Informatik 2: Functional Programming

Tobias Nipkow

Fakultät für Informatik

TU München
http://fp.in.tum.de
Wintersemester 2014/15
January 30, 2015

Sprungtabelle

(1) Organisatorisches
(2) Functional Programming: The Idea
(3) Basic Haskell
(4) Lists
(5) Proofs

6 Higher-Order Functions
(7) Type Classes

8 Algebraic data Types
(9) $1 / O$

10 Modules and Abstract Data Types
11 Case Study: Two Efficient Algorithms
12 Lazy evaluation
13 I/O and Monads
(14) Complexity and Optimization
(15) Case Study: Parsing

1. Organisatorisches

Siehe http://fp.in.tum.de

Literatur

- Vorlesung orientiert sich stark an

Thompson: Haskell, the Craft of Functional Programming

- Für Freunde der kompakten Darstellung:

Hutton: Programming in Haskell

- Für Naturtalente: Es gibt sehr viel Literatur online. Qualität wechselhaft, nicht mit Vorlesung abgestimmt.

Klausur und Hausaufgaben

- Klausur am Ende der Vorlesung
- Notenbonus mit Hausaufgaben: siehe WWW-Seite Wer Hausaufgaben abschreibt oder abschreiben lässt, hat seinen Notenbonus sofort verwirkt.
- Hausaufgabenstatistik:

Wahrscheinlichkeit, die Klausur (oder W-Klausur) zu bestehen:

- $\geq 40 \%$ der Hausaufgabenpunkte $\Longrightarrow 100 \%$
- $<40 \%$ der Hausaufgabenpunkte $\Longrightarrow<50 \%$
- Aktueller persönlicher Punktestand im WWW über Statusseite

Programmierwettbewerb - Der Weg zum Ruhm

- Jede Woche eine Wettbewerbsaufgabe
- Punktetabellen im Internet:
- Die Top 20 jeder Woche
- Die kumulative Top 20
- Ende des Semesters: Trophäen fuer die Top k Studenten

Piazza: Frage-und-Antwort Forum

- Sie können Fragen stellen und beantworten (auch anonymn) Natürlich keine Lösungen posten!
- Fragen werden an alle Tutoren weitergeleitet
- Mehr über Piazza: Video auf http://piazza.com
- Zugang zu Piazza für Info 2 über Vorlesungsseite
- Funktioniert erst nach Anmeldung zur Übung

Haskell Installation

- Bei Problemen mit der Installation des GHC: Zwei Beratungstermine, siehe Vorlesungsseite (10.10. 10:00-12:00, 13.10. 10:00-13:00)
- Tutoren leisten in der Übung keine Hilfestellung mehr!

2. Functional Programming: The Idea

Functions are pure/mathematical functions:
Always same output for same input
Computation $=$ Application of functions to arguments

Example 1

In Haskell:
sum [1..10]
In Java:

```
total = 0;
for (i = 1; i <= 10; ++i)
    total = total + i;
```


Example 2

In Haskell:

```
wellknown [] = []
wellknown (x:xs) = wellknown ys ++ [x] ++ wellknown zs
    where ys = [y | y <- xs, y <= x]
    zs = [z | z <- xs, x < z]
```


In Java:

```
void sort(int[] values) {
    if (values ==null || values.length==0){ return; }
    this.numbers = values;
    number = values.length;
    quicksort(0, number - 1);
}
void quicksort(int low, int high) {
    int i = low, j = high;
    int pivot = numbers[low + (high-low)/2];
    while (i <= j) {
        while (numbers[i] < pivot) { i++; }
        while (numbers[j] > pivot) { j--; }
            if (i <= j) {exchange(i, j); i++; j--; }
    }
    if (low < j) quicksort(low, j);
    if (i < high) quicksort(i, high);
}
void exchange(int i, int j) {
    int temp = numbers[i];
    numbers[i] = numbers[j];
    numbers[j] = temp;
}
```

There are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies.
The other way is to make it so complicated that there are no obvious deficiencies.

From the Turing Award lecture by Tony Hoare (1985)

Characteristics of functional programs

elegant

expressive
concise
readable
predictable pure functions, no side effects
provable it's just (very basic) mathematics!

Aims of functional programming

- Program at a high level of abstraction: not bits, bytes and pointers but whole data structures
- Minimize time to read and write programs:
\Rightarrow reduced development and maintenance time and costs
- Increased confidence in correctness of programs:
clean and simple syntax and semantics \Rightarrow programs are easier to
- understand
- test (Quickcheck!)
- prove correct

Historic Milestones

1930s

Alonzo Church develops the lambda calculus, the core of all functional programming languages.

Historic Milestones

1950s

John McCarthy (Turing Award 1971) develops Lisp, the first functional programming language.

Historic Milestones

1970s

Robin Milner (FRS, Turing Award 1991) \& Co. develop ML, the first modern functional programming language with polymorphic types and type inference.

Historic Milestones

1987

Haskell A Purely Functional Language

An international committee of researchers initiates the development of Haskell, a standard lazy functional language.

Popular languages based on FP

F\# (Microsoft) $=$ ML for the masses
Erlang (Ericsson) = distributed functional programming
Scala (EPFL) $\quad=$ Java + FP

FP concepts in other languages

Garbage collection: Java, C\#, Python, Perl, Ruby, Javascript
Higher-order functions: Java, C\#, Python, Perl, Ruby, Javascript

Generics: Java, C\#

List comprehensions: C\#, Python, Perl 6, Javascript

Type classes:
C++ "concepts"

Why we teach FP

- FP is a fundamental programming style (like OO !)
- FP is everywhere: Javascript, Scala, Erlang, F\# ...
- It gives you the edge over Millions of Java/C/C++ programmers out there
- FP concepts make you a better programmer, no matter which language you use
- To show you that programming need not be a black art with magic incantations like public static void but can be a science

3. Basic Haskell

Notational conventions
Type Bool
Type Integer
Guarded equations
Recursion
Syntax matters
Types Char and String
Tuple types
Do's and Don'ts

3.1 Notational conventions

$e:: T$ means that expression e has type T
Function types: Mathematics Haskell

$$
f: A \times B \rightarrow C \quad \text { f : : A } \quad \text { B } \rightarrow \text { C }
$$

Function application: Mathematics Haskell

$f(a)$	f a
$f(a, b)$	f a b
$f(g(b))$	f $\quad(\mathrm{g} \mathrm{b})$
$f(a, g(b))$	f a $\quad(\mathrm{g} \mathrm{b})$

Prefix binds stronger than infix:

$$
\begin{array}{cc}
f a+b \text { means } & (f a)+b \\
\text { not } & f(a+b)
\end{array}
$$

3.2 Type Bool

Predefined: True False not \&\& || ==
Defining new functions:

```
xor :: Bool -> Bool -> Bool
xor x y = (x || y) && not(x && y)
xor2 :: Bool -> Bool -> Bool
xor2 True True = False
xor2 True False = True
xor2 False True = True
xor2 False False = False
```

This is an example of pattern matching.
The equations are tried in order. More later.
Is xor x y $==$ xor2 x y true?

Testing with QuickCheck

Import test framework:
import Test.QuickCheck
Define property to be tested:

$$
\begin{aligned}
& \text { prop_xor2 x y }= \\
& \text { xor } \mathrm{x} \text { y }==\text { xor2 } \mathrm{x} \text { y }
\end{aligned}
$$

Note naming convention prop_...
Check property with GHCi:
> quickCheck prop_xor2
GHCi answers
+++ OK, passed 100 tests.

QuickCheck

- Essential tool for Haskell programmers
- Invaluable for regression tests
- Important part of exercises \& homework
- Helps you to avoid bugs
- Helps us to discover them

Every nontrivial Haskell function should come with one or more QuickCheck properties/tests

Typical test:

```
prop_f x y =
    f_efficient x y == f_naive x y
```


V1.hs

For GHCi commands (: 1 etc) see home page

3.3 Type Integer

Unlimited precision mathematical integers!
Predefined: + - * ~ div mod abs == /= \ll= \gg=
There is also the type Int of 32-bit integers.
Warning: Integer: 2 ~ $32=4294967296$
Int: 2 ~ $32=0$
$==,<=$ etc are overloaded and work on many types!

Example:

sq :: Integer $->$ Integer
$\mathrm{sq} \mathrm{n}=\mathrm{n} * \mathrm{n}$
Evaluation:

$$
\begin{aligned}
\underline{\text { sq }}(\mathrm{sq} 3) & \left.=\underline{s q}_{(3}^{3} * 3\right) * \operatorname{sq}^{3}(3 * 3) \\
& =81
\end{aligned}
$$

Evaluation of Haskell expressions means
Using the defining equations from left to right.

3.4 Guarded equations

Example: maximum of 2 integers.

```
max :: Integer -> Integer -> Integer
\(\max \mathrm{x}\) y
    | \(\mathrm{x}>=\mathrm{y} \quad=\mathrm{x}\)
    | otherwise = y
```

Haskell also has if-then-else:
$\max \mathrm{x} y=$ if $\mathrm{x}>=\mathrm{y}$ then x else y
True?
prop_max_assoc x y z =
$\max x(\max y z)==\max (\max x y) z$

3.5 Recursion

Example: x^{n} (using only $*$, not ${ }^{\wedge}$)
-- pow x n returns x to the power of n
pow : : Integer -> Integer -> Integer pow $\mathrm{x} \mathrm{n} \mathrm{=} \mathrm{???}$

Cannot write $\underbrace{x * \cdots * x}_{n \text { times }}$
Two cases:
pow x n
$\begin{array}{ll}\mid \mathrm{n}==0 & =1 \\ \mathrm{n}>0 & =\mathrm{x} * \text { pow } \mathrm{x}(\mathrm{n}-1)\end{array} \quad \begin{aligned} & \text {-- the base case } \\ & \text {-- the recursive case }\end{aligned}$
More compactly:
pow $\times 0=1$
pow $\mathrm{x} \mathrm{n} \mid \mathrm{n}>0=\mathrm{x} *$ pow $\mathrm{x}(\mathrm{n}-1)$

Evaluating pow

pow $\times 0=1$
pow $\mathrm{x} \mathrm{n} \mid \mathrm{n}>0=\mathrm{x} *$ pow $\mathrm{x}(\mathrm{n}-1)$

$$
\begin{aligned}
\underline{\text { pow }} 23 & =2 * \text { pow } 22 \\
& =2 *(2 * \text { pow } 21) \\
& \left.=2 *\left(2 * \frac{(2 * \text { pow } 2}{} 2\right)\right) \\
& =2 *\left(2 * \left(2 * \frac{1))}{}\right.\right. \\
& =8
\end{aligned}
$$

$>$ pow $2(-1)$
GHCi answers
*** Exception: PowDemo.hs: $(1,1)-(2,33)$: Non-exhaustive patterns in function pow

Partially defined functions

pow $\mathrm{x} \mid \mathrm{n}>0=\mathrm{x} *$ pow $\mathrm{x}(\mathrm{n}-1)$
versus
pow $\mathrm{x} \mathrm{n}=\mathrm{x} *$ pow $\mathrm{x}(\mathrm{n}-1)$

- call outside intended domain raises exception
- call outside intended domain leads to arbitrary behaviour, including nontermination

In either case:

> State your preconditions clearly!

As a guard, a comment or using QuickCheck:
P x ==> isDefined(f x)
where isDefined $\mathrm{y}=\mathrm{y}=\mathrm{y}$.

Example sumTo

```
The sum from 0 to \(\mathrm{n}=\mathrm{n}+(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+0\)
sumTo :: Integer -> Integer
sumTo \(0=0\)
sumTo \(n \mid n>0=\)
prop_sumTo n =
    \(\mathrm{n}>=0==>\) sumTo \(\mathrm{n}==\mathrm{n} *(\mathrm{n}+1)\) 'div' 2
    Properties can be conditional
```


Typical recursion patterns for integers

f : : Integer -> ...
$\begin{array}{lll}\text { f } 0=e & \text {-- base case } \\ \text { f } n \mid n>0=\ldots f(n-1) \ldots & \text {-- recursive call }(s)\end{array}$
Always make the base case as simple as possible, typically 0 , not 1

Many variations:

- more parameters
- other base cases, e.g. f 1
- other recursive calls, e.g. $f(n-2)$
- also for negative numbers

Recursion in general

- Reduce a problem to a smaller problem, e.g. pow x n to pow $\mathrm{x}(\mathrm{n}-1)$
- Must eventually reach a base case
- Build up solutions from smaller solutions

General problem solving strategy
in any programing language

3.6 Syntax matters

Functions are defined by one or more equations.
In the simplest case, each function is defined
by one (possibly conditional) equation:

$$
\begin{array}{ccc}
f & x_{1} \ldots & x_{n} \\
& \\
& \text { test }_{1} & = \\
\vdots & & \\
& & \\
& \text { test }_{n} & \\
& = & e_{n}
\end{array}
$$

Each right-hand side e_{i} is an expression.
Note: otherwise = True

Function and parameter names must begin with a lower-case letter (Type names begin with an upper-case letter)

An expression can be

- a literal like 0 or "xyz",
- or an identifier like True or x ,
- or a function application $f e_{1} \ldots e_{n}$ where f is a function and $e_{1} \ldots e_{n}$ are expressions,
- or a parenthesized expression (e)

Additional syntactic sugar:

- if then else
- infix
- where
- ...

Local definitions: where

A defining equation can be followed by one or more local definitions.

```
pow4 x = x2 * x2 where x2 = x * x
pow4 x = sq (sq x) where sq x = x * x
pow8 x = sq (sq x2)
where x2 = x * x
    sq y = y * y
```

myAbs x
$\mid x>0=y$
| otherwise = -y
where $\mathrm{y}=\mathrm{x}$

Local definitions: let

$$
\begin{aligned}
& \text { let } x=e_{1} \text { in } e_{2} \\
& \text { defines } x \text { locally in } e_{2}
\end{aligned}
$$

Example:
let $\mathrm{x}=2+3$ in $\mathrm{x}^{\wedge} 2+2 * \mathrm{x}$
= 35
Like e_{2} where $x=e_{1}$
But can occur anywhere in an expression where: only after function definitions

Layout: the offside rule

$$
\begin{aligned}
& \mathrm{a}=10 \\
& \mathrm{~b}=20 \\
& \mathrm{c}=30
\end{aligned}
$$

$$
a=10
$$

In a sequence of definitions, each definition must begin in the same column.
$\mathrm{a}=10+$
20

20

20

A definition ends with the first piece of text in or to the left of the start column.

Prefix and infix

Function application: $f a b$
Functions can be turned into infix operators by enclosing them in back quotes.

Example
$5 ' m o d ' 3=\bmod 53$

Infix operators: $\mathrm{a}+\mathrm{b}$
Infix operators can be turned into functions by enclosing them in parentheses.

Example
(+) $12=1+2$

Comments

Until the end of the line: --
id $\mathrm{x}=\mathrm{x} \quad--$ the identity function

A comment block: $\{-\ldots,-\}$
\{- Comments
are
important
-\}

3.7 Types Char and String

Character literals as usual: 'a', '\$', ' $\backslash \mathrm{n}$ ', ... Lots of predefined functions in module Data. Char

String literals as usual: "I am a string"
Strings are lists of characters. Lists can be concatenated with ++:
"I am" ++ "a string" = "I ama string" More on lists later.

3.8 Tuple types

(True, 'a', "abc") :: (Bool, Char, String)
In general:

$$
\begin{array}{llll}
\text { If } & e_{1}:: T_{1} \ldots & e_{n}:: T_{n} \\
\text { then } & \left(e_{1}, \ldots, e_{n}\right)::\left(T_{1}, \ldots, T_{n}\right)
\end{array}
$$

In mathematics: $T_{1} \times \ldots \times T_{n}$
3.9 Do's and Don'ts

True and False

Never write

$$
b==\text { True }
$$

Simply write

$$
b
$$

Never write

$$
b==\text { False }
$$

Simply write

$$
n o t(b)
$$

isBig :: Integer -> Bool
isBig n
$\mid n>9999=$ True
| otherwise $=$ False
isBig $\mathrm{n}=\mathrm{n}>9999$
if b then True Clse False b
if b-then False-else True not b
if b then True-else b'
b || b'

Tuple

Try to avoid (mostly):
$f(x, y)=\ldots$
Usually better:
f x y = ...
Just fine:
$f x y=(x+y, x-y)$

4. Lists

List comprehension
Generic functions: Polymorphism
Case study: Pictures
Pattern matching
Recursion over lists

Lists are the most important data type in functional programming

[1, 2, 3, -42] :: [Integer]
[False] :: [Bool]
['C', 'h', 'a', 'r'] :: [Char]
$=$
"Char" :: String
because
type String = [Char]
[not, not] ::
[] : : [T] -- empty list for any type T
[[True], []] ::

Typing rule

$$
\begin{array}{llll}
\text { If } & e_{1}:: T & T & e_{n}:: \\
\text { then } & {\left[e_{1}, \ldots, e_{n}\right]::} & {[T]}
\end{array}
$$

Graphical notation:

$$
\begin{array}{ccc}
e_{1}:: T & \ldots & e_{n}:: T \\
\hline\left[e_{1}, \ldots, e_{n}\right] & ::[T]
\end{array}
$$

[True, 'c'] is not type-correct!!!

All elements in a list must have the same type

Test

(True, 'c') : :
[(True, 'c'), (False, 'd')] ::
([True, False], ['c', 'd']) ::

List ranges

$$
\begin{aligned}
& {[1 \ldots 3]=[1,2,3]} \\
& \text { [3 .. 1] = [] } \\
& \text { ['a' .. 'c'] = ['a', 'b', 'c'] }
\end{aligned}
$$

Concatenation: ++

Concatenates two lists of the same type:

$$
\begin{gathered}
{[1,2]++[3]=[1,2,3]} \\
{[1,2]++\left[{ }^{\prime} a^{\prime}\right]}
\end{gathered}
$$

4.1 List comprehension

Set comprehensions:

$$
\left\{x^{2} \mid x \in\{1,2,3,4,5\}\right\}
$$

The set of all x^{2} such that x is an element of $\{1,2,3,4,5\}$

List comprehension:

$$
\left.\left[\begin{array}{ll|ll}
x & -2 & x & <-[1
\end{array} \ldots 5\right]\right]
$$

The list of all $\mathrm{x} \wedge 2$ such that x is an element of [1 . . 5]

List comprehension - Generators

$$
\begin{aligned}
& {\left[x^{-} 2 \mid x<-[1 \ldots 5]\right]} \\
& =[1,4,9,16,25] \\
& {[\text { toLower c | c <- "Hello, World!"] }} \\
& =\text { "hello, world!" } \\
& {[(x, \text { even } x) \mid x<-[1 \ldots 3]]} \\
& =[(1, \text { False }),(2, \text { True }),(3, \text { False })] \\
& {[x+y \mid(x, y)<-[(1,2),(3,4),(5,6)]]} \\
& =[3,7,11]
\end{aligned}
$$

pattern <- list expression is called a generator

Precise definition of pattern later.

List comprehension — Tests

```
[ \(\mathrm{x} * \mathrm{x}\) | \(\mathrm{x}<-\) [1 .. 5], odd x ]
\(=[1,9,25]\)
[ \(\mathrm{x} * \mathrm{x} \mid \mathrm{x}<-\) [1 .. 5], odd \(\mathrm{x}, \mathrm{x}>3\) ]
= [25]
[ toLower c | c <- "Hello, World!", isAlpha c]
= "helloworld"
```

Boolean expressions are called tests

Defining functions by list comprehension

Example
factors :: Int -> [Int]
factors $\mathrm{n}=\left[\mathrm{m} \mid \mathrm{m}<-[1 \ldots \mathrm{n}], \mathrm{n} \times \mathrm{mod}^{\prime} \mathrm{m}==0\right]$
\Longrightarrow factors $15=[1,3,5,15]$
prime :: Int -> Bool
prime $\mathrm{n}=$ factors $\mathrm{n}==[1, \mathrm{n}]$
\Longrightarrow prime 15 = False
primes :: Int -> [Int]
primes $n=[p \mid p<-[1 \ldots n]$, prime $p]$
\Longrightarrow primes $100=[2,3,5,7,11,13,17,19,23,29,31$,

List comprehension - General form

$$
\left[\operatorname{expr} \mid E_{1}, \ldots, E_{n}\right]
$$

where expr is an expression and each E_{i} is a generator or a test

Multiple generators

$[(i, j) \mid i<-[1 . .2], j<-[7 \ldots 9]]$
$=[(1,7),(1,8),(1,9),(2,7),(2,8),(2,9)]$
Analogy: each generator is a for loop:
for all i <- [1 .. 2]
for all j <- [7 .. 9]

Key difference:

Loops do something
Expressions produce something

Dependent generators

$$
\begin{aligned}
{[} & {[(i, j) \mid \text { i }<-[1 . .3], j<-[i \ldots 3]] } \\
= & {[(1, j) \mid j<-[1 . .3]]++ } \\
& {[(2, j) \mid j<-[2 . .3]]++ } \\
& {[(3, j) \mid j<-[3 . .3]] } \\
= & {[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)] }
\end{aligned}
$$

The meaning of list comprehensions

$$
\begin{aligned}
& {\left[e \mid x<-\left[a_{1}, \ldots, a_{n}\right]\right]} \\
& =\left(l e t x=a_{1} \text { in }[e]\right)++\cdots++ \text { (let } x=a_{n} \text { in [e]) } \\
& {[e \mid b]} \\
& =\text { if } b \text { then }[e] \text { else }[] \\
& {\left[e \mid x<-\left[a_{1}, \ldots, a_{n}\right], \bar{E}\right]} \\
& =\left(l e t x=a_{1} \text { in }[e \mid \bar{E}]\right)++\cdots++ \\
& \quad\left(l e t x=a_{n} \text { in }[e \mid \bar{E}]\right) \\
& {[e \mid b, \bar{E}]} \\
& =\quad \text { if } b \text { then }[e \mid \bar{E}] \text { else }[]
\end{aligned}
$$

Example: concat

$$
\begin{aligned}
& \text { concat } \mathrm{xss}=[\mathrm{x} \mid \mathrm{xs}<-\mathrm{xss}, \mathrm{x}<-\mathrm{xs}] \\
& \text { concat }[[1,2],[4,5,6]] \\
& =[\mathrm{x} \mid \mathrm{xs}<-[[1,2],[4,5,6]], \mathrm{x}<-\mathrm{xs}] \\
& =[\mathrm{x} \mid \mathrm{x}<-[1,2]]++[\mathrm{x} \mid \mathrm{x}<-[4,5,6]] \\
& =[1,2]++[4,5,6] \\
& =[1,2,4,5,6]
\end{aligned}
$$

What is the type of concat?
[[a]] -> [a]

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types
Example
length :: [Bool] -> Int
length :: [Char] -> Int
length $::$ [[Int]] -> Int

The most general type:
length :: [a] -> Int
where a is a type variable
\Longrightarrow length : : [T] -> Int for all types T

Type variable syntax

Type variables must start with a lower-case letter Typically: a, b, c, ...

Two kinds of polymorphism

Subtype polymorphism as in Java:

$$
\frac{f:: T \rightarrow U \quad T^{\prime} \leq T}{f:: T^{\prime} \rightarrow U}
$$

(remember: horizontal line = implication)
Parametric polymorphism as in Haskell:
Types may contain type variables ("parameters")

$$
\frac{f:: T}{f:: T[U / a]}
$$

where $T[U / a]=$ " T with a replaced by U "
Example: $(a \rightarrow a)[\mathrm{Bool} / \mathrm{a}]=\mathrm{Bool} \rightarrow \mathrm{Bool}$
(Often called ML-style polymorphism)

Defining polymorphic functions

```
id :: a -> a
id x = x
fst :: (a,b) -> a
fst (x,y) = x
swap :: (a,b) -> (b,a)
swap (x,y) = (y,x)
silly :: Bool -> a -> Char
silly x y = if x then 'c' else 'd'
silly2 :: Bool -> Bool -> Bool
silly2 x y = if x then x else y
```


Polymorphic list functions from the Prelude

```
length :: [a] -> Int
length [5, 1, 9] = 3
(++) :: [a] -> [a] -> [a]
[1, 2] ++ [3, 4] = [1, 2, 3, 4]
reverse :: [a] -> [a]
reverse [1, 2, 3] = [3, 2, 1]
replicate :: Int -> a -> [a]
replicate 3 'c' = "ccc"
```


Polymorphic list functions from the Prelude

head, last :: [a] -> a
head "list" = 'l', last "list" = 't'
tail, init :: [a] -> [a]
tail "list" = "ist", init "list" = "lis"
take, drop :: Int -> [a] -> [a]
take 3 "list" = "lis", drop 3 "list" = "t"
-- A property:
prop_take_drop n xs =
take n xs ++ drop n xs == xs

Polymorphic list functions from the Prelude

```
concat :: [[a]] -> [a]
concat [[1, 2], [3, 4], [0]] = [1, 2, 3, 4, 0]
zip :: [a] -> [b] -> [(a,b)]
zip [1,2] "ab" = [(1, 'a'), (2, 'b')]
unzip :: [(a,b)] -> ([a],[b])
unzip [(1, 'a'), (2, 'b')] = ([1,2], "ab")
-- A property
prop_zip xs ys = length xs == length ys ==>
    unzip(zip xs ys) == (xs, ys)
```


Haskell libraries

- Prelude and much more
- Hoogle - searching the Haskell libraries
- Hackage - a collection of Haskell packages

See Haskell pages and Thompson's book for more information.

Further list functions from the Prelude

and :: [Bool] -> Bool
and [True, False, True] = False
or :: [Bool] -> Bool
or [True, False, True] = True
-- For numeric types a:
sum, product :: [a] -> a
sum $[1,2,2]=5, \quad$ product $[1,2,2]=4$
What exactly is the type of sum, prod, $+, *,==, \ldots$???

Polymorphism versus Overloading

Polymorphism: one definition, many types
Overloading: different definition for different types
Example
Function (+) is overloaded:

- on type Int: built into the hardware
- on type Integer: realized in software

> So what is the type of (+) ?

Numeric types

$$
(+):: \text { Num } a=>a \rightarrow a
$$

Function (+) has type $a \rightarrow$ a $->$ a for any type of class Num

- Class Num is the class of numeric types.
- Predefined numeric types: Int, Integer, Float
- Types of class Num offer the basic arithmetic operations:

```
(+) :: Num a => a -> a -> a
(-) :: Num a => a -> a -> a
(*) :: Num a => a -> a -> a
```

!
sum, product : : Num a => [a] $->\mathrm{a}$

Other important type classes

- The class Eq of equality types, i.e. types that posess (==) :: Eq a => a -> a -> Bool (/=) :: Eq a => a $->$ a $->$ Bool Most types are of class Eq. Exception:
- The class Ord of ordered types, i.e. types that posess

$$
\begin{aligned}
& (<): \text { Ord a }=>\text { a } \rightarrow \text { a } \rightarrow \text { Bool } \\
& (<=):: \quad \text { Ord a } \Rightarrow \text { a } \rightarrow \text { a Bool }
\end{aligned}
$$

More on type classes later. Don't confuse with OO classes.

Warning: == []

null $x s=x s==[]$
Why?

$$
==\text { on [a] may call }==\text { on a }
$$

Better:

```
null :: [a] -> Bool
null [] = True
null _ = False
In Prelude!
```


Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Example

QuickCheck does not find a counterexample to
prop_reverse :: [a] -> Bool
prop_reverse xs = reverse xs == xs
The solution: specialize the polymorphic property, e.g.
prop_reverse :: [Int] -> Bool
prop_reverse xs = reverse xs == xs
Now QuickCheck works

Conditional properties have result type Property

```
Example
prop_rev10 :: [Int] -> Property
prop_rev10 xs =
    length xs <= 10 ==> reverse(reverse xs) == xs
```


4.3 Case study: Pictures

type Picture = [String]

uarr	Picture
uarr =	
[11 \#	'1,
" \#\#\#	' ${ }^{\prime}$
'\#\#\#\#\#',	
11 \#	' ${ }^{\text {, }}$
" \#	II]

```
larr :: Picture
larr =
    [" \# ",
    " \#\# ",
    "\#\#\#\#\#",
    " \#\# "
    " \# "]
```

```
flipH :: Picture -> Picture
flipH = reverse
flipV :: Picture -> Picture
flipV pic = [ reverse line | line <- pic]
rarr :: Picture
rarr = flipV larr
darr :: Picture
darr = flipH uarr
above :: Picture -> Picture -> Picture
above = (++)
beside :: Picture -> Picture -> Picture
beside pic1 pic2 = [ 11 ++ l2 | (l1,l2) <- zip pic1 pic2]
```

Pictures.hs

Chessboards

```
bSq = replicate 5 (replicate 5 '#')
wSq = replicate 5 (replicate 5 , ')
alterH :: Picture -> Picture -> Int -> Picture
alterH pic1 pic2 1 = pic1
alterH pic1 pic2 n = pic1 'beside' alterH pic2 pic1 (n-1)
alterV :: Picture -> Picture -> Int -> Picture
alterV pic1 pic2 1 = pic1
alterV pic1 pic2 n = pic1 'above' alterV pic2 pic1 (n-1)
chessboard :: Int -> Picture
chessboard n = alterV bw wb n where
    bw = alterH bSq wSq n
    wb = alterH wSq bSq n
```


Exercise

Ensure that the lower left square of chesboard n is always black.

4.4 Pattern matching

```
                    Every list can be constructed from []
                    by repeatedly adding an element at the front
with the "cons" operator (:) :: a -> [a] -> [a]
```

syntactic sugar
[3]
$[2,3]$
$[1,2,3]$
$\left[x_{1}, \ldots, x_{n}\right]$

Note: x : y : $z s=x$: (y : zs)
(:) associates to the right

Every list is either
[] or of the form
x : xs where
x is the head (first element, Kopf), and
$x s$ is the tail (rest list, Rumpf)
[] and (:) are called constructors because every list can be constructed uniquely from them.

Every non-empty list can be decomposed uniquely into head and tail.

Therefore these definitions make sense:
head ($\mathrm{x}: \mathrm{xs}$) $=\mathrm{x}$
tail (x : xs) $=\mathrm{xs}$
$(++)$ is not a constructor:
$[1,2,3]$ is not uniquely constructable with (++):
$[1,2,3]=[1]++[2,3]=[1,2]++[3]$
Therefore this definition does not make sense:
nonsense (xs ++ ys) = length xs - length ys

Patterns

> Patterns are expressions consisting only of constructors and variables. No variable must occur twice in a pattern.
\Longrightarrow Patterns allow unique decomposition $=$ pattern matching.
A pattern can be

- a variable such as x or a wildcard _ (underscore)
- a literal like 1, 'a', "xyz", ...
- a tuple (p_{1}, \ldots, p_{n}) where each p_{i} is a pattern
- a constructor pattern $C p_{1} \ldots p_{n}$ where C is a constructor and each p_{i} is a pattern
Note: True and False are constructors, too!

Function definitions by pattern matching

Example

```
head :: [a] -> a
head (x : _) = x
tail :: [a] -> [a]
tail (_ : xs) = xs
null :: [a] -> Bool
null [] = True
null (_ : _) = False
```


Function definitions by pattern matching

$$
\begin{aligned}
& f \text { pat }_{1}=e_{1} \\
& \vdots \\
& f \text { pat }_{n}=e_{n}
\end{aligned}
$$

If f has multiple arguments:

$$
f \text { pat }_{11} \ldots \text { pat } t_{1 k}=e_{1}
$$

Conditional equations:

$$
f \text { patterns } \mid \text { condition }=e
$$

When f is called, the equations are tried in the given order

Function definitions by pattern matching

Example (contrived)

```
true12 :: [Bool] -> Bool
true12 (True : True : _) = True
true12 _ = False
same12 :: Eq a => [a] -> [a] -> Bool
same12 (x : _) (_ : y : _) = x == y
asc3 :: Ord a => [a] -> Bool
asc3 (x : y : z : _) = x < y && y < z
asc3 (x : y : _) = x< y
asc3 _ = True
```


4.5 Recursion over lists

Example

```
length [] = 0
length (_ : xs) = length xs + 1
reverse [] = [] 
```

sum :: Num a => [a] -> a
sum [] $\quad=0$
$\operatorname{sum}(x: x s)=x+\operatorname{sum} x s$

Primitive recursion on lists:

$f[]$	$=$ base	-- base case
$f(\mathrm{x}: \mathrm{xs})$	$=$ rec	-- recursive case

- base: no call of f
- rec: only call(s) f xs
f may have additional parameters.

Finding primitive recursive definitions

Example

```
concat :: [[a]] -> [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
```


Insertion sort

Example

```
inSort :: Ord a => [a] -> [a]
inSort [] = []
inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [] = [x]
ins x (y:ys) | x <= y = x : y : ys
    | otherwise = y : ins x ys
```


Beyond primitive recursion: Complex patterns

Example

```
ascending :: Ord a => [a] -> bool
ascending [] = True
ascending [_] = True
ascending (x : y : zs) = x <= y && ascending (y : zs)
```


Beyond primitive recursion: Multiple arguments

Example

```
zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ \(\quad\) []
```

Alternative definition:

```
zip' [] [] = []
zip' (x:xs) (y:ys) = (x,y) : zip' xs ys
```

zip' is undefined for lists of different length!

Beyond primitive recursion: Multiple arguments

Example

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take i (x:xs) | i>0 = x : take (i-1) xs

General recursion: Quicksort

Example

```
quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =
    quicksort below ++ [x] ++ quicksort above
        where
\[
\begin{aligned}
& \text { below }=[y \mid y<-x s, y<=x] \\
& \text { above }=[y \mid y<-x s, x<y]
\end{aligned}
\]
```


Accumulating parameter

Idea: Result is accumulated in parameter and returned later
Example: list of all (maximal) ascending sublists in a list ups $[3,0,2,3,2,4]=[[3],[0,2,3],[2,4]]$
ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []
ups2 :: Ord a => [a] -> [a] -> [[a]]
-- 1st param: input list
-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [] = ups2 xs [x]
ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys)
| x >= y $=$ ups2 $x s$ ($x: y: y s$)
| otherwise $=$ reverse (y:ys) : ups2 (x:xs) []

How can we quickCheck the result of ups?

Convention

Identifiers of list type end in 's': xs, ys, zs,...

Mutual recursion

Example

```
even :: Int -> Bool
even n = n == 0 || n > 0 && odd (n-1) || odd ( }\textrm{n}+1
odd :: Int -> Bool
odd n = n /= 0 && ( }\textrm{n}>0\mathrm{ < && even ( }\textrm{n}-1)||\mathrm{ even ( }\textrm{n}+1)\mathrm{ )
```


Scoping by example

$x=y+5$
$y=x+1$ where $x=7$
f $y=y+x$
> f 3

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

$$
\begin{aligned}
& x=y+5 \\
& y=x+1 \text { where } x=7 \\
& f y=y+x \\
& >f 3
\end{aligned}
$$

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

$$
\begin{aligned}
& x=y+5 \\
& y=x+1 \text { where } x=7 \\
& f y=y+x \\
& >f 3
\end{aligned}
$$

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

$$
\begin{aligned}
& x=y+5 \\
& y=x+1 \text { where } x=7 \\
& f y=y+x \\
& >f 3
\end{aligned}
$$

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

$$
\begin{aligned}
& x=y+5 \\
& y=x+1 \text { where } x=7 \\
& f y=y+x \\
& >f 3
\end{aligned}
$$

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

Summary:

- Order of definitions is irrelevant
- Parameters and where-defs are local to each equation

5. Proofs

Proving properties
Definedness
Interlude: Type inference/reconstruction

Aim

Guarentee functional (I/O) properties of software

- Testing can guarantee properties for some inputs.
- Mathematical proof can guarantee properties for all inputs.

QuickCheck is good, proof is better

Beware of bugs in the above code; I have only proved it correct, not tried it.

Donald E. Knuth, 1977

5.1 Proving properties

What do we prove?
Equations e1 = e2

How do we prove them?

$$
\text { By using defining equations } f p=t
$$

A first, simple example

Remember:

$$
\begin{aligned}
{[]++ \text { ys } } & =y s \\
(x: x s)++ & y s
\end{aligned}=x \text { (xs ++ ys) }
$$

Proof of $[1,2]++[]=[1]++[2]:$

$$
\begin{aligned}
& \text { 1:2:[] ++ [] } \\
& \text { = } 1 \text { : (2: [] ++ []) -- by def of ++ } \\
& \text { = } 1 \text { : } 2 \text { : ([] ++ []) -- by def of ++ } \\
& \text { = } 1 \text { : } 2 \text { : [] -- by def of ++ } \\
& \text { = } 1 \text { : ([] ++ 2:[]) -- by def of ++ } \\
& \text { = 1: [] ++ 2: [] -- by def of ++ }
\end{aligned}
$$

Observation: first used equations from left to right (ok), then from right to left (strange!)

A more natural proof of $[1,2]++[]=[1]++[2]:$

$$
\begin{aligned}
& \text { 1:2: [] ++ [] } \\
& \text { = } 1 \text { : (2: [] ++ []) -- by def of ++ } \\
& \text { = } 1 \text { : } 2 \text { : ([] ++ []) -- by def of ++ } \\
& \text { = } 1 \text { : } 2 \text { : [] -- by def of ++ } \\
& \text { 1:[] ++ 2:[] } \\
& \text { = } 1 \text { : ([] ++ 2:[]) -- by def of ++ } \\
& \text { = } 1 \text { : } 2 \text { : [] -- by def of ++ }
\end{aligned}
$$

Proofs of e1 = e2 are often better presented as two reductions to some expression e:

$$
\begin{aligned}
& \mathrm{e} 1=\ldots=e \\
& \mathrm{e} 2=\ldots=\mathrm{e}
\end{aligned}
$$

Fact If an equation does not contain any variables, it can be proved by evaluating both sides separately and checking that the result is identical.

But how to prove equations with variables, for example associativity of ++:
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Properties of recursive functions are proved by induction

Induction on natural numbers: see Diskrete Strukturen

Induction on lists: here and now

Structural induction on lists

To prove property P (xs) for all finite lists xs
Base case: Prove $P([])$ and
Induction step: Prove $P(x s)$ implies $P(x: x s)$

hypothesis (IH)
One and the same fixed xs!

This is called structural induction on xs.
It is a special case of induction on the length of xs.

Example: associativity of ++

Lemma app_assoc: (xs ++ xs) ++ zs = xs ++ (is ++ zs)
Proof by structural induction on xs
Base case:
To show: ([] ++ ys) ++ zs = [] ++ (is ++ zs)

$$
\begin{aligned}
& ([]++y s)++z s \\
& =y s++z s \\
& =[]++(y s++z s) \quad-- \text { by def of ++ } \\
& =\left[\begin{array}{l}
\text { (hs of }++
\end{array}\right.
\end{aligned}
$$

Induction step:
$\mathrm{IH}:([]++y s)++z s=[]++(y s++z s)$
To show: ((x:xs) ++ xs) ++ zs = (x:xs) ++ (is ++ zs)
((x:xs) ++ is) ++ zs
= (x : ($\mathrm{xs}++\mathrm{ys}$)) ++ zs -- by def of ++
$=x$: ((xs ++ vs) ++ zs) -- by def of ++
= $\mathrm{x}:(\mathrm{xs}++(\mathrm{ys}++\mathrm{zs}))$-- by IH
(x :xs) ++ (is ++ zs)
= x : (xs ++ (hs ++ zs)) -- by def of ++

Induction template

Lemma P (xs)
Proof by structural induction on x s
Base case:
To show: P([])
Proof of P([])
Induction step:
IH: P (xs)
To show: $\mathrm{P}(\mathrm{x}: \mathrm{xs})$
Proof of $\mathrm{P}(\mathrm{x}: \mathrm{xs})$ using IH

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys Proof by structural induction on xs
Base case:
To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)
$=$ length ys -- by def of ++
length [] + length ys
$=0$ + length ys -- by def of length
$=$ length ys

Induction step:
IH : length (xs ++ ys) = length xs + length ys
To show: length((x:xs)++ys) = length(x:xs) + length ys
length($\mathrm{x}: \mathrm{xs}$) ++ ys)
$=$ length (x : (xs ++ ys)) -- by def of ++
= 1 + length (xs ++ ys) -- by def of length
$=1+$ length xs + length ys -- by IH
length(x:xs) + length ys
$=1+$ length xs + length ys -- by def of length

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse xs Proof by structural induction on x s

Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse [] reverse ([] ++ ys)
= reverse ys -- by def of ++
reverse ys ++ reverse []
= reverse ys ++ [] -- by def of reverse
= reverse ys -- by Lemma app_Nil2
Lemma app_Nil2: xs ++ [] = xs
Proof exercise

Induction step:
IH: reverse (xs ++ ys) = reverse ys ++ reverse xs
To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs) reverse((x:xs) ++ ys)
= reverse (x : (xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse
= (reverse ys ++ reverse xs) ++ [x] -- by IH
= reverse ys ++ (reverse xs ++ [x]) -- by Lemma app_assoc
reverse ys ++ reverse(x:xs)
$=$ reverse ys ++ (reverse xs ++ [x]) -- by def of reverse

Proof heuristic

- Try QuickCheck
- Try to evaluate both sides to common term
- Try induction
- Base case: reduce both sides to a common term using function defs and lemmas
- Induction step: reduce both sides to a common term using function defs, IH and lemmas
- If base case or induction step fails:
conjecture, prove and use new lemmas

Two further tricks

- Proof by cases
- Generalization

Example: proof by cases

$$
\begin{aligned}
& \text { rem } x[]=[] \\
& \text { rem } x(y: y s) \mid x==y \\
&
\end{aligned} \begin{aligned}
& \text { | otherwise }=y \text { rem } x \text { ys }
\end{aligned}
$$

Lemma rem z (xs ++ ys) = rem z xs ++ rem z ys
Proof by structural induction on xs
Base case:
To show: rem $z([]++y s)=r e m z[]++$ rem z ys rem z ([] ++ ys)
$=$ rem z ys -- by def of ++
rem z [] ++ rem z ys
$=$ rem z ys -- by def of rem and ++

```
rem x [] = []
rem x (y:ys) | x==y = rem x ys
    | otherwise = y : rem x ys
```

Induction step:
IH: rem z (xs ++ ys) = rem z xs ++ rem z ys
To show: rem $z((x: x s)++y s)=r e m z(x: x s)++r e m z y s$
Proof by cases:
Case $z==x$:

```
rem z ((x:xs) ++ ys)
    = rem z (xs ++ ys) -- by def of ++ and rem
    = rem z xs ++ rem z ys -- by IH
    rem z (x:xs) ++ rem z ys
    = rem z xs ++ rem z ys -- by def of rem
```

Case $\mathrm{z} /=\mathrm{x}$:
rem z ((x:xs) ++ ys)
$=x$: rem $z(x s++y s) \quad--\quad$ by def of ++ and rem
= x : (rem z xs ++ rem z ys) -- by IH
rem z (x:xs) ++ rem z ys
= x : (rem z xs ++ rem z ys) -- by def of rem and ++

Proof by cases

Works just as well for if-then-else, for example

$$
\begin{aligned}
& \text { rem } \times[]=[] \\
& \text { rem } \times(y: y s) ~ \text { if } x==y \text { then rem } x \text { ys } \\
& \text { else } y: r e m ~ x ~ y s ~
\end{aligned}
$$

Inefficiency of reverse

```
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
reverse [1,2,3]
= reverse [2,3] ++ [1]
= (reverse [3] ++ [2]) ++ [1]
\(=((\) reverse []\(~++[3])++[2])++[1]\)
\(=(([]++[3])++[2])++[1]\)
= ([3] ++ [2]) ++ [1]
= (3 : ([] ++ [2])) ++ [1]
\(=[3,2]++[1]\)
= 3 : ([2] ++ [1])
= 3 : (2 : ([] ++ [1]))
\(=[3,2,1]\)
```

An improvement: itrev

```
itrev :: [a] -> [a] -> [a]
itrev [] xs = xs
itrev (x:xs) ys = itrev xs (x:ys)
itrev [1,2,3] []
= itrev [2,3] [1]
= itrev [3] [2,1]
= itrev [] [3,2,1]
= [3,2,1]
```


Proof attempt

Lemma itrev xs [] = reverse xs
Proof by structural induction on xs
Induction step fails:
IH : itrev xs [] = reverse xs
To show: itrev (x:xs) [] = reverse (x:xs)
itrev (x:xs) []
= itrev xs [x] -- by def of itrev
reverse (x:xs)
= reverse xs ++ [x] -- by def of reverse
Problem: IH not applicable because too specialized: []

Generalization

Lemma itrev xs ys = reverse xs ++ ys
Proof by structural induction on xs
Induction step:
IH: itrev xs ys = reverse xs ++ ys
To show: itrev (x:xs) ys = reverse (x:xs) ++ ys itrev (x:xs) ys
= itrev xs (x:ys) -- by def of itrev
= reverse xs ++ (x:ys) -- by IH
reverse (x:xs) ++ ys
= (reverse xs ++ [x]) ++ ys -- by def of reverse
= reverse xs ++ ([x] ++ ys) -- by Lemma app_assoc
= reverse xs ++ (x:ys) -- by def of ++
Note: IH is used with x :ys instead of ys

When using the IH, variables may be replaced by arbitrary expressions, only the induction variable must stay fixed.

Justification: all variables are implicitly \forall-quantified, except for the induction variable.

Induction on the length of a list

```
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort below ++ [x] ++ qsort above
    where below = [y | y <- xs, y <= x]
    above = [z | y <- xs, x < z]
```

Lemma qsort xs is sorted
Proof by induction on the length of the argument of qsort.
Induction step: In the call qsort ($\mathrm{x}: \mathrm{xs}$) we have length below <= length xs < length(x:xs) (also for above).
Therefore qsort below and qsort above are sorted by IH.
By construction below contains only elements ($<=x$).
Therefore qsort below contains only elements ($<=x$) (proof!).
Analogously for above and ($\mathrm{x}<$).
Therefore qsort (x:xs) is sorted.

Is that all? Or should we prove something else about sorting?
How about this sorting function?
superquicksort _ = []

Every element should occur as often in the output as in the input!

5.2 Definedness

Simplifying assumption, implicit so far:
No undefined values

Two kinds of undefinedness:

```
head [] raises exception
\(f x=f x+1\) does not terminate
```

Undefinedness can be handled, too.
But it complicates life

What is the problem?

Many familiar laws no longer hold unconditionally:

$$
x-x=0
$$

is true only if x is a defined value.
Two examples:

- Not true: head [] - head [] = 0
- From the nonterminating definition
f $x=f x+1$
we could conclude that $0=1$.

Termination

Termination of a function means termination for all inputs.

Restriction:
The proof methods in this chapter assume that all recursive definitions under consideration terminate.

Most Haskell functions we have seen so far terminate.

How to prove termination

Example

reverse [] = []
reverse ($\mathrm{x}: \mathrm{xs}$) $=$ reverse $\mathrm{xs}++[\mathrm{x}]$
terminates because ++ terminates and with each recursive call of reverse, the length of the argument becomes smaller.

A function $\mathrm{f}:: \mathrm{T} 1 \mathrm{->} \mathrm{~T}$ terminates
if there is a measure function $\mathrm{m}:: \mathrm{T} 1 \rightarrow \mathbb{N}$ such that

- for every defining equation $f \mathrm{p}=\mathrm{t}$
- and for every recursive call $f r$ in $t: m p>m r$.

Note:

- All primitive recursive functions terminate.
- m can be defined in Haskell or mathematics.
- The conditions above can be refined to take special Haskell features into account, eg sequential pattern matching.

More generally: f :: T1 -> ... \rightarrow Tn $->\mathrm{T}$ terminates if there is a measure function $\mathrm{m}:$: T1 -> ... -> Tn $->\mathbb{N}$ such that

- for every defining equation f p1 ... pn = t
- and for every recursive call f r1 ... rn in t : m p1 ... pn > m r1 ... rn.

Of course, all other functions that are called by f must also terminate.

Infinite values

Haskell allows infinite values, in particular infinite lists.
Example: [1, 1, 1, ...]
Infinite objects must be constructed by recursion:
ones = 1 : ones
Because we restrict to terminating definitions in this chapter, infinite values cannot arise.

Note:

- By termination of functions we really mean termination on finite values.
- For example reverse terminates only on finite lists.

This is fine because we can only construct finite values anyway.

How can infinite values be useful?
Because of "lazy evaluation". More later.

Exceptions

If we use arithmetic equations like $\mathrm{x}-\mathrm{x}=0$ unconditionally, we can "lose" exceptions:

```
head xs - head xs = 0
    is only true if xs /= []
```

In such cases, we can prove equations e1 $=\mathrm{e} 2$ that are only partially correct:

If e1 and e2 do not produce a runtime exception then they evaluate to the same value.

Summary

- In this chapter everything must terminate
- This avoids undefined and infinite values
- This simplifies proofs

5.3 Interlude: Type inference/reconstruction

How to infer/reconstruct the type of an expression (and all subexpressions)

Given: an expression e
Type inference:
(1) Give all variables and functions in e their most general type
(2) From e set up a system of equations between types
(3) Simplify the equations

Example: concat (replicate x y)

Initial type table:

```
x :: a
y :: b
replicate :: Int -> c -> [c]
concat :: [[d]] -> [d]
```

For each subexpression $f e_{1} \ldots e_{n}$ generate n equations:

$$
\begin{aligned}
& a=\text { Int, } b=c \\
& {[c]=[[d]]}
\end{aligned}
$$

Simplify equations: $[c]=[[d]] \rightsquigarrow c=[d]$

$$
\mathrm{b}=\mathrm{c} \rightsquigarrow \mathrm{~b}=[\mathrm{d}]
$$

Solution to equation system: $\mathrm{a}=$ Int, $\mathrm{b}=[\mathrm{d}], \mathrm{c}=[\mathrm{d}]$
Final type table:
x : : Int
y : : [d]
replicate :: Int -> [d] -> [[d]]
concat :: [[d]] -> [d]

Algorithm

(1) Give the variables x_{1}, \ldots, x_{n} in e the types $a_{1}, \ldots a_{n}$ where the a_{i} are distinct type variables.
(2) Give each occurrence of a function $f:: \tau$ in e a new type τ^{\prime} that is a copy of τ with fresh type variables.
(3) For each subexpression $f e_{1} \ldots e_{n}$ of e where $f:: \tau_{1} \rightarrow \cdots \rightarrow \tau_{n} \rightarrow \tau$ and where e_{i} has type σ_{i} generate the equations $\sigma_{1}=\tau_{1}, \ldots, \sigma_{n}=\tau_{n}$.
(4) Simplify the equations with the following rules as long as possible:

- $a=\tau$ or $\tau=a$: replace type variable a by τ everywhere (if a does not occur in τ)
- $T \sigma_{1} \ldots \sigma_{n}=T \tau_{1} \ldots \tau_{n} \rightsquigarrow \sigma_{1}=\tau_{1}, \ldots, \sigma_{n}=\tau_{n}$ (where T is a type constructor, e.g. [.], .->., etc)
- $a=T \ldots a \ldots$ or $T \ldots a \ldots=$ a: type error!
- $T \ldots=T^{\prime} \ldots$ where $T \neq T^{\prime}$: type error!
- For simple expressions you should be able to infer types "durch scharfes Hinsehen"
- Use the algorithm if you are unsure or the expression is complicated
- Or use the Haskell interpreter

6. Higher-Order Functions

Applying functions to all elements of a list: map
Filtering a list: filter
Combining the elements of a list: foldr
Lambda expressions
Extensionality
Curried functions
More library functions
Case study: Counting words

Recall [Pic is short for Picture]

```
alterH :: Pic -> Pic -> Int -> Pic
alterH pic1 pic2 1 = pic1
alterH pic1 pic2 n = beside pic1 (alterH pic2 pic1 (n-1))
```

alterV :: Pic -> Pic -> Int -> Pic
alterV pic1 pic2 1 = pic1
alterV pic1 pic2 $n=$ above pic1 (alterV pic2 pic1 ($n-1$)

Very similar. Can we avoid duplication?
alt :: (Pic -> Pic -> Pic) -> Pic -> Pic -> Int -> Pic alt f pic1 pic2 $1=$ pic1
alt f pic1 pic2 $n=f$ pic1 (alt f pic2 pic1 ($n-1$)
alterH pic1 pic2 $\mathrm{n}=$ alt beside pic1 pic2 n
alterV pic1 pic2 $n=$ alt above pic1 pic2 n

Higher-order functions:
 Functions that take functions as arguments

... -> (... -> ...) -> ...

Higher-order functions capture patterns of computation
6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, False]
map toLower "R2-D2"
= "r2-d2"
map reverse ["abc", "123"]
= ["cba", "321"]

What is the type of map?
map :: (a -> b) -> [a] -> [b]

map: The mother of all higher-order functions

Predefined in Prelude.
Two possible definitions:

```
map f xs = [f x | x <- xs ]
map f [] = []
map f (x:xs) = f x : map f xs
```


Evaluating map

```
map f [] = []
map f (x:xs) = f x : map f xs
map sqr [1, -2]
= map sqr (1 : -2 : [])
= sqr 1 : map sqr (-2 : [])
= sqr 1 : sqr (-2) : (map sqr [])
= sqr 1 : sqr (-2) : []
= 1 : 4 : []
= [1, 4]
```


Some properties of map

length (map f xs) = length xs
$\operatorname{map} f(x s++y s)=\operatorname{map} f$ xs ++ map f ys
map f (reverse xs) = reverse (map f xs)
Proofs by induction

QuickCheck and function variables

QuickCheck does not work automatically for properties of function variables

It needs to know how to generate and print functions.
Cheap alternative: replace function variable by specific function(s)
Example
prop_map_even :: [Int] -> [Int] -> Bool
prop_map_even xs ys =
map even (xs ++ ys) = map even xs ++ map even ys

6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]
filter isAlpha "R2-D2"
= "RD"
filter null [[], [1,2], []]
= [[], []]

What is the type of filter?
filter :: (a -> Bool) -> [a] -> [a]

filter

Predefined in Prelude.
Two possible definitions:
filter p xs $=[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \mathrm{x}]$

filter p []	$=[]$	
filter $p(x: x s)$		
		$=x$: filter p xs
	\| otherwise	$=$ filter p xs

Some properties of filter

True or false?
filter p (xs ++ ys) = filter p xs ++ filter p ys
filter p (reverse xs) = reverse (filter p xs)
filter p (map f xs) = map f (filter p xs)
Proofs by induction

6.3 Combining the elements of a list: foldr

Example

```
sum [] = 0
sum (x:xs) = x + sum xs
    sum [x1, ..., x 
concat [] = []
concat (xs:xss) = xs ++ concat xss
```

concat $\left[x s_{1}, \ldots, x s_{n}\right]=x s_{1}++\ldots++x s_{n}++[]$

$$
\text { foldr }(\oplus) z\left[x_{1}, \ldots, x_{n}\right]=x_{1} \oplus \ldots \oplus x_{n} \oplus z
$$

Defined in Prelude:

Applications:

```
sum xs = foldr (+) 0 xs
concat xss = foldr (++) [] xss
```

What is the most general type of foldr?

```
foldr \(f\) a [] \(=a\)
foldr \(f\) a (x:xs) \(=x\) 'f' foldr \(f a x s\)
```

foldr f a replaces
(:) by f and
[] by a

Evaluating foldr

$$
\begin{aligned}
& \text { foldr f a [] }=a \\
& \text { foldr } f \text { a (x:xs) = } x \text { 'f' foldr } f \text { a xs } \\
& \text { foldr (+) 0 [1, -2] } \\
& \text { = foldr (+) } 0 \text { (1 : -2 : []) } \\
& =1+\underline{f o l d r}(+) 0(-2:[]) \\
& =1+-2+(\underline{f o l d r}(+) 0[]) \\
& =1+-2+0 \\
& =-1
\end{aligned}
$$

More applications of foldr

product xs	$=$ foldr $(*)$	1	xs	
and xs	$=$ foldr $(\& \&)$	True	xs	
or xs	$=$ foldr (\|)	False	xs
inSort xs	$=$ foldr ins	[]	xs	

Quiz

What is
foldr (:) ys xs

Example: foldr (:) ys (1:2:3:[]) = 1:2:3:ys
foldr (:) ys xs = ???

Proof by induction on xs (Exercise!)

Definining functions via foldr

- means you have understood the art of higher-order functions
- allows you to apply properties of foldr

Example

If f is associative and a ' f ' $x=x$ then
foldr f a (xs++ys) = foldr f a xs 'f' foldr f a ys.
Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
$=x$ 'f' foldr f a (xs++ys)
$=x$ 'f' (foldr f a xs 'f' foldr f a ys) -- by IH
foldr f a (x:xs) 'f' foldr f a ys
$=$ (x 'f' foldr f a xs) 'f' foldr f a ys
$=x$ 'f' (foldr faxs 'f' foldr f a ys) -- by assoc.
Therefore, if g xs $=$ foldr f a xs, then $g(x s++y s)=g$ xs ' f ' g ys.

Therefore sum (xs++ys) = sum xs + sum ys, product (xs++ys) = product xs * product ys,...

6.4 Lambda expressions

Consider
squares $\mathrm{xs}=$ map sqr xs where $\mathrm{sqr} \mathrm{x}=\mathrm{x} * \mathrm{x}$
Do we really need to define sqr explicitly? No!

$$
\backslash \mathrm{x}->\mathrm{x} * \mathrm{x}
$$

is the anonymous function with
formal parameter x and result $\mathrm{x} * \mathrm{x}$
In mathematics: $\quad x \mapsto x * x$
Evaluation:

$$
(\backslash \mathrm{x} \rightarrow \mathrm{x} * \mathrm{x}) 3=3 * 3=9
$$

Usage:
squares $x s=\operatorname{map}(\backslash x->x * x) x s$

Terminology

$$
\left(\backslash x->e_{1}\right) e_{2}
$$

x : formal parameter
e_{1} : result
e_{2} : actual parameter
Why "lambda"?
The logician Alonzo Church invented lambda calculus in the 1930s
Logicians write λx. e instead of $\backslash x \rightarrow e$

Typing lambda expressions

Example
($\backslash \mathrm{x}->\mathrm{x}>0$) :: Int $->$ Bool
because x :: Int implies $\mathrm{x}>0$:: Bool

The general rule:

$$
\begin{gathered}
(\backslash x \rightarrow e):: T_{1} \rightarrow T_{2} \\
\text { if } x:: T_{1} \text { implies } e:: T_{2}
\end{gathered}
$$

Evaluating lambda expressions

$$
\text { (} \backslash x \text {-> body) arg }=\text { body with } x \text { replaced by arg }
$$

Example
(xs -> xs ++ xs) [1] = [1] ++ [1]

Sections of infix operators

(+ 1) means ($\backslash \mathrm{x}->\mathrm{x}+1$)
(2 *) means ($\backslash \mathrm{x}->2$ * x)
($2^{\text {^ }) ~ m e a n s ~(~}\left(\mathrm{x}->2^{\wedge} \mathrm{x}\right.$)
(~2) means ($\backslash x->x^{\wedge} 2$)
etc

Example
squares $x s=\operatorname{map}\left({ }^{(} 2\right) x s$

List comprehension

Just syntactic sugar for combinations of map

$$
[f \times \operatorname{x} \mid x<-x s] \quad=\quad \operatorname{map} f x s
$$

filter

$$
[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \times] \quad=\quad \text { filter } \mathrm{p} \text { xs }
$$

and concat
[f x y | x <- xs, y <- xs] =
concat (

6.5 Extensionality

Two functions are equal
 if for all arguments they yield the same result

$f, g:: \quad T_{1} \rightarrow T:$

$$
\frac{\forall a . f a=g a}{f=g}
$$

$f, g:: \quad T_{1} \rightarrow T_{2} \rightarrow T:$

$$
\frac{\forall a, b . f a b=g a b}{f=g}
$$

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry
Example

```
f :: Int -> Int -> Int f :: Int -> (Int -> Int)
f x y = x+y f x = \y >> x+y
```

Both mean the same:
f a b
$=a+b$

$$
\begin{aligned}
& (f a) b \\
& =(\backslash y->a+y) b \\
& =a+b
\end{aligned}
$$

The trick: any function of two arguments can be viewed as a function of the first argument that returns a function of the second argument

In general

Every function is a function of one argument (which may return a function as a result)

$$
T_{1} \rightarrow T_{2} \rightarrow T
$$

is just syntactic sugar for

$$
\begin{gathered}
T_{1} \rightarrow\left(T_{2} \rightarrow T\right) \\
f e_{1} e_{2}
\end{gathered}
$$

is just syntactic sugar for

$$
\underbrace{\left(f e_{1}\right)}_{:: T_{2} \rightarrow T} e_{2}
$$

Analogously for more arguments
-> is not associative:

$$
T_{1} \rightarrow\left(T_{2} \rightarrow T\right) \neq\left(T_{1} \rightarrow T_{2}\right) \rightarrow T
$$

Example

$\mathrm{f}::$ Int $->$ (Int $->$ Int)	$\mathrm{g}::$ (Int $->$ Int) $->$ Int
$\mathrm{f} \mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}$	$\mathrm{g} \mathrm{h}=\mathrm{h} 0+1$

Application is not associative:

$$
\left(f e_{1}\right) e_{2} \neq f\left(e_{1} e_{2}\right)
$$

Example
(f 3) $4 \neq f(34) \quad g$ (id abs) \neq (g id) abs

Quiz

head tail xs

Correct?

Partial application

Every function of n parameters

 can be applied to less than n argumentsExample Instead of sum xs $=$ foldr (+) 0 xs just define sum $=$ foldr (+) 0

In general:
If $f:: T_{1} \rightarrow \ldots$... $T_{n} \rightarrow T$
and $a_{1}:: T_{1}, \ldots, a_{m}:: T_{m}$ and $m \leq n$ then $f a_{1} \ldots a_{m}:: T_{m+1} \rightarrow \ldots, T_{n} \rightarrow T$

6.7 More library functions

$$
\begin{aligned}
& \text { (.) : : (b -> c) -> (a -> b) -> } \\
& \text { f. g }=\backslash x->f(\mathrm{~g} \mathrm{x})
\end{aligned}
$$

Example

head2 = head . tail
head2 $[1,2,3]$
$=$ (head . tail) $[1,2,3]$
= (\x -> head (tail x)) [1,2,3]
$=$ head (tail [1,2,3])
$=$ head [2,3]
= 2

$$
\begin{aligned}
& \text { const }:: a->(b->a) \\
& \text { const } x=\backslash->x \\
& \text { curry }::((a, b)->c) \rightarrow(a->b \rightarrow c) \\
& \text { curry } f=\backslash x y \rightarrow f(x, y) \\
& \text { uncurry }::(a->b->c)->((a, b)->c) \\
& \text { uncurry } f=\backslash(x, y)->f x y
\end{aligned}
$$

```
all :: (a -> Bool) -> [a] -> Bool
all p xs = and [p x | x <- xs]
```

Example
all (>1) [0, 1, 2]
= False
any :: (a -> Bool) -> [a] -> Bool
any $p=$ or $[p \mathrm{x} \mid \mathrm{x}<-\mathrm{xs}$]

Example

```
any (>1) [0, 1, 2]
```

$=$ True
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
$\mid \mathrm{px} \quad=\mathrm{x}$: takeWhile p xs
| otherwise = []
Example
takeWhile (not . isSpace) "the end"
= "the"
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p (x:xs)
$\mid \mathrm{px} \quad=$ dropWhile $\mathrm{p} x \mathrm{~s}$
| otherwise = x:xs
Example
dropWhile (not . isSpace) "the end"
= " end"

6.8 Case study: Counting words

Input: A string, e.g. "never say never again"
Output: A string listing the words in alphabetical order, together with their frequency,
e.g. "again: 1\nnever: 2\nsay: 1\n"

Function putStr yields
again: 1
never: 2
say: 1
Design principle:
Solve problem in a sequence of small steps
transforming the input gradually into the output
Unix pipes!

Step 1: Break input into words

"never say never again"
function \downarrow words
["never", "say", "never", "again"]

Predefined in Prelude

Step 2: Sort words

$$
\begin{gathered}
\text { ["never", "say", "never", "again"] } \\
\text { function } \downarrow \text { sort }
\end{gathered}
$$

["again", "never", "never", "say"]

Predefined in Data.List

Step 3: Group equal words together

$$
\begin{gathered}
\text { ["again", "never", "never", "say"] } \\
\text { function } \downarrow \text { group } \\
\text { [["again"], ["never", "never"], ["say"]] }
\end{gathered}
$$

Predefined in Data.List

Step 4: Count each group

$$
\begin{aligned}
& \text { [["again"], ["never", "never"], ["say"]] } \\
& \qquad \text { map (\ws -> (head ws, length ws) } \\
& \text { [("again", 1), ("never", 2), ("say", 1)] }
\end{aligned}
$$

Step 5: Format each group

$$
\begin{aligned}
& \text { [("again", 1), ("never", 2), ("say", 1)] } \\
& \quad \mid \operatorname{map}(\backslash(w, n)->(w++ \text { ": " ++ show n) } \\
& \quad \text { ["again: 1", "never: 2", "say: 1"] }
\end{aligned}
$$

Step 6: Combine the lines

["again: 1", "never: 2", "say: 1"]
function \downarrow unlines

$$
\text { "again: } 1 \text { \nnever: } 2 \backslash \text { nsay: } 1 \backslash n "
$$

Predefined in Prelude

The solution

```
countWords :: String -> String
countWords =
    unlines
    . map (\(w,n) -> w ++ ": " ++ show n)
    . map (\ws -> (head ws, length ws))
    . group
    . sort
    . words
```


Merging maps

Can we merge two consecutive maps?

$$
\operatorname{map} f \cdot \operatorname{map} g=? ? ?
$$

The optimized solution

```
countWords :: String -> String
countWords =
    unlines
    . map (\ws -> head ws ++ ": " ++ show(length ws))
    . group
    . sort
    . words
```


Proving map $f . \operatorname{map} g=\operatorname{map}(f . g)$

First we prove (why?)

$$
\operatorname{map} f(\operatorname{map} g \mathrm{xs})=\operatorname{map}(f . g) \mathrm{xs}
$$

by induction on xs :

- Base case:

```
map f (map g []) = []
```

$\operatorname{map}(f . g)$ [] = []

- Induction step:

```
map f (map g (x:xs))
= f (g x) : map f (map g xs)
= f (g x) : map (f.g) xs -- by IH
map (f.g) (x:xs)
= f (g x) : map (f.g) xs
```

$\Longrightarrow(\operatorname{map} f . \operatorname{map} g) x s=\operatorname{map} f(\operatorname{map} g \mathrm{xs})=\operatorname{map}(f . g) x s$
\Longrightarrow (map $\mathrm{f} . \operatorname{map} \mathrm{g}$) $=\operatorname{map}(\mathrm{f} . \mathrm{g}) \quad$ by extensionality

7. Type Classes

Remember: type classes enable overloading

Example
elem : :
elem $x=$ any ($==x$)
where Eq is the class of all types with ==

In general:
Type classes are collections of types that implement some fixed set of functions

Haskell type classes are analogous to Java interfaces:
a set of function names with their types
Example
class Eq a where
(==) :: a -> a -> Bool

Note: the type of (==) outside the class context is
Eq a => a -> a -> Bool

The general form of a class declaration:
class C a where
f1 : : T1
fn : : Tn
where the Ti may involve the type variable a

Type classes support generic programming:
Code that works not just for one type but for a whole class of types, all types that implement the functions of the class.

Instance

> A type T is an instance of a class C if T supports all the functions of C.
> Then we write $C T$.

Example

Type Int is an instance of class Eq, i.e., Eq Int
Therefore elem :: Int -> [Int] -> Bool

Warning Terminology clash:
Type T_{1} is an instance of type T_{2}
if T_{1} is the result of replacing type variables in T_{2}.
For example (Bool,Int) is an instance of (a, b).

instance

The instance statement makes a type an instance of a class.
Example
instance Eq Bool where
True == True = True
False == False $=$ True
_ == _ = False

Instances can be constrained:

Example

instance Eq a => Eq [a] where

$$
\begin{array}{lll}
{[]} & ==[] & =\text { True } \\
(x: x s) & ==(y: y s) & =x==y \& \& x s==y s \\
& ==- & =\text { False }
\end{array}
$$

Possibly with multiple constraints:

Example

instance (Eq a, Eq b) => Eq (a,b) where

$$
(\mathrm{x} 1, \mathrm{y} 1)=(\mathrm{x} 2, \mathrm{y} 2)=\mathrm{x} 1==\mathrm{x} 2 \& \& \mathrm{y} 1==\mathrm{y} 2
$$

The general form of the instance statement:
instance (context) => C T where definitions
T is a type
context is a list of assumptions $C_{i} T_{i}$
definitions are definitions of the functions of class C

Subclasses

Example

class Eq a => Ord a where

$$
(<=),(<):: \text { a }->\text { a }->\text { Bool }
$$

Class Ord inherits all the operations of class Eq
Because Bool is already an instance of Eq, we can now make it an instance of Ord:
instance Ord Bool where

$$
\begin{aligned}
& \mathrm{b} 1<=\mathrm{b} 2=\text { not b1 || b2 } \\
& \mathrm{b} 1<\mathrm{b} 2=\mathrm{b} 1<=\mathrm{b} 2 \& \& \operatorname{not}(\mathrm{~b} 1==\mathrm{b} 2)
\end{aligned}
$$

From the Prelude: Eq, Ord, Show

class Eq a where

$$
(==),(/=):: \text { a }->\text { a }->\text { Bool }
$$

-- default definition:

$$
\mathrm{x} /=\mathrm{y}=\operatorname{not}(\mathrm{x}==\mathrm{y})
$$

class Eq a => Ord a where

$$
(<=),(<),(>=),(>):: \text { a }->\text { a }->\text { Bool }
$$

-- default definitions:

$$
\begin{aligned}
& x<y=x<=y \& \& x /=y \\
& x>y=y<x \\
& x>=y=y<=x
\end{aligned}
$$

class Show a where
show :: a -> String

8. Algebraic data Types

data by example
The general case
Case study: boolean formulas
Structural induction

So far: no really new types, just compositions of existing types
Example: type String = [Char]
Now: data defines new types
Introduction by example: From enumerated types to recursive and polymorphic types

8.1 data by example

Bool

From the Prelude:
data Bool = False | True
not : : Bool -> Bool
not False $=$ True
not True $=$ False
(\&\&) :: Bool -> Bool -> Bool
False \&\& q = False
True \&\& $q=q$
(||) :: Bool -> Bool -> Bool
False || q = q
True || q = True
instance Eq Bool where

$$
\begin{aligned}
\text { True } & ==\text { True } \\
\text { False } & ==\text { True } \\
\text { False } & =\text { True } \\
& =\text { False }
\end{aligned}
$$

instance Show Bool where

$$
\text { show True }=\text { "True" }
$$

show False = "False"

Better: let Haskell write the code for you:
data Bool = False | True deriving (Eq, Show)
deriving supports many more classes: Ord, Read, ...

Warning

Do not forget to make your data types instances of Show Otherwise Haskell cannot even print values of your type

Warning
QuickCheck does not automatically work for data types
You have to write your own test data generator. Later.

Season

```
data Season = Spring | Summer | Autumn | Winter
    deriving (Eq, Show)
next :: Season -> Season
next Spring = Summer
next Summer = Autumn
next Autumn = Winter
next Winter = Spring
```


Shape

$\begin{aligned} \text { type Radius }= & \text { Float } \\ \text { type Width }= & \text { Float } \\ \text { type Height }= & \text { Float } \\ \text { data Shape }= & \text { Circle Radius | Rect Width Height } \\ & \text { deriving (Eq, Show) }\end{aligned}$
Some values of type Shape: Circle 1.0
Rect 0.91 .1
Circle (-2.0)

```
area :: Shape -> Float
area (Circle r) = pi * r^2
area (Rect w h) = w * h
```


Maybe

From the Prelude:
data Maybe a = $\begin{aligned} & \text { Nothing | Just a } \\ & \text { deriving (Eq, Show) }\end{aligned}$
Some values of type Maybe: Nothing :: Maybe a Just True : : Maybe Bool Just "?" :: Maybe String
lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup key [] =
lookup key ($(\mathrm{x}, \mathrm{y}): \mathrm{xys})$
| key == x =
| otherwise =

Natural numbers:

```
data Nat = Zero | Suc Nat deriving (Eq, Show)
Some values of type Nat: Zero Suc Zero Suc (Suc Zero)
add :: Nat -> Nat -> Nat
add Zero n = n
add (Suc m) n =
mul :: Nat -> Nat -> Nat
mul Zero n = Zero
mul (Suc m) n =
```


Lists

From the Prelude:

$$
\begin{aligned}
\text { data }[a]= & {[] \text { | (:) a [a] } } \\
& \text { deriving Eq }
\end{aligned}
$$

The result of deriving Eq:
instance Eq a => Eq [a] where
[] == [] = True
$(x: x s)==(y: y s)=x==y \& \& x s==y s$
_ == _ = False
Defined explicitly:
instance Show a => Show [a] where show xs = "[" ++ concat cs ++ "]"
where cs = Data.List.intersperse ", " (map show xs)

Tree

$$
\begin{aligned}
\text { data Tree } \mathrm{a}= & \text { Empty } \mid \text { Node a (Tree a) (Tree a) } \\
& \text { deriving (Eq, Show) }
\end{aligned}
$$

Some trees:
Empty
Node 1 Empty Empty
Node 1 (Node 2 Empty Empty) Empty
Node 1 Empty (Node 2 Empty Empty)
Node 1 (Node 2 Empty Empty) (Node 3 Empty Empty)
-- assumption: < is a linear ordering find :: Ord a => a -> Tree a -> Bool
find _ Empty = False
find x (Node a l r)
| $\mathrm{x}<\mathrm{a}=$ find x 1
| $\mathrm{a}<\mathrm{x}=$ find x r
| otherwise = True

```
insert :: Ord a => a -> Tree a -> Tree a
insert x Empty = Node x Empty Empty
insert x (Node a l r)
    | x < a = Node a (insert x l) r
    | a < x = Node a l (insert x r)
    | otherwise = Node a l r
```


Example

```
insert 6 (Node 5 Empty (Node 7 Empty Empty))
= Node 5 Empty (insert 6 (Node 7 Empty Empty))
= Node 5 Empty (Node 7 (insert 6 Empty) Empty)
= Node 5 Empty (Node 7 (Node 6 Empty Empty) Empty)
```


QuickCheck for Tree

import Control.Monad
import Test.QuickCheck
-- for QuickCheck: test data generator for Trees
instance Arbitrary a => Arbitrary (Tree a) where arbitrary $=$ sized tree
where
tree $0=$ return Empty
tree $\mathrm{n} \mid \mathrm{n}>0=$ oneof [return Empty, liftM3 Node arbitrary (tree (n 'div' 2)) (tree (n 'div' 2))]

```
prop_find_insert :: Int -> Int -> Tree Int -> Bool
prop_find_insert x y t =
    find x (insert y t) == ???
```

(Int not optimal for QuickCheck)

Edit distance (see Thompson)

Problem: how to get from one word to another, with a minimal number of "edits".
Example: from "fish" to "chips"
Applications: DNA Analysis, Unix diff command

```
data Edit = Change Char
    | Copy
    | Delete
    | Insert Char
    deriving (Eq, Show)
transform :: String -> String -> [Edit]
transform [] ys = map Insert ys
transform xs [] = replicate (length xs) Delete
transform (x:xs) (y:ys)
    | x == y = Copy : transform xs ys
    | otherwise = best [Change y : transform xs ys,
                                    Delete : transform xs (y:ys),
                                Insert y : transform (x:xs) ys]
```

```
best :: [[Edit]] -> [Edit]
best [x] = x
best (x:xs)
    | cost x <= cost b = x
    | otherwise = b
    where b = best xs
```

cost :: [Edit] -> Int
cost = length . filter (/=Copy)

Example: What is the edit distance from "trittin" to "tarantino"?
transform "trittin" "tarantino" = ?
Complexity of transform: time $O(\quad)$
The edit distance problem can be solved in time $O(m n)$ with dynamic programming

8.2 The general case

data $\begin{array}{llll}T & a_{1} & \ldots & a_{p}=\end{array}$

$$
C_{1} \quad t_{11} \ldots t_{1 k_{1}}
$$

$$
C_{n} t_{n 1} \ldots t_{n k_{n}}
$$

defines the constructors

$$
\begin{aligned}
& C_{1}:: t_{11}->\ldots t_{1 k_{1}} \rightarrow T a_{1} \ldots a_{p} \\
& \text { : } \\
& C_{n}:: t_{n 1} \rightarrow \ldots t_{n k_{n}} \rightarrow T a_{1} \ldots a_{p}
\end{aligned}
$$

Constructors are functions too!

Constructors can be used just like other functions

Example
map Just [1, 2, 3] = [Just 1, Just 2, Just 3]

But constructors can also occur in patterns!

Patterns revisited

Patterns are expressions that consist only of constructors and variables (which must not occur twice):
A pattern can be

- a variable (incl. _)
- a literal like 1, 'a', "xyz", ...
- a tuple $\left(p_{1}, \ldots, p_{n}\right)$ where each p_{i} is a pattern
- a constructor pattern $C p_{1} \ldots p_{n}$ where
C is a data constructor (incl. True, False, [] and (:)) and each p_{i} is a pattern

8.3 Case study: boolean formulas

type Name = String

data Form $=$	$\mathrm{F} \mid \mathrm{T}$
\| Var Name	
I Not Form	
I And Form Form	
	I Or Form Form
deriving Eq	

Example: Or (Var "p") (Not(Var "p"))
More readable: symbolic infix constructors, must start with : data Form = F | T | Var Name
| Not Form
| Form :\&: Form
| Form :|: Form
deriving Eq
Now: Var "p" : |: Not(Var "p")

Pretty printing

par :: String -> String
par s = "(" ++ s ++ ")"
instance Show Form where
show $\mathrm{F}=$ "F"
show $T=$ "T"
show (Var x) $=x$
show (Not p) = par("~" ++ show p)
show (p :\&: q) = par(show p ++ " \& " ++ show q)
show (p :|: q) = par(show p ++ " | " ++ show q)
> Var "p" :\&: Not(Var "p")
(p \& (~p))

Syntax versus meaning

Form is the syntax of boolean formulas, not their meaning:
Not (Not T) and T mean the same but are different:

$$
\operatorname{Not}(\operatorname{Not} T) /=T
$$

What is the meaning of a Form?
Its value!?
But what is the value of Var "p" ?
-- Wertebelegung
type Valuation = [(Name,Bool)]

```
eval :: Valuation -> Form -> Bool
eval _ F = False
eval _ T = True
eval v (Var x) = fromJust(lookup x v)
eval v (Not p) = not(eval v p)
eval v (p :&: q) = eval v p && eval v q
eval v (p :|: q) = eval v p || eval v q
```

> eval [("a",False), ("b",False)]
(Not(Var "a") :\&: Not(Var "b"))
True

All valuations for a given list of variable names:

```
vals :: [Name] -> [Valuation]
vals [] = [[]]
vals (x:xs) = [( (x,False):v | v <- vals xs ] ++
vals ["b"]
= [("b",False):v | v <- vals []] ++
    [("b",True):v | v <- vals []]
= [("b",False):[]] ++ [("b",True):[]]
= [[("b",False)], [("b",True)]]
vals ["a","b"]
= [("a",False):v | v <- vals ["b"]] ++
    [("a",True):v | v <- vals ["b"]]
= [[("a",False),("b",False)], [("a",False),("b",True)]] ++
    [[("a",True), ("b",False)], [("a",True), ("b",True)]]
```

Does vals construct all valuations?

```
prop_vals1 xs =
    length(vals xs) == 2 ^ length xs
prop_vals2 xs =
    distinct (vals xs)
distinct :: Eq a => [a] -> Bool
distinct [] = True
distinct (x:xs) = not(elem x xs) && distinct xs
```

Demo

Restrict size of test cases:

$$
\begin{aligned}
& \text { prop_vals1' xs = } \\
& \text { length xs <= } 10==> \\
& \text { length(vals xs) == } 2 \text { ~ length xs } \\
& \text { prop_vals2' xs = } \\
& \text { length xs <= } 10==>\text { distinct (vals xs) }
\end{aligned}
$$

Demo

Satisfiable and tautology

```
satisfiable :: Form -> Bool
satisfiable p = or [eval v p | v <- vals(vars p)]
tautology :: Form -> Bool
tautology = not . satisfiable . Not
vars :: Form -> [Name]
vars F = []
vars T = []
vars (Var x) = [x]
vars (Not p) = vars p
vars (p :&: q) = nub (vars p ++ vars q)
vars (p :|: q) = nub (vars p ++ vars q)
```

p0 :: Form
p0 = (Var "a" :\&: Var "b") :।: (Not (Var "a") :\&: Not (Var "b"))
> vals (vars p0)
[[("a",False), ("b",False)], [("a",False), ("b",True)], [("a",True), ("b",False)], [("a",True), ("b",True)]]
> [eval v pO | v <- vals (vars pO)]
[True, False, False, True]
> satisfiable p0
True

Simplifying a formula: Not inside?

```
isSimple :: Form -> Bool
isSimple (Not p) \(=\) not (isOp p)
    where
    isOp (Not p) = True
    isOp (p :\&: q) = True
    is0p (p :|: q) = True
    isOp \(p \quad=\) False
isSimple (p :\&: q) = isSimple p \&\& isSimple q
isSimple ( \(p: \mid: q\) ) \(=\) isSimple \(p\) \&\& isSimple \(q\)
isSimple \(p=\) True
```


Simplifying a formula: Not inside!

Quickcheck

-- for QuickCheck: test data generator for Form instance Arbitrary Form where
arbitrary = sized prop
where
prop $0=$
oneof [return F, return T , liftM Var arbitrary]
prop n | $n>0=$ oneof
[return F, return T, liftM Var arbitrary, liftM Not (prop (n-1)), liftM2 (:\&:) (prop(n ‘div' 2)) (prop(n ‘div‘ 2)),
liftM2 (:I:) (prop(n ‘div' 2)) (prop(n 'div' 2))]
prop_simplify p = isSimple(simplify p)
8.4 Structural induction

Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)
To prove property $P(t)$ for all finite $t: ~ T r e e ~ a ~$
Base case: Prove P (Empty) and
Induction step: Prove P(Node x t1 t2)
assuming the induction hypotheses $P(t 1)$ and $P(t 2)$.
($\mathrm{x}, \mathrm{t} 1$ and t 2 are new variables)

Example

```
flat :: Tree a -> [a]
flat Empty = []
flat (Node x t1 t2) =
    flat t1 ++ [x] ++ flat t2
mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Empty = Empty
mapTree f (Node x t1 t2) =
    Node (f x) (mapTree f t1) (mapTree f t2)
```

Lemma flat (mapTree $f t$) $=\operatorname{map} f(f l a t h)$
Proof by structural induction on t
Induction step:
IH1: flat (mapTree ft1) = map f (flat t1)
IH2: flat (mapTree f t2) = map f (flat t2)
To show: flat (mapTree f (Node x t1 t2)) = map f (flat (Node x t1 t2))
flat (mapTree f (Node x t1 t2))
$=$ flat (Node (f x) (mapTree f t1) (mapTree f t2))
$=$ flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
$=\operatorname{map} \mathrm{f}$ (flat t1) ++ [f x] ++ map f (flat t2)
-- by IH1 and IH2
map f (flat (Node x t1 t2))
$=$ map f (flat t1 ++ [x] ++ flat t2)
$=\operatorname{map} \mathrm{f}$ (flat t1) ++ [f x] ++ map f (flat t2)
-- by lemma distributivity of map over ++
Note: Base case and -- by def of . . . omitted

The general (regular) case

data T a $=\ldots$
Assumption: T is a regular data type:
Each constructor C_{i} of T must have a type

$$
t_{1}->\ldots \text {. } t_{n_{i}}->\mathrm{T} \text { a }
$$

such that each t_{j} is either T a or does not contain T
To prove property $P(t)$ for all finite $t:: \mathrm{T}$ a:
prove for each constructor C_{i} that $P\left(C_{i} x_{1} \ldots x_{n_{i}}\right)$
assuming the induction hypotheses $P\left(x_{j}\right)$ for all j s.t. $t_{j}=\mathrm{T}$ a
Example of non-regular type: data $\mathrm{T}=\mathrm{C}$ [T]

9. I/O

File I/O
Network I/O

- So far, only batch programs: given the full input at the beginning, the full output is produced at the end
- Now, interactive programs:
read input and write output while the program is running

The problem

- Haskell programs are pure mathematical functions: Haskell programs have no side effects
- Reading and writing are side effects:

Interactive programs have side effects

An impure solution

Most languages allow functions to perform I/O without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int

Now all functions potentially perform side effects.
Now we can no longer reason about Haskell like in mathematics:

$$
\begin{aligned}
& \text { inputInt - inputInt }=0 \\
& \text { inputInt + inputInt }=2 * \text { inputInt }
\end{aligned}
$$

are no longer true.

The pure solution

Haskell distinguishes expressions without side effects from expressions with side effects (actions) by their type:
IO a
is the type of $(1 / O)$ actions that return a value of type a.

Example

Char: the type of pure expressions that return a Char
IO Char: the type of actions that return a Char
IO (): the type of actions that return no result value

- Type () is the type of empty tuples (no fields).
- The only value of type () is (), the empty tuple.
- Therefore IO () is the type of actions that return the dummy value () (because every action must return some value)

Basic actions

- getChar : : IO Char

Reads a Char from standard input, echoes it to standard output, and returns it as the result

- putChar :: Char -> IO ()

Writes a Char to standard output, and returns no result

- return : : a -> IO a

Performs no action, just returns the given value as a result

Sequencing: do

A sequence of actions can be combined into a single action with the keyword do

Example

```
get2 :: IO (Char,Char)
get2 = do x <- getChar -- result is named x
    getChar -- result is ignored
    y <- getChar
    return (x,y)
```

General format (observe layout!):
do
a_{1}
\vdots
a_{n}
where each a_{i} can be one of

- an action

Effect: execute action

- x <- action

Effect: execute action :: IO a, give result the name $x:: a$

- let x = expr

Effect: give expr the name x
Lazy: expr is only evaluated when x is needed!

Derived primitives

Write a string to standard output:

```
putStr :: String -> IO ()
putStr [] = return ()
putStr (c:cs) = do putChar c
putStr cs
```

Write a line to standard output:

```
putStrLn :: IO ()
putStrLn cs = putStr (cs ++ "\n")
```

Read a line from standard input:

```
getLine :: IO String
getLine = do x <- getChar
    if x == '\n' then
    return []
    else
        do xs <- getLine
        return (x:xs)
```

Actions are normal Haskell values and can be combined as usual, for example with if-then-else.

Example

Prompt for a string and display its length:

```
strLen :: IO ()
strLen = do putStr "Enter a string: "
    xs <- getLine
    putStr "The string has "
    putStr (show (length xs))
    putStrLn " characters"
```

 > strLen
 Enter a string: abc
The string has 3 characters

How to read other types

Input string and convert

Useful class:
class Read a where read :: String -> a

Most predefined types are in class Read.
Example:
getInt :: IO Integer
getInt = do xs <- getLine return (read xs)

Case study

The game of Hangman
in file hangman.hs

```
main :: IO ()
main = do putStr "Input secret word: "
    word <- getWord ""
    clear_screen
    guess word
    main
```

```
guess :: String -> IO ()
guess word = loop "" "" gallows where
    loop :: String -> String -> [String] -> IO()
    loop guessed missed gals =
    do let word' =
    map (\x -> if x 'elem' guessed
                                then x else '-')
    word
writeAt (1,1)
    (head gals ++ "\n" ++ "Word: " ++ word' ++
    "\nMissed: " ++ missed ++ "\n")
if length gals == 1
then putStrLn ("YOU ARE DEAD: " ++ word)
else if word' == word then putStrLn "YOU WIN!"
else do c <- getChar
    let ok = c 'elem' word
    loop (if ok then c:guessed else guessed)
    (if ok then missed else missed++[c])
    (if ok then gals else tail gals)
```


Once IO, always IO

You cannot add I/O to a function without giving it an IO type

For example

sq : : Int \rightarrow Int	cube $::$ Int $->$ Int
sq $x=x * x$	cube $x=x *$ sq x

Let us try to make sq print out some message:

```
sq x = do putStr("I am in sq!")
    return(x*x)
```

What is the type of sq now? Int -> IO Int And this is what happens to cube:

```
cube x = do x2 <- sq x
    return(x * x2)
```

Haskell is a pure functional language
Functions that have side effects must show this in their type I/O is a side effect

Separate I/O from processing to reduce IO creep:

```
main :: IO ()
main = do s <- getLine
    let r = process s
    putStrLn r
    main
process :: String -> String
process s = ...
```


9.1 File I/O

The simple way

- type FilePath = String
- readFile : : FilePath -> IO String

Reads file contents lazily, only as much as is needed

- writeFile :: FilePath -> String -> IO ()

Writes whole file

- appendFile :: FilePath -> String -> IO ()

Appends string to file
import System.IO

Handles

data Handle

Opaque type, implementation dependent
Haskell defines operations to read and write characters from and to files, represented by values of type Handle. Each value of this type is a handle: a record used by the Haskell run-time system to manage I/O with file system objects.

Files and handles

- data IOMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode
- openFile :: FilePath -> IOMode -> IO Handle

Creates handle to file and opens file

- hClose :: Handle -> IO ()

Closes file

By convention
 all IO actions that take a handle argument begin with h

In ReadMode

- hGetChar :: Handle -> IO Char
- hGetLine : : Handle -> IO String
- hGetContents : : Handle -> IO String

Reads the whole file lazily

In WriteMode

- hPutChar :: Handle -> Char -> IO ()
- hPutStr :: Handle -> String -> IO ()
- hPutStrLn :: Handle -> String -> IO ()
- hPrint : : Show a => Handle -> a -> IO ()

stdin and stdout

- stdin : : Handle
stdout : : Handle
- getChar $=$ hGetChar stdin
putChar $=$ hPutChar stdout

There is much more in the Standard IO Library (including exception handling for IO actions)

Example (interactive cp: icp.hs)

```
main :: IO()
main =
    do fromH <- readOpenFile "Copy from: " ReadMode
        toH <- readOpenFile "Copy to: " WriteMode
        contents <- hGetContents fromH
        hPutStr toH contents
        hClose fromH
        hClose toH
readOpenFile :: String -> IOMode -> IO Handle
readOpenFile prompt mode =
    do putStrLn prompt
        name <- getLine
        handle <- openFile name mode
        return handle
```


Executing xyz.hs

If xyz.hs contains a definition of main:

- runhaskell xyz
or
- ghc xyz \rightsquigarrow executable file xyz

9.2 Network I/O

import Network

Types

- data Socket A socket is one endpoint of a two-way communication link between two programs running on the network.
- data PortId = PortNumber PortNumber \| ...
- data PortNumber
instance Num PortNumber
\Longrightarrow PortNumber 9000 :: PortId

Server functions

- listenOn :: PortId -> IO Socket Create server side socket for specific port
- accept :: Socket -> IO (Handle, ..., ...) \Longrightarrow can read/write from/to socket via handle
- sClose :: Socket -> IO ()

Close socket

Initialization for Windows

withSocketsDo :: IO a -> IO a
Standard use pattern:
main = withSocketsDo \$ do ...
Does nothing under Unix

Example (pingPong.hs)

```
main :: IO ()
main = withSocketsDo $ do
    sock <- listenOn $ PortNumber 9000
    (h, _, _) <- accept sock
    hSetBuffering h LineBuffering
    loop h
    sClose sock
loop :: Handle -> IO ()
loop h = do
    input <- hGetLine h
    if take 4 input == "quit"
    then do hPutStrLn h "goodbye!"
        hClose h
    else do hPutStrLn h ("got " ++ input)
        loop h
```


Client functions

- type HostName = String

For example "haskell.org" or "192.168.0.1"

- connectTo :: HostName -> PortId -> IO Handle Connect to specific port of specific host

Example (wGet.hs)

```
main :: IO()
main = withSocketsDo $ do
    putStrLn "Host?"
    host <- getLine
    h <- connectTo host (PortNumber 80)
    hSetBuffering h LineBuffering
    putStrLn "Resource?"
    res <- getLine
    hPutStrLn h ("GET " ++ res ++ " HTTP/1.O\n")
    s <- hGetContents h
    putStrLn s
```


For more detail see

http://hackage.haskell.org/package/network/docs/
Network.html
http://hackage.haskell.org/package/network/docs/
Network-Socket.html

10. Modules and Abstract Data Types

Modules

Abstract Data Types
Correctness

10.1 Modules

Module $=$ collection of type, function, class etc definitions
Purposes:

- Grouping
- Interfaces
- Division of labour
- Name space management: M.f vs f
- Information hiding

GHC: one module per file
Recommendation: module M in file M.hs

Module header

module M where -- M must start with capital letter \uparrow
All definitions must start in this column

- Exports everything defined in M (at the top level)

Selective export:
module M (T, f, ...) where

- Exports only T, f, ...

Exporting data types

```
module M (T) where
data T = ...
```

- Exports only T, but not its constructors
module M (T(C,D,...)) where
data $\mathrm{T}=\ldots$
- Exports T and its constructors C, D, ...
module M (T(..)) where data $T=.$.
- Exports T and all of its constructors

Not permitted: module M (T, C,D) where (why?)

Exporting modules

By default, modules do not export names from imported modules

module B where	module A where
import A	$f=\ldots$
\ldots.	\ldots

$\Longrightarrow B$ does not export f
Unless the names are mentioned in the export list module B (f) where import A

Or the whole module is exported module B (module A) where import A

import

By default, everything that is exported is imported

module B where	module A where
import A	$f=\ldots$
\ldots	$g=\ldots$

$\Longrightarrow \mathrm{B}$ imports f and g
Unless an import list is specified module B where
import A (f)
$\Longrightarrow B$ imports only f
Or specific names are hidden
module B where
import A hiding (g)

qualified

```
import A
import B
import C
... f ...
```


Where does f come from??

Clearer: qualified names
... A.f ...

Can be enforced:
import qualified A
\Longrightarrow must always write A.f

Renaming modules

import TotallyAwesomeModule
... TotallyAwesomeModule.f ...

Painful

More readable:
import qualified TotallyAwesomeModule as TAM
... TAM.f ...

For the full description of the module system see the Haskell report

10.2 Abstract Data Types

Abstract Data Types do not expose their internal representation
Why? Example: sets implemented as lists without duplicates

- Could create illegal value: [1, 1]
- Could distinguish what should be indistinguishable:
$[1,2] /=[2,1]$
- Cannot easily change representation later

Example: Sets

module Set where
-- sets are represented as lists w/o duplicates type Set a = [a]
empty :: Set a
empty = []
insert :: a -> Set a -> Set a
insert x xs $=$...
isin :: a -> Set a -> Set a
isin x xs $=$...
size :: Set a -> Integer
size xs = ...

Better

module Set (Set, empty, insert, isin, size) where -- Interface
empty : : Set a
insert : : Eq a $=>$ a $->$ Set a Set a
isin : : Eq a => a \rightarrow Set a \rightarrow Bool
size : : Set a -> Int
-- Implementation
type Set $\mathrm{a}=$ [a]

- Explicit export list/interface
- But representation still not hidden

Does not help: hiding the type name Set

Hiding the representation

module Set (Set, empty, insert, isin, size) where
-- Interface
-- Implementation
data Set $\mathrm{a}=\mathrm{S}$ [a]
empty $=\mathrm{S}$ []
insert x (S xs) $=S(i f$ elem x xs then $x s$ else $x: x s)$
isin $\mathrm{x}(\mathrm{S} x \mathrm{x})=$ elem x xs
size (S xs) = length xs
Cannot construct values of type Set outside of module Set because S is not exported

Test.hs:3:11: Not in scope: data constructor 'S'

Uniform naming convention: $S \rightsquigarrow$ Set

module Set (Set, empty, insert, isin, size) where -- Interface
-- Implementation
data Set $\mathrm{a}=\operatorname{Set}[\mathrm{a}]$

```
empty = Set []
insert x (Set xs) = Set(if elem x xs then xs else x:xs)
isin x (Set xs) = elem x xs
size (Set xs) = length xs
```

Which Set is exported?

Slightly more efficient: newtype

module Set (Set, empty, insert, isin, size) where -- Interface
-- Implementation
newtype Set $\mathrm{a}=\operatorname{Set}[\mathrm{a}]$
empty $=$ Set []
insert x (Set xs) $=$ Set (if elem x xs then xs else $\mathrm{x}: \mathrm{xs}$)
isin x (Set xs) = elem x xs
size (Set xs) = length xs

Conceptual insight

Data representation can be hidden
by wrapping data up in a constructor that is not exported

What if Set is already a data type?

module SetByTree (Set, empty, insert, isin, size) where
-- Interface
empty : : Set a
insert :: Ord a => a -> Set a $->$ Set a
isin :: Ord a => a -> Set a -> Bool
size :: Set a -> Integer
-- Implementation
type Set a = Tree a
data Tree a = Empty | Node a (Tree a) (Tree a)
No need for newtype:
The representation of Tree is hidden as long as its constructors are hidden

Beware of ==

module SetByTree (Set, empty, insert, isin, size) where
type Set a = Tree a data Tree $a=\underset{\text { Empty } \mid \text { Node } a(T r e e ~ a) ~(T r e e ~ a) ~}{\text { deriving (Eq) }}$

Class instances are automatically exported and cannot be hidden

Client module:
import SetByTree
... insert 2 (insert 1 empty) ==
insert 1 (insert 2 empty)

Result is probably False - representation is partly exposed!

The proper treatment of $==$

Some alternatives:

- Do not make Tree an instance of Eq
- Hide representation:

```
-- do not export constructor Set:
newtype Set a = Set (Tree a)
data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq)
```

- Define the right == on Tree:
instance Eq a => Eq(Tree a) where t1 == t2 = elems t1 == elems t2
where
elems Empty = []
elems (Node x t1 t2) = elems t1 ++ [x] ++ elems t2

Similar for all class instances, not just Eq

10.3 Correctness

Why is module Set a correct implementation of (finite) sets?

Each concrete operation on the implementation type of lists simulates its abstract counterpart on sets

NB: We relate Haskell to mathematics
For uniformity we write $\{a\}$ for the type of finite sets over type a

From lists to sets

Each list $\left[x_{1}, \ldots, x_{n}\right]$ represents the set $\left\{x_{1}, \ldots, x_{n}\right\}$.
Abstraction function $\alpha::$ [a] -> \{a\}

$$
\alpha\left[x_{1}, \ldots, x_{n}\right]=\left\{x_{1}, \ldots, x_{n}\right\}
$$

In Haskell style: α [] = \{\}

$$
\alpha(\mathrm{x}: \mathrm{xs})=\{\mathrm{x}\} \cup \alpha \mathrm{xs}
$$

What does it mean that "lists simulate (implement) sets" :

$$
\begin{aligned}
\alpha(\text { concrete operation }) & =\text { abstract operation } \\
\alpha \text { empty } & =\{ \} \\
\alpha \text { (insert } \mathrm{xxs}) & =\{\mathrm{x}\} \cup \alpha \mathrm{xs} \\
\text { isin } \mathrm{xxs} & =\mathrm{x} \in \alpha \mathrm{xs} \\
\text { size } \mathrm{xs} & =|\alpha \mathrm{xs}|
\end{aligned}
$$

For the mathematically enclined:
α must be a homomorphism

Implementation I: lists with duplicates

empty	$=[]$
insert $x \mathrm{xs}$	$=\mathrm{x}: \mathrm{xs}$
isin $\mathrm{x} \times \mathrm{x}$	$=$ elem $\mathrm{x} x$
size xs	$=$ length (nub xs)

The simulation requirements:

$$
\begin{aligned}
\alpha \text { empty } & =\{ \} \\
\alpha \text { (insert } \mathrm{xxs}) & =\{\mathrm{x}\} \cup \alpha \mathrm{xs} \\
\text { isin } \mathrm{xxs} & =\mathrm{x} \in \alpha \mathrm{xs} \\
\text { size xs } & =|\alpha \mathrm{xs}|
\end{aligned}
$$

Two proofs immediate, two need lemmas proved by induction

Implementation II: lists without duplicates

empty	$=[]$
insert x xs	$=$ if elem x xs then xs else $x: x s$
isin xs	$=$ elem x xs
size xs	$=$ length xs

The simulation requirements:

$$
\begin{aligned}
\alpha \text { empty } & =\{ \} \\
\alpha \text { (insert } \mathrm{x} \mathrm{xs}) & =\{\mathrm{x}\} \cup \alpha \mathrm{xs} \\
\text { isin } \mathrm{xxs} & =\mathrm{x} \in \alpha \mathrm{xs} \\
\text { size xs } & =|\alpha \mathrm{xs}|
\end{aligned}
$$

Needs invariant that xs contains no duplicates

```
invar :: [a] -> Bool
invar [] = True
invar (x:xs) = not(elem x xs) && invar xs
```


Implementation II: lists without duplicates

empty	$=[]$
insert x xs	$=$ if elem x xs then $x s$ else $x: x s$
isin $x \mathrm{xs}$	$=$ elem x xs
size xs	$=$ length xs

Revised simulation requirements:

Proofs omitted. Anything else?

invar must be invariant!

In an imperative context:
If invar is true before an operation, it must also be true after the operation

In a functional context:
If invar is true for the arguments of an operation, it must also be true for the result of the operation
invar is preserved by every operation

$$
\begin{array}{ll}
& \text { invar empty } \\
\text { invar xs } \Longrightarrow \quad \text { invar (insert } \mathrm{x} \text { xs) }
\end{array}
$$

Proofs do not even need induction

Summary

Let C and A be two modules that have the same interface:
a type T and a set of functions F
To prove that C is a correct implementation of A define
an abstraction function α
:: C.T -> A.T
and an invariant invar :: C.T -> Bool
and prove for each $f \in F$:

- invar is invariant:

$$
\text { invar } x_{1} \wedge \cdots \wedge \text { invar } x_{n} \Longrightarrow \operatorname{invar}\left(C . f x_{1} \ldots x_{n}\right)
$$

(where invar is True on types other than C.T)

- C.f simulates A.f:

$$
\begin{gathered}
\text { invar } x_{1} \wedge \cdots \wedge \text { invar } x_{n} \Longrightarrow \\
\alpha\left(C . f x_{1} \ldots x_{n}\right)=A . f\left(\alpha x_{1}\right) \ldots\left(\alpha x_{n}\right)
\end{gathered}
$$

(where α is the identity on types other than C.T)

11. Case Study: Two Efficient Algorithms

This lecture covers two classic efficient algorithms in functional style on the blackboard:

Huffman Coding
See the Haskell book by Thompson for a detailed exposition.
Skew Heaps
See the original paper for an imperative presentation and the derivation of the amortized complexity:

Daniel Sleator and Robert Tarjan. Self-adjusting heaps. SIAM Journal on Computing 15(1):52-69, 1986.

The Haskell source files are on the course web page.

Huffman Coding

- Aim: encode text with as few bits as possible. Lossless compression, not encryption.
- Method: each character is mapped to a bit list. (Length of bit list depends on frequency of character.)

Example

$\mathrm{e} \mapsto 0, \mathrm{~m} \mapsto 10, \mathrm{n} \mapsto 11$
\Longrightarrow enem $\mapsto 011010 \quad$ (which is uniquely decodable)
Strings are encoded character by character

Prefix-free Codes

Definition

- A code is a mapping from characters to bit lists.
- A code is uniquely decodable if every bit list is the image of at most one string.
- A code is prefix-free if for no two different characters x and y the code for x is a prefix of the code for y.

Example
$\mathrm{a} \mapsto 1$, $\mathrm{b} \mapsto 11$
Not prefix free and not uniquely decodable: $\mathrm{aa} \mapsto 11$ and $\mathrm{b} \mapsto 11$.

Fact Prefix-free codes are uniquely decodable.
We are only interested in prefix-free codes.

Decoding

A prefix-free code can be represented as a binary tree.

Example

$\mathrm{e} \mapsto 0, \mathrm{~m} \mapsto 10, \mathrm{n} \mapsto 11$

Huffman's Algorithm

Constructs an optimal code (tree) for a given frequency table based on the string to be encoded.

Example
String: "go go gopher"
Table: $\left[\left({ }^{\prime} g^{\prime}, 3\right),\left(\prime o^{\prime}, 3\right),(\prime, 2),(' p ', 1), \ldots\right]$

A code t is optimal for a string cs if for all codes t ':

```
length (encode t cs) <= length (encode t' cs)
```

Key algorithmic ideas:

- Construct code tree bottom up
- Work on list of trees
- Always combine the "least frequent" trees into a new tree

Skew Heap

Implementation of priority queue as a heap, i.e., a binary tree where every chid is larger than the parent:

12. Lazy evaluation

Applications of lazy evaluation
Infinite lists

Introduction

So far, we have not looked at the details of how Haskell expressions are evaluated. The evaluation strategy is called
lazy evaluation (,,verzögerte Auswertung")

Advantages:

- Avoids unnecessary evaluations
- Terminates as often as possible
- Supports infinite lists
- Increases modularity

Therefore Haskell is called a lazy functional language. Haskell is the only mainstream lazy functional language.

Evaluating expressions

Expressions are evaluated (reduced) by successively applying definitions until no further reduction is possible.

Example:
sq :: Integer -> Integer
$\mathrm{sqn}=\mathrm{n} * \mathrm{n}$
One evaluation:
$\mathrm{sq}(\underline{3+4})=\mathrm{sq} 7=7 * 7=49$
Another evaluation:
$\underline{\mathrm{sq}}(3+4)=\underline{(3+4)} *(3+4)=7 * \underline{(3+4)}=\underline{7 * 7}=49$

Theorem

Any two terminating evaluations of the same Haskell expression lead to the same final result.

This is not the case in languages with side effects:

Example

Let n have value 0 initially.
Two evaluations:

```
\(\underline{n}+(n:=1)=0+(\underline{n}:=1)=0+1=1\)
\(n+(\underline{n}:=1)=\underline{n}+1=\underline{1+1}=2\)
```


Reduction strategies

An expression may have many reducible subexpressions:

$$
\text { sq }(3+4)
$$

Terminology: redex $=$ reducible expression
Two common reduction strategies:
Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated before they are substituted into the function body sq $(3+4)=s q 7=7 * 7$
Outermost reduction Always reduce an outermost redex.
Corresponds to call by name:
The unevaluated arguments are substituted into the the function body

$$
\text { sq }(3+4)=(3+4) *(3+4)
$$

Comparison: termination

Definition:
loop = tail loop
Innermost reduction:
fst (1,loop) = fst(1,tail loop) $=$ fst(1,tail(tail loop))
$=$. . .
Outermost reduction:
fst (1,loop) = 1
Theorem If expression e has a terminating reduction sequence, then outermost reduction of e also terminates.

Outermost reduction terminates as often as possible

Why is this useful?

Example

Can build your own control constructs:
switch :: Int -> a -> a -> a
switch n x y
$\mid \mathrm{n}>0=\mathrm{x}$
| otherwise = y
fac :: Int -> Int
fac $\mathrm{n}=$ switch $\mathrm{n}(\mathrm{n} * \mathrm{fac}(\mathrm{n}-1)) 1$

Comparison: Number of steps

Innermost reduction:

$$
\text { sq }(3+4)=\operatorname{sq} 7=7 * 7=49
$$

Outermost reduction:

$$
\operatorname{sq}(3+4)=(3+4) *(3+4)=7 *(3+4)=7 * 7=49
$$

More outermost than innermost steps! How can outermost reduction be improved?

Sharing!

The expression $3+4$ is only evaluated once!
Lazy evaluation := outermost reduction + sharing

Theorem

Lazy evaluation never needs more steps than innermost reduction.

The principles of lazy evaluation:

- Arguments of functions are evaluated only if needed to continue the evaluation of the function.
- Arguments are not necessarily evaluated fully, but only far enough to evaluate the function. (Remember fst (1,loop))
- Each argument is evaluated at most once (sharing!)

Pattern matching

Example

```
f :: [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y
```

Lazy evaluation:

```
f [1..3] [7..9] -- does f.1 match?
= f (1 : [2..3]) [7..9] -- does f.2 match?
= f (1 : [2..3]) (7 : [8..9]) -- does f.3 match?
= 1+7
= 8
```


Example

Guards

$f \mathrm{~m} \mathrm{n} \mathrm{p} \mathrm{\mid m}>=\mathrm{n} \& \& \mathrm{~m}>=\mathrm{p}=\mathrm{m}$
$\mid \mathrm{n}>=\mathrm{m} \& \& \mathrm{n}>=\mathrm{p}=\mathrm{n}$
\mid otherwise $=p$
Lazy evaluation:

$$
f(2+3)(4-1)(3+9)
$$

? $2+3>=4-1 \& \& 2+3>=3+9$
? = 5 >= 3 \&\& $5>=3+9$
? = True \&\& $5>=3+9$
? = 5 >= $3+9$
? = $5>=12$
? = False
? 3 >= 5 \&\& $3>=12$
? = False \&\& $3>=12$
? = False
? otherwise = True
$=12$

where

Same principle: definitions in where clauses are only evaluated when needed and only as much as needed.

Lambda

Haskell never reduces inside a lambda
Example: \x -> False \&\& x cannot be reduced Reasons:

- Functions are black boxes
- All you can do with a function is apply it

Example:
($\backslash \mathrm{x}$-> False \&\& x) True = False \&\& True = False

Built-in functions

Arithmetic operators and other built-in functions evaluate their arguments first

Example
$3 * 5$ is a redex
0 * head (...) is not a redex

Predefined functions from Prelude

They behave like their Haskell definition:

```
(&&) :: Bool -> Bool -> Bool
True && y = y
False && y = False
```


Slogan

Lazy evaluation evaluates an expression only when needed and only as much as needed.
("Call by need")
12.1 Applications of lazy evaluation

Minimum of a list

```
min = head . inSort
inSort :: Ord a => [a] -> [a]
inSort [] = []
inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [] = [x]
ins x (y:ys) | x <= y = x : y : ys
    | otherwise = y : ins x ys
C inSort [6,1,7,5]
    = ins 6 (ins 1 (ins 7 (ins 5 [])))
```

```
min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 []))))
= head(ins 6 (ins 1 (ins 7 (5 : []))))
= head(ins 6 (ins 1 (5 : ins 7 [])))
= head(ins 6 (1 : 5 : ins 7 []))
= head(1 : ins 6 (5 : ins 7 [])))
= 1
```

Lazy evaluation needs only linear time although inSort is quadratic because the sorted list is never constructed completely

Warning: this depends on the exact algorithm and does not work so nicely with all sorting functions!

Maximum of a list

max $=$ last . inSort
Complexity?

Takeuchi Function

$$
\begin{aligned}
& \text { t : : Int -> Int -> Int -> Int } \\
& \mathrm{t} x \mathrm{y} \mathrm{z} \mid \mathrm{x}<=\mathrm{y} \quad=\mathrm{y} \\
& \text { | otherwise }=t(t(x-1) y z) \\
& \text { (} t(y-1) \quad z x) \\
& \text { (t (z-1) } x \text { y) }
\end{aligned}
$$

In C:
int t (int x, int y, int $z) ~\{$
if ($\mathrm{x}<=\mathrm{y}$)
return y;
else
return $\mathrm{t}(\mathrm{t}(\mathrm{x}-1, \mathrm{y}, \mathrm{z}), \mathrm{t}(\mathrm{y}-1, \mathrm{z}, \mathrm{x}), \mathrm{t}(\mathrm{z}-1, \mathrm{x}, \mathrm{y}))$;
\}
Try t 15100 - Haskell beats C!
12.2 Infinite lists

Example

A recursive definition
ones :: [Int]
ones = 1 : ones
that defines an infinite list of 1 s :
ones $=1$: ones = 1 : 1 : ones = ...

What GHCi has to say about it:
> ones
$[1,1$
Haskell lists can be finite or infinite
Printing an infinite list does not terminate

But Haskell can compute with infinite lists, thanks to lazy evaluation:
> head ones
1

Remember:
Lazy evaluation evaluates an expression only as much as needed

Outermost reduction: head ones $=$ head (1 : ones) $=1$ Innermost reduction: head ones

```
= head (1 : ones)
    = head (1 : 1 : ones)
    = ...
```

Haskell lists are never actually infinite but only potentially infinite
Lazy evaluation computes as much of the infinite list as needed
This is how partially evaluated lists are represented internally:
1 : 2 : 3 : code pointer to compute rest
In general: finite prefix followed by code pointer

Why (potentially) infinite lists?

- They come for free with lazy evaluation
- They increase modularity: list producer does not need to know how much of the list the consumer wants

Example: The sieve of Eratosthenes

(1) Create the list $2,3,4, \ldots$
(2) Output the first value p in the list as a prime.
(3) Delete all multiples of p from the list
(4) Goto step 2

```
23456789101112\ldots
235711...
```

In Haskell:

```
primes :: [Int]
primes = sieve [2..]
```

sieve :: [Int] -> [Int]
sieve ($\mathrm{p}: \mathrm{xs}$) $=\mathrm{p}$: sieve $\left[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{x} \times \mathrm{mod}^{\prime} \mathrm{p} /=0\right.$]

Lazy evaluation:

```
primes = sieve [2..] = sieve (2:[3..])
= 2 : sieve [x | x <- [3..], x 'mod' 2 /= 0]
= 2 : sieve [x | x <- 3:[4..], x 'mod' 2 /= 0]
= 2 : sieve (3 : [x | x <- [4..], x 'mod' 2 /= 0])
= 2 : 3 : sieve [x | x <- [x|x <- [4..], x 'mod' 2 /= 0]
    x 'mod' 3 /= 0]
= ...
```


Modularity!

The first 10 primes:
> take 10 primes
$[2,3,5,7,11,13,17,19,23,29]$
The primes between 100 and 150:
> takeWhile (<150) (dropWhile (<100) primes)
[101, 103, 107, 109, 113, 127, 131, 137, 139, 149]
All twin primes:
> [(p,q) | (p,q) <- zip primes (tail primes), $p+2==q]$
$[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,7$

Primality test?

> 101 'elem' primes
True
> 102 'elem' primes
nontermination
prime $\mathrm{n}=\mathrm{n}==$ head (dropWhile (<n) primes)

Sharing!

There is only one copy of primes

Every time part of primes needs to be evaluated
Example: when computing take 5 primes primes is (invisibly!) updated to remember the evaluated part

Example: primes $=2$: 3 : 5 : 7 : 11 : sieve ...
The next uses of primes are faster:
Example: now primes !! 2 needs only 3 steps

Nothing special, just the automatic result of sharing

The list of Fibonacci numbers

Idea:

$$
\begin{array}{r}
0112 \ldots \\
+\quad 011 \ldots \\
=\quad 0123 \ldots
\end{array}
$$

From Prelude: zipWith
Example: zipWith f [a1, $a 2, \ldots][b 1, b 2, \ldots]$

$$
=[f \text { a1 b1, f a2 b2, ...] }
$$

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
How about
fibs = 0 : 1 : [$\mathrm{x}+\mathrm{y} \mid \mathrm{x}<-\mathrm{fibs}, \mathrm{y}<-$ tail fibs]

Hamming numbers

Definition

$H=\{1\} \cup\{2 * h \mid h \in H\} \cup\{3 * h \mid h \in H\} \cup\{5 * h \mid h \in H\}$
(Due to Richard Hamming, Turing award winner 1968)
Problem: list H in increasing order: $1,2,3,4,5,6,8,9, \ldots$

```
hams :: [Int]
hams = 1 : merge [2*h | h <- hams]
    (merge [3*h | h <- hams]
    [5*h | h <- hams])
merge (x:xs) (y:ys)
    | x < y = x : merge xs (y:ys)
    | x > y = y : merge (x:xs) ys
    | otherwise = x : merge xs ys
```


Game tree

data Tree $\mathrm{p} v=\operatorname{Tr} e \mathrm{p} \mathrm{p}$ [Tree p v]
Separates move computation and valuation from move selection
Laziness:

- The game tree is computed incrementally, as much as is needed
- No part of the game tree is computed twice

```
gameTree :: (p -> [p]) -> (p -> v) -> p -> Tree p v
gameTree next val = tree where
    tree p = Tree p (val p) (map tree (next p))
chessTree = gameTree ...
```

```
minimax :: Ord v => Int -> Bool -> Tree p v -> v
minimax d player1 (Tree p v ts) =
    if d == 0 || null ts then v
    else let vs = map (minimax (d-1) (not player1)) ts
        in if player1 then maximum vs else minimum vs
```

$>$ minimax 3 True chessTree
Generates chessTree up to level 3
$>$ minimax 4 True chessTree
Needs to search 4 levels, but only level 4 needs to be generated

13. I/O and Monads

1/0
File I/O
Network I/O
Monads

13.1 I/O

- So far, only batch programs: given the full input at the beginning, the full output is produced at the end
- Now, interactive programs:
read input and write output while the program is running

The problem

- Haskell programs are pure mathematical functions:

Haskell programs have no side effects

- Readind and writing are side effects:

Interactive programs have side effects

An impure solution

Most languages allow functions to perform I/O without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int

Now all functions potentially perform side effects.
Now we can no longer reason about Haskell like in mathematics:

$$
\begin{aligned}
& \text { inputInt - inputInt }=0 \\
& \text { inputInt + inputInt }=2 * \text { inputInt }
\end{aligned}
$$

are no longer true.

The pure solution

Haskell distinguishes expressions without side effects from expressions with side effects (actions) by their type:
IO a
is the type of $(1 / O)$ actions that return a value of type a.

Example

Char: the type of pure expressions that return a Char
IO Char: the type of actions that return a Char
IO (): the type of actions that return no result value

- Type () is the type of empty tuples (no fields).
- The only value of type () is (), the empty tuple.
- Therefore IO () is the type of actions that return the dummy value () (because every action must return some value)

Basic actions

- getChar : : IO Char

Reads a Char from standard input, echoes it to standard output, and returns it as the result

- putChar :: Char -> IO ()

Writes a Char to standard output, and returns no result

- return : : a -> IO a

Performs no action, just returns the given value as a result

Sequencing: do

A sequence of actions can be combined into a single action with the keyword do

Example

```
get2 :: IO (Char,Char)
get2 = do x <- getChar -- result is named x
    getChar -- result is ignored
    y <- getChar
    return (x,y)
```

General format (observe layout!):
do
a_{1}
\vdots
a_{n}
where each a_{i} can be one of

- an action

Effect: execute action

- x <- action

Effect: execute action, give result the name x

- let x = expr

Effect: give expr the name x
Lazy: expr is only evaluated when x is needed!

Derived primitives

Write a string to standard output:

```
putStr :: String -> IO ()
putStr [] = return ()
putStr (c:cs) = do putChar c
putStr cs
```

Write a line to standard output:

```
putStrLn :: IO ()
putStrLn cs = putStr (cs ++ '\n')
```

Read a line from standard input:

```
getLine :: IO String
getLine = do x <- getChar
    if x == '\n' then
    return []
    else
        do xs <- getLine
        return (x:xs)
```

Actions are normal Haskell values and can be combined as usual, for example with if-then-else.

Example

Prompt for a string and display its length:

```
strLen :: IO ()
strLen = do putStr "Enter a string: "
    xs <- getLine
    putStr "The string has "
    putStr (show (length xs))
    putStrLn " characters"
```

 > strLen
 Enter a string: abc
The string has 3 characters

How to read other types

Input string and convert

Useful class:
class Read a where read :: String -> a

Most predefined types are in class Read.
Example:
getInt :: IO Integer
getInt = do xs <- getLine return (read xs)

Case study

The game of Hangman

in file Hang. hs

Once IO, always IO

You cannot add I/O to a function without "polluting" its type
For example

sq : : Int \rightarrow Int	cube $::$ Int $->$ Int
sq $x=x * x$	cube $x=x *$ sq x

Let us try to make sq print out some message:

```
sq x = do putStr("I am in sq!")
    return(x*x)
```

What is the type of sq now? Int -> IO Int And this is what happens to cube:

```
cube x = do x2 <- sq x
    return(x * x2)
```

Haskell is a pure functional language
Functions that have side effects must show this in their type I/O is a side effect

Separate I/O from processing to reduce IO creep:

```
main :: IO ()
main = do s <- getLine
    let r = process s
    putStrLn r
    main
process :: String -> String
process s = ...
```

13.2 File I/O

The simple way

- type FilePath = String
- readFile : : FilePath -> IO String

Reads file contents lazily, only as much as is needed

- writeFile :: FilePath -> String -> IO ()

Writes whole file

- appendFile :: FilePath -> String -> IO ()

Appends string to file
import System.IO

Handles

data Handle

Opaque type, implementation dependent
Haskell defines operations to read and write characters from and to files, represented by values of type Handle. Each value of this type is a handle: a record used by the Haskell run-time system to manage I/O with file system objects.

Files and handles

- data IOMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode
- openFile :: FilePath -> IOMode -> IO Handle

Creates handle to file and opens file

- hClose :: Handle -> IO ()

Closes file

By convention
 all IO actions that take a handle argument begin with h

In ReadMode

- hGetChar :: Handle -> IO Char
- hGetLine : : Handle -> IO String
- hGetContents :: Handle -> IO String

Reads the whole file lazily

In WriteMode

- hPutChar :: Handle -> Char -> IO ()
- hPutStr :: Handle -> String -> IO ()
- hPutStrLn :: Handle -> String -> IO ()
- hPrint : : Show a => Handle -> a -> IO ()

stdin and stdout

- stdin : : Handle
stdout : : Handle
- getChar $=$ hGetChar stdin
putChar $=$ hPutChar stdout

There is much more in the Standard IO Library (including exception handling for IO actions)

Example (interactive cp: icp.hs)

```
main :: IO()
main =
    do fromH <- readOpenFile "Copy from: " ReadMode
        toH <- readOpenFile "Copy to: " WriteMode
        contents <- hGetContents fromH
        hPutStr toH contents
        hClose fromH
        hClose toH
readOpenFile :: String -> IOMode -> IO Handle
readOpenFile prompt mode =
    do putStrLn prompt
        name <- getLine
        handle <- openFile name mode
        return handle
```


Executing xyz.hs

If xyz.hs contains a definition of main:

- runhaskell xyz
or
- ghc xyz \rightsquigarrow executable file xyz

13.3 Network I/O

import Network

Types

- data Socket
- data PortId = PortNumber PortNumber | ...
- data PortNumber
instance Num PortNumber
\Longrightarrow PortNumber 9000 :: PortId

Server functions

- listenOn :: PortId -> IO Socket Create server side socket for specific port
- accept :: Socket -> IO (Handle, ..., ...) \Longrightarrow can read/write from/to socket via handle
- sClose :: Socket -> IO ()

Close socket

Initialization for Windows

withSocketsDo :: IO a -> IO a
Standard use pattern:
main = withSocketsDo \$ do ...
Does nothing under Unix

Example (pingPong.hs)

```
main :: IO ()
main = withSocketsDo $ do
    sock <- listenOn $ PortNumber 9000
    (h, _, _) <- accept sock
    hSetBuffering h LineBuffering
    loop h
    sClose sock
loop :: Handle -> IO ()
loop h = do
    input <- hGetLine h
    if take 4 input == "quit"
    then do hPutStrLn h "goodbye!"
        hClose h
    else do hPutStrLn h ("got " ++ input)
        loop h
```


Client functions

- type Hostname = String
- connectTo : : Hostname -> PortId -> IO Handle Connect to specific port of specific host

Example (wGet.hs)

```
main :: IO()
main = withSocketsDo $ do
    putStrLn "Host?"
    host <- getLine
    h <- connectTo host (PortNumber 80)
    hSetBuffering h LineBuffering
    putStrLn "Resource?"
    res <- getLine
    hPutStrLn h ("GET " ++ res ++ " HTTP/1.O\n")
    s <- hGetContents h
    putStrLn s
```


13.4 Monads

>>= ('bind'), or what do really means

Primitive:

$$
\text { (>>=) :: IO a }->\text { (a }->\text { IO b) }->\text { IO b }
$$

How it works:
act >>= f execute action act :: IO a which returns a result $v:: ~ a$ then evaluate $f v$ which returns a result of type IO b

$$
\text { do } x<-\quad \text { act } t_{1}
$$

$$
a c t_{2}
$$

is syntax for $\quad a c t_{1} \gg=\left(\backslash \mathrm{x}->\right.$ act $\left._{2}\right)$

Example
\rightsquigarrow getChar >>= ($\backslash \mathrm{x}->$ putChar x) putChar x

In general

$$
\begin{aligned}
& \text { do } x_{1}<-a_{1} \\
& \\
& \vdots \\
& \\
& \quad x_{n}<-a_{n} \\
& \quad \text { act }
\end{aligned}
$$

is syntax for

$$
a_{1} \gg=\backslash x_{1}->
$$

$$
\vdots
$$

$$
a_{n} \gg=\backslash x_{n}->
$$

act

Beyond IO: Monads

class Monad m where

$$
\begin{aligned}
& (\gg=):: \mathrm{m} \text { a }->(\mathrm{a}->\mathrm{m} \text { b) } \rightarrow \mathrm{m} \text { b } \\
& \text { return }:: \mathrm{a}->\mathrm{m} \text { a }
\end{aligned}
$$

- m is a type constructor
- do notation is defined for every monad

Only example of monad so far: IO
Let's examine some more.

Maybe as a monad

A frequent code pattern when working with Maybe:

```
case m of
    Nothing -> Nothing
    Just x -> ...
```

This pattern can be hidden inside >>=:
instance Monad Maybe where
$m \gg=f=$ case m of Nothing -> Nothing
Just x-> f x
return $\mathrm{V}=$ Just v
Failure ($=$ Nothing) propagation and unwrapping of Just is now built into do!
instance Monad Maybe where

$$
\begin{aligned}
\mathrm{m} \gg=f= & \text { case } \mathrm{m} \text { of } \\
& \text { Nothing } \rightarrow \text { Nothing } \\
& \text { Just } x \rightarrow f \mathrm{x} \\
\text { return } \mathrm{v}= & \text { Just } \mathrm{v}
\end{aligned}
$$

Example: evaluation of Form

```
eval :: [(Name,Bool)] -> Form -> Maybe Bool
eval _ T = return True
eval _ F = return False
eval v (Var x) = lookup x v
eval v (f1 :&: f2) = do b1 <- eval v f1
    b2 <- eval v f2
    return (b1 && b2)
```

Example:

```
p1 *** p2 = \xs ->
    case p1 xs of
    Nothing -> Nothing
    Just(b,ys) -> case p2 ys of
                                    Nothing -> Nothing
                                    Just(c,zs) -> Just((b,c),zs)
```

p1 *** p2 = \xs ->
do (b,ys) <- p1 xs
(c,zs) <- p2 ys
return ($(\mathrm{b}, \mathrm{c}), \mathrm{zs})$

The do version has a much more general type Monad m => ...

Maybe models possible failure with Just/Nothing
The do of the Maybe monad hides Just/Nothing and propagates failure automatically

List as a monad

instance Monad [] where
xs >>= $f=$ concat(map f xs)
return $\mathrm{v}=$ [v]
Now we can compose computations on list nicely (via do).
Example

```
dfs :: (a -> [a]) -> (a -> Bool) -> a -> [a]
dfs nexts found start = find start
    where
    find x = if found x then return x
        else do x' <- nexts x
                            find x'
```

The Haskell way of backtracking
Lazy evaluation produces only as many elements as you ask for.

14. Complexity and Optimization

Time complexity analysis
Optimizing functional programs

How to analyze and improve the time (and space) complexity of functional programs

Based largely on Richard Bird's book Introduction to Functional Programming using Haskell.

Assumption in this section:
Reduction strategy is innermost (call by value, cbv)

- Analysis much easier
- Most languages follow cbv
- Number of lazy evaluation steps \leq number of cbv steps $\Longrightarrow O$-analysis under cbv also correct for Haskell but can be too pessismistic

14.1 Time complexity analysis

Basic assumption:
One reduction step takes one time unit
(No guards on the left-hand side of an equation, if-then-else on the righ-hand side instead)

Justification:
The implementation does not copy data structures but works with pointers and sharing

Example: length (_ : xs) = length xs + 1
Reduce length [1,2,3]
Compare: id [] = []
id (x:xs) = x : id xs
Reduce id [e1,e2]
Copies list but shares elements.
$T_{f}(n)=$ number of steps required for the evaluation of f when applied to an argument of size n
in the worst case
What is "size"?

- Number of bits. Too low level.
- Better: specific measure based on the argument type of f
- Measure may differ from function to function.
- Frequent measure for functions on lists: the length of the list We use this measure unless stated otherwise Sufficient if f does not compute with the elements of the list Not sufficient for function...

How to calculate (not mechanically!) $T_{f}(n)$:
(1) From the equations for f derive equations for T_{f}
(2) If the equations for T_{f} are recursive, solve them

Example

$$
\begin{aligned}
& \begin{array}{ll}
{[]++y s} & =y s \\
(\mathrm{x}: \mathrm{xs})++\mathrm{ys} & =\mathrm{x}:(\mathrm{xs}++\mathrm{ys}) \\
T_{++}(0, n) & =O(1) \\
T_{++}(m+1, n) & =T_{++}(m, n)+O(1) \\
& \Longrightarrow T_{++}(m, n)=O(m)
\end{array}
\end{aligned}
$$

Note: (++) creates copy of first argument
Principle:
Every constructor of an algebraic data type takes time $O(1)$.
A constant amount of space needs to be allocated.

Example

```
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
```

$$
\begin{array}{ll}
T_{\text {reverse }}(0) & =O(1) \\
T_{\text {reverse }}(n+1) & =T_{\text {reverse }}(n)+T_{++}(n, 1)
\end{array}
$$

$$
\Longrightarrow T_{\text {reverse }}(n)=O\left(n^{2}\right)
$$

Observation:
Complexity analysis may need functional properties of the algorithm

The worst case time complexity of an expression e:

```
Sum up all T T ( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{k}{}
where f e, \ldots..en is a function call in e
and \mp@subsup{n}{i}{}}\mathrm{ is the size of }\mp@subsup{e}{i}{
```

(assumption: no higher-order functions)
Note: examples so far equally correct with $\Theta($.$) instead of O($.$) ,$ both for cbv and lazy evaluation. (Why?)

Consider min xs = head(sort xs)

$$
T_{\text {min }}(n)=T_{\text {sort }}(n)+T_{\text {head }}(n)
$$

For cbv also a lower bound, but not for lazy evaluation.
Complexity analysis is compositional under cbv

14.2 Optimizing functional programs

Premature optimization is the root of all evil
 Don Knuth

But we are in week $n-1$ now ;-)
The ideal of program optimization:
(1) Write (possibly) inefficient but correct code
(2) Optimize your code and prove equivelence to correct version

No duplication

Eliminate common subexpressions with where (or let)

Example

$f x=g(h x)(h x)$
f $x=g y y$ where $y=h x$

Tail recursion / Endrekursion

The definition of a function f is tail recursive / endrekursiv if every recursive call is in "end position",
$=$ it is the last function call before leaving f ,
$=$ nothing happens afterwards
$=$ no call of f is nested in another function call

Example

length []	$=0$
length (x:xs)	$=$ length $x s+1$
length2 []	$\mathrm{n}=\mathrm{n}$
length2 ($\mathrm{x}: \mathrm{xs}$) $\mathrm{n}=$ length2 $\mathrm{xs}(\mathrm{n}+1)$	

length []	$=0$
length (x:xs)	$=$ length xs +1
length2 []	$n=n$
length2 $(x: x s)$	$n=$ length2 xs ($n+1)$

Compare executions:
length [a,b, c]
$=$ length $[b, c]+1$
= (length [c] + 1) + 1
$=(($ length []$+1)+1)+1$
$=((0+1)+1)+1$
$=3$

length2 [a,b,c]	0
$=$	length2 $[b, c]$
$=$	1
$=$	length2 [c]
$=$	2
$=$	3

Fact Tail recursive definitions can be compiled into loops. Not just in functional languages.

No (additional) stack space is needed to execute tail recursive functions

Example

```
length2 [] n = n
length2 (x:xs) n = length2 xs (n+1)
M
loop: if null xs then return n
    xs := tail xs
    n := n+1
    goto loop
```

What does tail recursive mean for
$f x=$ if b then e_{1} else e_{2}

- f does not occur in b
- if f occurs in e_{i} then only at the outside: $e_{i}=f \ldots$

Tail recursive example:
f $x=$ if $x>0$ then $f(x-1)$ else $f(x+1)$
Similar for guards and case e of:

- f does not occur in e
- if f occurs in any branch then only at the outside: $f \ldots$

Accumulating parameters

An accumulating parameter is a parameter where intermediate results are accumulated.
Purpose:

- tail recursion
- replace (++) by (:)

```
length2 [] \(n=n\)
length2 ( \(\mathrm{x}: \mathrm{xs}\) ) \(\mathrm{n}=\) length2 \(\mathrm{xs}(\mathrm{n}+1)\)
```

length' $x s=$ length2 $x s 0$
Correctness:
Lemma length2 xs $\mathrm{n}=$ length $\mathrm{xs}+\mathrm{n}$
\Longrightarrow length' x s $=$ length $x s$

Accumulating parameter: reverse

```
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
    Treverse}(n)=O(\mp@subsup{n}{}{2}
itrev [] xs = xs
itrev (x:xs) ys = itrev xs (x:ys)
```

Not just tail recursive also linear:

$$
\begin{aligned}
& T_{\text {itrev }}(0, n)=O(1) \\
& T_{\text {itrev }}(m+1, n)=T_{\text {itrev }}(m, n)+O(1) \\
& \Longrightarrow T_{\text {itrev }}(m, n)=O(m)
\end{aligned}
$$

Accumulating parameter: tree flattening

data Tree a = Tip a \mid Node (Tree a) (Tree a)
flat (Tip a) = [a]
flat (Node t1 t2) = flat t1 ++ flat t2
Size measure: height of tree (height of Tip =1)

$$
\begin{aligned}
T_{\mathrm{flat}}(1) & =O(1) \\
T_{\text {flat }}(h+1) & =2 * T_{\mathrm{flat}}(h)+T_{++}\left(2^{h}, 2^{h}\right) \\
& =2 * T_{\text {flat }}(h)+O\left(2^{h}\right) \\
\Longrightarrow & T_{\text {flat }}(h)=O\left(h * 2^{h}\right)
\end{aligned}
$$

With accumulating parameter:
flat2 :: Tree a -> [a] -> [a]

Accumulating parameter: foldl

foldr f z []
ldr f z (x:xs)

Tail recursive, second parameter accumulator:
foldl f z [] = z
foldl f z (x:xs) = foldl (f z x) xs
foldl f z [x1,....,xn] = (...(z 'f‘ x1) 'f‘ ...) 'f‘ $x n$
Relationship between foldr and foldl:
Lemma foldl fe foldr fe
if f is associative and e ' f ' $x=x$ ' f ' e.
Proof by induction over xs.

Tupling of results

Typical application:
Avoid multiple traversals of the same data structure

```
average :: [Float] -> Float
average xs = (sum xs) / (length xs)
```

Requires two traversals of the argument list.

Avoid intermediate data structures

Typical example: map g. map $f=\operatorname{map}(\mathrm{g} . \mathrm{f})$
Another example: sum [n..m]

Precompute expensive computations

```
search :: String -> String -> Bool
search text s =
    table_search (hash_table text) (hash s,s)
bsearch = search bible
```

> map bsearch ["Moses", "Goethe"]

Better:

```
search text = \s -> table_search ht (hash s,s)
    where ht = hash_table text
```

Strong hint for compiler

Lazy evaluation

Not everything that is good for cbv is good for lazy evaluation
Example: length2 under lazy evaluation
In general: tail recursion not always better under lazy evaluation
Problem: lazy evaluation may leave many expressions unevaluated until the end, which requires more space

Space is time because it requires garbage collection - not counted by number of reductions!

15. Case Study: Parsing

Basic Parsing
Application: Parsing pico-Haskell expressions
Improved Parsing

15.1 Basic Parsing

Parsing is the translation of a string into a syntax tree according to some grammar.

Example

$$
" \mathrm{a}+\mathrm{b} * \mathrm{c} " \quad \mapsto
$$

Parser type

type Parser = String -> Tree
type Parser a = String -> a
What if something is left over, e.g., "a+b*c\#" ?
type Parser a = String -> (a,String)
What if there is a syntax error, e.g., "++" ?
type Parser a = String -> [(a,String)]
[] syntax error
[x] one result x
[$\mathrm{x}, \mathrm{y}, \ldots$] multiple results, ambiguous language

Alternative parser type

For unambiguous languages:
type Parser a = String -> Maybe (a,String)

Basic parsers

```
one :: (Char -> Bool) -> Parser Char
one pred (x:xs) = if pred x then [(x,xs)] else []
one _ [] = []
char :: Char -> Parser Char
char c = one (== c)
```

Example
char 'a' "abc" = [('a',"bc")]
char 'b' "abc" = []

Combining parsers

Parse anything that p1 or p2 can parse:
(||l) :: Parser a -> Parser a -> Parser a
p1 ||| p2 = \cs -> p1 cs ++ p2 cs

Example
(char 'b' ||| char 'a') "abc" = [('a',"bc")]

Combining parsers

Parse first with p 1 , then the remainder with p 2 :

```
(***) :: Parser a -> Parser b -> Parser (a,b)
(p1 *** p2) xs =
    [((a,b),zs) | (a,ys) <- p1 xs, (b,zs) <- p2 ys]
```

Example
(char 'b' *** char 'a') "bac" = [(('b','a'), "c")]
(one isAlpha *** one isDigit *** one isDigit) "a12"
= [(('a',('1','2')), "")]

Transforming the result

Parse with p, transform result with f :
(>>>) :: Parser a -> (a -> b) -> Parser b
p >>> f = \xs -> [(f a,ys) | (a,ys) <- p xs]
Example
((char 'b' *** char 'a') >>> ($\backslash(x, y) ~->~[x, y])$) "bac" = [("ba", "c")]

Parsing a list of objects

Auxiliary functions:

```
uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry f (a,b) = f a b
success :: a -> Parser a
success a xs = [(a,xs)]
```

The parser transformer:
list :: Parser a -> Parser [a]
list $\mathrm{p}=(\mathrm{p} * * *$ list p$)$ >>> uncurry (:)
||| success []

Example
list (one isAlpha) "ab1"
= [("ab", "1"), ("a", "b1"),("", "ab1")]

Parsing a non-empty list of objects

```
list1 :: Parser a -> Parser [a]
list1 p = (p *** list p) >>> uncurry (:)
```


Parsing identifiers

```
ident :: Parser String
ident = (list1(one isAlpha) *** list(one isDigit))
    >>> uncurry (++)
```

Example
ident "ab0" = [("ab0",""), ("ab","0"), ("a","b0")]

Handling spaces

spaces :: Parser String
spaces $=$ list (one isSpace)
sp : : Parser a -> Parser a
sp $\mathrm{p}=$ (spaces $* * * \mathrm{p}) ~ \ggg$ snd

Example
(sp ident) " ab c" = [("ab", " c"), ("a", "b c")]

15.2 Application: Parsing pico-Haskell expressions

Context-free grammar (= BNF notation) for expressions:

$$
\begin{array}{rlr}
\text { expr }::= & \text { identifier } \\
& (\text { expr expr }) \\
& & (\text { (identifier . expr })
\end{array}
$$

Examples a, (f x), (\x. (f x))
The tree representation:
data Expr $=$ Id String | App Expr Expr | Lam String Expr
Examples Id "a"

```
    App (Id "f") (Id "x")
    Lam "x" (App (Id "f") (Id "x"))
```


Pico-Haskell parser

```
ch c = sp (char c)
id = sp ident
expr =
    id >>> Id
    |||
    (ch '(' *** expr *** expr *** ch ')')
        >>> (\(_, (e1,(e2,_))) -> App e1 e2)
        ||
    (ch '(' *** ch '\' *** id *** ch '.' *** expr *** ch ')')
            >>> (\(_, (_, (x,(_, (e,_))))) -> Lam x e)
```


15.3 Improved Parsing

$$
\text { String } \xrightarrow{\text { Lexer }} \text { [Token] } \xrightarrow{\text { Parser }} \text { Tree }
$$

Example
data Token =
LParant | RParant | BSlash | Dot | Ident String
" (x 1 . x 2) " $\quad \xrightarrow{\text { Lexer }}$
[LParant, BSlash, Ident "x1", Dot, Ident "x2", RParant]

Why?

- Lexer based on regular expressions \Longrightarrow lexer can be more efficient than general parser
- Lexer can already remove spaces and comments \Longrightarrow simplifies parsing

Generalizing the implementation

So far:
type Parser a = String -> [(a,String)]
Now:
type Parser a b = [a] -> [(b, [a])]
None of the parser combinators ***, |||, >>> change, only their types become more general!

So far:
(***) :: Parser a -> Parser b -> Parser (a,b)
Now:
(***) :: Parser a b -> Parser a c -> Parser a (b, c)

Some literature:

- Chapter 8 of Hutton's Programming in Haskell
- Section 17.5 in Thompson's Haskell book (3rd edition)
- Many papers on functional parsers

