29.08.2013 Views

Differentialgleichungen

Differentialgleichungen

Differentialgleichungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Differentialgleichungen</strong><br />

Differentialgleichung von y/x<br />

In[53]:= DE = y'@xD ==<br />

Out[53]= y £ yHxL + x<br />

HxL <br />

yHxL - x<br />

y@xD + x<br />

y@xD − x<br />

In[54]:= DSolve@DE, y@xD, xD<br />

Out[54]= ::yHxL Ø x - ‰ 2 c 1 + 2 x 2 >, :yHxL Ø ‰ 2 c 1 + 2 x 2 + x>><br />

schrittweise Lösung<br />

In[55]:= Gleichung = ·<br />

1<br />

u+1<br />

− u<br />

u−1<br />

Out[55]= - 1<br />

2 logIu2 - 2 u - 1M logHxL<br />

In[56]:= Solve@Gleichung, uD<br />

Out[56]= ::u Ø x2 - 2 x 4 + x 2<br />

x 2<br />

Hausaufgabe: Beispiel 1.23<br />

u == ‡<br />

1<br />

x x<br />

>, :u Ø x2 + 2 x 4 + x 2<br />

In[57]:= gleichung = 1<br />

2 ‡<br />

2y− 1<br />

y2 − y − 2 y ‡ x x<br />

Out[57]=<br />

1<br />

2 logI-y2 + y + 2M x2<br />

In[58]:= Solve@gleichung, yD<br />

Out[58]= ::y Ø 1<br />

2<br />

2<br />

1 - 9 - 4 ‰x2<br />

>, :y Ø 1<br />

2<br />

In[59]:= DE = y'@xD x 2y@xD2− 2y@xD− 4<br />

2y@xD− 1<br />

Out[59]= y £ HxL x I2 yHxL2 - 2 yHxL - 4M<br />

2 yHxL - 1<br />

In[60]:= DSolve@DE, y@xD, xD<br />

Out[60]= ::yHxL Ø 1<br />

2 1 - 9 - 4 ‰c1+x2 x 2<br />

9 - 4 ‰ x2<br />

>, :yHxL Ø 1<br />

2<br />

>><br />

+ 1 >><br />

9 - 4 ‰ c1+x2 + 1 >>


2 MatheIII03-.nb<br />

In[61]:= DSolveB:y'@xD x 2y@xD2− 2y@xD− 4<br />

,y@x0D y0>, y@xD, xF<br />

2y@xD− 1<br />

Solve::ifun :<br />

Inverse functions are being used by Solve, so some solutions may not be found;<br />

use Reduce for complete solution information. à<br />

Solve::ifun :<br />

Inverse functions are being used by Solve, so some solutions may not be found;<br />

use Reduce for complete solution information. à<br />

Out[61]= ::yHxL Ø 1<br />

2 1 - 9 - I-4y02 + 4y0+ 8M ‰ x2-x02 >, :yHxL Ø 1<br />

2<br />

In[62]:= DSolveB:y'@xD x 2y@xD2− 2y@xD− 4<br />

,y@0D 3>, y@xD, xF<br />

2y@xD− 1<br />

9 - I-4y0 2 + 4y0+ 8M ‰ x2 -x0 2<br />

Solve::ifun :<br />

Inverse functions are being used by Solve, so some solutions may not be found;<br />

use Reduce for complete solution information. à<br />

Solve::ifun :<br />

Inverse functions are being used by Solve, so some solutions may not be found;<br />

use Reduce for complete solution information. à<br />

DSolve::bvnul : For some branches of the general solution,<br />

the given boundary conditions lead to an empty solution. à<br />

Solve::ifun :<br />

Inverse functions are being used by Solve, so some solutions may not be found;<br />

use Reduce for complete solution information. à<br />

General::stop :<br />

Further output of Solve::ifun will be suppressed during this calculation. à<br />

Out[62]= ::yHxL Ø 1<br />

2<br />

16 ‰ x2<br />

+ 9 + 1 >><br />

In[63]:= DirectionField@DE_, y_@x_D, 8x_, a_, b_


MatheIII03-.nb 3<br />

In[64]:= plot1 = DirectionField@DE, y@xD, 8x, −2, 2


4 MatheIII03-.nb<br />

Out[65]=<br />

General::stop :<br />

Further output of Solve::ifun will be suppressed during this calculation. à<br />

DSolve::bvnul : For some branches of the general solution,<br />

the given boundary conditions lead to an empty solution. à<br />

DSolve::bvnul : For some branches of the general solution,<br />

the given boundary conditions lead to an empty solution. à<br />

DSolve::bvnul : For some branches of the general solution,<br />

the given boundary conditions lead to an empty solution. à<br />

General::stop :<br />

Further output of DSolve::bvnul will be suppressed during this calculation. à<br />

Part::partw : Part 1 of 8< does not exist. à<br />

ReplaceAll::reps :<br />

88


MatheIII03-.nb 5<br />

In[66]:= Show@plot1, plot2, PlotRange → 80, 5


6 MatheIII03-.nb<br />

In[69]:= FullForm@%D<br />

Out[69]//FullForm=<br />

List@List@Rule@y@xD, Plus@-1, Times@-2, ProductLog@Times@Rational@-1, 2D,<br />

Power@Power@E, Plus@-1, Times@-1, xD, Times@-1, C@1DDDD, Rational@1, 2DDDDDDDD,<br />

List@Rule@y@xD, Plus@-1, Times@-2, ProductLog@Times@Rational@1, 2D,<br />

Power@Power@E, Plus@-1, Times@-1, xD, Times@-1, C@1DDDD, Rational@1, 2DDDDDDDDD<br />

In[70]:= ? ProductLog<br />

ProductLog@zD gives the principal solution for w in z we w .<br />

ProductLog@k, zD gives the k th solution. à<br />

Zum Schluss noch ein Beispiel, bei welchem Mathematica fälschlicherweise keine korrekte<br />

Fallunterscheidung vornimmt.<br />

In[71]:= DE = y'@xD x 1 + y@xD<br />

Out[71]= y £ HxL x yHxL + 1<br />

In[72]:= DSolve@DE, y@xD, xD<br />

Out[72]= ::yHxL Ø 1<br />

16 I4 c1 x 2 2 4<br />

+ 4 c1 + x - 16M>>


MatheIII03-.nb 7<br />

In[73]:= plot1 = DirectionField@DE, y@xD, 8x, −5, 5


8 MatheIII03-.nb<br />

In[75]:= Show@plot1, plot2, PlotRange → 8−1, 5><br />

1


MatheIII03-.nb 9<br />

à Beispiel 1.12<br />

In[78]:= DSolve@y'@xD Sin@xD y@xD, y@xD, xD<br />

Out[78]= 99yHxL Ø c1 ‰ -cosHxL ==<br />

In[79]:= DSolve@8y'@xD Sin@xD y@xD, y@0D 1


10 MatheIII03-.nb<br />

Diese einfache Differentialgleichung für K[x] können wir aber durch Integration lösen und wir<br />

erhalten<br />

In[100]:= spezielleLösung = y@xD → KExpB‡ −a@xD xF ∗ ‡ b@xD ExpB‡ a@xD xF xO<br />

Out[100]= yHxL ؉ -Ÿ aHxL „x ‡ bHxL ‰ Ÿ aHxL „x „ x<br />

Test:<br />

In[101]:= test = DE ê. 8spezielleLösung, D@spezielleLösung, xD<<br />

Out[101]= True<br />

DSolve kann dies auch alleine, liefert aber wieder eine kompliziert aussehende Lösung.<br />

In[102]:= DSolve@DE, y@xD, xD<br />

Out[102]= ::yHxL ؉ Ÿ x x<br />

-aHK@1DL „K@1D<br />

1<br />

‡1 bHK@2DL ‰ -Ÿ<br />

K@2D<br />

-aHK@1DL „K@1D<br />

1<br />

„ K@2D + c1 ‰ Ÿ x<br />

-aHK@1DL „K@1D>><br />

1<br />

Beispiel 1.16<br />

In[103]:= DE = y'@xD y@xD + x<br />

Out[103]= y £ HxL yHxL + x


MatheIII03-.nb 11<br />

In[104]:= plot1 = DirectionField@DE, y@x D, 8x, −5, 5


12 MatheIII03-.nb<br />

In[106]:= plot2 = PlotB<br />

Out[106]=<br />

Evaluate@Table@y@xD ê. DSolve@8DE, y@0D k


MatheIII03-.nb 13<br />

In[107]:= Show@plot1, plot2, PlotRange → 8−5, 5< D<br />

Out[107]=<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

nach unserer Formel:<br />

In[108]:= a =−1; b = x;<br />

-4 -2 0 2 4<br />

Allgemeine Lösung der homogenen Differentialgleichung:<br />

In[109]:= hom = y1 → K ∗Ÿ−a x<br />

Out[109]= y1 Ø K ‰ x<br />

Variation der Konstanten:<br />

In[110]:= ‡ b Ÿ a x x<br />

Out[110]= ‰ -x H-x - 1L<br />

Spezielle Lösung der inhomogenen Differentialgleichung:<br />

In[111]:= var = y2 → Ÿ −a x ∗ ‡ b Ÿ a x x<br />

Out[111]= y2 Ø-x - 1<br />

Allgemeine Lösung der inhomogenen Differentialgleichung:


14 MatheIII03-.nb<br />

In[112]:= lösung = y → y1 + y2 ê. 8hom, var<<br />

Out[112]= y Ø K ‰ x - x - 1<br />

Wir lösen das Anfangswertproblem mit y(x0)=y0:<br />

In[113]:= Solve@Hlösung@@2DD ê. 8x → x0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!