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Abstract—Solving linear inverse problems plays a crucial role
in numerous applications. Algorithm unfolding based, model-
aware data-driven approaches have gained significant attention
for effectively addressing these problems. Learned iterative soft-
thresholding algorithm (LISTA) and alternating direction method
of multipliers compressive sensing network (ADMM-CSNet) are
two widely used such approaches, based on ISTA and ADMM
algorithms, respectively. In this work, we study optimization
guarantees, i.e., achieving near-zero training loss with the in-
crease in the number of learning epochs, for finite-layer unfolded
networks such as LISTA and ADMM-CSNet with smooth soft-
thresholding in an over-parameterized (OP) regime. We achieve
this by leveraging a modified version of the Polyak-f.ojasiewicz,
denoted PL™, condition. Satisfying the PL* condition within a
specific region of the loss landscape ensures the existence of a
global minimum and exponential convergence from initialization
using gradient descent based methods. Hence, we provide condi-
tions, in terms of the network width and the number of training
samples, on these unfolded networks for the PL* condition to
hold. We achieve this by deriving the Hessian spectral norm
of these networks. Additionally, we show that the threshold on
the number of training samples increases with the increase in
the network width. Furthermore, we compare the threshold on
training samples of unfolded networks with that of a standard
fully-connected feed-forward network (FFNN) with smooth soft-
thresholding non-linearity. We prove that unfolded networks have
a higher threshold value than FFNN. Consequently, one can
expect a better expected error for unfolded networks than FFNN.

Index Terms—Optimization Guarantees, Algorithm Unfolding,
LISTA, ADMM-CSNet, Polyak-L.ojasiewicz condition

I. INTRODUCTION

INEAR inverse problems are fundamental in many en-

gineering and science applications [1]], [2], where the
aim is to recover a vector of interest or target vector from
an observation vector. Existing approaches to address these
problems can be categorized into two types; model-based and
data-driven. Model-based approaches use mathematical for-
mulations that represent knowledge of the underlying model,
which connects observation and target information. These
approaches are simple, computationally efficient, and require
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accurate model knowledge for good performance [3], [4]. In
data-driven approaches, a machine learning (ML) model, e.g.,
a neural network, with a training dataset, i.e., a supervised
setting, is generally considered. Initially, the model is trained
by minimizing a certain loss function. Then, the trained model
is used on unseen test data. Unlike model-based methods, data-
driven approaches do not require underlying model knowledge.
However, they require a large amount of data and huge
computational resources while training [3]], [4].

By utilizing both domains’ knowledge, i.e., the mathemati-
cal formulation of the model and ML ability, a new approach,
called model-aware data-driven, has been introduced [5], [6]].
This approach involves the construction of a neural network
architecture based on an iterative algorithm, which solves the
optimization problem associated with the given model. This
process is called algorithm unrolling or unfolding [6]]. It has
been observed that the performance, in terms of accurate
recovery of the target vector, training data requirements,
and computational complexity, of model-aware data-driven
networks is better when compared with existing techniques
[5], [7]]. Learned iterative soft-thresholding algorithm (LISTA)
and alternating direction method of multipliers compressive
sensing network (ADMM-CSNet) are two popular unfolded
networks that have been used in many applications such as
image compressive sensing [7/[], image deblurring [_8], image
super-resolution [9], super-resolution microscopy [10], clutter
suppression in ultrasound [[11]], power system state estimation
[12], and many more.

Nevertheless, the theoretical studies supporting these un-
folded networks remain to be established. There exist a few
theoretical studies that address the challenges of generalization
[13]-[15] and convergence rate [16]—[18]] in unfolded net-
works. For instance, in [13|], the authors showed that unfolded
networks exhibit higher generalization capability compared
with standard ReLU networks by deriving an upper bound
on the generalization and estimation errors. In [[16]-[18] the
authors examined the LISTA network convergence to the
ground truth as the number of layers increases i.e., layer-wise
convergence (which is analogous to iteration-wise convergence
in the ISTA algorithm). Furthermore, in [|16[|[|18]], the network
weights are not learned but are calculated in an analytical
way (by solving a data-free optimization problem). Thus, the
network only learns a few parameters, like threshold, step size,
etc., from the available data. In this work, we study guarantees
to achieve near-zero training loss with an increase in the num-
ber of learning epochs, i.e., optimization guarantees, by using
gradient descent (GD) for both LISTA and ADMM-CSNet
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Fig. 1: Double descent risk curve.

with smooth activation in an over-parameterized regime. Note
that, our work differs from [[16]—[18], as we focus on the
convergence of training loss with the increase in the number
of epochs by fixing the number of layers in the network.

In classical ML theory, we aim to minimize the expected/test
risk by finding a balance between under-fitting and over-fitting,
i.e., achieving the bottom of the classical U-shaped test risk
curve [19]. However, modern ML results establish that large
models that try to fit train data exactly, i.e., interpolate, often
show high test accuracy even in the presence of noise [20]-
[25]. Recently, ML practitioners proposed a way to numer-
ically justify the relationship between classical and modern
ML practices. They achieved this by proposing a performance
curve called the double-descent test risk curve [20], [21]],
[23]], [24]], which is depicted in Fig. This curve shows
that increasing the model capacity (e.g., model parameters)
until interpolation results in the classical U-shaped risk curve;
further increasing it beyond the interpolation point reduces the
test risk. Thus, understanding the conditions — as a function
of the training data — that allow perfect data fitting is crucial.

Neural networks can be generally categorized into under-
parameterized (UP) and over-parameterized (OP), based on
the number of trainable parameters and the number of training
data samples. If the number of trainable parameters is less than
the number of training samples, then the network is referred
to as an UP model, else, referred to as an OP model. The
loss landscape of both UP and OP models is generally non-
convex. However, OP networks satisfy essential non-convexity
[26]. Particularly, the loss landscape of an OP model has a non-
isolated manifold of global minima with non-convexity around
any small neighborhood of a global minimum. Despite being
highly non-convex, GD based methods work well for training
OP networks [27]-[30]. Recently, in [26], [31]], the authors
provided a theoretical justification for this. Specifically, they
proved that the loss landscape, corresponding to the squared
loss function, of a typical smooth OP model holds the modified
version of the Polyak-L.ojasiewicz condition, denoted PL*, on
most of the parameter space. Indeed, a necessary (but not
sufficient) condition to satisfy the PL* is that the model should
be in OP regime. Satisfying PL* on a region in the parameter
space guarantees the existence of a global minimum in that
region, and exponential convergence to the global minimum
from the Gaussian initialization using simple GD.

Motivated by the aforementioned PL*-based mathematical
framework of OP networks, in this paper, we analyze optimiza-
tion guarantees of finite-layer OP based unfolded ISTA and
ADMM networks. Moreover, as the analysis of PL* depends
on the double derivative of the model [26], we consider
a smooth version of the soft-thresholding as an activation
function. The major contributions of the paper are summarized
as follows:

o As the linear inverse problem aims to recover a vector, we
initially extend the gradient-based optimization analysis
of the OP model with a scalar output, proposed in [26],
to a vector output. In the process, we prove that a
necessary condition to satisfy PL* is P > mT, where
P denotes the number of parameters, m is the dimension
of the model output vector, and 7" denotes the number of
training samples.

o In [26]], [31]], the authors provided a condition on the
width of a fully-connected feed-forward neural network
(FFNN) with scalar output to satisfy the PL* condition
by utilizing the Hessian spectral norm of the network.
Motivated by this work, we derive the Hessian spectral
norm of finite-layer LISTA and ADMM-CSNet with
smoothed soft-thresholding non-linearity. We show that
the norm is on the order of €2 (1/y/m), where m denotes
the width of the network which is equal to the target
vector dimension.

« By employing the Hessian spectral norm, we derive
necessary conditions on both m and 7T to satisfy the PL*
condition for both LISTA and ADMM-CSNet. Moreover,
we demonstrate that the threshold on 7', which denotes
the maximum number of training samples that a network
can memorize, increases as the network width increases.

« We compare the threshold on the number of training sam-
ples of LISTA and ADMM-CSNet with that of FFNN,
solving a given linear inverse problem. Our findings show
that LISTA/ADMM-CSNet exhibits a higher threshold
value than FFNN. Specifically, we demonstrate this by
proving that the upper bound on the minimum eigenvalue
of the tangent kernel matrix at initialization is high for
LISTA/ADMM-CSNet compared to FFNN. This implies
that, with fixed network parameters, the unfolded network
is capable of memorizing a larger number of training
samples compared to FFNN. Therefore, we should expect
to obtain a better expected error (which is upper bounded
by the sum of generalization and training error [32]) for
unfolded networks than FFNN.

« Additionally, we numerically evaluate the parameter effi-
ciency of unfolded networks in comparison to FFNNs. In
particular, we demonstrate that FFNNs require a higher
number of parameters to achieve near-zero empirical
training loss compared to LISTA/ADMM-CSNet for a
given fixed 7" value.

QOutline: The paper is organized as follows: Section II
presents a comprehensive discussion on LISTA and ADMM-
CSNet, and also formulates the problem. Section III extends
the PL*-based optimization guarantees of an OP model with
scalar output to a model with multiple outputs. Section IV



begins by deriving the Hessian spectral norm of the unfolded
networks. Then, it provides conditions on the network width
and on the number of training samples to satisfy the PL*
condition. Further, it also establishes a comparative analysis
of the threshold for the number of training samples among
LISTA, ADMM-CSNet, and FFNN. Section V discusses the
experimental results and Section VI draws conclusions.

Notations: The following notations are used throughout the
paper. The set of real numbers is denoted by R. We use bold
lowercase letters, e.g., y, for vectors, capital letters, e.g., W,
for matrices, and bold capital letters, e.g., H, for tensors.
Symbols ||z||1, ||z||, and ||z||s denote the I;-norm, l3-norm,
and [,-norm of z, respectively. The spectral norm and Frobe-
nius norm of a matrix W are written as ||[W|| and ||[W]||F,
respectively. We use [L] to denote the set {1,2,..., L}, where
L is a natural number. The first-order derivative or gradient
of a function L(w) w.rt. w is denoted as Vi L(w). The
asymptotic upper bound and lower bound on a quantity are
described using O(-) and Q(-), respectively. Notations O(-)
and Q(-) are used to suppress the logarithmic terms in O(-)
and Q(-), respectively. For example, O (- In(m)) is written
as O (%) Symbols > and < mean “much greater than” and
“much lesser than”, respectively. Consider a matrix G with
Gi,; = > Aij vk, where A; jj is a component in tensor
A € Rmixm2xms The gpectral norm of G can be bounded
as

1G] < [|A

2,2,1[V]|oo- (1)

Here ||All2,2,1 denotes the (2,2,1)-norm of the tensor A,
which is defined as

ms3 | mip My

sup Z ZZAi,j,kTiSj s 2

Iell=lisll=1 =1 |5=1 j=1

[All2,2,1 =

where r € R™ X! gpnd s € Rm2x1,

II. PROBLEM FORMULATION
A. LISTA and ADMM-CSNet

Consider the following linear inverse problem
y = Ax +e. 3)

Here y € R™*! is the observation vector, x € R™*! is the
target vector, A € R™*"™ is the forward linear operator matrix
with m > n, and e is noise with ||e||2 < €, where the constant
€ > 0. Our aim is to recover x from a given y.

In model-based approaches, an optimization problem is
formulated using some prior knowledge about the target vector
and is usually solved using an iterative algorithm. For instance,
by assuming x is a k-sparse vector [33], the least absolute
shrinkage and selection operator (LASSO) problem is formu-
lated as

o1
min 2 ly — Ax|? + x| @)

where ~ is a regularization parameter. Iterative algorithms,
such as ISTA and ADMM ([34]], are generally used to solve
the LASSO problem. The update of x at the [ iteration in
ISTA is [33]

x! = Syr {(I - TATA) x7t 4 TATy} , (5)

Fig. 2: I layer of the unfolded ISTA network.

where x° is a bounded input initialization, 7 controls the

iteration step size, and S)(-) is the soft-thresholding oper-
ator applied element-wise on a vector argument Sy(z) =
sign(z)max (|x| — \,0) . The I iteration in ADMM is [36]

x! = (ATA + pI)_1 (ATy +p (Zl71 — ulil)) ,

7l = S% (Xl + ulil) , (6)
z'),

where x9, z°, and u®, are bounded input initializations to
the network and p > 0 is a penalty parameter. Model-based
approaches are in general sensitive to inaccurate knowledge of
the underlying model [3[], [4]. In turn, data-driven approaches
use an ML model to recover the target vector. These ap-
proaches generally require a large amount of training data and
computational resources [3[], [4].

A model-aware data-driven approach is generally developed
using algorithm unfolding or unrolling [6]. In unfolding, a
neural network is constructed by mapping each iteration in
the iterative algorithm (such as (3)) or (6)) to a network layer.
Hence, an iterative algorithm with L-iterations leads to an
L-layer cascaded deep neural network. The network is then
trained by using the available dataset containing a series of
pairs {yi,x;},i € [T]. For example, the update of x at the "
iteration in ISTA, given in (3)), is rewritten as

xl = S, {Wix!~! + Wiy}, (7

where A\ = 7, W} = 7AT, and Wi = I — 7ATA. By
considering WY, Wi, and \ as network learnable parameters,
one can map the above [ iteration to an I layer in the
network as shown in Fig. The corresponding unfolded
network is called learned ISTA (LISTA) [5]]. Similarly, by con-
sidering W} = (ATA + pI)f1 AT, Wi = (ATA+ pI)f1 s
and \ = % as learnable parameters, (@) is rewritten as

ul = ult 4 (x! -

0

x! = Wlly + WQI (zl*1 — ulil) ,
7zl =8, (xl + ulil) , (8)
u =ul! + (xl — zl) .

The above [™ iteration in ADMM can be mapped to an [
layer in a network as shown in Fig. 3] leading to ADMM-
CSNet [7]]. Note that from a network point of view, the inputs
of I" layer are x'~! and y for LISTA, and z'~', u'~! and y
for ADMM-CSNet. It has been observed that the performance
of LISTA and ADMM-CSNet is better in comparison with
ISTA, ADMM, and traditional networks, in many applications
[S]I, [7]. For instance, to achieve good performance the number
of layers required in an unrolled network is generally much
smaller than the number of iterations required by the iterative
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Fig. 3: I'" layer of the unfolded ADMM network.

solver [5]. In addition, an unrolled network works effectively
even if the linear operator matrix, A, is not known exactly.
An unrolled network typically requires less data for training
compared to standard deep neural networks [3|] to achieve a
certain level of performance on unseen data. Due to these ad-
vantages, LISTA and ADMM-CSNet have been used in many
applications [7]-[12]. That said, the theoretical foundations
supporting these networks remain to be established. While
there have been some studies focusing on the generalization
[13]-[15] and convergence rate [16]-[18] of unfolded net-
works, a comprehensive study of the optimization guarantees
is lacking. Here, we analyze the conditions on finite L-layer
LISTA and ADMM-CSNet to achieve near-zero training loss
with the increase in the number of epochs.

B. Problem Formulation

We consider the following questions: Under what conditions
does the training loss in LISTA and ADMM-CSNet converge
to zero as the number of epochs tends to infinity using GD?
Additionally, how do these conditions differ for FFNNs?

For the analysis, we consider the following training setting:
Let x = F(w,\;y) be an L-layer unfolded model, where
y € R™ ! is the model input vector, x € R™*1 is the
model output, and w € RP*! and X are the learnable param-
eters. To simplify the analysis, A is assumed to be constant,
henceforth, we write F'(w, A;y) as F'(w;y). This implies that
Wpy1 = Vec ([W]Lxmx(m+n)) is the only learnable (untied)
parameter vector, where

W= [W'w? ... W, 9)
(Wi W}] is the parameter matrix

l
and [W ]mx(m—i-n) -
corresponding to the ["-layer. Alternatively, we can write

W = [[W] (W] (10)

Lxmxn L><m><m] ’

W, = [W! ... W{] and W, = [W3 ... W#]. Consider
the training dataset {y;,x;};_,. An optimal parameter vector
w*, such that F(w*;y;) = x;, Vi € [T], is found by
minimizing an empirical loss function L(w), defined as

T

L(w) =Y _I(f;, %),

i=1

(11

where [(-) is the loss function, f; = (F(w)); = F(w,y;),
F() : RPXT — R™*T and (F(w)); is the i™ column in
F(w). We consider the squared loss, hence

T
1 1
Liw) = 5 D lIf = xil* = 5| F(w) ~ X[}, (12)
i=1
where X = [x1,...,xp]. We choose GD as the optimization
algorithm for minimizing L(w), hence, the updating rule is

Wir1 =Wy — NV L(w)

where 7 is the learning rate.

Our aim is to derive conditions on LISTA and ADMM-
CSNet such that L(w) converges to zero with an increase in
the number of epochs using GD, i.e., lim;_,oc L(w:) = 0. In
addition, we compare these conditions with those of FFNN,
where we obtain the conditions for FFNN by extending the
analysis given in [26]. Specifically, in Section [[V-C| we derive
a bound on the number of training samples to achieve near zero
training loss for unfolded networks. Further, we show that this
threshold is lower for FFNN compared to unfolded networks.

III. REVISITING PL*-BASED OPTIMIZATION GUARANTEES

In [26] the authors proposed PL*-based optimization theory
for a model with a scalar output. Motivated by this, in this
section, we extend this theory to a multi-output model, as we
aim to recover a vector in a linear inverse problem.

Consider an ML model, not necessarily an unfolded net-
work, x = F(w;y), with the training setup mentioned in
Section where y € R"*!, x € R™*! and w € RP*1,
Further, assume that the model is L #-Lipschitz continuous and
Br-smooth. A function F(-) : RF — R™*T is [ z-Lipschitz
continuous if

| F(w1) = F(wa)|lr < Lr|wi — wal|, Vw1, wy € R,

and is fBr-smooth if the gradient of the function is [x-
Lipschitz, i.e.,

[VwF(w1) = VwF(wa)||r < Br|lwi — wall,

Vwi, wy € RP. The Hessian spectral norm of F () is defined
as
[Hr(w)|| = max||Hz, (w)]],
1€[T]

where Hr € RTXmXPXP g a tensor with (Hz); jx; =

2 W P W . .
% and Hr, = W. As stated earlier, the loss

landscape of the OP model typically satisfies PL* on most of
the parameter space. Formally, the PL* condition is defined as
follows [37]], [38]]:

Definition 1. Consider a set C C RY*! and w> 0. Then, a
non-negative function L(w) satisfies u-PL* condition on C' if
[VwL(w)||* > uL(w), Vw € C.

Definition 2. The tangent kernel matrix, [K(W)|mrxmr, Of
the function F(w), is a block matrix with (i, j)™ block defined
as

T
(K(W))ij = [Vwkil o p [Vw]

Pxm?

1€ [T) and j € [T].



From the above definitions, we have the following lemma,
which is called p-uniform conditioning [26]] of a multi-output
model F(w):

Lemma 1. F(w) satisfies u-PL* on set C if the minimum
eigenvalue of the tangent kernel matrix, K(w), is greater than
or equal to p, i.e., Apin(K(W)) > pu, Yw € C.

Proof. From , we have
et [t [ot] o 13

A T A
= [F %] (K emr [F %]

where f = Vec (F(w)) and X = Vec (X). The above equation
can be lower-bounded as

IV LW)[I* > Amin (K (W) [[f = %3 > pL(w).
O

Observe that K (w) is a positive semi-definite matrix. Thus,
a necessary condition to satisfy the PL* condition (that is, a
necessary condition to obtain a full rank K (w)), for a multi-
output model is P > mT. For a scalar output model, the
equivalent condition is P > T [26]]. Note that if P < T,
i.e., an UP model with a scalar output, then A, (K (w)) =0,
implies that an UP model does not satisfy the PL* condition.

Practically, computing Ay, (K(w)) for every w € C,
to verify the PL* condition, is not feasible. One can over-
come this by using the Hessian spectral norm of the model
|H=(w)]| 26]:

Theorem 1. Let wy € RPX! be the parameter initial-
ization of an Lg-Lipschitz and [r-smooth model F(w),
and B(wg,R) = {w| ||[w — wo|| < R} be a ball with
radius R > 0. Assume that K(wq) is well conditioned, i.e.,
Amin(K (Wo)) = Ao for some \g > 0. If |[Hx(w)|| < %
for all w € B(wy, R), then the model satisfies p-uniform
conditioning in B(wyq, R); this also implies that L(w) satisfies
u-PL* in the ball B(wyg, R).

The intuition behind the above theorem is that small
|[Hz(w)|| leads to a small change in the tangent kernel.
Precisely, if the tangent kernel is well conditioned at the initial-
ization, then a small ||Hz(w)| in B(wy, R) guarantees that
the tangent kernel is well conditioned within B(wq, R). The
following theorem states that satisfying PL* guarantees the
existence of a global minimum and exponential convergence
to the global minimum from wg using GD:

Theorem 2. Consider a model F(w) that is Lz-Lipschitz

continuous and [Br-smooth. If the square loss function

L(w) satisfies the u-PL* condition in B(wg, R) with R =

2Lr||F(wo)=Xllr _
o

o There exist a global minimum, w*, in B(wq, R) such that
Fw*)=X.
o GD with step size n <

(;%) then we have the following:

1
converges to

v LZHBr 1 F(wo)—X[r OVEE

a global minimum at an exponential convergence rate,

specifically, L(w;) < (1 —nu)tL(wo).

The proofs of Theorems (1| and [2| are similar to the proofs
of Theorems 2 and 6, respectively, in [26]. However, as linear

=05(z)
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Fig. 4: Soft-threshold function, S (z), and its smooth approx-
imation, o (x) (formulated using the soft-plus function), with
A=25.

inverse problems deal with vector recovery, the proofs rely on
Frobenius norms instead of Euclidean norms.

IV. OPTIMIZATION GUARANTEES

We now analyze the optimization guarantees of both LISTA
and ADMM-CSNet by considering them in the OP regime.
Hence, the aim is further simplified to study under what
conditions LISTA and ADMM-CSNet satisfy the PL* con-
dition. As mentioned in Theorem [l| one can verify the PL*
condition using the Hessian spectral norm of the network.
Thus, in this section, we first compute the Hessian spectral
norm of both LISTA and ADMM-CSNet. The mathematical
analysis performed here is motivated by [31], where the
authors derived the Hessian spectral norm of an FFNN with
a scalar output. Then, we provide the conditions on both the
network width and the number of training samples to hold
the PL* condition. Subsequently, we provide a comparative
analysis among unfolded networks and FFNN to evaluate the
threshold on the number of training samples.

A. Assumptions

For the analysis, we consider certain assumptions on the
unfolded ISTA and ADMM networks. The inputs of the
networks are bounded, i.e., there exist some constants C,,
Cy, C;, and Cy such that \x?| < C,, |u?| < Cy, |z?| <,
Vi € [m], and |y;| < Cy, Vi € [n]. As the computation of the
Hessian spectral norm involves a second-order derivative, we
approximate the soft-thresholding activation function, S)(-),
in the unfolded network with the double-differentiable/smooth
soft-thresholding activation function, o (), formulated using
soft-plus, where o (z) = log (14 e”*) —log (1 + e *7?).
Fig. ] depicts Sx(z) and o (z) for A = 5. Observe that o (z)
approximates well to the shape of Sy(x). There are several
works in the literature that approximate the soft-thresholding
function with a smooth version of it [39]-[45]. The analysis
proposed in this work can be extended as is to other smooth
approximations. Further, since A is assumed to be a constant
(refer to Section [II-B)), henceforth, we write o(-) as o(-). It
is well known that o(-) is L,-Lipschitz continuous and (-
smooth.



Let Wy, W1g, Wag, W, and W, denote the initialization
of W, W, Wy, W} and W, respectively. We initialize each
parameter using random Gaussian initialization with mean 0
and variance 1, i.e., (Wllo)ij ~ N(0,1) and (WQZO)M ~
N(0,1), VI € [L]. This guarantees well conditioning of
the tangent kernel at initialization [26[], [27]. Moreover, the
Gaussian initialization imposes certain bounds, with high
probability, on the spectral norm of the weight matrices. In
particular, we have the following:

Lemma 2. If (Wlo) ~ N(0,1) and (WQO) -~ N(0,1),
VI € [L], then with probablllty at least 1 — Qexp (—2) we
have ||[Wig|| < ciov/n = O(V/n) and |Wi|| < cooy/m =
O(y/m), ¥l € [L], where c19 = 1+ 2y/m/+/n and cop = 3.
Proof. Any matrix W € R™1*™2 with Gaussian initialization
satisfies the following inequality with probability at least 1 —
) where ¢ > 0, [46]: || < /my1 + /m3 +t.
Using this fact and considering ¢ = /m, we get |[W,|| =
O(v/n) and [[W5o|| = O(v/m).

The following lemma shows that the spectral norm of the
weight matrices within a finite radius ball is of the same order
as at the initialization.

2exp(

Lemma 3. If Wyig and Wy are initialized as stated in
Lemma then for any Wy € B(Wio,R1) and Wo €
B(Wyg, Rs), where Ry and Ro are positive scalars, we have

|WH|| = O(v/n) and |Wi|| = O(v/m), Vi € [L].
Proof. From triangular inequality, we have
o] < st [ - ], <o+ =t
o < vt s - ], < v+ =t
O

As the width of the network can be very high (dimension of
the target vector), to obtain the constant asymptotic behavior,
the learnable parameters W/ and W are normalized by
ﬁ and \/%, respectively, and the output of the model is

normalized by %n This way of normalization is called neural
tangent kernel (NTK) parameterization [47], [48]]. With these
assumptions, the output of a finite L-layer LISTA network is
(13)
where

l Wl
xXl=0cF) =0 (1y+ QXII) e R™1 1 e[L].

Likewise, the output of a finite L-layer ADMM-CSNet is

- %ZL, (14)
where
zl =0 (Zl) =0 (xl + ul_l) ,
1 1
Xl = %ny + \/7% 21 (Zl_l — ul_l) s

u =u"t 4 (xM -2, 1e[L]

To maintain uniformity in notation, hereafter, we denote the
_ 1 L 1l
output of the network as f = N where g' = x* for

LISTA and g' = z' for ADMM-CSNet.

B. Hessian Spectral Norm

For better understanding, we first compute the Hessian
spectral norm of one layer, i.e., L = 1, unfolded network.

1) Analysis of 1-Layer Unfolded Network: The Hessian
matrix of a 1-layer LISTA or ADMM-CSNet for a given
training sample ¢ isﬂ

[H]‘-J = [H]HLXPXP = [ Hl H2 Hm ] ’ (15)

2
where [Hs]pxp = 94 w = Vec(W') = Vec (W], W3]),
fs denotes the s component in the network output vector f,
ie, fs = mvé gl, and v, is a vector with s™ element set

to be 1 and others to be 0. The Hessian spectral norm given
in (T3) can be bounded as m[ax] {I1H 1} < =] <32, 1 Hs|-
s€[m -

By leveraging the chain rule, we have

_ Ofs g’

o 0gl ow?’

We can bound H,, as given below, by using the inequality
given in (T)),

(16)

ofs H<‘92g1
Hl < (17
|| Hagl N
From ([3) or (14), we get
a7, 1
-l -o() o
In addition,
ow)|,,, I *g'owiow! ot/ (ow3)” ],
3 82g1 H82g1 (92g1
= (8W11)2 oWl oWy 2,2,1 (8W21)2

2,2,1
1

We now compute the (2,2, 1)-norms in the above equation for
both LISTA and ADMM-CSNet. To begin with, for LISTA,
we have the following second-order partial derivatives of layer-
wise output, g!, w.r.t. parameters:

82g1
(ow})?

a2g1
(OwW3)?

82 ! 1 n (gl
o) = o (%)
OWROWL ) v V/mn

where Iy denotes the indicator function. By utilizing the
definition of (2,2, 1)-norm given in (), bounds on inputs of

) 92x!
i35 kk’ oW ) (W ks

1"

1 -
=0 (%) vy ywlize=j,

1
" (=1 0 .0
= —0 (xi)x-/xk,ﬂi:k:-
j 3
m
>zg] kk’

0
X5 Y Lizk=j,

INote that, to simplify the notation, we denoted H F, as H.



the network, and smoothness of the activation function, the
(2,2,1)-norms of the above quantities are obtained as shown
below:

anl B .
sup - o’ (%) My); (Vay);
‘ OWD)2 |0y IVlp=IVallp=1 1 ;‘ () |
< sup “ o (Il + [Vay )
Vil p=IVall p=1 2710
1
< 58 (IvI7 + 1yl1?) < 8-C5 = O(1)
2,1 m
’ 87g2 = sup i |O’” ()"(11) (leﬂ)i (VQXO)i|
(8W2 2,2,1 HVIHF V2]l p=1 m ie1
1 o on2 .
S%ﬁ%WH+WH)Sm@-ﬂm
‘ 82g1
OW4ow} 221
= sup < ) le ) (Voy),

Villp=IIV2ll p=

< Mg, c? 25,02 =
,1/471/5 z+\/4mﬁ b

Substituting the above bounds in implies H

o(1).
Similarly, for ADMM-CSNet, the equivalent second-order
partial derivatives are

< QFBU(HXOH + lyl?

2 p—
QWI) 2,21

82g1 1 B
< e =—o" (Zzl) Y'Yk lizk=j,
(8W1) i,55 kk’ n
o’g! 1 =1y /0 0 0 0
o2 =—0 (zz) (2" —u) (2" — ) Li=p=j,
( 2) i,55" kk’

”(z) z —u° ’Yk’Hz k=7

(swgont). 0~ v
oW oW} 1,557 kk’

The corresponding (2,2, 1)-norm bounds are

0%g! 1
< 5-Be (IyI7 + 1lyl?) < B.C5 = O(1),
2 y
H (OW7) 2,2,1 2n
2,1
75 | < 2mez 4 2me2) = o).
(8W21) 2,2,1 2m
82g1 m 9
_J8 < B/ 2 (c2 4 (C, +Cu)?) =01).
Haw}awg o =7 i (GF + (€25 0®) =00
Using the above bounds, we get H (8W1 = O(1). From

the above analysis, we conclude that the (2, 2 1)-norm of the
1
tensor is of the order of O(1) and the oo-norm of

d%g
’ (dWl)z ’
the vector, 9L is of the order of O ( ) This implies,

> ag17

1 1
=0 () ana 111 = 2 (=) = 0 (vin).
(20)
Therefore, the Hessian spectral norm of a 1-layer LISTA or
ADMM-CSNet depends on the width (dimension of the target
vector) of the network. We now generalize the above analysis
for an L-layer unfolded network.

2) Analysis of L-Layer Unfolded Network: The Hessian
matrix of an L-layer unfolded ISTA or ADMM network for a
given i™ training sample is written as

[H}mexP = [ Hy  Hy Hy, ]’ 2n
where H; for s € [m] is
H1’1 Hl 2 Hl L
HS2,1 H2 2 .. H2 L
[Hslpxp = : : . : ) (22)
H.L’l H.L’Q ' HL,L
[Hélvlﬂplxpl = 78w?12£;112’ where P = m? +mn, |} €

[L], Iz € [L], w! = Vec(W!) = Vec ([W1 W1]) denotes the
weights of ["-layer, and f, = f" gl. From (21) and 22),
the spectral norm of H, ||HJ|, is bounded by its block-wise
spectral norm, ||Hy||, as stated in the following theorem:

H||, of an L-layer

unfolded ISTA (ADMM) network, defined as in (13) ((T4)), is

bounded as mflx] {IH 1} < 1H|| < X g [1Hsll, where
se(m

| Hsll < Z |Hb|| < Z C1Q2.21 (fs) Qoo (fs)

l1,l2 l1,l2 (23)
< CQ221 (fs) Qoo (fs)-
The constant C depends on L and L,, C = L>C},

Ofs

Qu (fi) = max {H } d Q4

82gl1
92,271 (fS) _1§l1£rllza§l3§L{ (8Wl1)2 221a

62gl2

H owh Hag(lgl)awl2 221 )

aglg a2gl3
2l )

Proof of the above theorem is given in the Appendix. Similar
to 1-layer case, the bound on ||H|| depends on the co-norms
of g; s, 1 € [L] and (2,2, 1)-norms of layer-wise derivatives
(basically these are order 3 tensors). We now aim to derive
the bounds on the quantities Q2 21 (fs) and Qo (f5) for both
unfolded ISTA and ADMM networks.

Similar to Lemma[2] and [ the Gaussian initialization of the
weight matrices imposes a bound on the hidden layer output of

the unfolded network, which is stated in the following lemma:

Lemma 4. If (Wllo) -~ N(0,1) and (WQO) -~ N(0,1),
vl € [L], then for any W, € B WlO,Rl) and W, €
B(Wyg, Ry), we have ||x!|| < clgra, for LISTA, and
|2'|| < dipane and ||u']| < iy for ADMM-CSNet.
The updating rules are

Ry R
CiSTA;x =Ls (CIO + f) \/>C + Lo (020 + 7%) CISTA x + U(O)
=0 (vm)



-1

R1 Ro
ClADMM;z = Lo (310 + 7) VnCy + Lo <C20 + \/M) CADMM;z

-1

+ Lo (1+020+RT) capmma T 0(0) = O (Vm)

-1

Ro _
hApMMu = (CIO + 7) VnCy + (‘320 + 7\/771) CADMM;z
R2
+ (020 + T + 1) CADMM u™T CADMM = =0 (Vm),

0 _ 0 —
VmCq, capumz = VMO Capvvu =

where C?STA;X =
27| < Cy, Juf] < Cu, and |27] < C, Vi € [m].

VmCy,

Refer to the Appendix for proof of the above lemma. The
three updating rules in Lemma E] are of the order of \/m and
v/n w.rt. m and n, respectively. However, as the width of the
unfolded network is controlled by m, we consider the bounds
on Q291 (fs) and Qo (fs) w.rt. m in this work.

The following theorem gives the bound on ||H|| by deriving
the bounds on the quantities Q221 (fs) and Q. (fs). The
proof of Theorem ] basically uses the bounds on the weight
matrices (Lemma E] and Lemma E]) bound on the hidden layer
output (Lemma [, and properties of the activation function
(L-Lipschitz continuous and (,-smooth).

Theorem 4. Consider an L-layer unfolded ISTA or ADMM
network, F(W), with random Gaussian initialization Wy,.
Then, the quantities Qz21 (fs) and Qs (fs) satisfy the
following equality w.rt. m, over initialization, at any point
W € B(Wy, R), for some fixed R > 0:

. ) BNES

vm
with probabilities 1 and 1 — me—cn’(m) for some constant
c > 0, respectively. This implies

Oso1 (f2) = O(1) and Qu (f,) = O <

il e =0 (=) e
ll 12
and the Hessian spectral norm satisfies
- 1 -
H|=Q|—)=0 . 28
Ikl =2 (=) = 0 (vim) 28)

The proof of Theorem []is motivated by [31]] and is lengthy.
Thus, the readers are directed to the supplementary material
[49]], which provides the complete proof. In summary, from
both 1-layer and L-layer analyses, we claim that the Hessian
spectral norm bound of an unfolded network is proportional
to the square root of the width of the network.

C. Conditions on Unfolded Networks to Satisfy PL*

From Theorem [} the Hessian spectral norm of a model
should hold the following condition to satisfy p-uniform con-

ditioning in a ball B(wo, R): [[Hz(w)|| < ;2274-, Yw €
B(wo, ). Since [Hx(w)| = max|[Hz( (w)||, the above

condition can be further s1mp11ﬁed as

|Hz (w)] < Vi € [T] and w € B(wyg, R).

2L R’
f\f 29)

Substituting the Hessian spectral norm bound of LISTA and
ADMM-CSNet, stated in Theorem M in provides a
constraint on the network width such that the square loss
function satisfies the p-PL* condition in B(wyg, R):

- TR?
O -
" <()\0 — p)?

Therefore, from Theorem [2] we claim that for a given fixed
T one should consider the width of the unfolded network as
given in to achieve near-zero training loss. However, the
m (target vector dimension) value is generally fixed for a given
linear inverse problem. Hence, we provide the constraint on
T instead of m. Substituting the |Hz,(w)| bound in (29)
also provides a threshold on 7', which is summarized in the
following theorem:

> , where € (0, \p). (30)

Theorem 5. Consider a finite L-layer unfolded network as
given in or with m as the network width. As-
sume that the model is well-conditioned at initialization, i.e.,
Min (K Unfoldea(Wo)) = Ao, Unfoided> for some Xo unfoidea > 0.
Then, the loss landscape corresponding to the square loss
function satisfies the u-PL* condition in a ball B(wy, R),
if the number of training samples, Tyufpoideqr satisfies the
following condition:

m(No,Unfolded — 1)*
R?

Tonfotdea = O < > o 1 € (0, ANo,unfolded) -

€Y

Thus, while addressing a linear inverse problem using
unfolded networks, one should consider the number of training
samples as given in (3I)), to obtain zero training loss as the
number of GD epochs increases to infinity. Observe that the
threshold on 7' increases with the increase in the network
width. We attribute this to the fact that a high network
width is associated with more trainable parameters in the
network, which provides the ability to handle/memorize more
training samples. Conversely, a smaller network width leads
to fewer trainable parameters, thereby impacting the network’s
performance in handling training samples.

Comparison with FFNN: In [26]], the authors computed the
Hessian spectral norm of an FFNN with a scalar output, which
is of the order of O ﬁ) Following the analysis procedure
of an m-output model given in Section one can obtain
the Hessian spectral norm of an FFNN with m-output and
smoothed soft-thresholding non-linearity as given below:

i1 =2 (=) =0 (V).

This implies that the bound on the number of training samples,
Trenn, for an m-output FENN to satisfy the pu-PL* is

(32)

m(Xo,penn — )2
R2

Note that m is a fixed value in both (3I) and (33), R is of

the order of O (refer to Theorem |2), and p depends

on Ao = Anin (K (Wg)). Therefore, from and (33), the

parameter that governs the number of training samples of

a network is the minimum eigenvalue of the tangent kernel

Trenn = O ( ) , € (0, Ao penn)  (33)



matrix at initialization. Hence, we compare both Tynfolgeq and
TFFNN by den'ving the upper bounds on )\07Unf0]ded and )\O,FFNN~
Specifically, in the following theorem, we show that the upper
bound of Ag unfolded i higher compared to Ao renn-

Theorem 6. Consider an L-layered FFNN, defined as

1 w!
freny = ﬁxL,Xl =0 (\/mxl_1> e R™, L€ [L],
(34)

with x0 = oy € RY Wl e R™ " and W' €
R™*™ ¥ € [L] — {1}. Also, consider the unfolded network
defined in (13)) or (14). Then, the upper bound on the minimum
eigenvalue of the tangent kernel matrix at initialization for un-
folded network, UByyfoigea (€ither UBrista or UBsppyp-csner)s 18

greater than that of FFNN, UBpryn, i.e., UBUnfblded > UBpgpnN.

Proof of the above theorem is given in the Appendix. To
better understand Theorem [6] substitute L = 2 in equations

(38), (39), and (@0), this leads to
UBgenn = L9 [[IWG 17 + VI WG]
UBpista = L*j Wil + v Wi[I*] + L+
LA [|Waol® + VI Wi l1?] + 2L/ &gl W i | [ Waoll,
and
P4 12 Tyis2 |12 £25 ||‘1(1)H2
UBapwecsnes = L7 [[Wi1? + v Wy 2] + L2 + =1
L4 [Iwg|1? + IvT W 12] + 22120 [u®] + L4 ® |2 + L4
[2\/ya<°>uwfo||uwzlo|| + 260 Wi | [0 + 2/3IW o [ [u ) | -

Since the dimension of Wi (W2) of unfolded is same as W1
(W?) of FFNN, we conclude that UBypsoided > UBpenn for
L = 2. One can verify that this relation holds for any L
value using the generalized expressions given in (38), (39),
and (@0). Figures [3] (a) and [5] (b) depict the variation of
101og1 (Amin (K (Wo))) w.r.t. L (here we considered T' = 10,
m = 100, n = 20, and k = 2) and P (here we vary m, n, and
k values by fixing T' = 10, L = 6 for unfolded, and L = 8
for FFNN), respectively, for LISTA, ADMM-CSNet, and
FFNN. From these figures, we see that Ao Unfolded > A0,FFNN-
Consequently, from Theorem [6] (31)), and (33)), we also claim
that the upper bound of Typfoided 1S high compared to TgpnN-
As a result, Tunfolded > Trrnn Whenever Ao Unfolded > Ao,FFNN-
Moreover, from the aforementioned equations, it is evident that
UBapmm.csnet €xceeds UBy ista. Consequently, it is reasonable
to anticipate that Ao apmm-csnet Will surpass Ao pista. This
inference is substantiated by the data depicted in figures [3] (a)
and |§] (b). This implies that the upper bound on TApym-csNet
exceeds the upper bound on 7ijsta. Through simulations,
we show that Tapmm.csnet > Trista > Trenn in the fol-
lowing section. Since the threshold on 7' — guaranteeing
memorization — is higher for unfolded networks than FFNN,
we should obtain a better expected error, which is upper
bounded by the sum of generalization and training error [32],
for unfolded networks than FFNN for a given 7' value such
that Tpenn < T < TUnfolded- Because in such scenarios the
training error is zero and the generalization error is smaller
for unfolded networks [[13]].

‘— LISTA=ADMM-CSNet —FFNN
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Fig. 5: Variation of the minimum eigenvalue of tangent kernel
matrix at initialization: (a) With respect to the number of
layers. (b) With respect to the network learnable parameters.

V. NUMERICAL EXPERIMENTS

We perform the following simulations to support the pro-
posed theory. For all the simulations in this section, we fix the
following for LISTA, ADMM-CSNet, and FFNN: 1. Parame-
ters are initialized independently and identically (i.i.d.) from
a Gaussian distribution with zero mean and unit variance, i.e.,
N(0,1). 2. Networks are trained with the aim of minimizing
the square loss function (T2) using stochastic GD. Note that the
theoretical analysis proposed in this work is for GD, however,
to address the computation and storage issues, we considered
stochastic GD for the numerical analysis. 3. Modified soft-
plus activation function (refer to with A\ = 1 is used
as the non-linear activation function. 4. A batch size of % is
considered. 5. All the simulations are repeated for 10 trials.

Threshold on 7: From (3I), the choice of T plays a
vital role in achieving near-zero training loss. To illustrate
this, consider two linear inverse models: y1 = A1x; + e
and yo = AoXy + ey, where y; € R29%X1 x; ¢ RI00x1
Ay € R20X100 s [0 = 2, yo € R200X1 x, ¢ R1000x1
Ay € R200%1000 " anqd ||x5lo = 10. Generate synthetic data
using a random linear operator matrix, which follows the
uniform distribution, and then normalize it to ensure || A;||r =
|[A2|lr = 10. Both models are subjected to Gaussian noise
(e; and ey) with a signal-to-noise ratio (SNR) of 10 dB.
Construct an L-layer LISTA and ADMM-CSNet with L = 11.
Here, we train LISTA for 30K epochs and ADMM-CSNet for
40K epochs. For the first model, we choose 0.12 and 0.09
as learning rates for LISTA and ADMM-CSNet, respectively.
For the second model, we choose 1.2 for LISTA and 0.9 for
ADMM-CSNet. Figures [6] and [7] depict the variation of mean
square loss/error (MSE) w.r.t. T for both LISTA and ADMM-
CSNet, respectively. Note that for a fixed m there exists a
threshold (by considering a specific MSE value) on 7" such
that choosing a 7" value that is less than this threshold leads
to near-zero training loss. Moreover, observe that this threshold
increases as the network width grows.

For comparison, construct an L-layer FFNN, to recover
x; and xo, that has the same number of parameters as that
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Fig. 7: Training loss vs T for ADMM-CSNet.

of unfolded, hence, we choose L. = 14. Here, we train the
network for 40K epochs with a learning rate of 0.04 for the
first model and 0.3 for the second model. Fig. [§] shows the
variation of MSE w.r.t. 7. From Fig. [§] we can conclude
that the threshold for FFNN is lower compared to LISTA and
ADMM-CSNet.

Comparison Between Unfolded and Standard Networks:
We compare LISTA and ADMM-CSNet with FFNN in terms
of parameter efficiency. To demonstrate this, consider the first
linear inverse model given in the above simulation. Then,
construct LISTA, ADMM-CSNet, and FFNN with a fixed
number of parameters and consider 7' = 30. Also, consider the
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Fig. 8: Training loss vs T' for FFNN.
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Fig. 9: Comparison between LISTA, ADMM-CSNet, and FFNN in
terms of the required number of parameters, P, for training loss
convergence.
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Fig. 10: Variation of the expected MAE w.r.t. m for both LISTA
and ADMM-CSNet.

same learning rates that are associated with the first model in
the above simulation for LISTA, ADMM-CSNet, and FFNN.
Here we choose L = 6 for both LISTA and ADMM-CSNet,
and L = 8 for FENN, resulting in a total of 72K parameters.
As shown in Fig. 0] the convergence of training loss to zero
is better for LISTA and ADMM-CSNet compared to FFNN.
Fig. [0 also shows the training loss convergence of FENN with
L = 11. Now, FFNN has 102K learnable parameters, and its
performance is comparable to LISTA for higher epoch values.
Therefore, to achieve a better training loss FFNN requires
more trainable parameters.

Generalization: In this simulation, we show that zero-
training error leads to better generalization. To demonstrate
this, consider LISTA/ADMM-CSNet/FFNN with a fixed T
and observe the variation of the expected mean absolute error
(MAE) w.r.t. m. If the generalization performance is better,
then it is anticipated that the expected MAE reduces as the m
increases. Because an increase in m improves the possibility
of getting near-zero training loss for a fixed 7. In Fig. [I0]
we present the results for LISTA, ADMM-CSNet, and FFNN
with 7" = 100. Notably, the expected MAE diminishes as m
increases, i.e., as the number of parameters grows. Further, it is
observed that for this choice of 7', the training error is near-
zero for m values exceeding approximately 300 for FFNN,
and approximately 250 for both LISTA and ADMM-CSNet.



This finding underscores the importance of zero-training error
in generalization.

However, it is important to note that the generalization
results presented here are preliminary and require a rigorous
analysis for more robust conclusions. Because considering a
smaller value of T" may not yield satisfactory generalization
performance. Thus, it is important to find a lower bound on T’
to optimize both the training process and overall generalization
capability, which we consider as a future work of interest.

VI. CONCLUSION

In this work, we provided optimization guarantees for
finite-layer LISTA and ADMM-CSNet with smooth nonlinear
activation. We begin by deriving the Hessian spectral norm of
these unfolded networks. Based on this, we provided condi-
tions on both the network width and the number of training
samples, such that the empirical training loss converges to
zero as the number of learning epochs increases using the GD
approach. Additionally, we showed that LISTA and ADMM-
CSNet outperform the standard FFNN in terms of threshold
on the number of training samples and parameter efficiency.
We provided simulations to support the theoretical findings.

The work presented in this paper is an initial step to
understand the theory behind the performance of unfolded
networks. While considering certain assumptions, our work
raises intriguing questions for future research. For instance,
we approximated the soft-threshold activation function with
a double-differentiable function formulated using soft-plus.
However, it is important to analyze the optimization guarantees
without relying on any such approximations. Additionally, we
assumed a constant value for A in o (+). It is interesting to
explore the impact of treating A as a learnable parameter. Fur-
thermore, analyzing the changes in the analysis for other loss
functions presents an intriguing avenue for further research.

APPENDIX

Proof of Theorem [3} The Hessian block H!''> can be
decomposed as given in (33)), using the following chain rule:

_ 8gl ﬁ 8gl
- l -1
ow VZit1 og
lo—1

fs
owl

Ofs
ogl

82g11 6fs anlg

agll — 6gl'
Hllz = Ty =1, +
) e owh z/zll_llﬂ og!" !

ﬁ 8gl' 82gl'
/-1 r_1\2
U=l1+1 og (9gV 1)
og [ og” dfs
Owlz2 H agl’—l 8gl :
V=ly+1
(35)

From (33), the spectral norm of H'!2 can be bounded as

(6wll)2 agh Owl29glza—1

L
Ofs ogh
() = (%

l=la+1

82 11 a‘ L o l1
HHil’l2 , S 5) 2 Hafll +LgTh agzl
(8“’ ! ) 2,2,1 g w
L
H e 50 > opthct og"
owl2 8gl2 1 221 agZQ o T o owll
82 1 8g12 8f5
(8 1 — 1 owl2 .

(36)

Note that (36) uses the fact thaﬁ e H < L,. By using

the notations given in and (43), we get
HHél’lQH < C1Q22,1 (fs) Qoo (fs)

where C is a constant depend on L and L,. O

Proof of Lemma [ For I = 0, |x°|] < /m|x%[|sc <
VinCo, 2] < Vi) < Vi, and |ud| <
vm|u®||e < /mC,. Whereas for [ = 1,2,..., L, we have

[ =

< L,

()]

Iyl + Lo

‘1H + o(0)

Ry Ra
<L, (810 + 7) VnCy + Lg (620 + ﬁ) CISTA L T 0(0)

_
= CISTA;%"

Here, we used Lemma E] and L,-Lipschitz continuous of the
activation function o(+). Similarly,

1 1 _ _ _
2] = o (Jawiy + S=ws (o -t ) wut )|
1 1 _ 1 _
< o [t 0 o ] et
+ L, Hul—lu +o(0)
Ry Ry -1
<Ly (CIO + 7) fCTI + Lo (620 + ﬁ) CAD]VH\/I;Z
Ra\ 11
L 1 — 0
+ o'( + c20 + \/H)CADMMu'i_O-()
ol
= CADMM;z
and
1 1
Ul _ |l i-1 o 71171717171
= o + (G e G (o) <)
<o« ] et 1
vl \f vm
Ra\ 11
< — C —_—
_(C1o+f)\/> y (020‘*‘\/7;) CADMM;z
R2
+<020+T+1> CADMl\Iu+CADM1VIz
1
= CADMM;u
O

Proof of Theorem [6} Consider the real symmetric NTK
matrix [K (wWo)|mrxmr. Utilizing the Rayleigh quotient of
K (wg), we can write the following for any x such that
x|z = 1:

Amin (K (Wo)) < x"K (wo) X < Amax (K (wo)).
Let x be a vector having all zeros except the s component to
be 1. Thus Apmin (K (Wo)) < [K (Wo)]ss, for any s € [mT].

Assume s = 1, this implies,

)\min (K (WO)) S <vw0fly VW(] f1> ) (37)

F where f] is the 1% component in the the model output vector

f corresponding to the first training sample. We now aim to
compute (Vi f1, Vw,f1) for FENN, LISTA, and ADMM-
CSNet.



, the s™ compo-
, where Wi (s,:)

Consider a one-layer FFNN then from

o (EWE sy
row of Wo- This implies,

nent of fgpny is, fs =
represents the s

(Vig b Tyt [ ]|w2<L”
y

where [ = 5—%, and y =

FFNN, we have
<VW0f5a Vwofs> = <VW01fSa vw&f‘;> + <VW02f37 vV[/'gfs>
< (£ (WS + [Wés )II°) -

Generalizing the above equations, one can derive the upper
bound on Ag penn for an L-layer FENN as

. Similarly, for a 2-layered

Ao,renN < UBfrpNN

L-1 L-1 L-1
72L - Ty L j j
= LG | DO IvEws P T g+ [T iwei?
i=1 j=1,j#i j=1

(38)
Likewise, consider L = 1, then from (T3), the s component
of fista is

1
i
This implies,
<VwOf5, vwofs> <VW1 fs, le f > + <VW210fS’ vVV210fS>

< L?[j+4],

£ = o (e Wh(s. 9y + =W (s,9x)

2
where & = XI= ¢ 7, — 2, then the st component of f] jsta

is
(Vwobor Voo fs) = (Vs £, Viga ) + (Vg £, Vovz £o)
(Vs b Vg £) + (Vg £ Vg )

< B2 g+ LUK + L2 g + 2] [v] W |

By extending the above equations, we obtain the upper bound
on Ao rista for an L-layer LISTA as

Xo,ista < UBpista = L2 (9 +2), for L=1

L—1

Lo o o ToL |2 L2

(5 +2) |lvs Wyl H [Waoll
1=2
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, , 39)
where [, = L= 5 = W and # = XI° Repeat-
= L= g = BL add = p

ing the same analysis, one can derive the upper bound on
Ao, apMM-csNet Of an L-layer ADMM-CSNet as

A0, ADMM-CSNet < UBADMM-CSNet = [y +alt- 1)]
L1 L—1 40)
+ > L [y a O VIWE R TT Wk,
k=1 1=kt
R @) _ (D12
where (V) = Wa Vi e [L—1]u{0}. .
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Supporting Material: Optimization Guarantees of Unfolded ISTA and ADMM
Networks With Smooth Soft-Thresholding

From Theorem 3, the Hessian spectral norm, ||H||2, of an L-layer unfolded ISTA (ADMM) network is bounded as

[Hs < > C1Q251 (fs) Qoo ()

Sll lg

m (41)
< ZCQz,z,l (fs) Qoo (fs),
s=1
where the constant C; depends on L and L,, C = L%>Cy,
Ofs
0 (1) = o, {55} ana @)
a2gll agll a2glg agll 6glz a2glg

Q2,2,1 (fs) - 1<llg}3§lg<L{ ’ (8Wl1)2 - owl H 8g(l271)awl2 221 ) '8W11 H owlz2 agl371)2 . . (43)

Note that g! = x! for LISTA and g' = z' for ADMM-CSNet. Theorem 4 aims to provide bounds on Q. (fs) and Q221 (fs).
The proof of this theorem has been divided into two parts: First, we prove the bound on Q221 in sub-sections [A] and
respectively. Then, we prove the bound on (), in sub-sections |C| and @], respectively. Here we denote || - || as l3-norm for
vectors and spectral norm for matrices. We also denote || - |7 as the Frobenious norm of matrices.

A. Bound on Q22,1 For LISTA Network

Consider an L-layer unfolded ISTA network with output

1
f= Tx , where
m
Wi Wi (44)
xXl=0cF) =0 <\/%y + \/T%Xll) eR™ le[L]
Now the first derivatives of x' are
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Here we used (Clsﬁx x) = O(y/m) from lemma (4).
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The second-order derivatives of the vector-valued layer function x', which are order 3 tensors, have the following expressions
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)+ 0(1) =0(1).

Therefore, by using @3), (@6), @7), and @8), we get Q221 (fs) = O(1), for all s € [m].



B. Bound on Q221 For ADMM-CSNet

Consider an L-layered ADMM-CSNet as
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oz! oz! ozl ou'~! ) 2
- === = =o' () —wWl-T1)
<8Zl_1)i7j <6Zl_1>i7j * <8ul_1 Ozl -1 >i,j 7 (Zl) (\/ﬁ 2 )i,j ’
0z! 1, 0z! 1
oz = o (B yal_ [ CE = o' () (2 —u )T,
<6W1l>i,jj’ \/ﬁa (Zz) ¥jrli=j; 8W21 i \/ﬁo— (Zz) (z u )J =J
Now, we have
2
m
Ha fZ 20 @)yilieiViy | = o L=yl < L= e < 2203 = oq),
oW, Wieman IVliz=1 ‘
where X' is a diagonal matrix with the diagonal entry (X");; = o’ (2!).
2
oz 1 2
— o —u )iy;—; Vs | = sup Y —u!
H@Wé 2 IVlret M Z Z =it IVie=1m l L
< P ) ) s (e )2 + (i )2 =0(1)
= m = ADMM;z ADMM; :
From lemma (4) we used (c MM z) = O(y/m) and (CEAI}MM ) = O(y/m). Therefore
d oa || _ 0(1) + 0(1) = 0(1) (50)
an awl an aW1 oWk - ‘

The second derivatives of the vector-valued layer function z!, which are order 3 tensors, have the following expressions:
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Therefore, from (30), (32), (33), and (34), we get that Q3 5 1(fs) = O(1), for all s € [m].

C. Bound on Qs For LISTA Network

Let bl = gfj, then Q. (fs) = max; <<z {||b! Hoo} We now compute bound on ||b HOO From triangle inequality, we can
write

1Bl < Ibiollo + 05 = Bioll < P50l + [1BE = Baoll- (55)

where b 0 is bl at initialization. Therefore, one can obtain the bound on Hbi”oo by computing the bounds on ||bls70||
and Hbl , which are provided in Lemma [7| and Lemma 8| respectively. Moreover, in order to compute the bound on
||b 0 H we require several lemmas which are stated below. In specific, Lemma [5| and Lemma |6 provide the bound on each
component of the hidden layer’s output at initialization and the bound on ly-norm of bl, [ € [L], respectively.

Lemma 5. For any | € [L] and i € [m], we have |x!| < In(m)+|0(0)| at initialization with probability at least 1—2e=cxIn*(m)
for some constant c. > 0.

Proof. From @4),
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As (W}),, ~ N(0,1) and (W}), ~ N(o,l), so that >3, (W), yi ~ N(0,]ly]?) and 37, (WH), xi " ~
2). In addition, since (W}), and (W}), are independent, S, (W) yi+ oo, (Wi, x7' ~

M:

i =

+ o (0)].

Ms

k:

2 . . .
N (0, [lyl* + Hxl_1 H ) Using the concentration inequality of a Gaussian random variable, we obtain

min?(m)

m Lo- n _ —
Pr [|x}]| > In(m) + |o(0)|] < Pr Z W2 — Z (Wll)zk yi| > In(m)| < 2e 203 (I 12+l =11%)

k: \/ﬁ k=1

This implies,

- m 1o (m) 2 1q,.2
Pr (x| < In(m) + [o(0)]] = 1 —2¢ PO FT) Z 1 _ge-ckn®tm) vy ¢ (1 (56)
I _ m
where ¢, = 2L (I + I TTP) > 0. O

Lemma 6. Consider an L-layer LISTA network with (Wi;), ii ™ N(0,1) and (W20) ~ N(0,1), VI € [L], then, for any
W, and Wy, such that |W1 — Wyg|| < Ry and |Wq — W20|| < Ry, we have,

|bL]| < LE! (ea0 + Rg/\/ﬁ) T, lell). (57)
From this at initialization, i.e., for Ro = 0, we get
[bLoll < Lg"esg " (58)

Proof. We prove this lemma by using induction on [. Initially, for [ = L, we have

e H OF | _ (1)) vl = 1/ vm < 1.

That is, the inequality in holds true for [ = L. Assume that at [*" layer the inequality holds, i.e., HblsH
LE=t(eo + Rz/\/ﬁ)L_l, then below we prove that (57) holds true even for the (I — 1)*" layer:
ofs || _ || ox" afs]
oxi=1||  ||oxi=1oxt||  ||vm
L—-I+1 _
< (cm-+ Raf i) Ly 1] < (em+ o) 7 25051

So, from the above analysis, we claim that the inequality in holds true for any ! € [L]. Now, at initialization, i.e.,
substituting Ry = 0 in (37) directly leads to (38). O

b = (W) "

1
< Z Il 1= e

As mentioned earlier, we now use Lemma [5| and Lemma |§| to provide bound on Hbi,OHoo



~ l
Lemma 7. At initialization, the co-norm of b, is in O(1/\/m) with probability 1 — me ™ vs In’ (m) for some constant ¢} > 0,

ie,
1
ol =0 (=) (59)

Proof. We prove this lemma by induction. Before proceeding, lets denote s' = bls,o. Initially, for [ = L, we have
I8l = 1/vm [Ivillo, = 01/ Vim).

Implles that (39) holds true for [ = L. Suppose that at [*" layer with probability at least 1 —me —Chs In’ (m) for some constant

el lH O( —). We now prove that equation (39) is valid for (I — 1)”‘ layer as well with probablhty at least
1 — me—cs *(M) for some constant cbs > 0. In particular, the absolute value of i*" component of si is bounded as
1 & I & 1 <
-1 -1 -1 -2 -1 1
|si | = mZ(WQ )i @ mZ(W2 )ijj +7Z(Wl )kjyj Sk
k=1 j=1 j=1

IA
3 \ -
NE
: 2

q\
3 ‘ -
]
=
me

S

+
S
]
=

|
<

L

k=1 J#i Jj#i
+ E,Ba- l QZ Wl 1 2 50—}’12 (Wl 1) (Wl 1) 2
k=1
= |T1| + | T3] + |T3|.
Now, we provide bounds on the terms (77, 75, and 73) individually:
1 & N 1 «— _ _ 1 & ~
n _?Z(Wé 1)m / WZ(Wé l)ijé 2+7Z(W1l 1)kJYJ sl
k=1 j#i J#i
< Lo Sy, s~ (0.5 e
_\/meI 2 ki Sk 9 m ’
1 . _ 1 B i B
Ty= o Boxi ™ D ((W371)0) sk < 0 521 1L 30 (0737,
k=1 k=1
" 1 ] “ -1 -1 ! %
T3 - mﬁﬁd}’z Z (Wl ) (W2 ) \/f\fﬂa |YZ| ||S H Z ( ) (W2 ) ki

k=1 k=1

where >, ((VVZI_l)M)2 ~ x3(m), Ypey (Wi, (Ws™Y),, ~ x*(m), and x2(m) denotes the chi-square distribution
with degree m. By using the concentration inequality on the derived 77 bound, we obtain

ln(m) n?2(m)
< 2¢ 2L < 2" ¢! In? (m) (60)
Vv m

l

Substituting the bound of Hsl , obtained from Lemma (H) in the above inequality leads to ¢, = 1/ (QLE, ||SlH2)

>1/ (2L§L’21+2c§€72l). From Lemma 1 in [50], there exist constants ¢1, ¢, and ¢s > 0, such that

m

1
B S (v,

k=1

Pr

%3 (m) _
> e vV ] <e ™, (61)

Here, by using Lemma (5), we can write |x. 2| < In(m) + |o/(0)| with probability at least 1 — 2= *n*(M)and by induction

hypothesis we have H ! ||Oo O(1/+/m) with probability 1 —me —Chs In*(m) Similarly, there exist constants ¢;, éo, and ég > 0,
such that

1 m B B . _ nf3(Vmn) e
br \/ﬁﬂf"y”HSle;(Wf 1)1“' (W2l 1)ki = e v ]Se 2V, (62)

Combining probabilities in (60), (1), and (62), there exists a constant c, * such that

2 (m) < mefclfss In2(m) +2€7Ci’ In2(m) +2676; In2(m) +€762m +6762\/W’

efcbs
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and with probability at least 1 — =% m*(™) we have st~ = ( \/%) This implies,
I =0 (=), (63)
e m
with probability at least 1 — me s n*(m) je., by induction we proved (39) for any [ € [L]. O

Lemma 8. The ly-norm of difference between bl and b, is in O(1/\/m) for any l € [L — 1), i.e.,
bl — bl || =O@/vm) Vie[L-1]. (64)

Proof. we prove (64) by using Induction. For [ = L, we have Hb(L) b(L) H = 0. Let us consider (64) is valid for any [ € [L].
Now, we prove that (64) is also valid for [ — 1.

b bl = Hl "l (i) el
H( 1)l — (W) " SibL g + (W) 5B
+ (Who) " 2B — (W) =B, — (Why) " bl
= = ()" = o) ") =L+ ()" (2 ) b + (W) 5 (bl bl
< = ()" = o)) =t - = o) " (2 = ) |+ = () (6L~ L)
=T +T1T>+1T;5.

We now provide bounds on 77,75, and T3:

— L—1
- (wh) ") = RaLg 1 (oo + Ra[N) " _ (31 /.

1 1 ,
7= = () < = W - who| [ | <

vm
To obtain bound on 75, we need the following inequality,
- 1 _ 1 1
||XZ(W) L(Wo) || = HWZ FHW) - ﬁwzloxl ' (Wo) + %ny - %Wfoy ‘

- - 1 _ 1
< W 2o R (W) = %170 (W) |+ <= [ = W] = W)+ = [ = i )

R

<eaoLo ||XTHW) — 71 (W) + f* [x!=Y(W)| + RiC,
R2CiSTA-x

<eaoLo ||XHW) — %7 (Wo)|| + —="= + RiC,,.

vm

Since
1
<O w) == (W) | < —= |[wf" - ||| °>H+ = | Wi = Wi | Iyl < RaCx+ BiCy = O(1).

Recursively applying the previous equation, we get

-1

- - 1 Racigrax g
||XI(W) — Xl (Wo)H S CéolLff 1 (RQCX + Rle) + <\/TT’L + Rlcy Z:CQOLU = O 1

Using the above inequality bound and Lemma , we can write the following with probability 1 — me—Chs % (m);

1[5 = S5] bl = J D (blo); o (®I(W)) = o (& (Wo)))” < [[b]|, J > 0! (®(W)) = o (X (Wo))]?

i=1

< Lol 8o [KH(W) — = (Wo)| = O (;m) .

This leads to,
|(Who) " (=" = =) bl

| < =Wl (="~ 5] bLo]| = 0 (ﬁ) -



21

Besides, by using the induction hypothesis on [, the term 73 is bounded as

1
(! l ! ! !
= (¥4)” 57 (0~ )| < 57 0 o] = 01/,
Now combining the bounds on the terms 77, 75, and T3, we can write
bt = b | ST+ T+ Ty = (1) (65)
m
Therefore, (64) is true for I — 1. Hence, by induction (64) is true for all [ € [L]. O

By using Lemma [7] and [8] in equation (33)), we get

~ 1
b = ol ot bl =0 (). )
This implies,
1
0. (1) = s {4} =0 (=) o

D. Bound on @, For ADMM-CSNet

Let bl = ‘gfi, then Q. (fs) = maxi<<g {||bl]|__}. We now compute bound on ||bl||_ by using (53). Similar to the
previous LISTA network analysis, one can obtain the bound on Hbl H by computing the bounds on Hbl 0 H and Hbl
which are provided in Lemma and Lemma [12| respectively. Moreover, in order to compute the bound on HbS O|| ‘we
require several lemmas which are stated below. In specific, Lemma [9] and Lemma [T0] provide the bound on each component
of the hidden layer’s output at initialization and the bound on l-norm of b, I € [L], respectively.

Lemma 9. F0r any le[Ll] andi € [m ], we have |zt| < In(m) + L, |ué_1| + |o(0)| at initialization with probability at
least 1 — 2e~Catn’(m) for some constant ¢, > 0 and ’ul’ < In(m) + ’uifl‘ + ‘z” at initialization with probability at least
1 — 2e=Cun’(m) for some constant cl, > 0.

Proof. From (9),

z| = o [ul™! + —— (W), (2t =) + — (W
i = (s 3 OV o) 2 0D
Ly < Ly v
< S W) () LS W) v+ L [l 4 100)
Kt ik A § \/ﬁkzl ik | |

s (Wll)zk ~ N(0,1) and (VVQZ)“~C ~ N(0,1), so that >_;'_; (Wll)m v ~ N (O, Hy||2) and >0, (WQZ)”~C (zfC L ugc 1) ~
N (0, z' = — ul_lHZ). In addition, since (W/{)  and (Wj), are independent,

Sy (W) it S5y (W), (2t = i) ~ A (02 4 [l — '~
Gaussian random variable, we obtain

2 . Lo .
). Using the concentration inequality of a

Pr [|z{] > In(m) + Lo [ul™"| 4 |0(0)[] < Pr

L, <& L, &
\/%Z (Wzl)zk (ch_l _uic ! 7;2 Wl k Yk
k=1

=1

> In(m )]

m In2 (m)

- 1—1_1—112 17,2
< 2e 202 (Iy12+[|= 1 —ul =1?) _ o ,—cl In®(m)

7

where ¢, = Therefore,

2L§(H}’H2+||Z(T*1>—u(l*1)||2) :
Pr[|z}| < In(m) + Ly |ul ™!+ |0(0)]] > 1 — 2~ "*(m),

Since the bound on |z£| depends on |u§_1| (mentioned in above equation), we now find the bound of |u£|

n m 1 3
‘ui = ui 1_Zi+;T(W{)zkyk+kZ:1ﬁ(Wé)lk (Zﬁc l_uiC 1)
"1 | _ _
< ul o]+ [0 7 7o+ 30 (W) (7 - i)
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By the concentration inequality for the Gaussian random variable, we have

L, & B L, <&
PﬂMEMM+M”HMHS%L@ZNMM@F—%W+n/(MMWZmWﬂ
k=1 k=1
- m 1n2(m)
<% 222 (I 12|z =T —ul =T|2)
Therefore, we have
Pr Hu” <lIn(m) + |uﬁ_1’ + |zi|] >1-— 9¢—Culn?(m)
In a recursive manner, we get
|2;| <In(m) + |o(0 |—t§: (1+ Lo)' Lo(2In(m) + |0(0)]) + (1 + Lo)' ™" Ly Cl,
-1 _
lul| <371+ Lo)" (2In(m) + [0(0)]) + (1 + Lo)' Cl,
1=0
_ m In2 (m) .
with possibility 1 — 2¢ 28 (V171 -al71]7) -

Lemma 10. Consider an L-layer ADMM-CSNet with (W1,). . ~ N(0,1) and (WQO) ~ N(0,1), Vi € [L], then, for any
W and Wy such that |W1 — Wyg|| < Ry and |Wq — Wgoﬂ < Ry, we have,

L[| < LE71 (2 (c20 + Ro/v/m) +1)" " (68)
From this at initialization, i.e., for Ro = 0, we get
IbSoll < Lg™ (2e20 + 1) (69)

Proof. We prove this lemma by using induction on [. Initially, for | = L, we have

HMH|P* — (1)) [Vl = 1/ < 1.

That is the quantity in (68) is true for | = L. Assume that at [** layer the inequality holds, i.e., |bl]|
LE=1(2 (20 + Ra//m) +1)" 7', then below we prove that holds true even for the (I — 1)*" layer:

- afs 8zl afg
I = |t | = oo | = || (s e - ) e
< o V) ] £ om0 ) 25

So, from the above analysis, we claim that the inequality in holds true for any ! € [L]. Now, at initialization, i.e.,
substituting Ry = 0 in (68) directly leads to (69). O

< IO+ 11 o

We now use the two lemmas that are mentioned above to provide the bound on ||bi7OHC>C
Lemma 11. At initialization, the co-norm of b, is in O(1/+/m) with probability 1 —me=%:°(") for some constant b, >0,
Le.,
ol =0 (=) a0
vm
Proof. We prove this lemma by induction. Before proceeding, lets denote s’ = b;o. Initially, for [ = L, we have
Is* ]l = 1/ Vsl = 00 /v/m).

Implies that . holds true for l L. Suppose that at [** layer with probability at least 1 — meChs In” (m) for some

constant cbs . We now prove that equation (70) is valid for (I — 1)*" layer with probablhty at least

L n? (m

1— me s ) for some constant cbS > 0. In particular, the absolute value of i*" component of sé_l is bounded as
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m m n
-1 2 -1 1 -1 (1-2) (1—2) 1 -1 (1—2) |
=3 (G -), 7 ﬁ;(% D (£1°0 - >j+n;<wl s+l )
"2 N 1-2) | 4
< <W2l 1—]) o’ ( (=2) _ U= 2)) — Wll ! —l—u,(~C S},
2 B _ m m
=8, (zgl 2y 2))2 (W), (W), k| + f&in(Wé e V1Y) 8k
k=1 k=1
1 _ _ m 1 m m
| (o =l ) S e | e 3 )+ |3 (2 1) )
k=1 k=1 ki
= [Th| + |To| + | T3] + [Ta] + |T5| + |T6|.
Now, we provide bounds on the terms (717,75,75,7y,T5, and Tg) individually:
- 2 _ _ 1 <« _ (1—2)
|T1|: Z(mwzl 1—I>k \/>Z ( (1=2) _yl 2))j+%Z(Wll 1) YTy Sic
k=1 v J#i J#i
(2 ! 21y I
S La}; <\/%W2 >kz Sk S LU; m <W2 )ki Sk + | L08i|,
2 _ _ - _ 2 2 _ _ - _ 2
Tl = | (2 —al™) S0 (W37),) sk| < Z 8 [ =2 L D0 (7))
k=1 k=1
_ , . -1 -1 l 2 Tl - ! 1 -1
|T5] = ‘ \/—ﬁa}%; (W3 )k’L (W; )k AR WIBU il HS H ; Wy~ Wl )kz J

1 (ol
) |T5i = ’\/ﬁﬁa}%z (Wll 1)]ﬂ- Sig )

k=1 k=1
ym—Li(QWH—QSL LS 2 (Wi, sk | Lost
- o 2 =~ o 2 i oog| -
= \vm ki = vm ¥
By using the concentration inequality on the derived 7} and Ty bounds, we obtain
m 02 (m)
Z (W38 2 hjg)i < 26 T g 26, (71

Substituting the bound of [|s'[|, obtained from Lemma 1i in the above inequality leads to ¢l = 1/(8L2 ||slH2) >
1/(8L2E=2142 ((2¢,0 + 1)*272). Also using the induction hypothesis, we get

|Losi| < Lo ||']], = O(1/v/m). (72)

Therefore, from and (72), we get both Ty and Ty is O(1/,/m) with probability at least 1 — 2e—¢-!n*(m)  Ag
(WD) )T ~ x2(m) and S, (WY (WITY) .~ x2(m). Hence, to derive bounds on T, and T3, by usin
D k1 (( 2 )k X k=1 1 )i \Wo ) ™ X y g

Lemma 1 in [50], there exist constants ¢1, s, and ¢3 > 0, such that

m

2 _ _
ol IS DD (W),

k=1

In®3 (m)

> e’ vm 1 < e em, (73)

Here, by using Lemma (EI) we can write |zl 2| < In(m) 4 Ly ul™3| + |o(0)] With probability at least 1 — 2e—¢= ~n*(m)gpg
by induction hypothesis we have HslH = O(1/+/m) with probability 1 — me —Chs In*(m) Similarly, there exist constants ¢,
¢2, and ¢3 > 0, such that

|

m

B il [0 2 (7),,)°

k=1

Vv
o
3

1 (m) .
Cre | <L e 2V, (74)
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Again by using concentration inequality, we obtain the bound for 7; and 75 as follows.

m _ 1n?2(m)
Bs (1-2) (1-2) -1l In(m) 262 (=2 —u(=2)7 15112 —Caz In?
Prl(zz' - )Z(Wz)k > | < ge 23(= I < g In®(m), (75)
m vm
k=1
m n1n?2(m) 1n2 (m)
Prl Bo i S W)tsh| > lﬂ(m)] < 2¢ 2RI < 9¢ 2RI < e cay n7(m) (76)
A/
k=1

2 2

for some constants c,, = 1/232 (ZEZ_Q) 7u§l—2)) HSZ||2 > 1/2p2 (ZEI_Q) fugl_Q)) LE1 (200 + 1)" 7 and Cay =
2

1/262 (vo)? ||s!]|* > 1/282 (zgl‘” _ugl—2>) LE=! (2e50 +1)¥~!. Combining probabilities in (7T), @2), (3). ). (T3

and (76)), there exists a constant cégl such that
e~ Cos In*(m) < ImeCbs 07 (M) | go—ca W?(m) 4 gp—cpin®(m) | p=Gom | p—Cav/mn 4 9o—cazIn*(m) 4 9p—Cay In*(m)
and with probability at least 1 — e~ I0%(m) e have|sl 1| = O(1/+/m). This implies
sl = 00 /vm), (77)
with probability at least 1 — me s 1n2(m), i.e. by induction we prove (70) for any [ € [L]. O
Lemma 12. The ly-norm of difference between bl and b, is in O(1/y/m) for any | € [L — 1], i.e
bl = bl || =O(1/v/m) Vie[L-1]. (78)

Proof. we prove (78) by using induction. For | = L, we have
Now, we prove that (78) is also valid for I — 1.

e R [ U R L C=T U SR R I
:|(\/ﬁ(w2) 2'1—2’1) (\/2%( Ty Eg) b,

b — b(L) H = 0. Let us consider (78) is valid for any [ € [L].

+ (\/2% (Why) " s — E”) b, <\/2m (Why) " 5" — 2’1) bl
<2m(W50)T2” z’l)bio <\/2% W) 1 — E”)bgn

= 1= () = (v5) ) b (= k)" (2 = ) = (=4 )
+ (o ()2 3 (bl ol

<= ()" = 0vd0) ") 2w+ —= [(2vh0)" = vimr) (=" = 5) ) i

+ 7 (0 - vmr) =) ot - )

We now provide bounds on 77,75, and T3:

2R LE=1 (2 (c0 + Ra//m) + 1) 7!
Jm

— (Wh)" ) ="}

2
= |2 (o < - wh - wh =) o) <

- o<1/\F>.
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To obtain bound on 75, we need the following inequality,

- 1 _ 1 _
Hzl(W) H = H\/>Wzl - 1(W> - ﬁWQZOZl ! (Wo) — \/»Wl u'” 1(W) + ﬁwzloul ! (W)
+ TWQ’ - TWfo}’H
\ﬁHWgoHL 12'( " (W) H+\ﬁ||W2 Wil [z (W]
1 _ _ 1
o 1o | [P (W) — ™ (W) +7 W2 = Wao | [l (W] + = [Wi = Wio | v
< enl 771 (W) - ww+fwm W[ 12w
+ 0 [ TH (W) —u'TH (W) | + —= \F W5 — W[ [[u' = (W) + —= f Wi = Wil Iy
< 2oL |21 (W) = 271 (W) || 4 c20 [[u 71 (W) — u' 1 (W)
R _
+ \/% (clADlMMz( )+Ci\[}MM;u(m)> + R1Cy.
Since
[0 (W) —u" (Wo)|| < (Lo +1)[|2/(W) — 2" (Wy)]|,
we have
- - . R
|2/ (W) —2' (Wo)|| < a0 (2Lo +1) ||~ (W) =21 (Wo)|| + \/i (CfA_DlMM;z(m) + CfA_DlMM;u(m)) + RiCy.
Since

~ 1
(W) 2% (Wo) | < — i )

1 1
w4 [ = wig |y

< Ry (Cp + Cu) + RiCy,.
Recursively applying the previous equation, we get

12 (W) — 2" (W]

-2

R _ ; P _

< ( J%(clADIMMZ( >+clA]§MM;u<m>)+R10y) > cho (Lo + 1)+ e (Lo + 1)1 (Ra (G + Cu) + RiCy)
=0

=0(1).

Using the above inequality bound and Lemma , we can write the following with probability 1 — meChs In”(m).

[ = 5] bl || = \lz(bép)f[w (ZH(W)) — o’ (2! (Wy))]* < ||bl ol \lZ[m (7 (W)) — o' (2 (Wy))]?

i=1 i=1
< [[bloll Ba [[2' (W) = 2" (Wo)[| = O(1/v/m).
This leads to,
1 T ~
== (2 wh)™ — vimr) (=~ 58) ) vl o < 12 (Wao) " = VIl |[5' = Z5] biol| = O1/vim).
Besides, by usmg the induction hypothesis on [, the term 73 is bounded as

7y = —= || (20950 " = vmr) ) (b — b} | < <=2 (Who)" = vim| =" = b o] = O(1/ V).

Now combining the bounds on the terms 77, T> and T3, we can write

it —bl | <+ T+ T3 = ( (79)

—_
\_/

vm
Therefore, is true for [ — 1. Hence, by induction (78) is true for all [ € [L]. O
By using Lemma [T1] and [T2] in equation (33), we get

bl = kol + =l = 0 (= ) )

m

—
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This implies,

0w (1) = s ().} =0 (=) @1)
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