

Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

## Nur noch moduliert? Schnelle IMRT mit Elekta Agility FFF

Frank Lohr, M.D. Vice Chairman University Medical Center Mannheim Germany

## Disclosures: Research/Training Agreements with Elekta, IBA and CRAD



Medizinische Fakultät Mannheim der Universität Heidelberg



Name I Folie 1 I Datum



#### 10J post full neck IMRT







Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



IMRT



|         | Median | Mean  | D30  | D60  | Cranial<br>part | Middle<br>part | Caudal<br>part | Median | Mean  | D30   | D60   | Cranial<br>part | Middle<br>part | Caudal<br>part |
|---------|--------|-------|------|------|-----------------|----------------|----------------|--------|-------|-------|-------|-----------------|----------------|----------------|
| 3DCRT-1 | 2.52   | 3.18  | 3.3  | 2.4  | 5               | <5             | <5             | 41.07  | 36.9  | 46.3  | 38.4  | 47.8            | 45.3           | 25.2           |
| 3DCRT-2 | 3.2    | 7.76  | 8.1  | 2.7  | 22.5            | 4.5            | <4.5           | 25.8   | 22.95 | 27    | 18    | 45              | 42.7           | 36             |
| IMRT-1  | 1.49   | 1.61  | 1.77 | 1.39 | 11              | 5              | 0              | 20.25  | 22.18 | 26.68 | 18.15 | 29              | 26             | 9              |
| IMRT-2  | 14.77  | 16.12 | 17.4 | 13.8 | 13              | 8              | 4              | 23.84  | 23.28 | 27.7  | 21.2  | 26.8            | 18.5           | 13.5           |

T2w: (A) IMRT vs. (B) 3D



#### Haneder et al., SUON, 2012





Medizinische Fakultät Mannheim der Universität Heidelberg



Image Guided, PET-assisted Radiotherapy of Lung Cancer Target Volume Reduction and RT-Optimization for critical Tumor-to-Lung Ratio



#### Measurement setup

#### Fleckenstein et al., submitted

- IBA Matrixx Evolution
- IBA Multicube
- CIRS dynamic platform model 008PL (accuracy 0.05mm)
- VMAT plan generated in Monaco 2.0.3.beta







Name I Folie 1 I Datum

#### Fleckenstein et al., submitted



#### treatment plans by entities/modalities



#### QA for VMAT

#### Boggula et al, submitted

- So far
  - Extended Linac QA according DIN 6847-5
  - Full patient plan verification using EDR2/Gafchromic film and ion cha
  - In vivo dosimetry during patient delivery for prostate cancer

#### <u>Recent additions:</u>

- IBA MatriXX 2D-arry detector for patient plan verification
  - MatriXX Evolution with gantry angle sensor and multicube phantom (Comparison of measurement to TPS)
  - MatriXX Evolution with gantry holder and Compass software (independent TPS using measured fluences)





IBA Multicube



**IBA** Compass



IBA transmision detector

#### off-axis-target test

test 3: MLC and Gantry synchronization

modulated VMAT arc, which delivers dose to a PTV 8 cm from isocenter (16 cm x 1 cm field)







Name I Folie 1 I Datum

#### irregular MLC shaped field



 $\sigma_{\text{Monaco}} = 0.5 \%$ ,  $\sigma_{\text{Geant4}} = 1.3 \%$  on a 2 mm dose grid  $\gamma$  (3 %, 3 mm) in the ROI<sub>10</sub> :

- •97.3 % for film measurement against Monaco
- 99.0 % for film measurement against Geant4 and
- •99.4 % Monaco against Geant4



Medizinische Fakultät Mannheim der Universität Heidelberg



### irregular MLC shaped field



## profiles with initial Monaco<sup>®</sup> head model

MANNHEIM

UNIVERSITÄTSMEDIZIN

profiles with adjusted Monaco<sup>®</sup> head model

#### Fleckenstein et al., submitted

Medizinische Fakultät Mannheim der Universität Heidelberg



Name I Folie 1 I Datum

# Fleckenstein et al., submitted Dose to water – dose to medium conversion



film measurement



setup



1238 - 428 mitr 1.11 100% 87% 87% 87% 60% 50% 87% 27% 27% 27% 1.11 6.00 2.41 1.88 1.11 0.08 -0.88 -1.68 -2.43 11.11 -4.11 -1.81 15.85 +6.42 -1.20 -0.48 -5.20 0.08 -12.00 -8.62 a.m

Monaco dose slice



nerv 

global gamma (3%,3mm)

Name I Folie 1 I Datum

**CT-slice** 



dm-dw corrected gamma (3%,3mm)

Medizinische Fakultät Mannheim der Universität Heidelberg



#### Fleckenstein et al., Z Med Phys, 2013







Medizinische Fakultät Mannheim der Universität Heidelberg



#### Fleckenstein et al., Z Med Phys, 2013

## Monaco<sup>®</sup> vs. Geant4 patient with metallic implants



mean deviation of the organs at risk: (0.7 $\pm$  0.3) % of D<sub>50</sub>(PTV)  $\sigma_{Monaco}$ = 0.4 %,  $\sigma_{Geant4}$ = 1.6 %







#### Lung Tumor boost





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



#### Breast will in a bit be exclusively tangential IMRT





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



#### **Cutaneous Melanoma Metastases**





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



#### VMAT for Reirradiation of Paraspinal Tumors

|                   | 3D-PA        | 3D-Wedge     | IMRT 5B      | IMRT 7B      | VMAT         |
|-------------------|--------------|--------------|--------------|--------------|--------------|
| HI40              | -            | -            | 1.18±0.07    | 1.17±0.06    | 1.14±0.07    |
| СІ                | -            | -            | 1.74±0.32    | 1.85±0.21    | 1.96±0.36    |
| MU                | 240±21       | 553±136      | 844±133      | 877 ±102     | 785±92       |
| Time              | 25±2 sec     | 88±7 sec     | 348±72 sec   | 472±82 sec   | 289±69 sec   |
| <u> </u>          | 0% /         | 0% /         | 82 50+4 56%  | 81 22+4 2704 | 91 29+4 25%  |
| ♥95%PD            | 47.92±9.89%  | 55.33±1.93%  | 02.0914.0070 | 01.2214.0770 | 01.2014.2370 |
| SC <sub>PTV</sub> | 26.11±0.33Gy | 25.98±0.06Gy | 26.91±0.93Gy | 25.67±1.55Gy | 23.54±2.35Gy |



Stieler et al. SUON, 2011



Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



#### **Gastric Cancer**





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg





#### Koeck et al., IJROBP, 2012

### Hodgkin's Disease





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



### **Anal Cancer**





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg







Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg





Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim



#### Static Gantry IMRT



#### VMAT





Name I Folie 1 I Datum



|   | 15 | ٠ |   |   |     |
|---|----|---|---|---|-----|
| 0 | 7  | n | a | 2 | n i |

| 07.09 | 2010      |     |                                |     |               |                |       |           |         |              |               |               |     |     |
|-------|-----------|-----|--------------------------------|-----|---------------|----------------|-------|-----------|---------|--------------|---------------|---------------|-----|-----|
| #     | Patient   | ID1 | Time<br>(beam on +<br>imaging) | Crs | Txd-<br>Field | Mode           | MU    | Wdg<br>MU | Dose    | Wdg-<br>Appl | Comp-<br>FDA* | Block-<br>Oth | V&R | ψo  |
| 100   | Patient A | AAA | 12:47                          | 1   | СТ            | X CT           | 0.0   |           | 0 c6y   |              |               |               | ٧p  | Out |
| 101   | Patient B | BBB | 12:52                          | 1   | 10ROT         | 6X VMAT 104C P | 444.1 | 0.0       | 200 cGy |              |               |               | vf  | Out |
|       | Patient B | BBB | 13:02                          | 7   | σ             | X CT           | 0.0   |           | 0 c6y   |              |               |               | ٧p  | Out |
| 102   | Patient C | CCC | 13:06                          | 7   | 4ROT1         | 6X VMAT 91CP   | 848.1 | 0.0       | 200 cGy |              |               |               | vf  | Out |
|       | Patient C | CCC | 13:13                          | 1   | σ             | X CT           | 0.0   |           | 0 c6y   |              |               |               | ٧p  | Out |
| 103   | Patient D | DDD | 13:23                          | 1   | 2ROT1         | 6X VMAT 192C P | 662.9 | 0.0       | 200 cGy |              |               |               | vf  | Out |
|       | Patient D | DDD | 13:39                          | 1   | σ             | X CT           | 0.0   |           | 0 cGy   |              |               |               | vp  | Out |
| 104   | Patient E | EEE | 13:47                          | 1   | 2ROT1         | 6X VMAT 189C P | 775.3 | 0.0       | 200 cGy |              |               |               | ovf | Out |

27 min. total treatment time, including cone beam CT and imaging.



Figure 5. One hour routine treatment. Patient logistics vs. treatment time (IGRT + VMAT): 50% / 50%. Beam-on times between 2 and 7 minutes.



Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Clinical Commissioning of the new Elekta Agility

#### Dipl.Phys. MSc. Flavia Molina

#### Klinik für Strahlentherapie und Radioonkologie

Universitätsklinikum Mannheim Medizinische Fakultät Mannheim Direktor: Prof.Dr.F.Wenz



Medizinische Fakultät Mannheim der Universität Heidelberg



Name | Folie 1 | Datum

## **Properties of Agility**

| Lamellenzahl            | 160                       |
|-------------------------|---------------------------|
| Leaf width at Isocenter | 5 mm                      |
| Maximum Field size      | 40 x 40 cm <sup>2</sup>   |
| Minimum Field size      | 0,5 x 0,5 cm <sup>2</sup> |
| Maximum Leaf Speed      | 6,5 cm/s                  |
| Diaphragm-Speedt        | 9 cm/s                    |
| Transmission            | < 0,5%                    |
| Interdigitation         | possible                  |





#### Modes of

UMM

UNIVERSITÄTSMEDIZIN MANNHEIM

-





Medizinische Fakultät Mannheim der Universität Heidelberg



#### **MLC Rubicon-System**





Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

#### Leafspeed

- 160 Leaves x 5 mm at Isozentrum, über das gesamte 40x40 Feld.
- Interdigitation and Island Shapes
- Maximum Leafspeed 6.5cm/s





Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

### Transmission

- Leakage < 0,5% over the whole field





Medizinische Fakultät Mannheim der Universität Heidelberg



Name I Folie 1 I Datum

#### **Agility Kommissionierung I**

1 Linac delivered in Mai 2012 Installation june/july 2012 Integrity 3.0 XVI R 4.5 IViewGT Mosaiq 2.4.1

| <ul> <li>Photon Energy</li> </ul> | Elektron Energy: |
|-----------------------------------|------------------|
| 6MV                               | - 6MeV           |
| 10MV                              | - 8 MeV          |
| 18MV                              | - 10 MeV         |
|                                   | - 12 MeV         |
|                                   | - 15 MeV         |

Filter free for Research since Oktober 2012



Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg





#### Elektronen

#### Photonen





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg


# **In- Cross Plane Agility und MLCi2**





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Flattening filter free (FFF) with Monaco 3.3

### F. Stieler, Ph.D. V. Steil, F. Lohr, M.D.





Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

Medizinische Fakultät Mannheim der Universität Heidelberg



Name I Folie 1 I Datum

# FFF Development Work

The FFF pilot sites are Middlesbrough, UK Leeds, UK Mannheim, Germany Leeuwarden, Netherlands

The following sites were a part of the consortium National Physics Laboratory, UK Vienna, Austria Birmingham, UK NKI-AVL, Netherlands Leeds, UK Leeuwarden, Netherlands



Medizinische Fakultät Mannheim der Universität Heidelberg



# Flattening filter free (FFF) mode



\*By courtesy of, Elekta Crawley

UMM UNIVERSITÄTSMEDIZIN MANNHEIM

- FFF increases the dose rate for 6MV ~16 Gy/min, 10 MV ~22 Gy/min
- FFF beams have less variation of off-axis beam hardening
- FFF has less photon head scatter
- FFF has less leakage outside of beam collimation



# FFF Mannheim machine setup

| Photonen (MV)    | FF | FFF |
|------------------|----|-----|
| X06              |    |     |
| X10              |    |     |
| X18              |    | Ø   |
| Elektronen (MeV) |    |     |
| Low 04,06,08     |    |     |
| Mid 10,12,15     |    |     |
| High 18,20,22    | Ø  | Ø   |





Medizinische Fakultät Mannheim der Universität Heidelberg



Name I Folie 1 I Datum

FFF - Clinical application chain

Treatmentplanning Monaco Version 3.3

Linear accelerator Versa HD (Agility, Integrity vers. 3.1, FFF)

OIS System Mosaiq Version 2.5



Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Limitations for Modulation in General

- Gantryspeed
  - Due to patient safety 1 rpm
- Leafspeed
  - Agility MLC ~3 times faster than MLC2i
- Doserate
  - conventional ~ 6 Gy/min

| MLC     | Nr.of<br>leafs | Leaf width<br>isocenter | overtravel | Leaf speed          | Leaf nominal<br>height |
|---------|----------------|-------------------------|------------|---------------------|------------------------|
| Agility | 160            | 0,5 cm                  | 15 cm      | 0-3,5cm/sec         | 9 cm                   |
|         |                |                         |            | *Combined with leaf |                        |
|         | -              |                         |            | guide               |                        |
| MLC2i   | 80             | 1,0 cm                  | 12,5 cm    | 0-2,0 cm/sec.       | 8,2 cm                 |
|         | 1              |                         |            |                     |                        |





# FFF – Basic data for Monaco 3.3, e.g.6 MV







Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# FF / FFF – Validation output factors Monaco 3.3 vers. Measurements 6 /10 MV



# FFF – Validation measured vers. calculated data e.g. 6 MV







PDD: Field size 1.00 are x 1.00 am



PDD: Field size 12.00 cm x 12.00 cm



PDD: Field size 40.00 cm x 40.00 cm





Name I Folie 1 I Datum

### Wang, IJROBP, 2012

## Surface Dose



#### Field Size (cm)

Fig. 1. Relative surface dose  $(D_0/D_{max})$  increases linearly with the field size (~1%/cm<sup>2</sup>) for both 6X and 10X flat and FFF photon beams (error bar = standard deviation). The surface output factors for field sizes  $2 \times 2 \sim 10 \times 10$  cm<sup>2</sup> show 6X FFF > 6X Flat > 10X FFF > 10X Flat, which have zero-field-size surface doses of 22.8%, 16.4%, 15.7%, and 10.2%, respectively. FFF = flattening filter-free.



Medizinische Fakultät Mannheim der Universität Heidelberg



# **Peripheral Dose**



Figure 5. Results of peripheral dose measurements (in the isocentric plane) as a function of the distance from the field edge for the lung SBRT plans with a) 6 and b) 10 MV flattened and unflattened beams. The relative percentage reduction in peripheral dose (dev [U-F]) achieved by using FFF beams when compared to FF beams is indicated in gray in the top part of the figure.

### Kragl et al., Z Med Phys, 2011

Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim



# **Peripheral Dose**

UNIVERSITÄTSMEDIZIN MANNHEIM



Figure 4. Comparison of DVHs for the prostate IMRT case using FF (solid lines) and FFF beams (dashed lines). The plans were normalized in order to result in the same mean dose to the PTV.

### Kragl et al., Z Med Phys, 2011

Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

# Commissioning FFF with Monaco 3.3 and Agility



F. Stieler J. Fleckenstein

> Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

# Larger volume Head & Neck 6MV FFF – IMRT 9 Beams- 2Gy

Gamma 33: 97,95%

Gamma 55: 99,99%

collapsed





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Larger volume Head & Neck 6MV FFF – VMAT 2 Arcs – 2Gy

Gamma 33: 98,99%

Gamma 55: 99,91%

collapsed





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Larger volume Head und Neck – 6&10MV FFF – VMAT 2 Arc – 2Gy

Gamma 33: 99,19%

Gamma 55: 99,98%

collapsed





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Larger volume stomach 6 MV FFF – VMAT 2Arcs – 15Gy

Gamma 33: 99,48%

Gamma 55: 100%

collapsed





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Midsize volume Prostate with integrated boost 10MV FFF – VMAT 2Arcs -2,5Gy

Gamma 33: 99,17%

Gamma 55: 100%

collapsed





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Small volume Brain 1 – 6 MV FFF – IMRT vs VMAT (noncoplanar)

Gamma 33: 99,86% Gamma 55: 100% Kammer: -1.1%





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Flattening filter free (FFF) with Monaco 3.3

# **Preclincal Examples**

F. Stieler, Ph.D. V. Steil, F. Lohr, M.D.





Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

Medizinische Fakultät Mannheim der Universität Heidelberg



Name I Folie 1 I Datum

# Prostate – moderately complex, low fraction dose

| PROSTATE                  | MLCi2<br>Monaco 3.3 | Agility<br>Monaco 3.3 | Agility + FFF<br>Monaco 3.3 |  |  |
|---------------------------|---------------------|-----------------------|-----------------------------|--|--|
| PTV prescription          | mean 60 Gy          | mean 60 Gy            | mean 60 Gy                  |  |  |
| Homogenity index          | 1.09                | 1.09                  | 1.09                        |  |  |
| OAR Rectum, mean dose     | 35.8Gy              | 35.6                  | 35.96 Gy                    |  |  |
| OAR Bladder, mean dose    | 42.3 Gy             | 41.7                  | 40.95 Gy                    |  |  |
| number of fractions       | 30                  | 30                    | 30                          |  |  |
| beam-on time per fraction | 171 sec             | 152 sec               | 156 sec                     |  |  |
| number of MU's delivered  | 789                 | 762                   | 915                         |  |  |
| total number of segments  | 2 Rotations         | 2 Rotations           | 2 Rotations                 |  |  |



Medizinische Fakultät Mannheim der Universität Heidelberg



Name I Folie 1 I Datum

## Dose distribution screenshots, DVH





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Lung - moderately complex, high fraction dose

| LUNG                      | MLCi2<br>Monaco 3.3 | Agility<br>Monaco 3.3 | Agility + FFF<br>Monaco 3.3 |  |  |
|---------------------------|---------------------|-----------------------|-----------------------------|--|--|
| PTV prescription          | 60 Gy               | 60 Gy                 | 60 Gy                       |  |  |
| Homogeneity Index         | 1.09                | 1.09                  | 1.09                        |  |  |
| OAR Lung left, mean dose  | 8.25 Gy             | 8.13 Gy               | 8.35 Gy                     |  |  |
| OAR Lung right, mean dose | 1.80 Gy             | 2.2 Gy                | 2.15 Gy                     |  |  |
| OAR Heart, Mean dose      | 0.18 Gy             | 0.17 Gy               | 0.17 Gy                     |  |  |
| number of fractions       | 5                   | 5                     | 5                           |  |  |
| beam-on time per fraction | 230 sec             | 245 sec               | 130 sec                     |  |  |
| number of MU's delivered  | 2014                | 1997                  | 2281                        |  |  |
| total number of segments  | 1 Rotation          | 1 Rotation            | 1 Rotation                  |  |  |



Medizinische Fakultät Mannheim der Universität Heidelberg



## Dose distribution screenshots, DVH



Name | Folie 1 | Datum



Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsk

# Head & Neck - highly complex, low fraction dose

| Head and neck             | MLCi2<br>Monaco 3.3 | Agility<br>Monaco 3.3 | Agility + FFF<br>Monaco 3.3 |
|---------------------------|---------------------|-----------------------|-----------------------------|
| PTV prescription          | 54 Gy               | 54 Gy                 | 54 Gy                       |
| Homogeneity Index         | 1.12                | 1.14                  | 1.13                        |
| OAR Parotis, mean dose    | 29.79 Gy            | 28.86 Gy              | 30.91 Gy                    |
| OAR Spinal Cord, max dose | 44.33 Gy            | 42.40 Gy              | 44.62 Gy                    |
| OAR Lips, Mean dose       | 27.99 Gy            | 28.01 Gy              | 30.82 Gy                    |
| OAR Brain stem, mean dose | 28.32 Gy            | 26.94 Gy              | 29.46 Gy                    |
| number of fractions       | 30                  | 30                    | 30                          |
| beam-on time per fraction | 293 sec             | 182 sec               | 169 sec                     |
| number of MU's delivered  | 635                 | 633                   | 1123                        |
| total number of segments  | 2 Rotation          | 2 Rotation            | 2 Rotation                  |



Universitätsklinikum Mannheim



## Dose distribution screenshots, DVH





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg







Medizinische Fakultät Mannheim der Universität Heidelberg



Name I Folie 1 I Datum

# Our first FFF treatment 2 metastases 16 Gy each, one fraction





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Our first FFF treatment

#### Plan Information

Studyset ID:
CT3
# of Silces:
163
Pixel Size:
0.07
Scan Orientation:
HFS

Treatment Position:
HEAD IN
HEAD IN<

Setup Information

| Beam | Description | Machine ID      | Energy  | Gantry | Coll. | Couch | Isocen | der 👘  |       | # of  | MU/fx   |
|------|-------------|-----------------|---------|--------|-------|-------|--------|--------|-------|-------|---------|
|      |             |                 |         |        |       |       | х      | Y      | z     | Segs  |         |
| 1    | G12A        | Agily 6MV FFF   | 6 (FFF) | 181.0  | 0.0   | 0.0   | 2.75   | -46.90 | -2.00 | 11    | 296.78  |
| 2    | G10A        | Agity 6MV FFF   | 8 (FFF) | 220.0  | 0.0   | 0.0   | 2.75   | -46.90 | -2.00 | 19    | 522.48  |
| 3    | G11A        | Agility 6MV_FFF | B (FFF) | 288.0  | 0.0   | 0.0   | 2.75   | -46.90 | +2.00 | 21    | 621.86  |
| 4    | G13A        | Agilty 6MV FFF  | 6 (FFF) | 72.0   | 0.0   | 0.0   | 2.75   | -46.90 | -2.00 | 28    | 676.61  |
| 5    | G14A        | Agilty 6MV FFF  | 6 (FFF) | 144.0  | 0.0   | 0.0   | 2.75   | -46.90 | -2.00 | 23    | 491.7   |
| 6    | G15A        | Agility BMV FFF | 6(FFF)  | 30.0   | 0.0   | 90.0  | 2.75   | -46.90 | -2.00 | 22    | 461.5   |
| 7    | G16A        | Agilty_6MV_FFF  | B (FFF) | 70.0   | 0.0   | 90.0  | 2.75   | -46.90 | -2.00 | 24    | 688.53  |
| 8    | G17A        | Agily_6MV_FFF   | 6 (FFF) | 160.0  | 0.0   | 90.0  | 2.75   | -46.90 | -2.00 | 24    | 441.38  |
| 9    | VER3A       | Agilty 6MV Int  | 6       | 0.0    | 0.0   | 0.0   | 2.75   | -46.90 | -2.00 | 0     | 0.00    |
| 10   | Ver4A       | Agility 6MV Int | 6       | 270.0  | 0.0   | 0.0   | 2.75   | -46.90 | -2.00 | 0     | 0.0     |
|      |             |                 |         |        |       |       |        |        |       | 478.5 | 1000.01 |

#### Normalization

Prescription (cGy): 1600.0 # of Fractions: 1 (1,600.00 cGy/fx)

100.00 % of 1600.0 cGy to cover 50.00 % of PTV.1

#### Dose Calculation

-40 14.03.20 --QA --41 15.03.20 -42 18.03.20

| Grid Spacing (cm):               | 0.20                         |          |
|----------------------------------|------------------------------|----------|
| of Calculation Points:           | 5906752                      |          |
| Assigned CTtoED File:            | DICOM3.BrillianceBigC        |          |
| Algorithm:<br>Calculate Dose to: | Monte Carlo Photon<br>Medium |          |
| MC Std Dev per Plan:             | 1.00                         |          |
| Max Dose in Plan (cGy):          | 1674.7                       |          |
| Max Dose Location (cm):          | X = 1.95 Y = -46.90          | Z = 1.40 |
| Delivery Mode:                   | Step & Shoet IMRT            |          |

### Whole procedure Incl.CBCT and verification 19 min. treatment time (beam on) 7 min.

|       |        | Total: |         | 172    | 4      | 200.96 | n / Field                                |                                          |         | Notes                          | Sts     | By          | Rx:         | GH    |                    |                            | Rx.    | Finze         | ait               |           |
|-------|--------|--------|---------|--------|--------|--------|------------------------------------------|------------------------------------------|---------|--------------------------------|---------|-------------|-------------|-------|--------------------|----------------------------|--------|---------------|-------------------|-----------|
|       |        |        | -       |        |        |        | Meterset                                 | Dose                                     | Machine | TSPEDC                         | 0.3     | 157         | Fx          | FD    | Dlv                | Cum                        | Fx     | FD            | Dlv               | Curr      |
|       |        |        |         |        |        |        | Weterbet                                 | 2000                                     | LB3     | 101100                         |         |             | 110         |       | Biy                | - Odin                     |        |               | 5.9               | oun       |
|       |        |        |         |        |        |        |                                          |                                          | 1.83    |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | 183     |                                | -       |             | -           |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | 1.84    |                                |         | -           | -           |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | 184     |                                |         | -           | _           |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | 1.84    | Т                              | -       |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB4     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB4     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB4     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB3     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB2     |                                |         |             | 1           |       | 300 cGy            | 300 cGy                    |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB2     |                                |         |             |             |       |                    |                            |        |               |                   |           |
|       |        |        |         |        |        |        |                                          |                                          | LB2     |                                |         |             | 2           | 1     | 300 cGy            | 600 cGy                    |        |               |                   |           |
| 18:   | 02 2   | 2Flds  |         | _      |        |        |                                          |                                          | LB2     |                                |         |             |             | _     |                    |                            |        |               |                   |           |
| 10:   | 54   ź | 2⊢lds  | _       | _      |        |        |                                          |                                          | LB2     |                                |         |             | 3           | 2     | 300 cGy            | 900 cGy                    |        |               |                   |           |
| 14:   | 18 2   | 2⊢lds  | _       | _      |        |        |                                          |                                          | LB2     |                                | -       |             | 4           | 5     | 300 cGy            | 1.200 cGy                  |        | $\vdash$      |                   |           |
| 14:   | 59 2   | 2Flds  |         |        |        |        |                                          | a da | LB2     |                                |         |             | 5           | 6     | 300 cGv            | 1.500 cGy                  |        |               |                   |           |
| 11.   | 22 4   | Flds   | ittit 3 | tit i  | abatat | 111    | a ha | akkkak                                   | LB2     | <u>er er er boter er boter</u> | 2122122 | i chathaile | i di kitiki | nabit | <u>ikibakikiki</u> | <u>tertertertortertert</u> | 1      | <u>tititi</u> | 1.600 cGy         | 1.600 cGy |
| 11:   | 22 0   | 1      |         | 1111   |        | CI     | 0.0.11                                   |                                          | LB2     |                                |         | AZ          |             |       |                    |                            |        |               |                   |           |
| 11:   | 23     | VER4   | 1       | iiii i |        |        | 2,0 MU                                   |                                          | LB2     |                                | 1       | AZ          |             |       |                    |                            |        |               | 10100100100100100 |           |
| 11:   | 24     | VER3   | 1       |        |        |        | 2,0 MU                                   | 000 0                                    | LB2     |                                | 1       | AZ          |             |       |                    |                            | 10.001 |               | 000 0             |           |
| 11:   | 34 0   | 21ZA   |         |        |        |        | 2609,6 MU                                | 800 cGy                                  | LB2     |                                |         | AZ          |             |       |                    |                            |        |               | 800 cGy           |           |
| 11    |        | ALIA   | -1163   | 41161  |        |        | 1591,5 MU                                | duu cGy                                  | LD2     |                                | ALC: N  | AZ          |             | 0     | 200 - 0            | 4.000 - 0                  | HOLL   | -000          | ouu cuy           |           |
| 1:    | 44 2   |        |         | -      |        |        |                                          |                                          | LB2     |                                | -       |             | 6           | 8     | 300 cGy            | 1.800 CGy                  |        | +             |                   |           |
| 92    | 40     |        | -       | -      |        |        |                                          |                                          | LD2     |                                | -       |             | 7           | 0     | 200 - 00           | 0.100 - 01                 |        | $\vdash$      |                   |           |
|       | 44 2   |        |         | _      |        |        |                                          |                                          |         |                                |         |             |             | 9     | 300 CGV            | 2.100 CGy                  |        |               |                   |           |
| o 1 i | 44 2   | rius   |         |        |        |        |                                          |                                          | LOZ     |                                |         |             | ő           | 12    | 300 CGY            | 2:400 CGy                  |        |               |                   |           |



Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# First Lung hypofractionated FFF treatment Fraction dose 12 Gy









Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# First Lung hypofractionated FFF treatment Fraction dose 12 Gy

Scan Orientation: HFS

Plan Information

Pixel Size: 0.12

Studyset ID: CT1

HEAD IN Treatment Position:

# of Slices:

88

Setup Information

| Scan F | Reference Coordi | nates (cm):      | No Sc    | an Reference | Point h | has been | selected |           |        |      |         |
|--------|------------------|------------------|----------|--------------|---------|----------|----------|-----------|--------|------|---------|
| Beam   | Description      | Machine ID       | Energy   | Gantry       | Coll.   | Couch    | Isocen   | Isocenter |        |      | MU/fx   |
| #      |                  |                  |          |              |         |          | x        | Y         | z      | Segs |         |
| 1      | G1               | Agility_10MV_FFF | 10 (FFF) | 190.0        | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 4    | 325.68  |
| 2      | G8               | Agility 10MV FFF | 10 (FFF) | 220.0        | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 4    | 286.03  |
| 3      | G5               | Agility 10MV FFF | 10 (FFF) | 295.0        | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 4    | 253.22  |
| 4      | G2               | Agility_10MV_FFF | 10 (FFF) | 335.0        | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 4    | 236.79  |
| 5      | 67               | Agility_10MV_FFF | 10 (FFF) | 0.0          | 0.0     | 0.0      | 10.06    | -2.10     | -1,85  | - 4  | 280.43  |
| 6      | G3               | Agility_10MV_FFF | 10 (FFF) | 30.0         | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 4    | 237.69  |
| 7      | G4               | Agility_10MV_FFF | 10 (FFF) | 80.0         | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 4    | 341.93  |
| 8      | G6               | Agility_10MV_FFF | 10 (FFF) | 140.0        | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 4    | 298.01  |
| 9      | VER1             | Agility_6MV_Int  | 6        | 0.0          | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 0    | 0.00    |
| 10     | VER2             | Agility_6MV_Int  | 6        | 90.0         | 0.0     | 0.0      | 10.06    | -2.10     | -1.85  | 0    | 0.00    |
|        |                  |                  |          |              |         |          |          |           | Total: | 32   | 2259.77 |

#### Normalization

Prescription (cGy): 6000.0 # of Fractions: 5 (1,200.00 cGy/fx)

| E-BRad Rx: Lungenmetastase FFF - IMRT Plan - Xrays Dose: 6.000 cGy @ 1.200 cGy |            | A 26.3.2013 SM  |
|--------------------------------------------------------------------------------|------------|-----------------|
| Site Setup                                                                     |            | AE 22.3.2013 KS |
| ⊟- 👝 Treatment Fields                                                          |            |                 |
| G1 - 190° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points                       | 26.03.2013 | A 26.3.2013 SM  |
| G8 - 220° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points                       | 26.03.2013 | A 26.3.2013 SM  |
| G5 - 295° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points                       | 26.03.2013 | A 26.3.2013 SM  |
| G2 - 335° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points                       | 26.03.2013 | A 26.3.2013 SM  |
| G7 - 0° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points                         | 26.03.2013 | A 26.3.2013 SM  |
| G3 - 30° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points                        | 26.03.2013 | A 26.3.2013 SM  |
| G4 - 80° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points                        | 26.03.2013 | A 26.3.2013 SM  |
| G6 - 140° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points                       | 26.03.2013 | A 26.3.2013 SM  |
| VER1 - 0° Lunge ABC FFF - 6 X MLC                                              | 26.03.2013 | A 26.3.2013 SM  |
| VER2 - 90° Lunge ABC FFF - 6 X MLC                                             | 26.03.2013 | A 26.3.2013 SM  |
| CT1 - FFF - CT                                                                 |            | A 25.3.2013 KH  |

| <b>62 26 03 2</b>  | 2013 11 46 11Fld |   | 1PI      | <b>B</b> 2    | 1         | 1 200 cGy   1 200 cG |
|--------------------|------------------|---|----------|---------------|-----------|----------------------|
|                    | 11:46 CT1        |   | CT       | LB2           | + Sv/Sv   |                      |
|                    | 11:53 VER2       | 1 | 2,0 MU   | LB2           | ^ Sv      |                      |
|                    | 11:54 VER1       | 2 | 4,0 MU   | LB2           | ^ + Sv    |                      |
|                    | 12:01 EPID       | 2 | 10,1 MU  | LB2           | ^ + Sv/Sv |                      |
|                    | 12:05 G7         | 1 | 280,4 MU | J 150 cGy LB2 | ^ Sv      | 150 cGy              |
| here - energy here | 12:06 G3         | 1 | 237,7 ML | J 150 cGy LB2 | * Sv      | 150 cGy              |
|                    | 12:07 G4         | 1 | 341,9 MU | J 150 cGy LB2 | ^ Sv      | 150 cGy              |
|                    | 12:08 G6         | 1 | 298,0 ML | J 150 cGy LB2 | * Sv      | 150 cGy              |
|                    | 12:10 G1         | 1 | 325,7 MU | J 150 cGy LB2 | ^ Sv      | 150 cGy              |
|                    | 12:11 G8         | 1 | 286,0 ML | J 150 cGy LB2 | * Sv      | 150 cGy              |
|                    | 12:12 G5         | 1 | 253,3 MU | J 150 cGy LB2 | ^ Sv      | 150 cGy              |
|                    | 12:13 G2         | 1 | 236,8 ML | J 150 cGy LB2 | ^ Sv      | 150 cGy              |



Name | Folie 1 | Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



26.03.2013 A 26.3.2013 SM

Universitätsklinikum Mannheim

### Whole procedure incl. CBCT and verification 30 min. treatment time (beam on) 8 min.

# **Breath Hold / Gating**



Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

# Clinical Setup: 1. Flow-Based Breath Hold Triggering





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Clinical Setup: 2. Surface-based Surveillance





Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg



# Clinical Setup: 3. Direct Liver Tracking







Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg






Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

Name I Folie 1 I Datum

### Ansatz kV+MV-Rekonstruktion

#### kV





http://www.elekta.com/healthcare\_international\_beaumont\_work\_results\_breakthrough.php

Name | Folie 1 | Datum



Medizinische Fakultät Mannheim der Universität Heidelberg



# kV-MV imaging workflow

Workflow Automation for ultrafast Kilovoltage Megavoltage Cone Beam CT

Blessing et al., ESTRO, 2013

Physics 1: Imaging in radiotherapy: Technical developments. 20/04/13, 10:30 to 11:30.





<u>Table 1</u>

| workflow                         | duration (manual)                       | duration (automated)               |
|----------------------------------|-----------------------------------------|------------------------------------|
| prepare Linac for kV-MV mode     | $\sim 1/2$ hour (connect hardware box,  | ~1 sec (turn key switch)           |
|                                  | detector control board)                 |                                    |
| Login kV and MV service mode     | ~10 sec                                 | ~10 sec                            |
| prepare XVI for Volume imaging   | ~10 sec                                 | ~10 sec                            |
| logout, login MV                 | ~10 sec                                 | ~10 sec                            |
| load MV beam                     | ~10 sec                                 | ~10 sec                            |
| set relevant Linac parameters I  | ~30 sec (manual changes in MV           | ~1 sec (in-house software waits    |
|                                  | service mode )                          | for confirmation, press enter)     |
| start and interrupt MV beam      | ~10 sec                                 | ~5 sec                             |
| set relevant Linac parameters II | ~30 sec (manual changes in MV           | ~1 sec (in-house software waits    |
|                                  | service mode )                          | for confirmation, press enter)     |
| start kV                         | ~10 sec                                 | ~1 sec                             |
| start MV                         | ~10 sec                                 | ~1 sec                             |
| rotate Gantry, start MV readout  | ~10 sec                                 | ~15 sec                            |
| angle mapping                    | ~10 min (analyse images, find           | 0 sec (software output: angle list |
|                                  | initial projection)                     | for MV projection)                 |
| reconstruction                   | ~10 sec                                 | ~10 sec                            |
| total:                           | roughly 10 min<br>+1/2 hour preparation | roughly 1 min                      |

## Dose Rate effects in Photon and Particle treatments - Are high dose rates problematic?



Medizinische Fakultät Mannheim der Universität Heidelberg



Universitätsklinikum Mannheim

Name I Folie 1 I Datum

#### Dose Rate? Pulse Rate??? Dose per Pulse????



Figure 1. Schematic illustrating the different dose-per-pulse and pulse repetition frequencies of the x-ray fields used in this study.

King et al., PMB, 2013



Medizinische Fakultät Mannheim der Universität Heidelberg

#### **Negative Studies**

Michaels, Rad Res, 1978(OER, field emitting device)Ling, IJROBP, 1985(OER)Steel et al., 1990(cell lines, 0,25-90 cGy/min)"There was little evidence of a dose-rate effect above 2 cGy/min

Name I Folie 1 I Datum

but significant sparing was seen at lower dose rates"

Zackrisson, Acta Oncol, 1991 Soerensen, R&O, 2011 Verbakel, Acta Oncol, 2013 King, PMB, 2013 (cell lines, HDR e-, 24000Gy/min) (cell lines, diff. DR/pulse) (cell lines, moving strip) (cell lines, mesh buildup)

Reviews bei Ling, R&O, 2010 Wilson, Br J Radiol, 2012 (Oxygen depletion)



Medizinische Fakultät Mannheim der Universität Heidelberg Universitätsklinikum Mannheim



#### **Negative Studies**

Figure 4. Cell survival plots following exposure to flat 6 MV radiation fields with different average or instantaneous dose-rates for (a) DU145 and (b) H460 cell lines. Error bars represent  $\pm$  standard error of each data set. Lines represent the results of linear–quadratic fits to the data.

Table 2. Results of linear-quadratic curve fitting analysis (with ± standard error of the mean) for cells exposed to different average or instantaneous dose-rates.

| Treatment modality                                                                                     | DU145                                                                                      |                                                                                            | H460                                                                                 |                                                                                |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| (MU dose-rate)                                                                                         | α                                                                                          | β                                                                                          | α                                                                                    | β                                                                              |
| 6X (400 MU min <sup>-1</sup> )<br>6FFF (400 MU min <sup>-1</sup> )<br>6FFF(1400 MU min <sup>-1</sup> ) | $\begin{array}{c} 0.09 \ \pm \ 0.03 \\ 0.14 \ \pm \ 0.13 \\ 0.14 \ \pm \ 0.15 \end{array}$ | $\begin{array}{c} 0.03 \ \pm \ 0.01 \\ 0.03 \ \pm \ 0.02 \\ 0.03 \ \pm \ 0.06 \end{array}$ | $\begin{array}{c} 0.24  \pm  0.19 \\ 0.21  \pm  0.11 \\ 0.21  \pm  0.16 \end{array}$ | $\begin{array}{c} 0.06 \pm 0.03 \\ 0.07 \pm 0.02 \\ 0.07 \pm 0.03 \end{array}$ |

#### King et al., PMB, 2013





#### **Positive Studies**

Lohse, R&O, 2011



**Fig. 4.** Surviving fraction of T98G-glioblastoma cells at different dose rates. For 24 Gy/min, the *T*-LQ-model can fit the experimental data with  $\alpha = 0.03 \text{ Gy}^{-1}$ ,  $\beta = 0.04 \text{ Gy}^{-2}$  and  $\gamma = 0.556 \text{ min}^{-1}$ ; for 4 Gy/min,  $\gamma$  has to be adapted to 0.361 min<sup>-1</sup> and for *R* = 0.2 Gy/min, a good fit can only be achieved by adapting the kinetic constant to  $\gamma = 0.0313 \text{ min}^{-1}$ .



Name I Folie 1 I Datum

Medizinische Fakultät Mannheim der Universität Heidelberg







Low dose rates

-> Loss of effect

Intermediate dose rates (covering the spectrum of what is currently possible with FFF Linacs (overall and per pulse) ->No effect

Ultra-high Dose rates (not relevant for photons, possibly for laser pulsed particles) -> Oxygen Depletion



Medizinische Fakultät Mannheim der Universität Heidelberg



#### Courtesy M. Alber/F. Stieler





Medizinische Fakultät Mannheim der Universität Heidelberg

