Röntgen-Pulverdiagramme

Prof. Dr. Martin U. Schmidt

Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Str. 7 60438 Frankfurt am Main m.schmidt@chemie.uni-frankfurt.de Tel.: 069 798 29171

Reflex-Intensität \leftrightarrow **Position der Atome innerhalb der Elementarzelle**

Typisches Röntgenpulverdiagramm einer kristallinen organischen Verbindung

Röntgen-Pulverdiagramme

Reflex-Position:

 $n \cdot \lambda = 2 d \cdot \sin \theta$ (Braggsches Gesetz)

- *n*: Beugungsordnung (i. allg. *n* = 1)
- λ : Wellenlänge (Cu-K α_1 : λ = 1.5406 Å)
- d: Netzebenenabstand
- theta Bragg-Winkel; der beobachtete Beugungswinkel beträgt 2 theta. Einfallswinkel und Ausfallswinkel (zum Lot der Netzebenenschar) alpha betragen jeweils 90° - theta.

Reflex-Intensität:

Intensität: $I = |F|^2$ (F: Strukturfaktor)

$$\boldsymbol{F}_{hkl} = \sum_{n} \boldsymbol{f}_{n} \cdot \boldsymbol{e}^{2\pi i (h \cdot x_{n} + k \cdot y_{n} + l \cdot z_{n})}$$

n: alle Atome

- *f_n*: Atomformfaktor (hängt von der Ordnungszahl des Elementes ab)
- h, k, l: Millersche Indices der Netzebenenschar
- x, y, z: fraktionelle Koordinaten (d.h. Position) aller Atome

Alle Reflexe hängen von allen Atomen ab.

Eine Zuordnung einzelner Reflexe zu einzelnen Atomen oder Atomgruppen ist nicht möglich!

Hauptanwendungen der Röntgen-Pulverdiffraktometrie

Bestimmung von Kristallstrukturen aus Röntgenpulverdiagrammen

1. Indizierung:

- Reflexpositionen \longrightarrow Gitterkonstanten (*a*, *b*, *c*, α , β , γ)

2. Strukturlösung:

- Diverse Verfahren (ähnlich wie bei Einkristallstrukturanalyse)
- für organische Verbindungen am besten Realraumverfahren (Programm DASH):
 - Molekül in der Elementarzelle verschieben, rotieren, und die intramolekularen Freiheitsgrade ändern
 - bei jedem Schritt das Pulverdiagramm berechnen solange bis berechnetes und exp. Pulverdiagramm ähnlich sind.

3. Rietveldverfeinerung:

Genaues Anpassen der Struktur an das gemessene Pulverdiagramm

Bestimmung von Kristallstrukturen aus Röntgenpulverdiagrammen durch Kristallstrukturvorhersage

Pigment Yellow 14 Kommerzielles Gelbpigment für Druckfarben

- STOE STADI-P Labor-Diffraktometer
- Transmission (Kapillare)
- Primärmonochromator
- Cu-Kα₁-Strahlung
- Inearer ortsempfindl. Detektor
- Messung über Nacht

Indizierunga = 8.209 Å $\alpha = 112.59^{\circ}$ b = 9.328 Å $\beta = 98.23^{\circ}$ c = 11.773 Å $\gamma = 105.07^{\circ}$ Mögliche Raumgruppen:
P 1 oder P 1, Z = 1

- STOE STADI-P Labor-Diffraktometer
- Transmission (Kapillare)
- Primärmonochromator
- Cu-Kα₁-Strahlung
- Inearer ortsempfindl. Detektor
- Messung über Nacht

α =112.59°

γ =105.07°

- STOE STADI-P Labor-Diffraktometer
- Transmission (Kapillare)
- Primärmonochromator
- Cu-Kα₁-Strahlung
- linearer ortsempfindl. Detektor
- Messung über Nacht

- STOE STADI-P Labor-Diffraktometer
- Transmission (Kapillare)
- Primärmonochromator
- Cu-Kα₁-Strahlung
- linearer ortsempfindl. Detektor
- Messung über Nacht

- STOE STADI-P Labor-Diffraktometer
- Transmission (Kapillare)
- Primärmonochromator
- Cu-Kα₁-Strahlung
- linearer ortsempfindl. Detektor
- Messung über Nacht

Rietveld-Verfeinerung

 $R_p = 8.53 \%$, $R_{wp} = 12.87 \%$, $R_{F^2} = 17.60\%$, $\chi^2 = 3.3$

Kristallstruktur von Pigment Yellow 14

Verfeinerte Kristallstruktur

[M. U. Schmidt, R. E. Dinnebier, H. Kalkhof, J. Phys. Chem. B 111, 9722-9732 (2007)]

Lösung der Kristallstruktur aus einem nicht indizierbaren Pulverdiagramm

Lösung der Kristallstruktur aus einem nicht indizierbaren Pulverdiagramm

Prinzipielle Kristallstruktur (EZ, Anordnung der Moleküle)

Struktur – Wirkungs - Beziehungen

Crystal Engineering

Molekülgeometrie (Bindungslängen, Bindungswinkel)

Lösung der Kristallstruktur

Lösung der Kristallstruktur

Bestätigung der Strukturlösung

Kristallstruktur

[M.U. Schmidt, R.E. Dinnebier, M. Ermrich, Acta Cryst. B 61, 37-45 (2005)]