Grundlagen der Algebra

Sommersemester 2017

Übungsblatt 6

12. Juni 2017

Aufgabe 21. (4 Punkte)

Sei X eine Menge und $R := \mathrm{Abb}(X, \mathbb{R})$ der Ring der Abbildungen $f : X \to \mathbb{R}$ mit punktweiser Addition und Multiplikation:

$$(f+g)(x) := f(x) + g(x),$$

 $(fg)(x) := f(x)g(x).$

- (a) Zeigen Sie, dass $(R, +, \cdot)$ ein kommutativer Ring mit Eins ist.
- (b) Sei $S \subseteq R$ die Teilmenge der beschränkten Funktionen, d. h. f liegt in S, wenn $C \ge 0$ existiert, so dass $|f(x)| \le C$ für alle $x \in X$. Zeigen Sie, dass S ein Unterring von R ist.
- (c) Beschreiben Sie die Einheitengruppen R^{\times} und S^{\times} .
- (d) Sei $I \subseteq R$ die Teilmenge der Funktionen, so dass f(x) = 0 für alle bis auf endlich viele $x \in X$ gilt. Zeigen Sie, dass I ein Ideal in R ist. Für welche X ist I sogar ein Unterring?

Aufgabe 22. (4 Punkte)

Sei X eine Menge und R ein kommutativer Ring mit Eins. Sei $V \subseteq X$ eine Teilmenge und $I(V) \subseteq \text{Abb}(X, R)$ die Menge aller $f: X \to R$, so dass f(x) = 0 für alle $x \in V$ gilt.

- (a) Zeigen Sie, dass I(V) ein Ideal in Abb(X, R) ist.
- (b) Zeigen Sie, dass die Einschränkungsabbildung $\mathrm{Abb}(X,R) \to \mathrm{Abb}(V,R), \ f \mapsto f|_V,$ surjektiv ist.
- (c) Leiten Sie mit Hilfe des Homomorphiesatzes für Ringe einen Isomorphismus

$$Abb(X, R)/I(V) \cong Abb(V, R)$$

her.

Aufgabe 23. (4 Punkte)

- (a) Zeigen Sie, dass es für jeden Ring R genau einen Ringhomomorphismus $\mathbb{Z} \to R$ gibt.
- (b) Gibt es einen Ring T, so dass es für jeden Ring R genau einen Ringhomomorphismus $R \to T$ gibt?
- (c) Bestimmen Sie alle Ringhomomorphismen $f: \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$.
- (d) Sei K ein Körper und R ein Ring, der nicht der Nullring ist. Zeigen Sie, dass jeder Ringhomomorphismus $f: K \to R$ injektiv ist.

Aufgabe 24. (4 Punkte)

Seien R und S Ringe.

- (a) Zeigen Sie, dass $R \times S$ mit komponentenweiser Addition und Multiplikation ein Ring ist.
- (b) Zeigen Sie, dass die beiden Projektionsabbildungen

$$p: R \times S \to R, \quad p(r,s) = r,$$

 $q: R \times S \to S, \quad q(r,s) = s,$

Ringhomomorphismen sind.

- (c) Ist die Inklusionsabbildung $i: R \to R \times S, i(r) = (r, 0)$, ein Ringhomomorphismus?
- (d) Zeigen Sie: Ist T ein weiterer Ring und sind $f:T\to R,\ g:T\to S$ Ringhomomorphismen, dann existiert genau ein Ringhomomorphismus $\varphi:T\to R\times S$ mit $p\circ\varphi=f$ und $q\circ\varphi=g$.

Abgabe: Dieses Blatt wird weder abgegeben noch korrigiert, stattdessen wird ein Lösungsvorschlag auf der Vorlesungswebseite veröffentlicht.

Downloads von Übungsblättern und Informationen zur Vorlesung unter