digits number	
	$\overline{Z_1 Z_0}$	$\overline{Z_{N-1}\cdots Z_1Z_0}$	
Number of Digits	2	Ν	
Number of Output Stages	4=2 ²	n= 2 ^N	
Number of counting steps	$3 = 2^2 - 1$	2 ^N -1	
Quantisation step	$U_q = rac{U_{e,\max}}{2^2 - 1}$	$U_q = rac{U_{e,\max}}{2^N - 1}$	
Shift Thresholds at	$U_{Um} = \frac{1}{2} \cdot \frac{U_{e,\max}}{2^2 - 1} + U_q + \dots + U_q$	$U_{Um} = \frac{1}{2} \cdot \frac{U_{e,\max}}{2^N - 1} + U_q + \dots + U_q$	
Quantisation noise	$\frac{U_{e,max}}{6} = \frac{1}{2} \cdot \frac{U_{e,max}}{2^2 - 1}$	$\frac{1}{2} \cdot \frac{U_{e,\max}}{2^N - 1}$ P. 7-18	

7.1 Components of A/D-Converters Quantisierungsfehler

$$error_{quantisierung} \left| = \frac{\Delta X_{LSB}}{2} = \frac{1}{2} \cdot \frac{X_{max} - X_{min}}{Output Steps} \right|$$
$$= \frac{1}{2} \frac{X_{max} - X_{min}}{2^{N} - 1}$$

 $X_{\rm max}\!-\!X_{\rm min}$: Analog values sector

N: Number of Digits

Signal-Noise-ratio

$$\frac{S}{N} [dB] = 20 \, \text{Ig} \left(\frac{U_{\text{signal,eff}}}{U_{\text{noise,eff}}} \right)$$

$$U_{noise,eff} = \sqrt{\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left(U_{LSB} \frac{t}{T} \right)^2 dt} = \frac{U_{LSB}}{\sqrt{12}}$$

Classification of Analog/Digital-Converters

See: http://groups.uni-paderborn.de/cc/arbeitsgebiete/messtech/simulationen/ad/index.html

7.2 Flash A/D-Converter

7.2 Flash A/D-Converter

Example: Parallel-A/D-Converter with **4-Comparators**

Digital

Number

000

001

010

011

100

Decoder

Output

 $U_{\scriptscriptstyle E}/U_{\scriptscriptstyle ref}$

0

0,25

0,5

0,75

1

Conversion Time dependent on switching speed of the comparators and the coder

- 10⁸ Values/sec
- high expenditure, 8-Bit ADU necessitates 2⁸ 1 comparators! P. 7-19

7.3 Iterative AD-Converter

Counting Procedure \rightarrow Use of D/A-Converter

7.3 Iterative AD-Converter

Incremental Follow-Up-Converter

7.3 Iterative AD-Converter

Digital- Analog-Converter by Pulse Wide Modulation

Basic Coponents

- Digital stream
- RC-low pass filter

Function

- The digital pulses have the same frequency
- The pulse wide ("High"-Duration) is proportional to the output voltage
- The digital pulse stream is low pass filtered
- The analog output voltage of the low pass filter is proportional to the mean duration of the "High"-level

7.4 A/D-Converter with an Intermediate Quantity

u/f-Converter

u/t-Converter

7.4 A/D-Converter with an Intermediate Quantity

7.4 A/D-Converter with an Intermediate Quantity

u/f- Sawtooth-Converter

 $t_1 < t < t_x$

$$U_a(t) = U_o - \frac{1}{C} \int_{t_1}^{t_x} \frac{U_x}{R} dt = U_o - \frac{1}{RC} \int_{t_1}^{t_x} U_x dt$$

If $U_{\rm a}$ reaches $U_{\rm r} \rightarrow$ the relais is closed during $T_{\rm a}$

The capacitance is discharged during the constant time $T_{\rm a}$

$$f_x = \frac{1}{(t_x - t_1) + T_a}$$

The frequency of occurence of the pulses is dependent on the Integration time (t_x-t_1)

- Relative slow, sampling time can be until 2n / f_{ref} long
- Sensitive to noise-peaks

7.4 A/D-Converter with an Intermediate Quantity u/f- Converter by the charge balancing method

- I_0 : Constant current source
- $t < t_0$
- u_x is integrated Integration time is dependent on u_x

mono-stable trigger circuit changes ist input during T_a

Integration during T_a (constant time intervall)

 T_g and f_g are the maesure for the voltage U_x

Discharging during current source is connected → Faster conversion

7.4 A/D-Converter with an Intermediate Quantity Dual Slope Voltage-Time -Converter

- First, U_e is integrated during the given Time intervall T_1 , than U_a is desintgrated through Integration of $-U_{ref}$ by 0
- Is U_a =0 reached, the counting is stopped
- The time intervall T1 is well known but independent on $U_{\rm e}$
- The time intervall T_2 of the desintegration is proportional to U_e

7.4 A/D-Converter with an Intermediate Quantity Dual Slope Voltage-Time -Converter

Chair for Measurement and Sensor Technology

7.4 A/D-Converter with an Intermediate Quantity Dual Slope Voltage Time Converter

1 Bit-Sigma-Delta-Modulator (Smoothed Version of the Delta-Modulator)

Possible Realisation

$$U_a > 0$$
 $K = -1$ $I_r = +I_0$
 $U_a \le 0$ $K = +1$ $I_r = -I_0$

 $U_a = -\frac{1}{C} (i_x + i_r) \cdot T_0$

$$U_x = \frac{N_1}{N_2} U_M = \frac{4}{5} \cdot 1 V = 0.8 V$$

Typical: Conversion Time 1 ms Resolution: >16 bit

Prof. Dr.-Ing. O. Kanoun Chair for Measurement and Sensor Technology

P. 7-33

http://www.beis.de/Elektronik/DeltaSigma/DeltaSigma_D.html

Digital Decimation from Bit Stream

Mean Value of the bit stream corresponds to: Input signal overlapped with disturbing signals

The more bit stream pulses are used the more precise is the mean value \rightarrow Oversampling is necessary

1. Ordnung

Sigma-Delta-Converter 2. Order \rightarrow Reducing disturbing signals

Not one after the other!

- \rightarrow Signal band width can be higher
- \rightarrow Clock rate kann be smaller
- \rightarrow Accuracy of the output signal can be higher (less conversion noise)

http://www.beis.de/Elektronik/DeltaSigma/DeltaSigma_D.html

7.5 Sigma-Delta-Converter Structure

Two Disturbations

- Quantisation noise (Digitalisation)
- Conversion Noise (within the Bitstream) dependent on:
 - Order of the Sigma-Delta-Converter
 - Oversampling rate

7.5 Sigma-Delta-Converter Conversion Noise

Typical:

24 Bit, Modulator third order with 64-Times Oversampling (-160 dB Conversion Noise and -147 dB Quantisation Noise)

Disturbing Signal
 Usefull Signal

Second Order

- Disturbing Signal
- Usefull Signal

Lower Frequency Band

- \rightarrow Desired input signals are transmitted
- \rightarrow Disturbing signals are significantly reduced
- → For Modulators of a higher order disturbing signals are even better supressed ("Noise Shaping")

High Frequency

- \rightarrow Signal is supressed
- → Distrubing Effects are amplified ("Alias-Effekt")

7.6 errors by A/D-Converter

Integral Nonlinearity

Overview A/D-Converter

	Flash Converter	Successive Approximation	Dual Slope	Sigma Delta
Main Advantages	Ultra-High Speed when power consumption not primary concern	Medium to high resolution (8 to 16bit), 5Msps and under, low power, small size.	high resolution, low power consumption, good noise performance	High resolution, low to medium speed, digital filter reduces anti-aliasing requirements.
Disadvantages	Metastability, high power consumption, large size, expensive.	Speed limited to ~5Msps. May require anti- aliasing filter.	Slow Conversion rate. High precision external components necessary	Higher order (4th order or higher) - multibit ADC and multibit feedback DAC.
Conversion Time	Ca. 10 ns-100ns Does not change with increased resolution.	Ca. 1 µs-100µs Increases linearly with increased resolution.	Ca. x ms Increases linearly with increased resolution.	Ca. 200 µs-2ms Tradeoff between data output rate and noise free resolution.
Typ. Resolution	4 bit 8 bit	8 bit 18 bit	12 bit 22 bit	16 bit 24 bit More bits?

