
1

Optimization Guarantees of Unfolded ISTA and
ADMM Networks With Smooth Soft-Thresholding

Shaik Basheeruddin Shah, Student Member, IEEE, Pradyumna Pradhan, Wei Pu, Member, IEEE,
Ramunaidu Randhi, Miguel R. D. Rodrigues, Fellow, IEEE, Yonina C. Eldar, Fellow, IEEE

Abstract—Solving linear inverse problems plays a crucial role
in numerous applications. Algorithm unfolding based, model-
aware data-driven approaches have gained significant attention
for effectively addressing these problems. Learned iterative soft-
thresholding algorithm (LISTA) and alternating direction method
of multipliers compressive sensing network (ADMM-CSNet) are
two widely used such approaches, based on ISTA and ADMM
algorithms, respectively. In this work, we study optimization
guarantees, i.e., achieving near-zero training loss with the in-
crease in the number of learning epochs, for finite-layer unfolded
networks such as LISTA and ADMM-CSNet with smooth soft-
thresholding in an over-parameterized (OP) regime. We achieve
this by leveraging a modified version of the Polyak-Łojasiewicz,
denoted PL∗, condition. Satisfying the PL∗ condition within a
specific region of the loss landscape ensures the existence of a
global minimum and exponential convergence from initialization
using gradient descent based methods. Hence, we provide condi-
tions, in terms of the network width and the number of training
samples, on these unfolded networks for the PL∗ condition to
hold. We achieve this by deriving the Hessian spectral norm
of these networks. Additionally, we show that the threshold on
the number of training samples increases with the increase in
the network width. Furthermore, we compare the threshold on
training samples of unfolded networks with that of a standard
fully-connected feed-forward network (FFNN) with smooth soft-
thresholding non-linearity. We prove that unfolded networks have
a higher threshold value than FFNN. Consequently, one can
expect a better expected error for unfolded networks than FFNN.

Index Terms—Optimization Guarantees, Algorithm Unfolding,
LISTA, ADMM-CSNet, Polyak-Łojasiewicz condition

I. INTRODUCTION

L INEAR inverse problems are fundamental in many en-
gineering and science applications [1], [2], where the

aim is to recover a vector of interest or target vector from
an observation vector. Existing approaches to address these
problems can be categorized into two types; model-based and
data-driven. Model-based approaches use mathematical for-
mulations that represent knowledge of the underlying model,
which connects observation and target information. These
approaches are simple, computationally efficient, and require

Part of this work has been accepted for presentation at IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2022.
S. B. Shah and Y. C. Eldar are with the Weizmann Institute of Science,
Rehovot, Israel. P. Pradyumna and R. Ramu Naidu are with the Department
of Humanities and Sciences, Indian Institute of Petroleum and Energy, India.
W. Pu is with the University of Electronic Science and Technology, China. M.
Rodrigues is with the Department of Electronic and Electrical Engineering,
University College London, UK.

This work was supported both by The Alan Turing Institute and Weizmann
– UK Making Connections Programme (Ref. 129589).

accurate model knowledge for good performance [3], [4]. In
data-driven approaches, a machine learning (ML) model, e.g.,
a neural network, with a training dataset, i.e., a supervised
setting, is generally considered. Initially, the model is trained
by minimizing a certain loss function. Then, the trained model
is used on unseen test data. Unlike model-based methods, data-
driven approaches do not require underlying model knowledge.
However, they require a large amount of data and huge
computational resources while training [3], [4].

By utilizing both domains’ knowledge, i.e., the mathemati-
cal formulation of the model and ML ability, a new approach,
called model-aware data-driven, has been introduced [5], [6].
This approach involves the construction of a neural network
architecture based on an iterative algorithm, which solves the
optimization problem associated with the given model. This
process is called algorithm unrolling or unfolding [6]. It has
been observed that the performance, in terms of accurate
recovery of the target vector, training data requirements,
and computational complexity, of model-aware data-driven
networks is better when compared with existing techniques
[5], [7]. Learned iterative soft-thresholding algorithm (LISTA)
and alternating direction method of multipliers compressive
sensing network (ADMM-CSNet) are two popular unfolded
networks that have been used in many applications such as
image compressive sensing [7], image deblurring [8], image
super-resolution [9], super-resolution microscopy [10], clutter
suppression in ultrasound [11], power system state estimation
[12], and many more.

Nevertheless, the theoretical studies supporting these un-
folded networks remain to be established. There exist a few
theoretical studies that address the challenges of generalization
[13]–[15] and convergence rate [16]–[18] in unfolded net-
works. For instance, in [13], the authors showed that unfolded
networks exhibit higher generalization capability compared
with standard ReLU networks by deriving an upper bound
on the generalization and estimation errors. In [16]–[18] the
authors examined the LISTA network convergence to the
ground truth as the number of layers increases i.e., layer-wise
convergence (which is analogous to iteration-wise convergence
in the ISTA algorithm). Furthermore, in [16]–[18], the network
weights are not learned but are calculated in an analytical
way (by solving a data-free optimization problem). Thus, the
network only learns a few parameters, like threshold, step size,
etc., from the available data. In this work, we study guarantees
to achieve near-zero training loss with an increase in the num-
ber of learning epochs, i.e., optimization guarantees, by using
gradient descent (GD) for both LISTA and ADMM-CSNet

ar
X

iv
:2

30
9.

06
19

5v
1

 [
cs

.L
G

]
 1

2
Se

p
20

23

2

Fig. 1: Double descent risk curve.

with smooth activation in an over-parameterized regime. Note
that, our work differs from [16]–[18], as we focus on the
convergence of training loss with the increase in the number
of epochs by fixing the number of layers in the network.

In classical ML theory, we aim to minimize the expected/test
risk by finding a balance between under-fitting and over-fitting,
i.e., achieving the bottom of the classical U-shaped test risk
curve [19]. However, modern ML results establish that large
models that try to fit train data exactly, i.e., interpolate, often
show high test accuracy even in the presence of noise [20]–
[25]. Recently, ML practitioners proposed a way to numer-
ically justify the relationship between classical and modern
ML practices. They achieved this by proposing a performance
curve called the double-descent test risk curve [20], [21],
[23], [24], which is depicted in Fig. 1. This curve shows
that increasing the model capacity (e.g., model parameters)
until interpolation results in the classical U-shaped risk curve;
further increasing it beyond the interpolation point reduces the
test risk. Thus, understanding the conditions – as a function
of the training data – that allow perfect data fitting is crucial.

Neural networks can be generally categorized into under-
parameterized (UP) and over-parameterized (OP), based on
the number of trainable parameters and the number of training
data samples. If the number of trainable parameters is less than
the number of training samples, then the network is referred
to as an UP model, else, referred to as an OP model. The
loss landscape of both UP and OP models is generally non-
convex. However, OP networks satisfy essential non-convexity
[26]. Particularly, the loss landscape of an OP model has a non-
isolated manifold of global minima with non-convexity around
any small neighborhood of a global minimum. Despite being
highly non-convex, GD based methods work well for training
OP networks [27]–[30]. Recently, in [26], [31], the authors
provided a theoretical justification for this. Specifically, they
proved that the loss landscape, corresponding to the squared
loss function, of a typical smooth OP model holds the modified
version of the Polyak-Łojasiewicz condition, denoted PL∗, on
most of the parameter space. Indeed, a necessary (but not
sufficient) condition to satisfy the PL∗ is that the model should
be in OP regime. Satisfying PL∗ on a region in the parameter
space guarantees the existence of a global minimum in that
region, and exponential convergence to the global minimum
from the Gaussian initialization using simple GD.

Motivated by the aforementioned PL∗-based mathematical
framework of OP networks, in this paper, we analyze optimiza-
tion guarantees of finite-layer OP based unfolded ISTA and
ADMM networks. Moreover, as the analysis of PL∗ depends
on the double derivative of the model [26], we consider
a smooth version of the soft-thresholding as an activation
function. The major contributions of the paper are summarized
as follows:

• As the linear inverse problem aims to recover a vector, we
initially extend the gradient-based optimization analysis
of the OP model with a scalar output, proposed in [26],
to a vector output. In the process, we prove that a
necessary condition to satisfy PL∗ is P ≫ mT , where
P denotes the number of parameters, m is the dimension
of the model output vector, and T denotes the number of
training samples.

• In [26], [31], the authors provided a condition on the
width of a fully-connected feed-forward neural network
(FFNN) with scalar output to satisfy the PL∗ condition
by utilizing the Hessian spectral norm of the network.
Motivated by this work, we derive the Hessian spectral
norm of finite-layer LISTA and ADMM-CSNet with
smoothed soft-thresholding non-linearity. We show that
the norm is on the order of Ω̃ (1/

√
m), where m denotes

the width of the network which is equal to the target
vector dimension.

• By employing the Hessian spectral norm, we derive
necessary conditions on both m and T to satisfy the PL∗

condition for both LISTA and ADMM-CSNet. Moreover,
we demonstrate that the threshold on T , which denotes
the maximum number of training samples that a network
can memorize, increases as the network width increases.

• We compare the threshold on the number of training sam-
ples of LISTA and ADMM-CSNet with that of FFNN,
solving a given linear inverse problem. Our findings show
that LISTA/ADMM-CSNet exhibits a higher threshold
value than FFNN. Specifically, we demonstrate this by
proving that the upper bound on the minimum eigenvalue
of the tangent kernel matrix at initialization is high for
LISTA/ADMM-CSNet compared to FFNN. This implies
that, with fixed network parameters, the unfolded network
is capable of memorizing a larger number of training
samples compared to FFNN. Therefore, we should expect
to obtain a better expected error (which is upper bounded
by the sum of generalization and training error [32]) for
unfolded networks than FFNN.

• Additionally, we numerically evaluate the parameter effi-
ciency of unfolded networks in comparison to FFNNs. In
particular, we demonstrate that FFNNs require a higher
number of parameters to achieve near-zero empirical
training loss compared to LISTA/ADMM-CSNet for a
given fixed T value.

Outline: The paper is organized as follows: Section II
presents a comprehensive discussion on LISTA and ADMM-
CSNet, and also formulates the problem. Section III extends
the PL∗-based optimization guarantees of an OP model with
scalar output to a model with multiple outputs. Section IV

3

begins by deriving the Hessian spectral norm of the unfolded
networks. Then, it provides conditions on the network width
and on the number of training samples to satisfy the PL∗

condition. Further, it also establishes a comparative analysis
of the threshold for the number of training samples among
LISTA, ADMM-CSNet, and FFNN. Section V discusses the
experimental results and Section VI draws conclusions.

Notations: The following notations are used throughout the
paper. The set of real numbers is denoted by R. We use bold
lowercase letters, e.g., y, for vectors, capital letters, e.g., W ,
for matrices, and bold capital letters, e.g., H, for tensors.
Symbols ||z||1, ||z||, and ||z||∞ denote the l1-norm, l2-norm,
and l∞-norm of z, respectively. The spectral norm and Frobe-
nius norm of a matrix W are written as ||W || and ||W ||F ,
respectively. We use [L] to denote the set {1, 2, . . . , L}, where
L is a natural number. The first-order derivative or gradient
of a function L(w) w.r.t. w is denoted as ∇wL(w). The
asymptotic upper bound and lower bound on a quantity are
described using O(·) and Ω(·), respectively. Notations Õ(·)
and Ω̃(·) are used to suppress the logarithmic terms in O(·)
and Ω(·), respectively. For example, O

(
1
m ln(m)

)
is written

as Õ
(

1
m

)
. Symbols ≫ and ≪ mean “much greater than” and

“much lesser than”, respectively. Consider a matrix G with
Gi,j =

∑
k Ai,j,kvk, where Ai,j,k is a component in tensor

A ∈ Rm1×m2×m3 . The spectral norm of G can be bounded
as

∥G∥ ≤ ∥A∥2,2,1∥v∥∞. (1)

Here ∥A∥2,2,1 denotes the (2, 2, 1)-norm of the tensor A,
which is defined as

∥A∥2,2,1 = sup
∥r∥=∥s∥=1

m3∑
k=1

∣∣∣∣∣∣
m1∑
i=1

m2∑
j=1

Ai,j,krisj

∣∣∣∣∣∣ , (2)

where r ∈ Rm1×1 and s ∈ Rm2×1.

II. PROBLEM FORMULATION

A. LISTA and ADMM-CSNet

Consider the following linear inverse problem

y = Ax+ e. (3)

Here y ∈ Rn×1 is the observation vector, x ∈ Rm×1 is the
target vector, A ∈ Rn×m is the forward linear operator matrix
with m > n, and e is noise with ∥e∥2 < ϵ, where the constant
ϵ > 0. Our aim is to recover x from a given y.

In model-based approaches, an optimization problem is
formulated using some prior knowledge about the target vector
and is usually solved using an iterative algorithm. For instance,
by assuming x is a k-sparse vector [33], the least absolute
shrinkage and selection operator (LASSO) problem is formu-
lated as

min
x

1

2
∥y −Ax∥2 + γ∥x∥1, (4)

where γ is a regularization parameter. Iterative algorithms,
such as ISTA and ADMM [34], are generally used to solve
the LASSO problem. The update of x at the lth iteration in
ISTA is [35]

xl = Sγτ

{(
I− τATA

)
xl−1 + τATy

}
, (5)

Fig. 2: lth layer of the unfolded ISTA network.

where x0 is a bounded input initialization, τ controls the
iteration step size, and Sλ(·) is the soft-thresholding oper-
ator applied element-wise on a vector argument Sλ(x) =
sign(x)max (|x| − λ, 0) . The lth iteration in ADMM is [36]

xl =
(
ATA+ ρI

)−1 (
ATy + ρ

(
zl−1 − ul−1

))
,

zl = S γ
ρ

(
xl + ul−1

)
,

ul = ul−1 +
(
xl − zl

)
,

(6)

where x0, z0, and u0, are bounded input initializations to
the network and ρ > 0 is a penalty parameter. Model-based
approaches are in general sensitive to inaccurate knowledge of
the underlying model [3], [4]. In turn, data-driven approaches
use an ML model to recover the target vector. These ap-
proaches generally require a large amount of training data and
computational resources [3], [4].

A model-aware data-driven approach is generally developed
using algorithm unfolding or unrolling [6]. In unfolding, a
neural network is constructed by mapping each iteration in
the iterative algorithm (such as (5) or (6)) to a network layer.
Hence, an iterative algorithm with L-iterations leads to an
L-layer cascaded deep neural network. The network is then
trained by using the available dataset containing a series of
pairs {yi,xi}, i ∈ [T]. For example, the update of x at the lth

iteration in ISTA, given in (5), is rewritten as

xl = Sλ

{
W l

2x
l−1 +W l

1y
}
, (7)

where λ = γτ , W l
1 = τAT , and W l

2 = I − τATA. By
considering W l

1, W l
2, and λ as network learnable parameters,

one can map the above lth iteration to an lth layer in the
network as shown in Fig. 2. The corresponding unfolded
network is called learned ISTA (LISTA) [5]. Similarly, by con-
sidering W l

1 =
(
ATA+ ρI

)−1
AT , W l

2 =
(
ATA+ ρI

)−1
ρ,

and λ = γ
ρ as learnable parameters, (6) is rewritten as

xl = W l
1y +W l

2

(
zl−1 − ul−1

)
,

zl = Sλ

(
xl + ul−1

)
,

ul = ul−1 +
(
xl − zl

)
.

(8)

The above lth iteration in ADMM can be mapped to an lth

layer in a network as shown in Fig. 3, leading to ADMM-
CSNet [7]. Note that from a network point of view, the inputs
of lth layer are xl−1 and y for LISTA, and zl−1, ul−1 and y
for ADMM-CSNet. It has been observed that the performance
of LISTA and ADMM-CSNet is better in comparison with
ISTA, ADMM, and traditional networks, in many applications
[5], [7]. For instance, to achieve good performance the number
of layers required in an unrolled network is generally much
smaller than the number of iterations required by the iterative

4

Fig. 3: lth layer of the unfolded ADMM network.

solver [5]. In addition, an unrolled network works effectively
even if the linear operator matrix, A, is not known exactly.
An unrolled network typically requires less data for training
compared to standard deep neural networks [3] to achieve a
certain level of performance on unseen data. Due to these ad-
vantages, LISTA and ADMM-CSNet have been used in many
applications [7]–[12]. That said, the theoretical foundations
supporting these networks remain to be established. While
there have been some studies focusing on the generalization
[13]–[15] and convergence rate [16]–[18] of unfolded net-
works, a comprehensive study of the optimization guarantees
is lacking. Here, we analyze the conditions on finite L-layer
LISTA and ADMM-CSNet to achieve near-zero training loss
with the increase in the number of epochs.

B. Problem Formulation

We consider the following questions: Under what conditions
does the training loss in LISTA and ADMM-CSNet converge
to zero as the number of epochs tends to infinity using GD?
Additionally, how do these conditions differ for FFNNs?

For the analysis, we consider the following training setting:
Let x = F (w, λ;y) be an L-layer unfolded model, where
y ∈ Rn×1 is the model input vector, x ∈ Rm×1 is the
model output, and w ∈ RP×1 and λ are the learnable param-
eters. To simplify the analysis, λ is assumed to be constant,
henceforth, we write F (w, λ;y) as F (w;y). This implies that
wP×1 = Vec

(
[W]L×m×(m+n)

)
is the only learnable (untied)

parameter vector, where

W =
[
W 1 W 2 . . . WL

]
, (9)

and
[
W l
]
m×(m+n)

=
[
W l

1 W l
2

]
is the parameter matrix

corresponding to the lth-layer. Alternatively, we can write

W =
[
[W1]L×m×n [W2]L×m×m

]
, (10)

W1 =
[
W 1

1 . . . WL
1

]
and W2 =

[
W 1

2 . . . WL
2

]
. Consider

the training dataset {yi,xi}Ti=1. An optimal parameter vector
w∗, such that F (w∗;yi) ≈ xi, ∀i ∈ [T], is found by
minimizing an empirical loss function L(w), defined as

L(w) =

T∑
i=1

l(fi,xi), (11)

where l(·) is the loss function, fi = (F(w))i = F (w,yi),
F(·) : RP×1 −→ Rm×T , and (F(w))i is the ith column in
F(w). We consider the squared loss, hence

L(w) =
1

2

T∑
i=1

∥fi − xi∥2 =
1

2
∥F(w)−X∥2F , (12)

where X = [x1, . . . ,xT]. We choose GD as the optimization
algorithm for minimizing L(w), hence, the updating rule is

wt+1 = wt − η∇wL(w)

where η is the learning rate.
Our aim is to derive conditions on LISTA and ADMM-

CSNet such that L(w) converges to zero with an increase in
the number of epochs using GD, i.e., limt→∞ L(wt) = 0. In
addition, we compare these conditions with those of FFNN,
where we obtain the conditions for FFNN by extending the
analysis given in [26]. Specifically, in Section IV-C, we derive
a bound on the number of training samples to achieve near zero
training loss for unfolded networks. Further, we show that this
threshold is lower for FFNN compared to unfolded networks.

III. REVISITING PL∗-BASED OPTIMIZATION GUARANTEES

In [26] the authors proposed PL∗-based optimization theory
for a model with a scalar output. Motivated by this, in this
section, we extend this theory to a multi-output model, as we
aim to recover a vector in a linear inverse problem.

Consider an ML model, not necessarily an unfolded net-
work, x = F (w;y), with the training setup mentioned in
Section II-B, where y ∈ Rn×1, x ∈ Rm×1, and w ∈ RP×1.
Further, assume that the model is LF -Lipschitz continuous and
βF -smooth. A function F(·) : RP −→ Rm×T is LF -Lipschitz
continuous if

∥F(w1)−F(w2)∥F ≤ LF∥w1 −w2∥, ∀w1,w2 ∈ RP ,

and is βF -smooth if the gradient of the function is βF -
Lipschitz, i.e.,

∥∇wF(w1)−∇wF(w2)∥F ≤ βF∥w1 −w2∥,

∀w1, w2 ∈ RP . The Hessian spectral norm of F(·) is defined
as

∥HF (w)∥ = max
i∈[T]

∥HFi
(w)∥,

where HF ∈ RT×m×P×P is a tensor with (HF)i,j,k,l =
∂2(F(w))j,i

∂wk∂wl
and HFi

= ∂2(F(w))i
∂w2 . As stated earlier, the loss

landscape of the OP model typically satisfies PL∗ on most of
the parameter space. Formally, the PL∗ condition is defined as
follows [37], [38]:

Definition 1. Consider a set C ⊂ RP×1 and µ > 0. Then, a
non-negative function L(w) satisfies µ-PL∗ condition on C if
∥∇wL(w)∥2 ≥ µL(w), ∀w ∈ C.

Definition 2. The tangent kernel matrix, [K(w)]mT×mT , of
the function F(w), is a block matrix with (i, j)th block defined
as

(K(w))i,j = [∇wfi]m×P [∇wfj]
T
P×m , i ∈ [T] and j ∈ [T].

5

From the above definitions, we have the following lemma,
which is called µ-uniform conditioning [26] of a multi-output
model F(w):

Lemma 1. F(w) satisfies µ-PL∗ on set C if the minimum
eigenvalue of the tangent kernel matrix, K(w), is greater than
or equal to µ, i.e., λmin(K(w)) ≥ µ, ∀w ∈ C.
Proof. From (12), we have

∥∇wL(w)∥2 =
[
f̂ − x̂

]T [
∇w f̂

]
mT×P

[
∇w f̂

]T
P×mT

[
f̂ − x̂

]
=
[
f̂ − x̂

]T
[K(w)]mT×mT

[
f̂ − x̂

]
,

where f̂ = Vec (F(w)) and x̂ = Vec (X). The above equation
can be lower-bounded as

∥∇wL(w)∥2 ≥ λmin (K(w)) ∥f̂ − x̂∥22 ≥ µL(w).

Observe that K(w) is a positive semi-definite matrix. Thus,
a necessary condition to satisfy the PL∗ condition (that is, a
necessary condition to obtain a full rank K(w)), for a multi-
output model is P ≫ mT . For a scalar output model, the
equivalent condition is P ≫ T [26]. Note that if P ≪ T ,
i.e., an UP model with a scalar output, then λmin(K(w)) = 0,
implies that an UP model does not satisfy the PL∗ condition.

Practically, computing λmin(K(w)) for every w ∈ C,
to verify the PL∗ condition, is not feasible. One can over-
come this by using the Hessian spectral norm of the model
∥HF (w)∥ [26]:

Theorem 1. Let w0 ∈ RP×1 be the parameter initial-
ization of an LF -Lipschitz and βF -smooth model F(w),
and B(w0, R) = {w| ∥w − w0∥ ≤ R} be a ball with
radius R > 0. Assume that K(w0) is well conditioned, i.e.,
λmin(K(w0)) = λ0 for some λ0 > 0. If ∥HF (w)∥ ≤ λ0−µ

2LF
√
TR

for all w ∈ B(w0, R), then the model satisfies µ-uniform
conditioning in B(w0, R); this also implies that L(w) satisfies
µ-PL∗ in the ball B(w0, R).

The intuition behind the above theorem is that small
∥HF (w)∥ leads to a small change in the tangent kernel.
Precisely, if the tangent kernel is well conditioned at the initial-
ization, then a small ∥HF (w)∥ in B(w0, R) guarantees that
the tangent kernel is well conditioned within B(w0, R). The
following theorem states that satisfying PL∗ guarantees the
existence of a global minimum and exponential convergence
to the global minimum from w0 using GD:

Theorem 2. Consider a model F(w) that is LF -Lipschitz
continuous and βF -smooth. If the square loss function
L(w) satisfies the µ-PL∗ condition in B(w0, R) with R =
2LF∥F(w0)−X∥F

µ = O
(

1
µ

)
, then we have the following:

• There exist a global minimum, w∗, in B(w0, R) such that
F(w∗) = X .

• GD with step size η ≤ 1
L2

F+βF∥F(w0)−X∥F
converges to

a global minimum at an exponential convergence rate,
specifically, L(wt) ≤ (1− ηµ)tL(w0).

The proofs of Theorems 1 and 2 are similar to the proofs
of Theorems 2 and 6, respectively, in [26]. However, as linear

-15 -10 -5 0 5 10 15

-5

0

5

10

Fig. 4: Soft-threshold function, Sλ(x), and its smooth approx-
imation, σλ(x) (formulated using the soft-plus function), with
λ = 5.

inverse problems deal with vector recovery, the proofs rely on
Frobenius norms instead of Euclidean norms.

IV. OPTIMIZATION GUARANTEES

We now analyze the optimization guarantees of both LISTA
and ADMM-CSNet by considering them in the OP regime.
Hence, the aim is further simplified to study under what
conditions LISTA and ADMM-CSNet satisfy the PL∗ con-
dition. As mentioned in Theorem 1, one can verify the PL∗

condition using the Hessian spectral norm of the network.
Thus, in this section, we first compute the Hessian spectral
norm of both LISTA and ADMM-CSNet. The mathematical
analysis performed here is motivated by [31], where the
authors derived the Hessian spectral norm of an FFNN with
a scalar output. Then, we provide the conditions on both the
network width and the number of training samples to hold
the PL∗ condition. Subsequently, we provide a comparative
analysis among unfolded networks and FFNN to evaluate the
threshold on the number of training samples.

A. Assumptions

For the analysis, we consider certain assumptions on the
unfolded ISTA and ADMM networks. The inputs of the
networks are bounded, i.e., there exist some constants Cx,
Cu, Cz , and Cy such that |x0

i | ≤ Cx, |u0
i | ≤ Cu, |z0i | ≤ Cz ,

∀i ∈ [m], and |yi| ≤ Cy, ∀i ∈ [n]. As the computation of the
Hessian spectral norm involves a second-order derivative, we
approximate the soft-thresholding activation function, Sλ(·),
in the unfolded network with the double-differentiable/smooth
soft-thresholding activation function, σλ(·), formulated using
soft-plus, where σλ(x) = log

(
1 + ex−λ

)
− log

(
1 + e−x−λ

)
.

Fig. 4 depicts Sλ(x) and σλ(x) for λ = 5. Observe that σλ(x)
approximates well to the shape of Sλ(x). There are several
works in the literature that approximate the soft-thresholding
function with a smooth version of it [39]–[45]. The analysis
proposed in this work can be extended as is to other smooth
approximations. Further, since λ is assumed to be a constant
(refer to Section II-B), henceforth, we write σλ(·) as σ(·). It
is well known that σ(·) is Lσ-Lipschitz continuous and βσ-
smooth.

6

Let W0,W10,W20,W
l
10 and W l

20 denote the initialization
of W,W1,W2, W l

1 and W l
2, respectively. We initialize each

parameter using random Gaussian initialization with mean 0
and variance 1, i.e.,

(
W l

10

)
i,j

∼ N (0, 1) and
(
W l

20

)
i,j

∼
N (0, 1), ∀l ∈ [L]. This guarantees well conditioning of
the tangent kernel at initialization [26], [27]. Moreover, the
Gaussian initialization imposes certain bounds, with high
probability, on the spectral norm of the weight matrices. In
particular, we have the following:

Lemma 2. If
(
W l

10

)
i,j

∼ N (0, 1) and
(
W l

20

)
i,j

∼ N (0, 1),
∀l ∈ [L], then with probability at least 1 − 2 exp

(
−m

2

)
we

have
∥∥W l

10

∥∥ ≤ c10
√
n = O(

√
n) and

∥∥W l
20

∥∥ ≤ c20
√
m =

O(
√
m), ∀l ∈ [L], where c10 = 1 + 2

√
m/

√
n and c20 = 3.

Proof. Any matrix W ∈ Rm1×m2 with Gaussian initialization
satisfies the following inequality with probability at least 1−
2 exp

(
− t2

2

)
, where t ≥ 0, [46]: ∥W∥ ≤ √

m1 +
√
m2 + t.

Using this fact and considering t =
√
m, we get ∥W l

10∥ =
O(

√
n) and ∥W l

20∥ = O(
√
m).

The following lemma shows that the spectral norm of the
weight matrices within a finite radius ball is of the same order
as at the initialization.

Lemma 3. If W10 and W20 are initialized as stated in
Lemma 2, then for any W1 ∈ B(W10, R1) and W2 ∈
B(W20, R2), where R1 and R2 are positive scalars, we have∥∥W l

1

∥∥ = O(
√
n) and

∥∥W l
2

∥∥ = O(
√
m), ∀l ∈ [L].

Proof. From triangular inequality, we have∥∥∥W l
1

∥∥∥ ≤
∥∥∥W l

10

∥∥∥+ ∥∥∥W l
1 −W l

10

∥∥∥
F

≤ c10
√
n+R1 = O(

√
n),∥∥∥W l

2

∥∥∥ ≤
∥∥∥W l

20

∥∥∥+ ∥∥∥W l
2 −W l

20

∥∥∥
F

≤ c20
√
m+R2 = O(

√
m).

As the width of the network can be very high (dimension of
the target vector), to obtain the constant asymptotic behavior,
the learnable parameters W l

1 and W l
2 are normalized by

1√
n

and 1√
m

, respectively, and the output of the model is
normalized by 1√

m
. This way of normalization is called neural

tangent kernel (NTK) parameterization [47], [48]. With these
assumptions, the output of a finite L-layer LISTA network is

f =
1√
m
xL, (13)

where

xl = σ(x̃l) = σ

(
W l

1√
n
y +

W l
2√
m
xl−1

)
∈ Rm×1, l ∈ [L].

Likewise, the output of a finite L-layer ADMM-CSNet is

f =
1√
m
zL, (14)

where

zl = σ
(
z̃l
)
= σ

(
xl + ul−1

)
,

xl =
1√
n
W l

1y +
1√
m
W l

2

(
zl−1 − ul−1

)
,

ul = ul−1 +
(
xl − zl

)
, l ∈ [L].

To maintain uniformity in notation, hereafter, we denote the
output of the network as f = 1√

m
gL, where gl = xl for

LISTA and gl = zl for ADMM-CSNet.

B. Hessian Spectral Norm

For better understanding, we first compute the Hessian
spectral norm of one layer, i.e., L = 1, unfolded network.

1) Analysis of 1-Layer Unfolded Network: The Hessian
matrix of a 1-layer LISTA or ADMM-CSNet for a given
training sample i is1

[HFi] = [H]m×P×P =
[
H1 H2 · · · Hm

]
, (15)

where [Hs]P×P = ∂2fs
∂w2 , w = Vec(W 1) = Vec

(
[W 1

1 ,W
1
2]
)
,

fs denotes the sth component in the network output vector f ,
i.e., fs = 1√

m
vT
s g

1, and vs is a vector with sth element set
to be 1 and others to be 0. The Hessian spectral norm given
in (15) can be bounded as max

s∈[m]
{∥Hs∥} ≤ ∥H∥ ≤

∑
s ∥Hs∥.

By leveraging the chain rule, we have

Hs =
∂fs
∂g1

∂2g1

∂w2
. (16)

We can bound Hs, as given below, by using the inequality
given in (1),

∥Hs∥ ≤
∥∥∥∥ ∂fs∂g1

∥∥∥∥
∞

∥∥∥∥∂2g1

∂w2

∥∥∥∥
2,2,1

. (17)

From (13) or (14), we get∥∥∥∥ ∂fs∂g1

∥∥∥∥
∞

=

∥∥∥∥ 1√
m
vT
s

∥∥∥∥
∞

= O

(
1√
m

)
. (18)

In addition,∥∥∥∥∥ ∂2g1

(∂w)
2

∥∥∥∥∥
2,2,1

=

∥∥∥∥∥
[

∂2g1/
(
∂W 1

1

)2
∂2g1/∂W 1

1 ∂W
1
2

∂2g1/∂W 1
2 ∂W

1
1 ∂2g1/

(
∂W 1

2

)2
]∥∥∥∥∥

2,2,1

≤

∥∥∥∥∥ ∂2g1

(∂W 1
1)

2

∥∥∥∥∥
2,2,1

+ 2

∥∥∥∥ ∂2g1

∂W 1
1 ∂W

1
2

∥∥∥∥
2,2,1

+

∥∥∥∥∥ ∂2g1

(∂W 1
2)

2

∥∥∥∥∥
2,2,1

.

(19)
We now compute the (2, 2, 1)-norms in the above equation for
both LISTA and ADMM-CSNet. To begin with, for LISTA,
we have the following second-order partial derivatives of layer-
wise output, g1, w.r.t. parameters:(

∂2g1

(∂W 1
1)

2

)
i,jj′,kk′

=
∂2x1

i

∂(W 1
1)jj′∂(W

1
1)kk′

=
1

n
σ′′ (x̃1

i

)
yj′yk′Ii=k=j ,(

∂2g1

(∂W 1
2)

2

)
i,jj′,kk′

=
1

m
σ′′ (x̃1

i

)
x0
j′x

0
k′Ii=k=j ,

(
∂2g1

∂W 1
2 ∂W

1
1

)
i,jj′,kk′

=
1√
mn

σ′′ (x̃1
i

)
x0
j′yk′Ii=k=j ,

where I{} denotes the indicator function. By utilizing the
definition of (2, 2, 1)-norm given in (2), bounds on inputs of

1Note that, to simplify the notation, we denoted HFi
as H.

7

the network, and smoothness of the activation function, the
(2, 2, 1)-norms of the above quantities are obtained as shown
below:∥∥∥∥∥ ∂2g1(

∂W 1
1

)2
∥∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1

n

m∑
i=1

∣∣σ′′ (x̃1
i

)
(V1y)i (V2y)i

∣∣
≤ sup

∥V1∥F=∥V2∥F=1

1

2n
βσ

(
∥V1y∥2 + ∥V2y∥2

)
≤

1

2n
βσ
(
∥y∥2 + ∥y∥2

)
≤ βσC

2
y = O(1)

∥∥∥∥∥ ∂2g1(
∂W 1

2

)2
∥∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1

m

m∑
i=1

∣∣σ′′ (x̃1
i

) (
V1x

0
)
i

(
V2x

0
)
i

∣∣
≤

1

2m
βσ

(∥∥x0
∥∥2 +

∥∥x0
∥∥2) ≤ βσCx

2 = O(1)

∥∥∥∥ ∂2g1

∂W 1
2 ∂W

1
1

∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1
√
mn

m∑
i=1

∣∣∣σ′′
(
x̃l
i

) (
V1x

0
i

)
i
(V2y)i

∣∣∣
≤

1

2
√
mn

βσ

(∥∥x0
∥∥2 + ∥y∥2

)
≤
√

m

4n
βσC

2
x +

√
n

4m
βσC

2
y = O(1).

Substituting the above bounds in (19) implies
∥∥∥ ∂2g1

(∂W 1)2

∥∥∥
2,2,1

=

O(1).
Similarly, for ADMM-CSNet, the equivalent second-order

partial derivatives are(
∂2g1(
∂W 1

1

)2
)

i,jj′,kk′

=
1

n
σ′′ (z̃1i)yj′yk′ Ii=k=j ,(

∂2g1(
∂W 1

2

)2
)

i,jj′,kk′

=
1

m
σ′′ (z̃1i) (z0 − u0)j′ (z

0 − u0)k′ Ii=k=j ,(
∂2g1

∂W 1
2 ∂W

1
1

)
i,jj′,kk′

=
1

√
mn

σ′′ (z̃1i) (z0 − u0)j′yk′ Ii=k=j .

The corresponding (2, 2, 1)-norm bounds are∥∥∥∥∥ ∂2g1

(∂W 1
1)

2

∥∥∥∥∥
2,2,1

≤ 1

2n
βσ

(
∥y∥2 + ∥y∥2

)
≤ βσC

2
y = O(1),

∥∥∥∥∥ ∂2g1

(∂W 1
2)

2

∥∥∥∥∥
2,2,1

≤ 1

2m
βσ

(
2mC2

z + 2mC2
u

)
= O(1),

∥∥∥∥ ∂2g1

∂W 1
1 ∂W

1
2

∥∥∥∥
2,2,1

≤ βσ

√
m

4n

(
C2

y + (Cz + Cu)
2
)
= O(1).

Using the above bounds, we get
∥∥∥ ∂2g1

(∂W 1)2

∥∥∥
2,2,1

= O(1). From

the above analysis, we conclude that the (2, 2, 1)-norm of the
tensor, ∂2g1

(∂W 1)2
, is of the order of O(1) and the ∞-norm of

the vector, ∂fs
∂g1 , is of the order of O

(
1√
m

)
. This implies,

∥Hs∥ = O

(
1√
m

)
and ∥H∥ = Ω

(
1√
m

)
= O

(√
m
)
.

(20)
Therefore, the Hessian spectral norm of a 1-layer LISTA or
ADMM-CSNet depends on the width (dimension of the target
vector) of the network. We now generalize the above analysis
for an L-layer unfolded network.

2) Analysis of L-Layer Unfolded Network: The Hessian
matrix of an L-layer unfolded ISTA or ADMM network for a
given ith training sample is written as

[H]m×P×P =
[
H1 H2 · · · Hm

]
, (21)

where Hs for s ∈ [m] is

[Hs]P×P =


H1,1

s H1,2
s . . . H1,L

s

H2,1
s H2,2

s · · · H2,L
s

...
...

. . .
...

HL,1
s HL,2

s · · · HL,L
s

 , (22)

[
H l1,l2

s

]
P1×P1

= ∂2fs
∂wl1∂wl2

, where P1 = m2 + mn, l1 ∈
[L], l2 ∈ [L], wl = Vec(W l) = Vec

(
[W l

1 W l
2]
)

denotes the
weights of lth-layer, and fs =

1√
m
vT
s g

L. From (21) and (22),
the spectral norm of H, ∥H∥, is bounded by its block-wise
spectral norm, ∥Hs∥, as stated in the following theorem:

Theorem 3. The Hessian spectral norm, ∥H∥, of an L-layer
unfolded ISTA (ADMM) network, defined as in (13) ((14)), is
bounded as max

s∈[m]
{∥Hs∥} ≤ ∥H∥ ≤

∑
s∈[m] ∥Hs∥ , where

∥Hs∥ ≤
∑
l1,l2

∥∥H l1,l2
s

∥∥ ≤
∑
l1,l2

C1Q2,2,1 (fs)Q∞ (fs)

≤ CQ2,2,1 (fs)Q∞ (fs) .

(23)

The constant C1 depends on L and Lσ , C = L2C1,

Q∞ (fs) = max
1≤l≤L

{∥∥∥∥∂fs∂gl

∥∥∥∥
∞

}
, and (24)

Q2,2,1 (fs) = max
1≤l1≤l2<l3≤L

{∥∥∥∥∥ ∂2gl1

(∂wl1)
2

∥∥∥∥∥
2,2,1

,∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥∥∥∥∥ ∂2gl2

∂g(l2−1)∂wl2

∥∥∥∥
2,2,1

,∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥∥∥∥∥ ∂gl2

∂wl2

∥∥∥∥
∥∥∥∥∥ ∂2gl3

(∂gl3−1)
2

∥∥∥∥∥
2,2,1

}
.

(25)

Proof of the above theorem is given in the Appendix. Similar
to 1-layer case, the bound on ∥H∥ depends on the ∞-norms
of ∂fs

∂gl , l ∈ [L] and (2, 2, 1)-norms of layer-wise derivatives
(basically these are order 3 tensors). We now aim to derive
the bounds on the quantities Q2,2,1 (fs) and Q∞ (fs) for both
unfolded ISTA and ADMM networks.

Similar to Lemma 2 and 3, the Gaussian initialization of the
weight matrices imposes a bound on the hidden layer output of
the unfolded network, which is stated in the following lemma:

Lemma 4. If
(
W l

10

)
i,j

∼ N (0, 1) and
(
W l

20

)
i,j

∼ N (0, 1),
∀l ∈ [L], then for any W1 ∈ B(W10, R1) and W2 ∈
B(W20, R2), we have

∥∥xl
∥∥ ≤ clISTA;x for LISTA, and∥∥zl∥∥ ≤ clADMM;z and

∥∥ul
∥∥ ≤ clADMM;u for ADMM-CSNet.

The updating rules are

clISTA;x = Lσ

(
c10 +

R1√
n

)√
nCy + Lσ

(
c20 +

R2√
m

)
cl−1
ISTA;x + σ(0)

= O
(√

m
)

8

clADMM;z = Lσ

(
c10 +

R1√
n

)√
nCy + Lσ

(
c20 +

R2√
m

)
cl−1
ADMM;z

+ Lσ

(
1 + c20 +

R2√
m

)
cl−1
ADMM;u + σ(0) = O

(√
m
)
,

clADMM;u =

(
c10 +

R1√
n

)√
nCy +

(
c20 +

R2√
m

)
cl−1
ADMM;z

+

(
c20 +

R2√
m

+ 1

)
cl−1
ADMM;u + clADMM;z = O

(√
m
)
,

where c0ISTA;x =
√
mCx, c0ADMM;z =

√
mCz , c0ADMM;u =√

mCu, |x0
i | ≤ Cx, |u0

i | ≤ Cu, and |z0i | ≤ Cz , ∀i ∈ [m].

Refer to the Appendix for proof of the above lemma. The
three updating rules in Lemma 4 are of the order of

√
m and√

n w.r.t. m and n, respectively. However, as the width of the
unfolded network is controlled by m, we consider the bounds
on Q2,2,1 (fs) and Q∞ (fs) w.r.t. m in this work.

The following theorem gives the bound on ∥H∥ by deriving
the bounds on the quantities Q2,2,1 (fs) and Q∞ (fs). The
proof of Theorem 4 basically uses the bounds on the weight
matrices (Lemma 2 and Lemma 3), bound on the hidden layer
output (Lemma 4), and properties of the activation function
(Lσ-Lipschitz continuous and βσ-smooth).

Theorem 4. Consider an L-layer unfolded ISTA or ADMM
network, F(W), with random Gaussian initialization W0.
Then, the quantities Q2,2,1 (fs) and Q∞ (fs) satisfy the
following equality w.r.t. m, over initialization, at any point
W ∈ B (W0, R), for some fixed R > 0:

Q2,2,1 (fs) = O(1) and Q∞ (fs) = Õ

(
1√
m

)
, (26)

with probabilities 1 and 1 − me−c ln2(m) for some constant
c > 0, respectively. This implies

∥Hs∥ ≤
∑
l1,l2

∥∥H l1,l2
s

∥∥ = Õ

(
1√
m

)
(27)

and the Hessian spectral norm satisfies

∥H∥ = Ω̃

(
1√
m

)
= Õ

(√
m
)
. (28)

The proof of Theorem 4 is motivated by [31] and is lengthy.
Thus, the readers are directed to the supplementary material
[49], which provides the complete proof. In summary, from
both 1-layer and L-layer analyses, we claim that the Hessian
spectral norm bound of an unfolded network is proportional
to the square root of the width of the network.

C. Conditions on Unfolded Networks to Satisfy PL∗

From Theorem 1, the Hessian spectral norm of a model
should hold the following condition to satisfy µ-uniform con-
ditioning in a ball B(w0, R): ∥HF (w)∥ ≤ λ0−µ

2LF
√
TR

, ∀w ∈
B(w0, R). Since ∥HF (w)∥ = max

i∈[T]
∥HFi

(w)∥, the above

condition can be further simplified as

∥HFi
(w)∥ ≤ λ0 − µ

2LF
√
TR

, ∀i ∈ [T] and w ∈ B(w0, R).

(29)

Substituting the Hessian spectral norm bound of LISTA and
ADMM-CSNet, stated in Theorem 4, in (29) provides a
constraint on the network width such that the square loss
function satisfies the µ-PL∗ condition in B(w0, R):

m = Ω̃

(
TR2

(λ0 − µ)2

)
, where µ ∈ (0, λ0). (30)

Therefore, from Theorem 2, we claim that for a given fixed
T one should consider the width of the unfolded network as
given in (30) to achieve near-zero training loss. However, the
m (target vector dimension) value is generally fixed for a given
linear inverse problem. Hence, we provide the constraint on
T instead of m. Substituting the ∥HFi

(w)∥ bound in (29)
also provides a threshold on T , which is summarized in the
following theorem:

Theorem 5. Consider a finite L-layer unfolded network as
given in (13) or (14) with m as the network width. As-
sume that the model is well-conditioned at initialization, i.e.,
λmin(KUnfolded(w0)) = λ0,Unfolded, for some λ0,Unfolded > 0.
Then, the loss landscape corresponding to the square loss
function satisfies the µ-PL∗ condition in a ball B(w0, R),
if the number of training samples, TUnfolded, satisfies the
following condition:

TUnfolded = Õ

(
m(λ0,Unfolded − µ)2

R2

)
, µ ∈ (0, λ0,Unfolded).

(31)

Thus, while addressing a linear inverse problem using
unfolded networks, one should consider the number of training
samples as given in (31), to obtain zero training loss as the
number of GD epochs increases to infinity. Observe that the
threshold on T increases with the increase in the network
width. We attribute this to the fact that a high network
width is associated with more trainable parameters in the
network, which provides the ability to handle/memorize more
training samples. Conversely, a smaller network width leads
to fewer trainable parameters, thereby impacting the network’s
performance in handling training samples.

Comparison with FFNN: In [26], the authors computed the
Hessian spectral norm of an FFNN with a scalar output, which
is of the order of Õ

(
1√
m

)
. Following the analysis procedure

of an m-output model given in Section IV-B, one can obtain
the Hessian spectral norm of an FFNN with m-output and
smoothed soft-thresholding non-linearity as given below:

∥H∥ = Ω̃

(
1√
m

)
= Õ

(√
m
)
. (32)

This implies that the bound on the number of training samples,
TFFNN, for an m-output FFNN to satisfy the µ-PL∗ is

TFFNN = Õ

(
m(λ0,FFNN − µ)2

R2

)
, µ ∈ (0, λ0,FFNN) (33)

Note that m is a fixed value in both (31) and (33), R is of
the order of O

(
1
µ

)
(refer to Theorem 2), and µ depends

on λ0 = λmin (K (w0)). Therefore, from (31) and (33), the
parameter that governs the number of training samples of
a network is the minimum eigenvalue of the tangent kernel

9

matrix at initialization. Hence, we compare both TUnfolded and
TFFNN by deriving the upper bounds on λ0,Unfolded and λ0,FFNN.
Specifically, in the following theorem, we show that the upper
bound of λ0,Unfolded is higher compared to λ0,FFNN.

Theorem 6. Consider an L-layered FFNN, defined as

fFFNN =
1√
m
xL,xl = σ

(
W l

√
m
xl−1

)
∈ Rm, l ∈ [L],

(34)
with x0 =

√
m
n y ∈ Rn, W 1 ∈ Rm×n, and W l ∈

Rm×m ∀l ∈ [L] − {1}. Also, consider the unfolded network
defined in (13) or (14). Then, the upper bound on the minimum
eigenvalue of the tangent kernel matrix at initialization for un-
folded network, UBUnfolded (either UBLISTA or UBADMM-CSNet), is
greater than that of FFNN, UBFFNN, i.e., UBUnfolded > UBFFNN.

Proof of the above theorem is given in the Appendix. To
better understand Theorem 6, substitute L = 2 in equations
(38), (39), and (40), this leads to

UBFFNN = L̂4ŷ
[
∥W 1

0 ∥2 + ∥vT
s W

2
0 ∥2
]
,

UBLISTA = L̂4ŷ
[
∥W 1

10∥2 + ∥vT
s W

2
20∥2

]
+ L̂2ŷ+

L̂4x̂
[
∥W 1

20∥2 + ∥vT
s W

2
20∥2

]
+ 2L̂4

√
x̂ŷ∥W 1

10∥∥W 1
20∥,

and

UBADMM-CSNet = L̂4ŷ
[
∥W 1

10∥2 + ∥vT
s W 2

20∥2
]
+ L̂2ŷ +

∥u(1)∥2

m
+

L̂4â(0)
[
∥W 1

20∥2 + ∥vT
s W 2

20∥2
]
+ 2L̂∥z̃(l)∥∥u(1)∥+ L̂4∥u(0)∥2 + L̂4[

2

√
ŷâ(0)∥W 1

10∥∥W 1
20∥+ 2

√
â(0)∥W 1

20∥∥u(0)∥+ 2
√

ŷ∥W 1
10∥∥u(0)∥

]
.

Since the dimension of W 1
1 (W 2

2) of unfolded is same as W 1

(W 2) of FFNN, we conclude that UBUnfolded > UBFFNN for
L = 2. One can verify that this relation holds for any L
value using the generalized expressions given in (38), (39),
and (40). Figures 5 (a) and 5 (b) depict the variation of
10 log10 (λmin (K(w0))) w.r.t. L (here we considered T = 10,
m = 100, n = 20, and k = 2) and P (here we vary m, n, and
k values by fixing T = 10, L = 6 for unfolded, and L = 8
for FFNN), respectively, for LISTA, ADMM-CSNet, and
FFNN. From these figures, we see that λ0,Unfolded > λ0,FFNN.
Consequently, from Theorem 6, (31), and (33), we also claim
that the upper bound of TUnfolded is high compared to TFFNN.
As a result, TUnfolded > TFFNN whenever λ0,Unfolded > λ0,FFNN.
Moreover, from the aforementioned equations, it is evident that
UBADMM-CSNet exceeds UBLISTA. Consequently, it is reasonable
to anticipate that λ0,ADMM-CSNet will surpass λ0,LISTA. This
inference is substantiated by the data depicted in figures 5 (a)
and 5 (b). This implies that the upper bound on TADMM-CSNet
exceeds the upper bound on TLISTA. Through simulations,
we show that TADMM-CSNet > TLISTA > TFFNN in the fol-
lowing section. Since the threshold on T — guaranteeing
memorization — is higher for unfolded networks than FFNN,
we should obtain a better expected error, which is upper
bounded by the sum of generalization and training error [32],
for unfolded networks than FFNN for a given T value such
that TFFNN < T ≤ TUnfolded. Because in such scenarios the
training error is zero and the generalization error is smaller
for unfolded networks [13].

100 200 300 400 500 600
-100

-50

0

LISTA ADMM-CSNet FFNN

6 7 8 9 10 11 12 13 14

-100

-50

0

Fig. 5: Variation of the minimum eigenvalue of tangent kernel
matrix at initialization: (a) With respect to the number of
layers. (b) With respect to the network learnable parameters.

V. NUMERICAL EXPERIMENTS

We perform the following simulations to support the pro-
posed theory. For all the simulations in this section, we fix the
following for LISTA, ADMM-CSNet, and FFNN: 1. Parame-
ters are initialized independently and identically (i.i.d.) from
a Gaussian distribution with zero mean and unit variance, i.e.,
N (0, 1). 2. Networks are trained with the aim of minimizing
the square loss function (12) using stochastic GD. Note that the
theoretical analysis proposed in this work is for GD, however,
to address the computation and storage issues, we considered
stochastic GD for the numerical analysis. 3. Modified soft-
plus activation function (refer to IV-A) with λ = 1 is used
as the non-linear activation function. 4. A batch size of T

5 is
considered. 5. All the simulations are repeated for 10 trials.

Threshold on T : From (31), the choice of T plays a
vital role in achieving near-zero training loss. To illustrate
this, consider two linear inverse models: y1 = A1x1 + e1
and y2 = A2x2 + e2, where y1 ∈ R20×1, x1 ∈ R100×1,
A1 ∈ R20×100, ∥x1∥0 = 2, y2 ∈ R200×1, x2 ∈ R1000×1,
A2 ∈ R200×1000, and ∥x2∥0 = 10. Generate synthetic data
using a random linear operator matrix, which follows the
uniform distribution, and then normalize it to ensure ∥A1∥F =
∥A2∥F = 10. Both models are subjected to Gaussian noise
(e1 and e2) with a signal-to-noise ratio (SNR) of 10 dB.
Construct an L-layer LISTA and ADMM-CSNet with L = 11.
Here, we train LISTA for 30K epochs and ADMM-CSNet for
40K epochs. For the first model, we choose 0.12 and 0.09
as learning rates for LISTA and ADMM-CSNet, respectively.
For the second model, we choose 1.2 for LISTA and 0.9 for
ADMM-CSNet. Figures 6 and 7 depict the variation of mean
square loss/error (MSE) w.r.t. T for both LISTA and ADMM-
CSNet, respectively. Note that for a fixed m there exists a
threshold (by considering a specific MSE value) on T such
that choosing a T value that is less than this threshold leads
to near-zero training loss. Moreover, observe that this threshold
increases as the network width grows.

For comparison, construct an L-layer FFNN, to recover
x1 and x2, that has the same number of parameters as that

10

101 102 103
-140

-60

0

Fig. 6: Training loss vs T for LISTA.

101 102 103

-250

-150

-60

0

m=1000

m = 100

Fig. 7: Training loss vs T for ADMM-CSNet.

of unfolded, hence, we choose L = 14. Here, we train the
network for 40K epochs with a learning rate of 0.04 for the
first model and 0.3 for the second model. Fig. 8 shows the
variation of MSE w.r.t. T . From Fig. 8, we can conclude
that the threshold for FFNN is lower compared to LISTA and
ADMM-CSNet.

Comparison Between Unfolded and Standard Networks:
We compare LISTA and ADMM-CSNet with FFNN in terms
of parameter efficiency. To demonstrate this, consider the first
linear inverse model given in the above simulation. Then,
construct LISTA, ADMM-CSNet, and FFNN with a fixed
number of parameters and consider T = 30. Also, consider the

101 102 103
-150

-100

-60

0 m=1000

m=100

Fig. 8: Training loss vs T for FFNN.

0 0.5 1 1.5 2 2.5 3

104

-120

-100

-80

-60

-40

-20

0

20

Fig. 9: Comparison between LISTA, ADMM-CSNet, and FFNN in
terms of the required number of parameters, P , for training loss
convergence.

100 200 300 400 500 600 700 800 900 1000 1100
0

0.05

0.1

0.15

0.2

Fig. 10: Variation of the expected MAE w.r.t. m for both LISTA
and ADMM-CSNet.

same learning rates that are associated with the first model in
the above simulation for LISTA, ADMM-CSNet, and FFNN.
Here we choose L = 6 for both LISTA and ADMM-CSNet,
and L = 8 for FFNN, resulting in a total of 72K parameters.
As shown in Fig. 9, the convergence of training loss to zero
is better for LISTA and ADMM-CSNet compared to FFNN.
Fig. 9 also shows the training loss convergence of FFNN with
L = 11. Now, FFNN has 102K learnable parameters, and its
performance is comparable to LISTA for higher epoch values.
Therefore, to achieve a better training loss FFNN requires
more trainable parameters.

Generalization: In this simulation, we show that zero-
training error leads to better generalization. To demonstrate
this, consider LISTA/ADMM-CSNet/FFNN with a fixed T
and observe the variation of the expected mean absolute error
(MAE) w.r.t. m. If the generalization performance is better,
then it is anticipated that the expected MAE reduces as the m
increases. Because an increase in m improves the possibility
of getting near-zero training loss for a fixed T . In Fig. 10,
we present the results for LISTA, ADMM-CSNet, and FFNN
with T = 100. Notably, the expected MAE diminishes as m
increases, i.e., as the number of parameters grows. Further, it is
observed that for this choice of T , the training error is near-
zero for m values exceeding approximately 300 for FFNN,
and approximately 250 for both LISTA and ADMM-CSNet.

11

This finding underscores the importance of zero-training error
in generalization.

However, it is important to note that the generalization
results presented here are preliminary and require a rigorous
analysis for more robust conclusions. Because considering a
smaller value of T may not yield satisfactory generalization
performance. Thus, it is important to find a lower bound on T
to optimize both the training process and overall generalization
capability, which we consider as a future work of interest.

VI. CONCLUSION

In this work, we provided optimization guarantees for
finite-layer LISTA and ADMM-CSNet with smooth nonlinear
activation. We begin by deriving the Hessian spectral norm of
these unfolded networks. Based on this, we provided condi-
tions on both the network width and the number of training
samples, such that the empirical training loss converges to
zero as the number of learning epochs increases using the GD
approach. Additionally, we showed that LISTA and ADMM-
CSNet outperform the standard FFNN in terms of threshold
on the number of training samples and parameter efficiency.
We provided simulations to support the theoretical findings.

The work presented in this paper is an initial step to
understand the theory behind the performance of unfolded
networks. While considering certain assumptions, our work
raises intriguing questions for future research. For instance,
we approximated the soft-threshold activation function with
a double-differentiable function formulated using soft-plus.
However, it is important to analyze the optimization guarantees
without relying on any such approximations. Additionally, we
assumed a constant value for λ in σλ(·). It is interesting to
explore the impact of treating λ as a learnable parameter. Fur-
thermore, analyzing the changes in the analysis for other loss
functions presents an intriguing avenue for further research.

APPENDIX
Proof of Theorem 3: The Hessian block H l1,l2

s can be
decomposed as given in (35), using the following chain rule:

∂fs

∂wl
=

∂gl

∂wl

 L∏
l′=l+1

∂gl

∂gl′−1

 ∂fs

∂gL
.

Hl1,l2
s =

∂2gl1(
∂wl1

)2 ∂fs

∂gl1
Il1=l2 +

 ∂gl1

∂wl1

l2−1∏
l′=l1+1

∂gl′

∂gl′−1

 ∂2gl2

∂wl2∂gl2−1

(
∂fs

∂gl2

)
+

L∑
l=l2+1

 ∂gl1

∂wl1

l−1∏
l′=l1+1

∂gl′

∂gl′−1

 ∂2gl′(
∂gl′−1

)2 ∂gl2

∂wl2

l∏
l′=l2+1

∂gl′

∂gl′−1

(∂fs

∂gl

)
.

(35)
From (35), the spectral norm of H l1,l2

s can be bounded as∥∥∥Hl1,l2
s

∥∥∥
2
≤

∥∥∥∥∥ ∂2gl1(
∂w(l1)

)2
∥∥∥∥∥
2,2,1

∥∥∥∥ ∂fs

∂gl1

∥∥∥∥
∞

+ Ll2−l1−1
σ

∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥
F∥∥∥∥ ∂2gl2

∂wl2∂gl2−1

∥∥∥∥
2,2,1

∥∥∥∥ ∂fs

∂gl2

∥∥∥∥
∞

+

L∑
l=l2+1

L2l−l1−l2
σ

∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥
F∥∥∥∥∥ ∂2gl(

∂gl′−1
)2
∥∥∥∥∥
2,2,1

∥∥∥∥ ∂gl2

∂wl2

∥∥∥∥
F

∥∥∥∥∂fs∂gl

∥∥∥∥
∞

.

(36)

Note that (36) uses the fact that
∥∥∥ ∂gl′

∂gl′−1

∥∥∥
F

≤ Lσ . By using
the notations given in (42) and (43), we get∥∥H l1,l2

s

∥∥ ≤ C1Q2,2,1 (fs)Q∞ (fs) ,

where C1 is a constant depend on L and Lσ .
Proof of Lemma 4: For l = 0, ∥x0∥ ≤

√
m∥x0∥∞ ≤√

mCx, ∥z0∥ ≤
√
m∥z0∥∞ ≤

√
mCz , and ∥u0∥ ≤√

m∥u0∥∞ ≤
√
mCu. Whereas for l = 1, 2, . . . , L, we have

∥∥∥xl
∥∥∥ =

∥∥∥∥∥σ
(
W l

1√
n
y +

W l
2√
m

xl−1

)∥∥∥∥∥
≤ Lσ

∥∥∥∥∥W l
1√
n

∥∥∥∥∥ ∥y∥+ Lσ

∥∥∥∥∥ W l
2√
m

∥∥∥∥∥∥∥∥xl−1
∥∥∥+ σ(0)

≤ Lσ

(
c10 +

R1√
n

)√
nCy + Lσ

(
c20 +

R2√
m

)
cl−1
ISTA;x + σ(0)

= clISTA;x.

Here, we used Lemma 3 and Lσ-Lipschitz continuous of the
activation function σ(·). Similarly,∥∥∥zl∥∥∥ =

∥∥∥∥σ(1
√
n
W l

1y +
1

√
m

W l
2

(
zl−1 − ul−1

)
+ ul−1

)∥∥∥∥
≤ Lσ

1
√
n

∥∥∥W l
1

∥∥∥ ∥y∥+ Lσ
1

√
m

∥∥∥W l
2

∥∥∥∥∥∥zl−1
∥∥∥+ 1

√
m

Lσ

∥∥∥W l
2

∥∥∥∥∥∥ul−1
∥∥∥

+ Lσ

∥∥∥ul−1
∥∥∥+ σ(0)

≤ Lσ

(
c10 +

R1√
n

)√
nCy + Lσ

(
c20 +

R2√
m

)
cl−1
ADMM;z

+ Lσ

(
1 + c20 +

R2√
m

)
cl−1
ADMM;u + σ(0)

= clADMM;z

and∥∥∥ul
∥∥∥ =

∥∥∥∥ul−1 +

(
1
√
n
W l

1y +
1

√
m

W l
2

(
zl−1 − ul−1

)
− zl

)∥∥∥∥
≤
∥∥∥ul−1

∥∥∥+ ∥∥∥∥ 1
√
n
W l

1y

∥∥∥∥+ ∥∥∥∥ 1
√
m

W l
2z

l−1

∥∥∥∥+ ∥∥∥∥ 1
√
m

W l
2u

l−1

∥∥∥∥+ ∥∥∥zl∥∥∥
≤
(
c10 +

R1√
n

)√
nCy +

(
c20 +

R2√
m

)
cl−1
ADMM;z

+

(
c20 +

R2√
m

+ 1

)
cl−1
ADMM;u + clADMM;z

= clADMM;u

Proof of Theorem 6: Consider the real symmetric NTK
matrix [K (w0)]mT×mT . Utilizing the Rayleigh quotient of
K (w0), we can write the following for any x such that
∥x∥2 = 1:

λmin (K (w0)) ≤ x⊤K (w0)x ≤ λmax(K (w0)).

Let x be a vector having all zeros except the sth component to
be 1. Thus λmin(K (w0)) ≤ [K (w0)]s,s, for any s ∈ [mT].
Assume s = 1, this implies,

λmin (K (w0)) ≤ ⟨∇w0
f1,∇w0

f1⟩ , (37)

where f1 is the 1st component in the the model output vector
f corresponding to the first training sample. We now aim to
compute ⟨∇w0

f1,∇w0
f1⟩ for FFNN, LISTA, and ADMM-

CSNet.

12

Consider a one-layer FFNN, then from (34), the sth compo-
nent of fFFNN is, fs = 1√

m
σ
(

1√
n
W 1

0 (s, :)y
)
, where W 1

0 (s, :)

represents the sth row of W 1
0 . This implies,〈

∇W 1
0
fs,∇W 1

0
fs

〉
=

[
σ′(x̃1

s)√
mn

]2
∥y∥2 ≤ L̂2ŷ,

where L̂ = Lσ√
m
, and ŷ = ∥y∥2

n . Similarly, for a 2-layered
FFNN, we have

⟨∇W0
fs,∇W0

fs⟩ =
〈
∇W 1

0
fs,∇W 1

0
fs

〉
+
〈
∇W 2

0
fs,∇W 2

0
fs

〉
≤ (L̂2)2ŷ

[∥∥W 1
0

∥∥2 + ∥∥W 2
0 (s, :)

∥∥2] .
Generalizing the above equations, one can derive the upper
bound on λ0,FFNN for an L-layer FFNN as

λ0,FFNN ≤ UBFFNN

= L̂2Lŷ

L−1∑
i=1

∥vT
s WL

0 ∥2
L−1∏

j=1,j ̸=i

∥W j
0 ∥

2 +

L−1∏
j=1

∥W j
0 ∥

2

 .

(38)
Likewise, consider L = 1, then from (13), the sth component
of fLISTA is

fs =
1√
m
σ

(
1√
n
W 1

10(s, :)y +
1√
m
W 1

20(s, :)x

)
.

This implies,

⟨∇w0fs,∇w0fs⟩ =
〈
∇W 1

10
fs,∇W 1

10
fs

〉
+
〈
∇W 1

20
fs,∇W 1

20
fs

〉
≤ L̂2 [ŷ + x̂] ,

where x̂ = ∥x∥2

m . If L = 2, then the sth component of fLISTA
is

⟨∇w0fs,∇w0fs⟩ =
〈
∇W 2

10
fs,∇W 2

10
fs

〉
+
〈
∇W 2

20
fs,∇W 2

20
fs

〉
+
〈
∇W 1

10
fs,∇W 1

10
fs

〉
+
〈
∇W 1

20
fs,∇W 1

20
fs

〉
≤ L̂2

[
ŷ + L̂2∥x̃(1)∥2

]
+ L̂4 [ŷ + x̂]

∥∥v⊤
s W

2
20

∥∥2 .
By extending the above equations, we obtain the upper bound
on λ0,LISTA for an L-layer LISTA as

λ0,LISTA ≤ UBLISTA = L̂2 (ŷ + x̂) , for L = 1

λ0,LISTA ≤ UBLISTA = L̂2L (ŷ + x̂) ∥vT
s WL

20∥2
L−1∏
l=2

∥W l
20∥2

+

L−1∑
k=2

L̂2L−2k+2

[
ŷ + L̂2

∥∥∥x̃(k−1)
∥∥∥2] ∥vT

s WL
20∥2

L−1∏
l=k+1

∥W l
20∥2

+ L̂2
[
ŷ + L̂2∥x̃(L−1)∥2

]
, for L > 1,

(39)

where L̂ = Lσ√
m
, ŷ = ∥y∥2

n , and x̂ = ∥x∥2

m . Repeat-
ing the same analysis, one can derive the upper bound on
λ0,ADMM-CSNet of an L-layer ADMM-CSNet as

λ0,ADMM-CSNet ≤ UBADMM-CSNet = L̂2
[
ŷ + â(L−1)

]
+

L−1∑
k=1

L̂2L−2k+2
[
ŷ + â(k−1)

]
∥vT

s WL
20∥2

L−1∏
l=k+1

∥W l
20∥2,

(40)

where â(l) = ∥z(l)−u(l)∥2

m , ∀l ∈ [L− 1] ∪ {0}.

REFERENCES

[1] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applica-
tions. Cambridge University Press, 2012.

[2] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[3] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-Based
Deep Learning,” arXiv:2012.08405, 2020.

[4] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-Based
Deep Learning: Key Approaches and Design Guidelines,” in Proc. IEEE
Data Sci. Learn. Workshop (DSLW), pp. 1–6, 2021.

[5] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. Int. Conf. Mach. Learn., pp. 399–406, 2010.

[6] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm Unrolling: Interpretable,
Efficient Deep Learning for Signal and Image Processing,” IEEE Signal
Process. Mag., vol. 38, no. 2, pp. 18–44, 2021.

[7] Y. Yang, J. Sun, H. Li, and Z. Xu, “ADMM-CSNet: A Deep Learning
Approach for Image Compressive Sensing,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 42, no. 3, pp. 521–538, 2020.

[8] Y. Li, M. Tofighi, J. Geng, V. Monga, and Y. C. Eldar, “Efficient and
Interpretable Deep Blind Image Deblurring Via Algorithm Unrolling,”
IEEE Trans. Med. Imag., vol. 6, pp. 666–681, 2020.

[9] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep Networks for
Image Super-Resolution With Sparse Prior,” in Proc. IEEE Int. Conf.
Comput. Vis., December 2015.

[10] G. Dardikman-Yoffe and Y. C. Eldar, “Learned SPARCOM: unfolded
deep super-resolution microscopy,” Opt. Express, vol. 28, pp. 27736–
27763, Sep 2020.

[11] O. Solomon, R. Cohen, Y. Zhang, Y. Yang, Q. He, J. Luo, R. J. G. van
Sloun, and Y. C. Eldar, “Deep Unfolded Robust PCA With Application
to Clutter Suppression in Ultrasound,” IEEE Trans. Med. Imag., vol. 39,
no. 4, pp. 1051–1063, 2020.

[12] L. Zhang, G. Wang, and G. B. Giannakis, “Real-Time Power System
State Estimation and Forecasting via Deep Unrolled Neural Networks,”
IEEE Trans. Signal Process., vol. 67, no. 15, pp. 4069–4077, 2019.

[13] A. Shultzman, E. Azar, M. R. D. Rodrigues, and Y. C. Eldar, “General-
ization and Estimation Error Bounds for Model-based Neural Networks,”
in Proc. Int. Conf. Learn. Represent., 2023.

[14] E. Schnoor, A. Behboodi, and H. Rauhut, “Generalization Error Bounds
for Iterative Recovery Algorithms Unfolded as Neural Networks,”
arXiv.2112.04364, 2022.

[15] A. Behboodi, H. Rauhut, and E. Schnoor, “Compressive Sens-
ing and Neural Networks from a Statistical Learning Perspective,”
arXiv.2010.15658, 2021.

[16] J. Liu, X. Chen, Z. Wang, and W. Yin, “ALISTA: Analytic Weights Are
As Good As Learned Weights in LISTA,” in Proc. Int. Conf. Learn.
Represent., 2019.

[17] X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical Linear Convergence
of Unfolded ISTA and Its Practical Weights and Thresholds,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 31, Curran Associates, Inc., 2018.

[18] X. Chen, J. Liu, Z. Wang, and W. Yin, “Hyperparameter Tuning is All
You Need for LISTA,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34,
pp. 11678–11689, Curran Associates, Inc., 2021.

[19] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The
elements of statistical learning: data mining, inference, and prediction,
vol. 2. Springer, 2009.

[20] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine-learning practice and the classical bias–variance trade-off,”
Proc. Nat. Acad. Sci., vol. 116, no. 32, pp. 15849–15854, 2019.

[21] M. Belkin, “Fit without fear: remarkable mathematical phenomena
of deep learning through the prism of interpolation,” Acta Numerica,
vol. 30, p. 203–248, 2021.

[22] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Under-
standing Deep Learning (Still) Requires Rethinking Generalization,”
Commun. ACM, vol. 64, p. 107–115, feb 2021.

[23] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep Double Descent: Where Bigger Models and More Data Hurt,” in
Proc. Int. Conf. Learn. Represent., 2020.

[24] S. Spigler, M. Geiger, S. d’Ascoli, L. Sagun, G. Biroli, and M. Wyart,
“A jamming transition from under- to over-parametrization affects
generalization in deep learning,” J. Phys. A, vol. 52, p. 474001, oct
2019.

[25] M. Belkin, S. Ma, and S. Mandal, “To Understand Deep Learning We
Need to Understand Kernel Learning,” in Proc. Int. Conf. Mach. Learn.,
vol. 80, pp. 541–549, PMLR, 10–15 Jul 2018.

13

[26] C. Liu, L. Zhu, and M. Belkin, “Loss landscapes and optimization
in over-parameterized non-linear systems and neural networks,” Appl.
Comput. Harmon. Anal., vol. 59, pp. 85–116, 2022.

[27] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient Descent Provably
Optimizes Over-parameterized Neural Networks,” in Proc. Int. Conf.
Learn. Represent., 2019.

[28] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient Descent Finds
Global Minima of Deep Neural Networks,” in Int. Conf. Mach. Learn.,
vol. 97, pp. 1675–1685, PMLR, 09–15 Jun 2019.

[29] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep
learning via over-parameterization,” in Proc. Int. Conf. Mach. Learn.,
pp. 242–252, PMLR, 2019.

[30] D. Zou, Y. Cao, D. Zhou, and Q. Gu, “Stochastic Gradient De-
scent Optimizes Over-parameterized Deep ReLU Networks,” CoRR,
vol. abs/1811.08888, 2018.

[31] C. Liu, L. Zhu, and M. Belkin, “On the linearity of large non-linear
models: when and why the tangent kernel is constant,” Proc. Adv. Neural
Inf. Process. Syst., vol. 33, pp. 15954–15964, 2020.

[32] D. Jakubovitz, R. Giryes, and M. R. Rodrigues, “Generalization error
in deep learning,” in Compressed Sensing and Its Applications: Third
International MATHEON Conference 2017, pp. 153–193, Springer,
2019.

[33] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” J.
Roy. Statist Soc. Ser. B (Methodol.), vol. 58, no. 1, pp. 267–288, 1996.

[34] N. Parikh and S. Boyd, “Proximal Algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[35] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
munications on Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences, vol. 57, no. 11, pp. 1413–
1457, 2004.

[36] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers. 2011.

[37] B. T. Polyak, “Gradient methods for minimizing functionals,” Ž. Vyčisl.
Mat. Mat. Fiz., vol. 3, no. 4, pp. 643–653, 1963.

[38] S. Lojasiewicz, “A topological property of real analytic subsets,” Coll.
du CNRS, Les équations aux dérivées partielles, vol. 117, no. 87-89,
p. 2, 1963.

[39] Y. Ben Sahel, J. P. Bryan, B. Cleary, S. L. Farhi, and Y. C. Eldar,
“Deep Unrolled Recovery in Sparse Biological Imaging: Achieving fast,
accurate results,” IEEE Signal Process. Mag., vol. 39, no. 2, pp. 45–57,
2022.

[40] A. M. Atto, D. Pastor, and G. Mercier, “Smooth sigmoid wavelet
shrinkage for non-parametric estimation,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., pp. 3265–3268, 2008.

[41] X.-P. Zhang, “Thresholding neural network for adaptive noise reduc-
tion,” IEEE Trans. Neural Netw., vol. 12, no. 3, pp. 567–584, 2001.

[42] X.-P. Zhang, “Space-scale adaptive noise reduction in images based on
thresholding neural network,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 3, pp. 1889–1892 vol.3, 2001.

[43] H. Pan, D. Badawi, and A. E. Cetin, “Fast Walsh-Hadamard Trans-
form and Smooth-Thresholding Based Binary Layers in Deep Neural
Networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), pp. 4650–4659, June 2021.

[44] J. Youn, S. Ravindran, R. Wu, J. Li, and R. van Sloun, “Circular
Convolutional Learned ISTA for Automotive Radar DOA Estimation,”
in Proc. 19th Eur. Radar Conf. (EuRAD), pp. 273–276, 2022.

[45] K. Kavukcuoglu, P. Sermanet, Y.-l. Boureau, K. Gregor, M. Mathieu,
and Y. Cun, “Learning Convolutional Feature Hierarchies for Visual
Recognition,” in Proc. Adv. Neural Inf. Process. Syst., vol. 23, Curran
Associates, Inc., 2010.

[46] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” arXiv.1011.3027, 2010.

[47] A. Jacot, F. Gabriel, and C. Hongler, “Neural Tangent Kernel: Conver-
gence and Generalization in Neural Networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 31, 2018.

[48] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein,
and J. Pennington, “Wide Neural Networks of Any Depth Evolve as
Linear Models Under Gradient Descent,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, Curran Associates, Inc., 2019.

[49] S. B. Shah, P. Pradhan, W. Pu, R. Ramunaidu, M. R. D. Rodrigues, and
Y. C. Eldar, “Supporting Material: Optimization Guarantees of Unfolded
ISTA and ADMM Networks With Smooth Soft-Thresholding,” 2023.

14

Supporting Material: Optimization Guarantees of Unfolded ISTA and ADMM
Networks With Smooth Soft-Thresholding

From Theorem 3, the Hessian spectral norm, ∥H∥2, of an L-layer unfolded ISTA (ADMM) network is bounded as

∥H∥2 ≤
∑
s,l1,l2

C1Q2,2,1 (fs)Q∞ (fs)

≤
m∑
s=1

CQ2,2,1 (fs)Q∞ (fs) ,

(41)

where the constant C1 depends on L and Lσ , C = L2C1,

Q∞ (fs) = max
1≤l≤L

{∥∥∥∥∂fs∂gl

∥∥∥∥
∞

}
and (42)

Q2,2,1 (fs) = max
1≤l1≤l2<l3≤L

{∥∥∥∥∥ ∂2gl1

(∂wl1)
2

∥∥∥∥∥
2,2,1

,

∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥∥∥∥∥ ∂2gl2

∂g(l2−1)∂wl2

∥∥∥∥
2,2,1

,

∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥∥∥∥∥ ∂gl2

∂wl2

∥∥∥∥
∥∥∥∥∥ ∂2gl3

(∂gl3−1)
2

∥∥∥∥∥
2,2,1

}
. (43)

Note that gl = xl for LISTA and gl = zl for ADMM-CSNet. Theorem 4 aims to provide bounds on Q∞ (fs) and Q2,2,1 (fs).
The proof of this theorem has been divided into two parts: First, we prove the bound on Q2,2,1 in sub-sections A and B,
respectively. Then, we prove the bound on Q∞ in sub-sections C and D, respectively. Here we denote ∥ · ∥ as l2-norm for
vectors and spectral norm for matrices. We also denote ∥ · ∥F as the Frobenious norm of matrices.

A. Bound on Q2,2,1 For LISTA Network

Consider an L-layer unfolded ISTA network with output

f =
1√
m
xL, where

xl = σ(x̃l) = σ

(
W l

1√
n
y +

W l
2√
m
xl−1

)
∈ Rm, l ∈ [L].

(44)

Now the first derivatives of xl are(
∂xl

∂xl−1

)
i,j

=
1√
m
σ′ (x̃l

i

)
(W2)

l
i,j ,

(
∂xl

∂W l
1

)
i,jj′

=
1√
n
σ′ (x̃l

i

)
yj′Ii=j ,

(
∂xl

∂W l
2

)
i,jj′

=
1√
m
σ′ (x̃l

i

)
xl−1
j′ Ii=j .

By the definition of spectral norm, ∥A∥2 = sup∥v∥2=1 ∥Av∥2, we have

∥∥∥∥ ∂xl

∂W l
1

∥∥∥∥2 = sup
∥V ∥F=1

1

n

∑
i

∑
j,j′

σ′ (x̃l
i

)
yj′Vj,j′Ii=j

2

= sup
∥V ∥F=1

1

n

∥∥Σ′lV y
∥∥2 ≤ 1

n

∥∥Σ′l∥∥2 ∥y∥2 ≤ L2
σC

2
y = O(1),

where Σ′l is a diagonal matrix with the diagonal entry (Σ′l)ii = σ′ (x̃l
i

)
. Similarly,

∥∥∥∥ ∂xl

∂W l
2

∥∥∥∥2 = sup
∥V ∥F=1

1

m

∑
i

∑
j,j′

σ′ (x̃l
i

)
xl−1
j′ Vj,j′Ii=j

2

= sup
∥V ∥F=1

1

m

∥∥Σ′lV xl−1
∥∥2

≤ 1

m
L2
σ

∥∥xl−1
∥∥2 ≤ 1

m
L2
σ

(
cl−1

ISTA ;x

)2
= O(1).

Here we used
(
cl−1

ISTA ;x

)
= O(

√
m) from lemma (4).∥∥∥∥ ∂xl

∂W l

∥∥∥∥ =

∥∥∥∥[∂xl

∂W l
1

∂xl

∂W l
2

]∥∥∥∥ ≤
∥∥∥∥ ∂xl

∂W l
1

∥∥∥∥+ ∥∥∥∥ ∂xl

∂W l
2

∥∥∥∥ = O(1) +O(1) = O(1). (45)

15

The second-order derivatives of the vector-valued layer function xl, which are order 3 tensors, have the following expressions:(
∂2xl

(∂xl−1)
2

)
i,j,k

=
1

m
σ′′ (x̃l

i

)
(W2)

l
i,j (W2)

l
i,k ;

(
∂2xl

∂xl−1∂W l
2

)
i,j,kk′

=
1

m
σ′′ (x̃l

i

)
(W2)

l
i,j x

l−1
k′ Ii=k;

(
∂2xl

∂xl−1∂W l
1

)
i,j,kk′

=
1√
mn

σ′′ (x̃l
i

)
(W2)

l
i,j yk′Ii=k;

(
∂2xl(
∂W l

2

)2
)

i,jj′,kk′

=
1

m
σ′′ (x̃l

i

)
xl−1
j′ xl−1

k′ Ii=k=j ;

(
∂2xl

∂W l
2∂W

l
1

)
i,jj′,kk′

=
1√
mn

σ′′ (x̃l
i

)
xl−1
j′ yk′Ii=k=j ;

(
∂2xl(
∂W l

1

)2
)

i,jj′,kk′

=
1

n
σ′′ (x̃l

i

)
yj′yk′Ii=k=j ;

∥∥∥∥∥ ∂2xl

(∂xl−1)
2

∥∥∥∥∥
2,2,1

= sup
∥v1∥=∥v2∥=1

1

m

m∑
i=1

∣∣σ′′ (x̃l
i

) (
W l

2v1

)
i

(
W l

2v2

)
i

∣∣ ≤ sup
∥v1∥=∥v2∥=1

1

m
βσ

m∑
i=1

∣∣(W l
2v1

)
i

(
W l

2v2

)
i

∣∣
≤ sup

∥v1∥=∥v2∥=1

1

2m
βσ

m∑
i=1

(
W l

2v1

)2
i
+
(
W l

2v2

)2
i
≤ sup

∥v1∥=∥v2∥=1

1

2m
βσ

(∥∥W l
2v1

∥∥2 + ∥∥W l
2v2

∥∥2)
≤ 1

2m
βσ

(∥∥W l
2

∥∥2
2
+
∥∥W l

2

∥∥2
2

)
≤ βσ

(
c20 +

R2√
m

)2

= O(1),

(46)

∥∥∥∥ ∂2xl

∂xl−1∂W l
2

∥∥∥∥
2,2,1

= sup
∥v1∥=∥V2∥F=1

1

m

m∑
i=1

∣∣σ′′ (x̃l
i

) (
W l

2v1

)
i

(
V2x

l−1
)
i

∣∣ ≤ sup
∥v1∥=∥V2∥F=1

1

2m
βσ

(∥∥W l
2v1

∥∥2 + ∥∥V2x
l−1
∥∥2)

≤ 1

2m
βσ

(∥∥W l
2

∥∥2 + ∥∥xl−1
∥∥2) ≤ βσ

2m

(
c20

√
m+R2

)2
+

βσ

2m

(
cl−1

ISTA ;x

)2
= O(1),

∥∥∥∥ ∂2xl

∂xl−1∂W l
1

∥∥∥∥
2,2,1

= sup
∥v1∥=∥V2∥F=1

1√
mn

m∑
i=1

∣∣σ′′ (x̃l
i

) (
W l

2v1

)
i
(V2y)i

∣∣ ≤ sup
∥v1∥=∥V2∥F=1

1

2
√
mn

βσ

(∥∥W l
2v1

∥∥2 + ∥V2y∥2
)

≤ 1

2
√
mn

βσ

(∥∥W l
2

∥∥2 + ∥y∥2
)
≤
√

m

4n
βσ

(
c20 +

R2√
m

)2

+

√
n

4m
βσC

2
y = O(1),

∥∥∥∥∥ ∂2xl(
∂W l

2

)2
∥∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1

m

m∑
i=1

∣∣σ′′ (x̃l
i

) (
V1x

l−1
)
i

(
V2x

l−1
)
i

∣∣ ≤ sup
∥V1∥F=∥V2∥F=1

1

2m
βσ

(∥∥V1x
l−1
∥∥2 + ∥∥V2x

l−1
∥∥2)

≤ 1

2m
βσ

(∥∥xl−1
∥∥2 + ∥∥xl−1

∥∥2) ≤ 1

m
βσ

(
cl−1
ISTA;x

)2
= O(1),

∥∥∥∥ ∂2xl

∂W l
2∂W

l
1

∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1√
mn

m∑
i=1

∣∣σ′′ (x̃l
i

) (
V1x

l−1
i

)
i
(V2y)i

∣∣ ≤ sup
∥V1∥F=∥V2∥F=1

1

2
√
mn

βσ

(∥∥V1x
l−1
∥∥2 + ∥V2y∥2

)
≤ 1

2
√
mn

βσ

(∥∥xl−1
∥∥2 + ∥y∥2

)
≤ βσ

2
√
mn

(
cl−1

ISTA;x

)2
+

√
n

4m
βσC

2
y = O(1),∥∥∥∥∥ ∂2xl(

∂W l
1

)2
∥∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1

n

m∑
i=1

∣∣σ′′ (x̃l
i

)
(V1y)i (V2y)i

∣∣ ≤ sup
∥V1∥F=∥V2∥F=1

1

2n
βσ

(
∥V1y∥2 + ∥V2y∥2

)
≤ 1

2n
βσ

(
∥y∥2 + ∥y∥2

)
= βσC

2
y = O(1),∥∥∥∥ ∂2xl

∂xl−1∂W l

∥∥∥∥
2,2,1

=
∥∥∥[∂2xl

∂xl−1∂W l
1

∂2xl

∂xl−1∂W l
2

]∥∥∥
2,2,1

≤
∥∥∥∥ ∂2xl

∂xl−1∂W l
1

∥∥∥∥
2,2,1

+

∥∥∥∥ ∂2xl

∂xl−1∂W l
2

∥∥∥∥
2,2,1

= O(1) +O(1) = O(1),

(47)

∥∥∥∥∥ ∂2xl

(∂W l)
2

∥∥∥∥∥
2,2,1

=

∥∥∥∥∥
[

∂2xl/
(
∂W l

1

)2
∂2xl/∂W l

1∂W
l
2

∂2xl/∂W l
1∂W

l
2 ∂2xl/

(
∂W l

2

)2
]∥∥∥∥∥

2,2,1

≤

∥∥∥∥∥ ∂2xl(
∂W l

1

)2
∥∥∥∥∥
2,2,1

+ 2

∥∥∥∥ ∂2xl

∂W l
1∂W

l
2

∥∥∥∥
2,2,1

+

∥∥∥∥∥ ∂2xl(
∂W l

2

)2
∥∥∥∥∥
2,2,1

= O(1) +O(1) +O(1) = O(1).
(48)

Therefore, by using (45), (46), (47), and (48), we get Q2,2,1 (fs) = O(1), for all s ∈ [m].

16

B. Bound on Q2,2,1 For ADMM-CSNet

Consider an L-layered ADMM-CSNet as

f =
1√
m
zL;

zl = σ
(
z̃l
)
= σ

(
xl + ul−1

)
,

xl =
1√
n
W l

1y +
1√
m
W l

2

(
zl−1 − ul−1

)
,

ul = ul−1 +
(
xl − zl

)
.

(49)

where f is the output of the network. Now the first derivatives of zl are(
∂zl

∂zl−1

)
i,j

=

(
∂zl

∂zl−1

)
i,j

+

(
∂zl

∂ul−1

∂ul−1

∂zl−1

)
i,j

= σ′ (z̃li)(2√
m
W l

2 − I

)
i,j

;(
∂zl

∂W l
1

)
i,jj′

=
1√
n
σ′ (z̃li)yj′Ii=j ;

(
∂zl

∂W l
2

)
i,jj′

=
1√
m
σ′ (z̃li) (zl−1 − ul−1)j′Ii=j .

Now, we have

∥∥∥∥ ∂zl

∂W l
1

∥∥∥∥2
2

= sup
∥V ∥F=1

1

n

m∑
i=1

∑
j,j′

σ′ (z̃li)yj′Ii=jVjj′

2

= sup
∥V ∥F=1

1

n

∥∥Σ′lV y
∥∥2 ≤ 1

n

∥∥Σ′l∥∥2 ∥y∥2 ≤ L2
σC

2
y = O(1),

where Σ′l is a diagonal matrix with the diagonal entry (Σ′l)ii = σ′ (z̃li).
∥∥∥∥ ∂zl

∂W l
2

∥∥∥∥2
2

= sup
∥V ∥F=1

1

m

m∑
i=1

∑
j,j′

σ′ (z̃li) (zl−1 − ul−1)j′Ii=jVjj′

2

= sup
∥V ∥F=1

1

m

∥∥Σ′lV (zl−1 − ul−1)
∥∥2

≤ 1

m

∥∥Σ′l∥∥2 ∥∥zl−1
∥∥2 + 1

m

∥∥Σ′l∥∥2 ∥∥ul−1
∥∥2 ≤ 1

m
L2
σ

((
cl−1
ADMM;z

)2
+
(
cl−1
ADMM;u

)2)
= O(1).

From lemma (4) we used
(
cl−1
ADMM;z

)
= O(

√
m) and

(
cl−1
ADMM;u

)
= O(

√
m). Therefore

∥∥∥∥ ∂zl

∂W l

∥∥∥∥ =

∥∥∥∥[∂zl

∂W l
1

∂zl

∂W l
2

]∥∥∥∥ ≤
∥∥∥∥ ∂zl

∂W l
1

∥∥∥∥+ ∥∥∥∥ ∂zl

∂W l
2

∥∥∥∥ = O(1) +O(1) = O(1). (50)

The second derivatives of the vector-valued layer function zl, which are order 3 tensors, have the following expressions:(
∂2zl

(∂zl−1)
2

)
i,j,k

= σ′′ (z̃li)(2√
m
W l

2 − I

)
i,j

(
2√
m
W l

2 − I

)
i,k

;(
∂2zl

∂zl−1∂W l
2

)
i,j,kk′

=
1√
m
σ′′ (z̃li)(2√

m
W l

2 − I

)
ij

(zl−1 − ul−1)k′Ii=k +
2√
m
σ′ (z̃li) Ii=kIj=k′ ;(

∂2zl

∂zl−1∂W l
1

)
i,j,kk′

=
1√
m
σ′′ (z̃li)(2√

m
W l

2 − I

)
ij

yk′Ii=k;(
∂2zl(
∂W l

2

)2
)

i,jj′,kk′

=
1

m
σ′′ (z̃li) (zl−1 − ul−1)j′(z

l−1 − ul−1)k′Ii=k=j ;(
∂2zl

∂W l
2∂W

l
1

)
i,jj′,kk′

=
1√
mn

σ′′ (z̃li) (zl−1 − ul−1)j′yk′Ii=k=j ;(
∂2zl(
∂W l

1

)2
)

i,jj′,kk′

=
1

n
σ′′ (z̃li)yj′yk′Ii=k=j ;

(51)

17

∥∥∥∥∥ ∂2zl

(∂zl−1)
2

∥∥∥∥∥
2,2,1

= sup
∥v1∥=∥v2∥=1

m∑
i=1

∣∣∣∣σ′′ (z̃li)((2√
m
W l

2 − I

)
v1

)
i

((
2√
m
W l

2 − I

)
v2

)
i

∣∣∣∣
≤ sup

∥v1∥=∥v2∥=1

βσ

m∑
i=1

∣∣∣∣((2√
m
W l

2 − I

)
v1

)
i

((
2√
m
W l

2 − I

)
v2

)
i

∣∣∣∣
≤ sup

∥v1∥=∥v2∥=1

1

2
βσ

m∑
i=1

((
2√
m
W l

2 − I

)
v1

)2

i

+

((
2√
m
W l

2 − I

)2
)

i

≤ sup
∥v1∥=∥v2∥=1

1

2
βσ

(∥∥∥∥ 2√
m
W l

2v1 − v1

∥∥∥∥2 + ∥∥∥∥ 2√
m
W l

2v2 − v2

∥∥∥∥2
)

≤ βσ

(∥∥∥∥ 2√
m
W l

2

∥∥∥∥2 + 12

)
≤ βσ + 4βσ

(c20
√
m+R2)

2

m
= O(1),

(52)

∥∥∥∥ ∂2zl

∂zl−1∂W l
2

∥∥∥∥
2,2,1

= sup
∥v1∥=∥V2∥F=1

m∑
i=1

∣∣∣∣ 1mσ′′ (z̃li) ((2W l
2 −

√
mI
)
v1

)
i

(
V2(z

l−1 − ul−1)
)
i
+

2√
m
σ′ (z̃li) (V2v1)i

∣∣∣∣
≤ sup

∥v1∥=∥V2∥F=1

1

2m
βσ

(∥∥2W l
2v1 −

√
mv1

∥∥2 + ∥∥V2z
l−1 − V2u

l−1
∥∥2)+ 2√

m

∥∥Σ′l∥∥ ∥v1∥ ∥V2∥

≤ 1

2m
βσ

(∥∥2W l
2

∥∥2 +m+
∥∥zl−1

∥∥2 + ∥∥ul−1
∥∥2)+ 2√

m
Lσ

≤ βσ

2m

(
(2)2

(
c20

√
m+R2

)2
+m+

(
cl−1

ADMM; z

)2
+
(
cl−1

ADMM; u

)2)
+

2√
m
Lσ

= O(1) +O(1/
√
m) = O(1),∥∥∥∥ ∂2zl

∂zl−1∂W l
1

∥∥∥∥
2,2,1

= sup
∥v1∥=∥V2∥F=1

1

m

m∑
i=1

∣∣σ′′ (z̃li) ((2W l
2 −

√
mI
)
v1

)
i
(V2y)i

∣∣
≤ sup

∥v1∥=∥V2∥F=1

1

2m
βσ

(∥∥2W l
2v1 −

√
mv1

∥∥2 + ∥V2y∥2
)
≤ 1

2m
βσ

(∥∥2W l
2

∥∥2 +m+ ∥y∥2
)

≤ βσ

2m

(
(2)2

(
c20

√
m+R2

)2
+m+mC2

y

)
= O(1),∥∥∥∥ ∂2zl

∂zl−1∂W l

∥∥∥∥
2,2,1

=

∥∥∥∥[∂2zl

∂zl−1∂W l
1

∂2zl

∂zl−1∂W l
2

]∥∥∥∥
2,2,1

≤
∥∥∥∥ ∂2zl

∂zl−1∂W l
1

∥∥∥∥
2,2,1

+

∥∥∥∥ ∂2zl

∂zl−1∂W l
2

∥∥∥∥
2,2,1

= O(1), (53)∥∥∥∥∥ ∂2zl(
∂W l

2

)2
∥∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1

m

m∑
i=1

∣∣σ′′ (z̃li) (V1(z
l−1 − ul−1)

)
i

(
V2(z

l−1 − ul−1)
)
i

∣∣
≤ sup

∥V1∥F=∥V2∥F=1

1

2m
βσ

m∑
i=1

(∥∥V1(z
l−1 − ul−1)

∥∥2 + ∥∥V2(z
l−1 − ul−1)

∥∥2)
≤ 1

2m
βσ

(∥∥zl−1
∥∥2 + ∥∥ul−1

∥∥2 + ∥∥zl−1
∥∥2 + ∥∥ul−1

∥∥2) ≤ 1

m
βσ

((
cl−1
ADMM;z

)2
+
(
cl−1
ADMM;u

)2)
= O(1),

∥∥∥∥ ∂2zl

∂W l
1∂W

l
2

∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1√
mn

m∑
i=1

∣∣σ′′ (z̃li) (V1(z
l−1 − ul−1)

)
i
(V2y)i

∣∣
≤ sup

∥V1∥F=∥V2∥F=1

1

2
√
mn

βσ

m∑
i=1

(∥∥V1(z
l−1 − ul−1)

∥∥2 + ∥V2y∥2
)

≤ 1

2
√
mn

βσ

(∥∥zl−1
∥∥2 + ∥∥ul−1

∥∥2 + ∥y∥2
)
≤ 1

2
√
mn

βσ

(
nC2

y +
(
cl−1

ADMM ;z

)2
+
(
cl−1

ADMM ;u

)2)
= O(1),

∥∥∥∥∥ ∂2zl(
∂W l

1

)2
∥∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1

n

m∑
i=1

∣∣σ′′ (z̃li) (V1y)i (V2y)i
∣∣ ≤ sup

∥V1∥F=∥V2∥F=1

1

2n
βσ

m∑
i=1

(
∥V1y∥2 + ∥V2y∥2

)
≤ 1

2n
βσ

(
∥y∥2 + ∥y∥2

)
≤ βσC

2
y = O(1),

18

∥∥∥∥∥ ∂2zl

(∂W l)
2

∥∥∥∥∥
2,2,1

=

∥∥∥∥∥
[

∂2zl/
(
∂W l

1

)2
∂2zl/∂W l

1∂W
l
2

∂2zl/∂W l
1∂W

l
2 ∂2zl/

(
∂W l

2

)2
]∥∥∥∥∥

2,2,1

≤

∥∥∥∥∥ ∂2zl(
∂W l

1

)2
∥∥∥∥∥
2,2,1

+ 2

∥∥∥∥ ∂2zl

∂W l
1∂W

l
2

∥∥∥∥
2,2,1

+

∥∥∥∥∥ ∂2zl(
∂W l

2

)2
∥∥∥∥∥
2,2,1

= O(1).
(54)

Therefore, from (50), (52), (53), and (54), we get that Q2,2,1(fs) = O(1), for all s ∈ [m].

C. Bound on Q∞ For LISTA Network

Let bl
s =

∂fs
∂xl , then Q∞ (fs) = max1≤l≤L

{∥∥bl
s

∥∥
∞

}
. We now compute bound on

∥∥bl
s

∥∥
∞. From triangle inequality, we can

write ∥∥bl
s

∥∥
∞ ≤

∥∥bl
s,0

∥∥
∞ +

∥∥bl
s − bl

s,0

∥∥
∞ ≤

∥∥bl
s,0

∥∥
∞ +

∥∥bl
s − bl

s,0

∥∥ . (55)

where bl
s,0 is bl

s at initialization. Therefore, one can obtain the bound on
∥∥bl

s

∥∥
∞ by computing the bounds on

∥∥bl
s,0

∥∥
∞

and
∥∥bl

s − bl
s,0

∥∥, which are provided in Lemma 7 and Lemma 8, respectively. Moreover, in order to compute the bound on∥∥bl
s,0

∥∥
∞, we require several lemmas which are stated below. In specific, Lemma 5 and Lemma 6 provide the bound on each

component of the hidden layer’s output at initialization and the bound on l2-norm of bl
s, l ∈ [L], respectively.

Lemma 5. For any l ∈ [L] and i ∈ [m], we have
∣∣xl

i

∣∣ ≤ ln(m)+|σ(0)| at initialization with probability at least 1−2e−clxln
2(m)

for some constant clx > 0.

Proof. From (44),∣∣xl
i

∣∣ = ∣∣∣∣∣σ
(

1√
m

m∑
k=1

(
W l

2

)
ik
xl−1
k +

1√
n

n∑
k=1

(
W l

1

)
ik
yk

)∣∣∣∣∣ ≤
∣∣∣∣∣ Lσ√

m

m∑
k=1

(
W l

2

)
ik
xl−1
k +

Lσ√
n

n∑
k=1

(
W l

1

)
ik
yk

∣∣∣∣∣+ |σ(0)|.

As
(
W l

1

)
ik

∼ N (0, 1) and
(
W l

2

)
ik

∼ N (0, 1), so that
∑n

k=1

(
W l

1

)
ik
yk ∼ N

(
0, ∥y∥2

)
and

∑m
k=1

(
W l

2

)
ik
xl−1
k ∼

N
(
0,
∥∥xl−1

∥∥2). In addition, since
(
W l

1

)
ik

and
(
W l

2

)
ik

are independent,
∑n

k=1

(
W l

1

)
ik
yk+

∑m
k=1

(
W l

2

)
ik
xl−1
k ∼

N
(
0, ∥y∥2 +

∥∥xl−1
∥∥2). Using the concentration inequality of a Gaussian random variable, we obtain

Pr
[∣∣xl

i

∣∣ ≥ ln(m) + |σ(0)|
]
≤ Pr

[∣∣∣∣∣ Lσ√
m

m∑
k=1

(
W l

2

)
ik
xl−1
k +

Lσ√
n

n∑
k=1

(
W l

1

)
ik
yk

∣∣∣∣∣ ≥ ln(m)

]
≤ 2e

− mln2(m)

2L2
σ(∥y∥2+∥xl−1∥2) .

This implies,

Pr
[∣∣xl

i

∣∣ ≤ ln(m) + |σ(0)|
]
≥ 1− 2e

− m ln2(m)

2L2
σ(∥y∥2+∥xl−1∥2) = 1− 2e−clx ln2(m), ∀l ∈ [L], (56)

where clx = m

2L2
σ(∥y∥2+∥xl−1∥2)

> 0.

Lemma 6. Consider an L-layer LISTA network with
(
W l

10

)
i,j

∼ N (0, 1) and
(
W l

20

)
i,j

∼ N (0, 1), ∀l ∈ [L], then, for any
W1 and W2 such that ∥W1 −W10∥ ≤ R1 and ∥W2 −W20∥ ≤ R2, we have,∥∥bl

s

∥∥ ≤ LL−l
σ

(
c20 +R2/

√
m
)L−l

, l ∈ [L]. (57)

From this at initialization, i.e., for R2 = 0, we get ∥∥bl
s,0

∥∥ ≤ LL−l
σ cL−l

20 . (58)

Proof. We prove this lemma by using induction on l. Initially, for l = L, we have∥∥bL
s

∥∥ =

∥∥∥∥ ∂fs∂xL

∥∥∥∥ = (1/
√
m) ∥vs∥ = 1/

√
m < 1.

That is, the inequality in (57) holds true for l = L. Assume that at lth layer the inequality holds, i.e.,
∥∥bl

s

∥∥ ≤
LL−l
σ (c0 +R2/

√
m)

L−l, then below we prove that (57) holds true even for the (l − 1)th layer:∥∥bl−1
s

∥∥ =

∥∥∥∥ ∂fs
∂xl−1

∥∥∥∥ =

∥∥∥∥ ∂xl

∂xl−1

∂fs
∂xl

∥∥∥∥ =

∥∥∥∥ 1√
m

(
W l

2

)T
Σ′lbl

s

∥∥∥∥ ≤ 1√
m

∥∥W l
2

∥∥∥∥Σ′l∥∥∥∥bl
s

∥∥
≤
(
c20 +R2/

√
m
)
Lσ

∥∥bl
s

∥∥ ≤
(
c20 +R2/

√
m
)L−l+1

LL−l+1
σ .

So, from the above analysis, we claim that the inequality in (57) holds true for any l ∈ [L]. Now, at initialization, i.e.,
substituting R2 = 0 in (57) directly leads to (58).

As mentioned earlier, we now use Lemma 5 and Lemma 6 to provide bound on
∥∥bl

s,0

∥∥
∞.

19

Lemma 7. At initialization, the ∞-norm of bl
s is in Õ(1/

√
m) with probability 1−me−clbs ln2(m) for some constant clbs > 0,

i.e.,

∥bl
s,0∥∞ = Õ

(
1√
m

)
. (59)

Proof. We prove this lemma by induction. Before proceeding, lets denote sl = bl
s,0. Initially, for l = L, we have∥∥sL∥∥∞ = 1/

√
m ∥vs∥∞ = O(1/

√
m).

Implies that (59) holds true for l = L. Suppose that at lth layer with probability at least 1−me−clbs ln2(m), for some constant
clbs > 0,

∥∥sl∥∥∞ = Õ(1√
m
). We now prove that equation (59) is valid for (l − 1)th layer as well with probability at least

1−me−cl−1
bs ln2(m) for some constant cl−1

bs > 0. In particular, the absolute value of ith component of sl−1
i is bounded as

∣∣sl−1
i

∣∣ =
∣∣∣∣∣∣ 1√

m

m∑
k=1

(
W l−1

2

)
ki
σ′

 1√
m

m∑
j=1

(
W l−1

2

)
kj

xl−2
j +

1√
n

n∑
j=1

(
W l−1

1

)
kj

yj

 slk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1√
m

m∑
k=1

(
W l−1

2

)
ki
σ′

 1√
m

m∑
j ̸=i

(
W l−1

2

)
kj

xl−2
j +

1√
n

n∑
j ̸=i

(
W l−1

1

)
kj

yj

 slk

∣∣∣∣∣∣
+

∣∣∣∣∣ 1mβσx
l−2
i

m∑
k=1

((
W l−1

2

)
ki

)2
slk

∣∣∣∣∣+
∣∣∣∣∣ 1√

m
√
n
βσyi

m∑
k=1

(
W l−1

1

)
ki

(
W l−1

2

)
ki
slk

∣∣∣∣∣
= |T1|+ |T2|+ |T3|.

Now, we provide bounds on the terms (T1, T2, and T3) individually:

T1 =
1√
m

m∑
k=1

(
W l−1

2

)
ki
σ′

 1√
m

m∑
j ̸=i

(
W l−1

2

)
kj

xl−2
j +

1√
n

m∑
j ̸=i

(
W l−1

1

)
kj

yj

 slk

≤ Lσ√
m

m∑
k=1

(
W l−1

2

)
ki
slk ∼ N

(
0,

L2
σ

m

∥∥sl∥∥2) ,

T2 =
1

m
βσx

l−2
i

m∑
k=1

((
W l−1

2

)
ki

)2
slk ≤ 1

m
βσ

∣∣xl−2
i

∣∣ ∥∥sl∥∥∞ m∑
k=1

((
W l−1

2

)
ki

)2
,

T3 =
1√
m
√
n
βσyi

m∑
k=1

(
W l−1

1

)
ki

(
W l−1

2

)
slk ≤ 1√

m
√
n
βσ |yi|

∥∥sl∥∥∞ m∑
k=1

(
W l−1

1

)
ki

(
W l−1

2

)
ki
,

where
∑m

k=1

((
W l−1

2

)
ki

)2 ∼ χ2(m),
∑m

k=1

(
W l−1

1

)
ki

(
W l−1

2

)
ki

∼ χ2(m), and χ2(m) denotes the chi-square distribution
with degree m. By using the concentration inequality on the derived T1 bound, we obtain

Pr

[∣∣∣∣∣ Lσ√
m

m∑
k=1

(
W l−1

2

)
ki
slk

∣∣∣∣∣ ≥ ln(m)√
m

]
≤ 2e

− ln2(m)

2L2
σ∥sl∥2 ≤ 2e−clσ ln2(m). (60)

Substituting the bound of
∥∥sl∥∥, obtained from Lemma (6), in the above inequality leads to clσ = 1/

(
2L2

σ

∥∥sl∥∥2)
≥ 1/

(
2L2L−2l+2

σ c2L−2l
20

)
. From Lemma 1 in [50], there exist constants c̃1, c̃2, and c̃3 > 0, such that

Pr

[∣∣∣∣∣ 1mβσ|xl−2
i |

∥∥sl∥∥∞ m∑
k=1

((
W l−1

2

)
ki

)2∣∣∣∣∣ ≥ c̃1e
− lnc̃3 (m)√

m

]
≤ e−c̃2m. (61)

Here, by using Lemma (5), we can write
∣∣xl−2

i

∣∣ ≤ ln(m) + |σ(0)| with probability at least 1− 2e−cl−2
x ln2(m)and by induction

hypothesis we have
∥∥sl∥∥∞ = Õ(1/

√
m) with probability 1−me−clbs ln2(m). Similarly, there exist constants ĉ1, ĉ2, and ĉ3 > 0,

such that

Pr

[∣∣∣∣∣ 1√
mn

βσ|yi|
∥∥sl∥∥∞ m∑

k=1

(
W l−1

1

)
ki

(
W l−1

2

)
ki

∣∣∣∣∣ ≥ ĉ1e
− lnĉ3(

√
mn)√√

mn

]
≤ e−ĉ2

√
mn. (62)

Combining probabilities in (60), (61), and (62), there exists a constant cl−1
bs such that

e−cl−1
bs ln2(m) ≤ me−clbs ln2(m) + 2e−clσ ln2(m) + 2e−clx ln2(m) + e−c̃2m + e−ĉ2

√
mn,

20

and with probability at least 1− e−cl−1
bs ln2(m), we have

∣∣sl−1
i

∣∣ = Õ
(

1√
m

)
. This implies,

∥∥sl−1
∥∥
∞ = Õ

(
1√
m

)
, (63)

with probability at least 1−me−cl−1
bs ln2(m), i.e., by induction we proved (59) for any l ∈ [L].

Lemma 8. The l2-norm of difference between bl
s and bl

s,0 is in Õ(1/
√
m) for any l ∈ [L− 1], i.e.,∥∥bl

s − bl
s,0

∥∥ = Õ(1/
√
m) ∀l ∈ [L− 1]. (64)

Proof. we prove (64) by using Induction. For l = L, we have
∥∥∥b(L)

s − b
(L)
s,0

∥∥∥ = 0. Let us consider (64) is valid for any l ∈ [L].
Now, we prove that (64) is also valid for l − 1.∥∥bl−1

s − bl−1
s,0

∥∥ =
1√
m

∥∥∥(W l
2

)T
Σ′lbl

s −
(
W l

20

)T
Σ′l

0b
l
s,0

∥∥∥
=

1√
m
∥
(
W l

2

)T
Σ′lbl

s −
(
W l

20

)T
Σ′l

0b
l
s,0 +

(
W l

20

)T
Σ′lbl

s,0

+
(
W l

20

)T
Σ′lbl

s −
(
W l

20

)T
Σ′lbl

s,0 −
(
W l

20

)T
Σ′lbl

s∥

=
1√
m

∥∥∥((W l
2

)T −
(
W l

20

)T)
Σ′lbl

s +
(
W l

20

)T (
Σ′l − Σ′l

0

)
bl
s,0 +

(
W l

20

)T
Σ′l (bl

s − bl
s,0

)∥∥∥
≤ 1√

m

∥∥∥((W l
2

)T −
(
W l

20

)T)
Σ′lbl

s

∥∥∥+ 1√
m

∥∥∥(W l
20

)T (
Σ′l − Σ′l

0

)
bl
s,0

∥∥∥+ 1√
m

∥∥∥(W l
20

)T
Σ′l (bl

s − bl
s,0

)∥∥∥
= T1 + T2 + T3.

We now provide bounds on T1, T2, and T3:

T1 =
1√
m

∥∥∥((W l
2

)T −
(
W l

20

)T)
Σ′lbl

s

∥∥∥ ≤ 1√
m

∥∥W l
2 −W l

20

∥∥∥∥Σ′l∥∥∥∥bl
s

∥∥ ≤ R2L
L−l+1
σ (c20 +R2/

√
m)

L−l

√
m

= O(1/
√
m).

To obtain bound on T2, we need the following inequality,∥∥x̃l(W)− x̃l (W0)
∥∥ =

∥∥∥∥ 1√
m
W l

2x
l−1(W)− 1√

m
W l

20x
l−1 (W0) +

1√
n
W l

1y − 1√
n
W l

10y

∥∥∥∥
≤ 1√

m

∥∥W l
20

∥∥Lσ

∥∥x̃l−1(W)− x̃l−1 (W0)
∥∥+ 1√

m

∥∥W l
2 −W l

20

∥∥∥∥xl−1(W)
∥∥+ 1√

n

∥∥W l
1 −W l

10

∥∥ ∥y∥
≤c20Lσ

∥∥x̃l−1(W)− x̃l−1 (W0)
∥∥+ R2√

m

∥∥xl−1(W)
∥∥+R1Cy

≤c20Lσ

∥∥x̃l−1(W)− x̃l−1 (W0)
∥∥+ R2c

l−1
ISTA;x√
m

+R1Cy.

Since ∥∥∥x̃(1)(W)− x̃(1) (W0)
∥∥∥ ≤ 1√

m

∥∥∥W (1)
2 −W

(1)
20

∥∥∥∥∥∥x(0)
∥∥∥+ 1√

n

∥∥∥W (1)
1 −W

(1)
10

∥∥∥ ∥y∥ ≤ R2Cx +R1Cy = O(1).

Recursively applying the previous equation, we get

∥∥x̃l(W)− x̃l (W0)
∥∥ ≤ cl−1

20 Ll−1
σ (R2Cx +R1Cy) +

(
R2c

l−1
ISTA;x√
m

+R1Cy

)
l−2∑
i=1

ci20L
i
σ = O(1).

Using the above inequality bound and Lemma (7), we can write the following with probability 1−me−clbs ln2(m):

∥∥[Σ′l − Σ′l
0

]
bl
s,0

∥∥ =

√√√√ m∑
i=1

(
bl
s,0

)2
i
[σ′ (x̃l(W))− σ′ (x̃l (W0))]

2 ≤
∥∥bl

s,0

∥∥
∞

√√√√ m∑
i=1

[σ′ (x̃l(W))− σ′ (x̃l (W0))]
2

≤
∥∥bl

s,0

∥∥
∞ βσ

∥∥x̃l(W)− x̃l (W0)
∥∥ = Õ

(
1√
m

)
.

This leads to,

T2 =
1√
m

∥∥∥(W l
20

)T (
Σ′l − Σ′l

0

)
bl
s,0

∥∥∥ ≤ 1√
m
∥W l

20∥
∥∥[Σ′l − Σ′l

0

]
bl
s,0

∥∥ = Õ

(
1√
m

)
.

21

Besides, by using the induction hypothesis on l, the term T3 is bounded as

T3 =
1√
m

∥∥∥(W l
20

)T
Σ′l (bl

s − bl
s,0

)∥∥∥ ≤ 1√
m

∥∥W l
20

∥∥∥∥Σ′l∥∥∥∥bl
s − bl

s,0

∥∥ = Õ(1/
√
m).

Now combining the bounds on the terms T1, T2, and T3, we can write∥∥bl−1
s − bl−1

s,0

∥∥ ≤ T1 + T2 + T3 = Õ

(
1√
m

)
. (65)

Therefore, (64) is true for l − 1. Hence, by induction (64) is true for all l ∈ [L].

By using Lemma 7 and 8, in equation (55), we get∥∥bl
s

∥∥
∞ ≤

∥∥bl
s,0

∥∥
∞ +

∥∥bl
s − bl

s,0

∥∥ = Õ

(
1√
m

)
. (66)

This implies,

Q∞ (fs) = max
1≤l≤L

{∥∥bl
s

∥∥
∞

}
= Õ

(
1√
m

)
. (67)

D. Bound on Q∞ For ADMM-CSNet

Let bl
s = ∂fs

∂zl , then Q∞ (fs) = max1≤l≤L

{∥∥bl
s

∥∥
∞

}
. We now compute bound on

∥∥bl
s

∥∥
∞ by using (55). Similar to the

previous LISTA network analysis, one can obtain the bound on
∥∥bl

s

∥∥
∞ by computing the bounds on

∥∥bl
s,0

∥∥
∞ and

∥∥bl
0 − bl

s,0

∥∥,
which are provided in Lemma 11 and Lemma 12, respectively. Moreover, in order to compute the bound on

∥∥bl
s,0

∥∥
∞, we

require several lemmas which are stated below. In specific, Lemma 9 and Lemma 10 provide the bound on each component
of the hidden layer’s output at initialization and the bound on l2-norm of bl

s, l ∈ [L], respectively.

Lemma 9. For any l ∈ [L] and i ∈ [m], we have
∣∣zli∣∣ ≤ ln(m) + Lσ

∣∣ul−1
i

∣∣ + |σ(0)| at initialization with probability at
least 1 − 2e−clzln

2(m) for some constant clz > 0 and
∣∣ul

i

∣∣ ≤ ln(m) +
∣∣ul−1

i

∣∣ + ∣∣zli∣∣ at initialization with probability at least
1− 2e−clu ln2(m) for some constant clu > 0.

Proof. From (49),

∣∣zli∣∣ =
∣∣∣∣∣σ
(
ul−1
i +

m∑
k=1

1√
m

(
W l

2

)
ik

(
zl−1
k − ul−1

k

)
+

n∑
k=1

1√
n

(
W l

1

)
ik
yk

)∣∣∣∣∣
≤

∣∣∣∣∣ Lσ√
m

m∑
k=1

(
W l

2

)
ik

(
zl−1
k − ul−1

k

)
+

Lσ√
n

n∑
k=1

(
W l

1

)
ik
yk

∣∣∣∣∣+ Lσ

∣∣ul−1
i

∣∣+ |σ(0)|.

As
(
W l

1

)
ik

∼ N (0, 1) and
(
W l

2

)
ik

∼ N (0, 1), so that
∑n

k=1

(
W l

1

)
ik
yk ∼ N

(
0, ∥y∥2

)
and

∑m
k=1

(
W l

2

)
ik

(
zl−1
k − ul−1

k

)
∼

N
(
0,
∥∥zl−1 − ul−1

∥∥2). In addition, since
(
W l

1

)
ik

and
(
W l

2

)
ik

are independent,∑m
k=1

(
W l

1

)
ik
yk+

∑m
k=1

(
W l

2

)
ik

(
zl−1
k − ul−1

k

)
∼ N

(
0, ∥y∥2 +

∥∥zl−1 − ul−1
∥∥2). Using the concentration inequality of a

Gaussian random variable, we obtain

Pr
[∣∣zli∣∣ ≥ ln(m) + Lσ

∣∣ul−1
i

∣∣+ |σ(0)|
]
≤ Pr

[∣∣∣∣∣ Lσ√
m

m∑
k=1

(
W l

2

)
ik

(
zl−1
k − ul−1

k

)
+

Lσ√
n

n∑
k=1

(W1)
(1)
ik yk

∣∣∣∣∣ ≥ ln(m)

]

≤ 2e
− m ln2(m)

2L2
σ(∥y∥2+∥zl−1−ul−1∥2) = 2e−clz ln2(m),

where clz = m

2L2
σ

(
∥y∥2+∥z(l−1)−u(l−1)∥2

) . Therefore,

Pr
[∣∣zli∣∣ ≤ ln(m) + Lσ

∣∣ul−1
i

∣∣+ |σ(0)|
]
≥ 1− 2e−c(l)z ln2(m).

Since the bound on
∣∣zli∣∣ depends on

∣∣ul−1
i

∣∣ (mentioned in above equation), we now find the bound of
∣∣ul

i

∣∣,
∣∣ul

i

∣∣ = ∣∣∣∣∣ul−1
i − zli +

n∑
k=1

1√
n

(
W l

1

)
ik
yk +

m∑
k=1

1√
m

(
W l

2

)
ik

(
zl−1
k − ul−1

k

)∣∣∣∣∣
≤
∣∣ul−1

i

∣∣+ ∣∣zli∣∣+
∣∣∣∣∣

n∑
k=1

1√
n

(
W l

1

)
ik
yk +

m∑
k=1

1√
m

(
W l

2

)
ik

(
zl−1
k − ul−1

k

)∣∣∣∣∣ .

22

By the concentration inequality for the Gaussian random variable, we have

Pr
[∣∣ul

i

∣∣ ≥ ln(m) +
∣∣ul−1

i

∣∣+ ∣∣zli∣∣] ≤ Pr

[∣∣∣∣∣ Lσ√
m

m∑
k=1

(
W l

2

)
ik

(
zl−1
k − ul−1

k

)
+

Lσ√
n

n∑
k=1

(
W l

1

)
ik
yk

∣∣∣∣∣ ≥ ln(m)

]

≤2e
− m ln2(m)

2L2
σ(∥y∥2+∥zl−1−ul−1∥2) .

Therefore, we have

Pr
[∣∣ul

i

∣∣ ≤ ln(m) +
∣∣ul−1

i

∣∣+ ∣∣zli∣∣] ≥ 1− 2e−clu ln2(m).

In a recursive manner, we get

∣∣zli∣∣ ≤ ln(m) + |σ(0)|+
l−2∑
i=0

(1 + Lσ)
i
Lσ(2 ln(m) + |σ(0)|) + (1 + Lσ)

l−1
LσCu,

∣∣ul
i

∣∣ ≤ l−1∑
i=0

(1 + Lσ)
i
(2 ln(m) + |σ(0)|) + (1 + Lσ)

l
Cu,

with possibility 1− 2e
− m ln2(m)

2L2
σ(∥y∥2+∥zl−1−ul−1∥2) .

Lemma 10. Consider an L-layer ADMM-CSNet with
(
W l

10

)
i,j

∼ N (0, 1) and
(
W l

20

)
i,j

∼ N (0, 1), ∀l ∈ [L], then, for any
W1 and W2 such that ∥W1 −W10∥ ≤ R1 and ∥W2 −W20∥ ≤ R2, we have,∥∥bl

s

∥∥ ≤ LL−l
σ

(
2
(
c20 +R2/

√
m
)
+ 1
)L−l

. (68)

From this at initialization, i.e., for R2 = 0, we get∥∥bl
s,0

∥∥ ≤ LL−l
σ (2c20 + 1)

L−l
. (69)

Proof. We prove this lemma by using induction on l. Initially, for l = L, we have∥∥bL
s

∥∥ =

∥∥∥∥ ∂fs∂zL

∥∥∥∥ = (1/
√
m) ∥vs∥ = 1/

√
m < 1.

That is the quantity in (68) is true for l = L. Assume that at lth layer the inequality holds, i.e.,
∥∥bl

s

∥∥ ≤
LL−l
σ (2 (c20 +R2/

√
m) + 1)

L−l, then below we prove that (68) holds true even for the (l − 1)th layer:

∥∥bl−1
s

∥∥ =

∥∥∥∥ ∂fs
∂zl−1

∥∥∥∥ =

∥∥∥∥ ∂zl

∂zl−1

∂fs
∂zl

∥∥∥∥ =

∥∥∥∥(2√
m

(
W l

2

)T
Σ′l − Σ′l

)
bl
s

∥∥∥∥ ≤ 2√
m

∥∥(W l
2

)∥∥ ∥∥Σ′l∥∥∥∥bl
s

∥∥+ ∥∥Σ′l∥∥ ∥∥bl
s

∥∥
≤
(
2
(
c20 +R2/

√
m
)
+ 1
)
Lσ

∥∥bl
s

∥∥ ≤
(
2
(
c20 +R2/

√
m
)
+ 1
)L−l+1

LL−l+1
σ .

So, from the above analysis, we claim that the inequality in (68) holds true for any l ∈ [L]. Now, at initialization, i.e.,
substituting R2 = 0 in (68) directly leads to (69).

We now use the two lemmas that are mentioned above to provide the bound on
∥∥bl

s,0

∥∥
∞.

Lemma 11. At initialization, the ∞-norm of bl
s is in Õ(1/

√
m) with probability 1−me−clbs ln2(m) for some constant clbs > 0,

i.e.,

∥bl
s,0∥∞ = Õ

(
1√
m

)
. (70)

Proof. We prove this lemma by induction. Before proceeding, lets denote sl = bl
s,0. Initially, for l = L, we have∥∥sL∥∥∞ = 1/

√
m ∥vs∥∞ = O(1/

√
m).

Implies that (70) holds true for l = L. Suppose that at lth layer with probability at least 1 − me−clbs ln2(m), for some
constant clbs > 0,

∥∥sl∥∥∞ = Õ(1√
m
). We now prove that equation (70) is valid for (l − 1)th layer with probability at least

1−me−cl−1
bs ln2(m) for some constant cl−1

bs > 0. In particular, the absolute value of ith component of sl−1
i is bounded as

23

∣∣sl−1
i

∣∣ =
∣∣∣∣∣∣

m∑
k=1

(
2√
m
W l−1

2 − I

)
ki

σ′

 1√
m

m∑
j=1

(
W l−1

2

)
kj

(
z(l−2) − u(l−2)

)
j
+

1√
n

n∑
j=1

(
W l−1

1

)
kj

yj + u
(l−2)
k

 slk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
m∑

k=1

(
2√
m
W l−1

2 − I

)
ki

σ′

 1√
m

m∑
j ̸=i

(
W l−1

2

)
kj

(
z(l−2) − u(l−2)

)
j
+

1√
n

n∑
j ̸=i

(
W l−1

1

)
kj

yj + u
(l−2)
k

 slk

∣∣∣∣∣∣
+

∣∣∣∣∣ 2mβσ

(
z
(l−2)
i − u

(l−2)
i

) m∑
k=1

(
W l−1

2

)
ki

(
W l−1

2

)
ki
slk

∣∣∣∣∣+
∣∣∣∣∣ 2√

mn
βσyi

m∑
k=1

(
W l−1

2

)
ki

(
W l−1

1

)
ki
slk

∣∣∣∣∣
+

∣∣∣∣∣ 1√
m
βσ

(
z
(l−2)
i − u

(l−2)
i

) m∑
k=1

(
W l−1

2

)
ki
slk

∣∣∣∣∣+
∣∣∣∣∣ 1√

n
βσyi

m∑
k=1

(
W l−1

1

)
ki
slk

∣∣∣∣∣+
∣∣∣∣∣Lσ

m∑
k=1

(
2√
m
W l−1

2 − I

)
ki

slk

∣∣∣∣∣
= |T1|+ |T2|+ |T3|+ |T4|+ |T5|+ |T6|.

Now, we provide bounds on the terms (T1, T2, T3, T4, T5, and T6) individually:

|T1| =

∣∣∣∣∣∣
m∑

k=1

(
2√
m
W l−1

2 − I

)
ki

σ′

 1√
m

m∑
j ̸=i

(
W l−1

2

)
kj

(
z(l−2) − u(l−2)

)
j
+

1√
n

n∑
j ̸=i

(
W l−1

1

)
kj

yj + u
(l−2)
k

 slk

∣∣∣∣∣∣
≤

∣∣∣∣∣Lσ

m∑
k=1

(
2√
m
W l−1

2 − I

)
ki

slk

∣∣∣∣∣ ≤

∣∣∣∣∣ Lσ

m∑
k=1

2√
m

(
W l−1

2

)
ki
slk

∣∣∣∣∣ +
∣∣ Lσs

l
i

∣∣ ,
|T2| =

∣∣∣∣∣ 2mβσ

(
z
(l−2)
i − u

(l−2)
i

) m∑
k=1

((
W l−1

2

)
ki

)2
slk

∣∣∣∣∣ ≤ 2

m
βσ

∣∣∣z(l−2)
i − u

(l−2)
i

∣∣∣ ∥∥sl∥∥∞ m∑
k=1

((
W l−1

2

)
ki

)2
,

|T3| =

∣∣∣∣∣ 2√
mn

βσyi

m∑
k=1

(
W l−1

2

)
ki

(
W l−1

1

)
ki
slk

∣∣∣∣∣ ≤ 2√
mn

βσ |yi|
∥∥sl∥∥∞

∣∣∣∣∣
m∑

k=1

(
W l−1

2

)
ki

(
W l−1

1

)
ki

∣∣∣∣∣ ,
|T4| =

∣∣∣∣∣ 1√
m
βσ

(
z
(l−2)
i − u

(l−2)
i

) m∑
k=1

(
W l−1

2

)
ki
slk

∣∣∣∣∣ , |T5| =

∣∣∣∣∣ 1√
n
βσyi

m∑
k=1

(
W l−1

1

)
ki
slk

∣∣∣∣∣ ,
|T6| =

∣∣∣∣∣Lσ

m∑
k=1

(
2√
m
W l−1

2 − I

)
ki

slk

∣∣∣∣∣ ≤
∣∣∣∣∣ Lσ

m∑
k=1

2√
m

(
W l−1

2

)
ki
slk

∣∣∣∣∣ +
∣∣ Lσs

l
i

∣∣ .
By using the concentration inequality on the derived T1 and T6 bounds, we obtain

Pr

[∣∣∣∣∣2Lσ√
m

m∑
k=1

(
W l−1

2

)
ki
slk

∣∣∣∣∣ ≥ ln(m)√
m

]
≤ 2e

− ln2(m)

2(2)2L2
σ∥sl∥2 ≤ 2e−clσ ln2(m). (71)

Substituting the bound of
∥∥sl∥∥, obtained from Lemma (10), in the above inequality leads to clσ = 1/(8L2

σ

∥∥sl∥∥2) ≥
1/(8L2L−2l+2

σ ((2c20 + 1)
2L−2l

). Also using the induction hypothesis, we get∣∣Lσs
l
i

∣∣ ≤ Lσ

∥∥sl∥∥∞ = Õ(1/
√
m). (72)

Therefore, from (71) and (72), we get both T1 and T6 is Õ(1/
√
m) with probability at least 1 − 2e−clσln

2(m). As∑m
k=1

((
W l−1

2

)
ki

)2 ∼ χ2(m) and
∑m

k=1

(
W l−1

1

)
ki

(
W l−1

2

)
ki

∼ χ2(m). Hence, to derive bounds on T2 and T3, by using
Lemma 1 in [50], there exist constants c̃1, c̃2, and c̃3 > 0, such that

Pr

[∣∣∣∣∣ 2mβσ|z(l−2)
i |

∥∥sl∥∥∞ m∑
k=1

((
W l−1

2

)
ki

)2∣∣∣∣∣ ≥ c̃1e
− lnc̃3 (m)√

m

]
≤ e−c̃2m. (73)

Here, by using Lemma (9), we can write
∣∣zl−2

i

∣∣ ≤ ln(m) + Lσ|ul−3
i |+ |σ(0)| with probability at least 1− 2e−cl−2

z ln2(m)and
by induction hypothesis we have

∥∥sl∥∥∞ = Õ(1/
√
m) with probability 1−me−clbs ln2(m). Similarly, there exist constants ĉ1,

ĉ2, and ĉ3 > 0, such that

Pr

[∣∣∣∣∣ 2√
mn

βσ |yi|
∥∥sl∥∥∞ m∑

k=1

((
W l−1

1

)
ki

)2∣∣∣∣∣ ≥ ĉ1e
− lnĉ3(m)√√

mn

]
≤ e−ĉ2

√
mn. (74)

24

Again by using concentration inequality, we obtain the bound for T4 and T5 as follows.

Pr

[∣∣∣∣∣ βσ√
m

(
z
(l−2)
i − u

(l−2)
i

) m∑
k=1

(W2)
l−1
ki slk

∣∣∣∣∣ ≥ ln(m)√
m

]
≤ 2e

− ln2(m)

2β2
σ(z(l−2)

i
−u

(l−2)
i)

2∥sl∥2

≤ 2e−caz ln2(m), (75)

Pr

[∣∣∣∣∣ βσ√
n
yi

m∑
k=1

(W1)
l−1
ki slk

∣∣∣∣∣ ≥ ln(m)√
m

]
≤ 2e

− n ln2(m)

2mβ2
σ(yi)

2∥sl∥2 ≤ 2e
− ln2(m)

2β2
σ(yi)

2∥sl∥2 ≤ 2e−cay ln2(m), (76)

for some constants caz = 1/2β2
σ

(
z
(l−2)
i − u

(l−2)
i

)2 ∥∥sl∥∥2 ≥ 1/2β2
σ

(
z
(l−2)
i − u

(l−2)
i

)2
LL−l
σ (2c20 + 1)

L−l and cay =

1/2β2
σ (yi)

2 ∥∥sl∥∥2 ≥ 1/2β2
σ

(
z
(l−2)
i − u

(l−2)
i

)2
LL−l
σ (2c20 + 1)

L−l. Combining probabilities in (71), (72), (73), (74), (75)

and (76), there exists a constant cl−1
bs such that

e−cl−1
bs ln2(m) ≤ 2me−clbs ln2(m) + 4e−clσ ln2(m) + 2e−clzln

2(m) + e−c̃2m + e−ĉ2
√
mn + 2e−caz ln2(m) + 2e−cay ln2(m)

and with probability at least 1− e−cl−1
bs ln2(m), we have

∣∣sl−1
i

∣∣ = Õ(1/
√
m). This implies∥∥sl−1

∥∥
∞ = Õ(1/

√
m), (77)

with probability at least 1−me−cl−1
bs ln2(m), i.e. by induction we prove (70) for any l ∈ [L].

Lemma 12. The l2-norm of difference between bl
s and bl

s,0 is in Õ(1/
√
m) for any l ∈ [L− 1], i.e.,∥∥bl

s − bl
s,0

∥∥ = Õ(1/
√
m) ∀l ∈ [L− 1]. (78)

Proof. we prove (78) by using induction. For l = L, we have
∥∥∥b(L)

s − b
(L)
s,0

∥∥∥ = 0. Let us consider (78) is valid for any l ∈ [L].
Now, we prove that (78) is also valid for l − 1.

∥∥bl−1
s − bl−1

s,0

∥∥ =

∥∥∥∥(2√
m

(
W l

2

)T
Σ′l − Σ′l

)
bl
s −

(
2√
m

(
W l

20

)T
Σ′l

0 − Σ′l
0

)
bl
s,0

∥∥∥∥
= ∥

(
2√
m

(
W l

2

)T
Σ′l − Σ′l

)
bl
s −

(
2√
m

(
W l

20

)T
Σll

0 − Σ′l
0

)
bl
s,0

+

(
2√
m

(
W l

20

)T
Σ′l − Σ′l

)
bl
s,0 +

(
2√
m

(
W l

20

)T
Σ′l − Σ′l

)
bl
s

−
(

2√
m

(
W l

20

)T
Σ′l − Σ′l

)
bl
s,0 −

(
2√
m

(
W l

20

)T
Σ′l − Σ′l

)
bl
s∥

= ∥ 2√
m

((
W l

2

)T −
(
W l

20

)T)
Σ′lbl

s +

(
2√
m

(
W l

20

)T (
Σ′l − Σ′l

0

)
−
(
Σ′l − Σ′l

0

))
bl
s,0

+

(
2√
m

(
W l

20

)T
Σ′l − Σ′l

)(
bl
s − bl

s,0

)
∥

≤ ∥ 2√
m

((
W l

2

)T −
(
W l

20

)T)
Σ′lbl

s∥+
1√
m

∥∥∥((2 (W l
20

)T −
√
mI
) (

Σ′l − Σ′l
0

))
bl
s,0

∥∥∥
+

1√
m

∥∥∥((2 (W l
20

)T −
√
mI
)
Σ′l
) (

bl
s − bl

s,0

)∥∥∥
= T1 + T2 + T3.

We now provide bounds on T1, T2, and T3:

T1 =

∥∥∥∥ 2√
m

((
W l

2

)T −
(
W l

20

)T)
Σ′lbl

s

∥∥∥∥ ≤ 2√
m

∥∥W l
2 −W l

20

∥∥∥∥Σ′l∥∥∥∥bl
s

∥∥ ≤ 2R2L
L−l+1
σ (2 (c20 +R2/

√
m) + 1)

L−l

√
m

= O(1/
√
m).

25

To obtain bound on T2, we need the following inequality,∥∥z̃l(W)− z̃l (W0)
∥∥ = ∥ 1√

m
W l

2z
l−1(W)− 1√

m
W l

20z
l−1 (W0)−

1√
m
W l

2u
l−1(W) +

1√
m
W l

20u
l−1 (W0)

+
1√
n
W l

1y − 1√
n
W l

10y∥

≤ 1√
m

∥∥W l
20

∥∥Lσ

∥∥z̃l−1(W)− z̃l−1 (W0)
∥∥+ 1√

m

∥∥W l
2 −W l

20

∥∥∥∥zl−1(W)
∥∥

+
1√
m

∥∥W l
20

∥∥∥∥ul−1(W)− ul−1 (W0)
∥∥+ 1√

m

∥∥W l
2 −W l

20

∥∥∥∥ul−1(W)
∥∥+ 1√

n

∥∥W l
1 −W l

10

∥∥ ∥y∥
≤ c20Lσ

∥∥z̃l−1(W)− z̃l−1 (W0)
∥∥+ 1√

m

∥∥W l
2 −W l

20

∥∥∥∥zl−1(W)
∥∥

+ c20
∥∥ul−1(W)− ul−1 (W0)

∥∥+ 1√
m

∥∥W l
2 −W l

20

∥∥∥∥ul−1(W)
∥∥+ 1√

n

∥∥W l
1 −W l

10

∥∥ ∥y∥
≤ c20Lσ

∥∥z̃l−1(W)− z̃l−1 (W0)
∥∥+ c20

∥∥ul−1(W)− ul−1 (W0)
∥∥

+
R2√
m

(
cl−1
ADMM;z(m) + cl−1

ADMM;u(m)
)
+R1Cy.

Since ∥∥ul(W)− ul (W0)
∥∥ ≤ (Lσ + 1)

∥∥z̃l(W)− z̃l (W0)
∥∥ ,

we have∥∥z̃l(W)− z̃l (W0)
∥∥ ≤ c20 (2Lσ + 1)

∥∥z̃l−1(W)− z̃l−1 (W0)
∥∥+ R2√

m

(
cl−1
ADMM;z(m) + cl−1

ADMM;u(m)
)
+R1Cy.

Since ∥∥∥z̃(1)(W)− z̃(1) (W0)
∥∥∥ ≤ 1√

m

∥∥∥W (1)
2 −W

(1)
20

∥∥∥∥∥∥z(0) − u(0)
∥∥∥+ 1√

n

∥∥∥W (1)
1 −W

(1)
10

∥∥∥ ∥y∥
≤ R2 (Cz + Cu) +R1Cy.

Recursively applying the previous equation, we get∥∥z̃l(W)− z̃l (W0)
∥∥

≤
(

R2√
m

(
cl−1
ADMM;z(m) + cl−1

ADMM;u(m)
)
+R1Cy

) l−2∑
i=0

ci20 (Lσ + 1)
i
+ cl−1

20 (Lσ + 1)
l−1

(R2 (Cz + Cu) +R1Cy)

= O(1).

Using the above inequality bound and Lemma (11), we can write the following with probability 1−me−clbs ln2(m):

∥∥[Σl − Σ′l
0

]
bl
s,0

∥∥ =

√√√√ m∑
i=1

(
bl
s,0

)2
i
[σ′ (z̃l(W))− σ′ (z̃l (W0))]

2 ≤
∥∥bl

s,0

∥∥
∞

√√√√ m∑
i=1

[σ′ (z̃l(W))− σ′ (z̃l (W0))]
2

≤
∥∥bl

s,0

∥∥
∞ βσ

∥∥z̃l(W)− z̃l (W0)
∥∥ = Õ(1/

√
m).

This leads to,

T2 =
1√
m

∥∥∥((2 (W l
20

)T −
√
mI
) (

Σ′l − Σ′l
0

))
bl
s,0

∥∥∥ ≤ 1√
m
∥2
(
W l

20

)T −
√
mI∥

∥∥[Σl − Σ′l
0

]
bl
s,0

∥∥ = Õ(1/
√
m).

Besides, by using the induction hypothesis on l, the term T3 is bounded as

T3 =
1√
m

∥∥∥((2 (W l
20

)T −
√
mI
)
Σ′l
) (

bl
s − bl

s,0

)∥∥∥ ≤ 1√
m
∥2
(
W l

20

)T −
√
mI∥∥Σ′l∥∥bl

s − bl
s,0∥ = Õ(1/

√
m).

Now combining the bounds on the terms T1, T2 and T3, we can write∥∥bl−1
s − bl−1

s,0

∥∥ ≤ T1 + T2 + T3 = Õ

(
1√
m

)
. (79)

Therefore, (78) is true for l − 1. Hence, by induction (78) is true for all l ∈ [L].

By using Lemma 11 and 12, in equation (55), we get∥∥bl
s

∥∥
∞ ≤

∥∥bl
s,0

∥∥
∞ +

∥∥bl
s − bl

s,0

∥∥ = Õ

(
1√
m

)
. (80)

26

This implies,

Q∞ (fs) = max
1≤l≤L

{∥∥bl
s

∥∥
∞

}
= Õ

(
1√
m

)
. (81)

REFERENCES

[50] B. Laurent and P. Massart, “Adaptive estimation of a quadratic functional by model selection,” Annals of statistics, pp. 1302–1338, 2000.

	Introduction
	Problem Formulation
	LISTA and ADMM-CSNet
	Problem Formulation

	Revisiting PL*-Based Optimization Guarantees
	Optimization Guarantees
	Assumptions
	Hessian Spectral Norm
	Analysis of 1-Layer Unfolded Network
	Analysis of L-Layer Unfolded Network

	Conditions on Unfolded Networks to Satisfy PL*

	Numerical Experiments
	Conclusion
	Appendix
	References
	Bound on Q2,2,1 For LISTA Network
	Bound on Q2,2,1 For ADMM-CSNet
	Bound on Q For LISTA Network
	Bound on Q For ADMM-CSNet

	References

