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Lecture 

„Internal Material Flow“, winter term 2015/16 

 

Exercise: „Reliability and availability“ 

 

Reliability R  is a measure that the establishment within a period of time T extending into 

the future fulfills the required functions trouble-free and correctly under defined conditions.   

The life period 
 
The life period of a product t is the time till its failure. Time can mean precise time units 

(hours, months etc.) but time can also be specified in load changes, switching operations, 

mileage etc. 

 

 
Failure 
 
Failure can occur in two ways: 
 

Sudden failure = sudden changeover to an inoperable state (a tire bursts ...) 

Drift failure = definined end, e.g.   tire reaches 1.6 mm of  profil depth 

 

 

Terms: 

Failure        failure – End of functionality 

Life period        TTF - time to failure 

Average life period          MTTF - mean time to failure (for not repairable parts) 

     MTBF - mean time between failure (for repairable parts) 

Average period of repair   MTTR - mean time to repair 
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Weibull distribution 
 

Any  reliability prediction can only be done by means of approppriate statistical models. The 

most important statistical model is the Weibull distribution. According to parameter b the 

Weibull distribution can be an exponential or a logarithmic normal distribution. 

 

The density funtion of Weibull distribution is: 
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with 

h = Probability density for  time T 

t = Life period variable (route, period of use, load changes etc.) 

T = Characteristic life period in which 63,2% of the units have failed in total 

b = Form parameter, gradient of the best-fit line in the Weibull net 

 

The Weibull distribution is a two-parametric, continuous function. The both parameters are 

the so called Form parameter b and the Location parameter T. As a random variable t is 

usually used instead of x, because the Weibull distribution is often used in connection with 

life periods. Weibull distributions do not fulfill the criteron of being memoryless. Therefore, 

the Weibull distribution is suitable for modeling early and wear-out failures of components. 

The probability that a component failes in the next time interval is often higher with very old 

components than with new ones. Weibull distributions are only defined for positive values of 

t. 
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Quelle: weibull.de 

 
 
 

Interpretation of functions and parameters 

According to the principal use of the Weibull distribution as a life period distribution is in the 

following argued with failures.The form parameter b can be used to model whether early or 

wear-out failures are more frequent. Is b<1 selected, increasingly early failures occur, with 

b>1 increasingly wear-out failures. Is form parameter b=1 selected it follows exactly the 

exponential distribution. The locations parameter can be used to change the average 

life period. But it doesn’t generally specify the average lifer period. 
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Applications 

The dominant application of Weibull distibutions are the life period investigations. The 

distribition function — contextually called failure probability – can quickly be identified 

with a certain net, the Weibull probability net. On this paper the x-axis is scaled 

logarithmically and the y-axis doubly logarithmically. Thus, the distribution function  

has the shape of a straight line.  
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Source: weibull.de 
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The failure rate changes over the life period of many products. The typical  development is 

shown in the so called bath tub curve. 

 
 
 

There are three phases: 
 
 

b < 1 b = 1 b > 1 
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Phase I: Early failures 

 

They come about manufacturing errors; the failure rate decreases for a short term. 

In the lifer period net b < 1 (manufacturing errors, material defects, assembly faults, handling 

errors in the learning phase, „teething problems“ etc.) 

 

Example: 

Soft soldering joints that are “cold joints” because of lack of flux do indeed have contact at 

start (are o.k. in test bay) but break down after a short time (no contact). 

 

Phase II: Randon failures (engaged state) 

 

There is nearly no abrasion; the failure rate is constant. 

In the lifer period net b = 1. The early failures are abated, usual wear parts are replaced at 

regular maintenance, fatigue failures don’t occur, yet, failure events are mainly determined 

by random failures. 

 

 

Example: 

The black-out of a new ran-in vehicle (totaled) only occurs as a consequence of a crash (by 

accident). 

 

Phase III: wear-out failures 

 

It comes about increasing aging wear-out; the failure rate rises again 

In the life period net b > 1 

 

Example: 

Ignition plugs, corrosion damages, wear-out on bearings, rotting of foods and medicine. 
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The exponential distribution (phase II) 
 
It extends in the random area of the bath tub curve (phase II). The failure rate is constant and 

der form factor is b = 1. 

 

 
 
 

 
 
Here applies: 

Failure rate     = 1/T 

Life period     t 

Characteristics of life period   T 

Average life period    t-quer = T = 1/= MTBF = MTTF 

Survivability     R(t) = e -*t 

Failure probability   G(t) = 1 - R(t) 

Failure density   g(t) = * R(t) 

Original totality    N 

Number of still faultless parts  R = N * R(t) 

Number of defect parts   G = N * G(t) = N – R 

 
 
 
 
Example:  
 
500 components of a certain type are tested in a life test. It is known that the life period of 

these components depend on chance, i.e. is exponentially distributed. After 1000 h 5 

components have failed. 
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How many components will survive 25.000 h? 

 

The failure rate of 5/500 in 1000h can be used as an estimation value for the failure rate. 
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How many components will survive 25.000 h? 

 
 
Solution: 
 
 

 
 
 
 
The Weibull distribution (phase I and III) 
 
It applies for areas I and III, because it is not memoryless. It describes the general case 

where the failure rate is not constant but increases or declines over the time. 

 
 

 
 

Failure rate     (t)        

Life period     t 

Characteristics of life period  T 

Survivability     R(t) 

Failure probability   G(t) = 1 - R(t) 

Failure density   g(t) = * R(t) 

Proportionate failure    b 
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Original totality   N 

Number of still faultless parts  R = N * R(t) 

Number of defect parts  G = N * G(t) 

 
1000 gear shifts are built and delivered. The form factor b=2 and the life period are 140.000 

load changes.  How many gear shifts are already destructed after 26.000 load changes G(t)? 

 
 

 
 
G(t) = 1 - R(t) 

G(t) = 1 - e -(t/T)b 

G(t) = 1 - e -(26000/140000)2 

G(t) = 3,39% 

 

G = N * G(26.000) = 1000 * 0,0339 = 34 parts 

 

Result: After 26.000 load changes 34 gear shifts are destructed. In other words: The failure 

probability is G(t) = 3,39%. The average lift period is approx. 14000 load changes. 

 

 

 

/( ) t t MTBFR t e e    

 - Ausfallrate  
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Task 1: 

In a warehouse overload protection devices are need for efficient rackfeeders which switch 

off operation with a make contact and in fact with a MTBF of better than 3000 hours. 

a)  In a test of 50 overload protection devices over 100 hours of an available type 2 of 

them didn’t operate any more. What is the failure rate respectively the MTBF? 
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b) How could one achieve a MTBF of > 3000 hours with the existing overload protection 

devices? 

Parallel curcuit of  two  overload protection devices 

 

c)  What is the MTBF on this measure? 
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Source: DHBW 
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Reliability of the function 
zuv  : 

zuv r

r f

n

n n
 


 

rn - Number of correct functional quality 

fn  - Number of faulty functional quality 

Probability of disfunction respectively functional reliability: 

1unz zuv    oder 
unz f

r f

n

n n
 


 

 

Example: 

After the run-in period of 6 months for a rackfeeder that takes pallets from a roll conveyor at 

a transfer point and stores them in a high bay racking within an investigation of reliability the 

following numbers were recorded: 

Number of correctly executed storing procedures: 12748 

Number of disfunctions: 34 

12748
0,9973 99,73%

12748 34

zuv   


  

1 1 0,9973 0,0027 0,27%unz zuv        
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Availability 

Availability records the relation between the sum of expected failures and the total 

theoretically usable operating time. The random sequence of the states functioning (1) and 

failed (2) can be modeled as Markov Process simplified. 

 

It follows:  1lim ( )
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The availability calculated according to this equation thus characterizes a process that 

extends over a very long time in a state of balance between degradation (due to failures), 

and improving (due to repairs). 

( ) :EE t MTBF Expected value of failure-free operating times (Mean Time Between 

Failures) 

( ) :AE t MTTR  Expected value of downtimes (Mean Time To Repair) 

With 
1
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Task 2: 

A bottling plant runs 5 days a week with 4 hours each day. In the recent years the labelling 

machine failed after aprox. every  200 operating houres by mechanical wear-out. The 

reparair requires 6 hours and can be executed outside normal operating time. 

 

a) What is the availability relating to operationg time when is calculated for the worst case   

with a failure at the start of the daily operating time, i.e. that the plant can’t run the planned 4 

hours at one day? 

 

98,0
4200

200
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b) Assumed that the plant would be serviced every 100 hours (outside scheduled 

operating time) and the wear-out parts would be replaced in order to prevent production 

downtimes. Which availability  could the plant achieve? 

 

MTBF is assumed to 100 h, MTTR to 0 h, because it is outside operating time 

1
0100

100



  

 

c) A repair with replacement of parts costs 1000 €, production downtime in case Fall a) only 

costs 200 €, because only some deliveries have to be rearranged. For case a) the rapair 

after every 200 hours on average has of course to be considered. Would it be worth to 

service the machine regularly after 100 hours? 

 

Case a): every 200 h: Costs of repair + breakdown costs = 1000 + 200 = 1200 € 

Case b): every 100 h: Costs of repair              = 1000 € 

 after 200 h:                = 2000 € 

Conclustion: Every 200 h case b) would be more expensive by 800 € – It’s not worth it! 

 

d) How would the result from c) change when breakdown costs would be 1100 €? 

 

Case a): every 200 h: Costs of repair + breakdown costs = 1000 + 1100 = 2100 €, here 

service would be cheaper! 
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e) When would it be worth to assemble a better labeling machine for 11.000 that needs to be 

serviced only every 1000 hours for 500 €? 

 

Service costs after every 1000 h:               500 € 

Costs case a) after 1000 h:    (1000/200)*1200 = 6000 € 

Savings after every 1000 h:              5500 € 

 

Amortization after (asset cost/savings)*MTBFneu = (11000/5500)*1000 = 2000 h 

 
Source: DHBW 

 

Series connection of elements 

 

If the function of each element is required for the function of a system, then this corresponds 

to in series connection of all system elements. In this case the overall availability is:: 
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Task 3: 

The following system is given: 

 

 

70%ges   All stations have the same availability! 

- What has the single availability to be? 
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Technical throughput: 

Technical throughput results from the „target performance“ divided by overall availability. 

Each element of the systems has to enbable this throughput. 

soll
tech

ges





        soll - required throughput of a plant. 

res tech soll     res - Throughput reserve for the compensation of disfunctions. 

 

 

Task 4: 

tech = 125 St./h;   soll = 100 St./h 

Given is: 10 stations in series connection.  

 

- What is the single availability?  
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If the function of one element is sufficient for the function of a system then this corresponds 

to a parallel arrangement.  

The overall availability is calculated as follows: 
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Task 5: Parallel arrangement (Redundant system!) 

Full redundancy (parallel circuit): Each of these elements can take 100% of the throughput. 

Given is the following system: 

 

 

 

 

 

0,99ges   

 

All elements have the same availability. 

- What is the single availability? 
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Small single availability but huge overall availability! 
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Partial redundancy: 

,tech iP : Portion that the element i  can take from the total throughput, when it is operating 

without disturbance. 

With real redundancy is ,tech iP = 1. 

             .1 , .2 .2 , .1 .1 .2 , .1 , .21 1 1 1 1 1 1 1i i tech i i tech i i i tech i tech iP P P P                     

 

 

 

 

 

Task 6: 

The following system is given: 

 

 

 

 

,3.1 1techP   ,5.1 0,9techP   

,3.2 0,3techP   ,5.2 0,6techP   

soll = 100 St./h 

tech = ? 

Failure probability 
element i.1 multiplied by 
throughput reserve El. i.2 

Failure probability 
Element i.2 multiplied by 
throughput reserve El. i.1 

Failure probability both 
simultaneously 

. x 3.1 1 

3.2 

2 4 5.1 6 

5.2 

0,97 0,95 0,8 0,8 0,8 0,85 

0,3 0,5 
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 3

3

3

3

3

3

1 1 0,8 (1 0,3) (1 0,3) (1 1) (1 0,8) (1 0,3) (1 1 0,3)

1 [0,2 0,7 0,7 0 0,2 0,7 ( 0,3)]

1 [0,14 0 0,14 ( 0,3)]

1 [0,14 0,042]

1 0,182

0,818
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1 1 0,8 (1 0,6) (1 0,5) (1 0,9) (1 0,8) (1 0,5) (1 0,9 0,6)

1 [0,2 0,4 0,5 0,1 0,2 0,5 ( 0,5)]

1 [0,08 0,05 0,1 ( 0,5)]

1 [0,08 0,05 0,05]

1 0,18
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0,97 095 0,818 0,8 0,82 0,85 0,42ges         

soll = 100 pieces/h (given) 
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Assignment with buffer 

 

 

 

 

Buffer is used for bridging faults and acts as a parallel system! 

(1 )p o of      o - upstream side 

A part f  of the malfunction period is covered by the buffer 

2

3
f   with exponential malfunction distribution  (typical malfunction period distribution). 

 

Task 7: 

The following system is given: 

 

 

 

 

 

 

,5.1 0,75techP   ,5.2 0,8techP   

soll = 100 St./h  tech = ? 

     3 1 1 0,8 1 0,8 1 0,8 0,992            
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1 1 0,9 1 0,8 1 0,9 1 0,75 1 0,9 1 0,9 1 0,75 0,8

1 0,1 0,2 0,1 0,25 0,1 0,1 ( 0,55)

1 0,02 0,025 0,0055
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Double acting buffer 

. x 3 1 

3 

2 4 
5 

6 

5 
0,9 0,95 

0,8 

0,97 

0,9 

0,85 

3 

0,8 
0,9 

0,8 

Puffer 
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2

3
f   

(1 )p o of      

 
1,2,3

1,2,3

2
0,9 0,95 0,0992 1 0,9 0,95 0,992

3

0,949

p

p





       



 

    
4,5,6

0,97 0,95 0,85 0,783p  

      
1,2,3 4,5,6

0,949 0,783 0,743ges p p
 





  

100
135 St./h

0,743
soll

tech

ges
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