Algebra 1, PS2

Wintersemester 2018/19

20. November 2018

Aufgabe 1 (10)

Sei R ein Integritätsbereich. Ein von 0 verschiedenes und nicht invertierbares Element $p \in R$ heißt Primelement, wenn für alle $a,b \in R$ gilt:

$$p \text{ teilt } ab \implies (p \text{ teilt } a) \text{ oder } (p \text{ teilt } b).$$

Zeigen Sie:

- a) Jedes Primelement in R ist irreduzibel.
- b) Ist R ein ZPE-Ring, dann ist jedes irreduzible Element in R ein Primelement.
- c) Sind $p_1, \ldots, p_n \in R$ Primelemente und $q_1, \ldots, q_m \in R$ irreduzible Elemente mit

$$p_1 \cdots p_n = q_1 \cdots q_m,$$

dann ist m = n und es gibt eine Permutation $\pi \in S_n$ sowie invertierbare Elemente $u_1, \ldots, u_n \in R$ mit $q_i = u_i p_{\pi(i)}$ für alle $i = 1, \ldots, n$.

d) R ist genau dann ein ZPE-Ring, wenn jedes von 0 verschiedene und nicht invertierbare Element in R ein Produkt von endlich vielen Primelementen ist.

Aufgabe 2 (10)

Sei K ein Körper. Wir definieren die Funktion gr von $K(x) \setminus \{0\}$ nach \mathbb{Z} durch: Für $p, q \in K[x]$ mit $p \neq 0 \neq q$ sei

$$\operatorname{gr}\left(\frac{p}{q}\right) := \operatorname{gr}(p) - \operatorname{gr}(q).$$

Zeigen Sie, dass diese Funktion wohldefiniert ist. Für alle ganzen Zahlen \boldsymbol{n} sei

$$M_n := \{ f \in K(x) \mid \operatorname{gr}(f) \le n \} \cup \{ 0 \}.$$

Zeigen Sie: M_0 ist ein Unterring von K(x) und für alle ganzen Zahlen n ist M_n ein M_0 -Untermodul von K(x).

Aufgabe 3 (10)

Was ist eine Äquivalenzrelation? Was sind Äquivalenzklassen bezüglich einer Äquivalenzrelation?

Zeigen Sie, dass durch $(a, b) \sim (c, d) :\Leftrightarrow a + d = b + c$ eine Äquivalenzrelation auf $\mathbb{N} \times \mathbb{N}$ definiert wird.

Zeigen Sie, dass jede Äquivalenzklasse genau ein Element von $\{(a,0)|a\in\mathbb{N}\}\cup\{(0,a)|a\in\mathbb{N}\}$ enthält.

Es sei Z die Menge der Äquivalenzklassen bezüglich \sim . Zeigen Sie, dass die Funktion

$$+: Z \times Z \longmapsto Z, (\overline{(a,b)}, \overline{(c,d)}) \longmapsto \overline{(a+c,b+d)}$$

wohldefiniert ist und dass Z mit dieser Addition eine kommutative Gruppe ist.

Sehen Sie einen Zusammenhang zwischen (Z, +) und $(\mathbb{Z}, +)$? Definieren Sie eine Multiplikation \cdot auf Z so, dass Z mit der Addition + und dieser Multiplikation ein kommutativer Ring ist und für alle $a, b \in \mathbb{N}$ gilt: $\overline{(1,0)}$ ist das Einselement und

$$\overline{(a,0)} \cdot \overline{(b,0)} = \overline{(ab,0)}.$$

Gibt es dafür mehrere Möglichkeiten?

Aufgabe 4 (10)

Was ist eine $rationale\ Funktion$ mit Koeffizienten in einem Körper K? Was heißt es, eine rationale Funktion zu kürzen? Kürzen Sie die rationale Funktion

$$\frac{2x^4 + 2x^3 + 7x^2 + 3x + 6}{x^4 + x^3 - 7x^2 - 9x - 18} \in \mathbb{R}(x).$$

Interpretieren Sie diese rationale Funktion als Funktion von einer möglichst großen Teilmenge von \mathbb{R} nach \mathbb{R} .

Was ist die Partialbruchzerlegung einer rationalen Funktion? Berechnen Sie die Partialbruchzerlegung in $\mathbb{Z}_2(x)$ von

$$\frac{x^3}{(x^3+x+1)\cdot(x^2+x+1)^2}.$$