
Lehrstuhl für Software & Systems Engineering
Institut für Informatik

Technische Universität München

Code Generation
from Specifications in Higher-Order Logic

Florian Haftmann

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Univer-
sität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Florian Matthes

Prüfer der Dissertation:

1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Univ.-Prof. Dr. Helmut Seidl

Die Dissertation wurde am 27. Mai 2009 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 9. November 2009 angenom-
men.

Zusammenfassung
Ein sehr rigoroser Ansatz zur Vermeidung fehlerhaft implementierter Software ist for-
male Verifikation: sowohl Verhaltensbeschreibung (abstrakte Spezifikation) als auch
Implementierung (ausführbare Spezifikation) werden in einem geeigneten logischen
Kalkül beschrieben, und es wird gezeigt, dass beide sich gleich verhalten. Schon auf-
grund der zahlreichen technischen Details liegt es nahe, das Überprüfen der einzelnen
Beweisschritte innerhalb eines Beweisassistenten vorzunehmen. Dieser mechanische
Ansatz ermöglicht es auch, in gewissen Fällen eine ausführbare Spezifikation auto-
matisch in ein Programm in einer geeigneten Programmiersprache zu überführen.
Dieses etablierte Verfahren ist als Code-Generierung bekannt.

Ziel dieser Arbeit ist die Darstellung eines Codegenerator-Frameworks für den
interaktiven Theorembeweiser Isabelle/HOL, einer Implementierung höherstufiger
Logik. Gegenüber existierenden Ansätzen weist das Framework zwei substantielle
Neuerungen auf: ein sehr allgemeines, aber leichtgewichtiges Konzept für Daten-
typabstraktion und die Unterstützung von Isabelle-Typklassen im Sinne von Has-
kell -Typklassen. Konzeptionell möglich ist Generierung von Code für funktionale
Sprachen mit Pattern Matching; konkrete Instantiierungen des Frameworks liegen
vor für die Zielsprachen SML, OCaml und Haskell.

Die praktische Verwendbarkeit des Codegenerator-Frameworks wird mit exempla-
rischen Anwendungen demonstriert.

Abstract
A very rigorous weapon against implementation errors in software systems is formal
verification: both the desired behaviour (abstract specification) and the implemen-
tation (executable specification) are formalised in a suitable logical calculus, and
the equivalence of both is proved. The numerous technical details involved in such
a procedure suggest to let a proof assistant check all proof steps. This mechani-
cal approach in certain cases enables an automatic translation from an executable
specification to a program in a suitable programming language: code generation.

The aim of this thesis is to present a code generator framework for the interactive
proof assistant Isabelle/HOL, an implementation of higher-order logic. The frame-
work includes two substantial novelties: a general but lightweight concept for data-
type abstraction and support for Isabelle type classes in the manner of Haskell type
classes. Code can be generated for functional programming languages supporting
pattern matching; concrete instances for SML, OCaml and Haskell are presented.

The practical usability of the code generator framework is demonstrated with
example applications.

In memoriam Werner Krehbiel (1941–2004)

Acknowledgements
The accomplishment of this thesis has been a fulfilling and absorbing task in all
its facets: acquisition of knowledge, system development, elaboration. This would
not have been possible without the constant support and feedback from the Isabelle
group in Munich, whose (former and current) members I am deeply indebted to:
Tobias Nipkow gave me the opportunity to work in his research group and super-
vised this thesis; Alexander Krauss was a travel mate on my journeys in both the
figurative and literal sense; Stefan Berghofer and Makarius Wenzel supported and
helped me patiently in my starting time; further Clemens Ballarin, Gertrud Bauer,
Jasmin Blanchette, Sascha Böhme, Lukas Bulwahn, Amine Chaieb, Johannes Hölzl,
Julien Narboux, Steven Obua, Norbert Schirmer, Christian Urban, Tjark Weber
and Martin Wildmoser — may future generations of PhD students enjoy the same
enlightenment, pleasure and friendly working atmosphere with and around Isabelle
as I had the opportunity to experience.
Further thanks I owe to Helmut Seidl for acting as referee.
Among the many people involved with Isabelle whose centre of life is not in Munich
I would like to mention Larry Paulson, John Matthews, Brian Huffman and Gerwin
Klein, who gave important inspiration and feedback for my work.
Preliminary parts of this thesis have been read and commented by Alexander Krauss,
Sascha Böhme, Makarius Wenzel and Jasmin Blanchette, whom I would like to thank
in particular for his language expertise — remaining deficiencies still fall under my
responsibility.
This research was financially supported by the DFG project NI 491/10-1.

Contents

1 Introduction 1
1.1 Scenario . 1
1.2 Contributions . 2
1.3 Related work . 4

1.3.1 Calculus of inductive constructions — Coq 4
1.3.2 ACL2 . 6
1.3.3 Higher-order logic . 7

1.4 A note on notation . 8

2 Foundations 9
2.1 The logical framework Isabelle/Pure 10

2.1.1 Logical expressions . 10
2.1.2 Theory extensions . 11
2.1.3 Putting on the LCF glasses 13
2.1.4 A glimpse at the Isar language 14

2.2 The Isabelle/HOL system . 14
2.2.1 Isabelle/HOL as extension of Isabelle/Pure 14
2.2.2 The Isabelle/HOL toolbox 15
2.2.3 Example proof: The natural numbers are well-founded . . . 16

2.3 Type classes . 18
2.3.1 Syntactic properties . 18
2.3.2 Logical interpretation . 20
2.3.3 End-user view . 21

2.4 A framework for describing code generation 22
2.4.1 Higher-order rewrite systems 23
2.4.2 Pure as a HRS . 23
2.4.3 HRSs as model for target languages 24
2.4.4 Code generation using shallow embedding 25

3 Code generation 27
3.1 Towards a concrete code generator 28

3.1.1 Pure and HOL . 28
3.1.2 Patterns and code equations 28
3.1.3 Architecture overview . 30

3.2 An abstract intermediate language 31
3.2.1 Motivation . 31
3.2.2 Definition . 32
3.2.3 Well-formed programs and their semantics 33
3.2.4 A correct translation . 35

xii Contents

3.2.5 Well-sorted systems . 37
3.2.6 Local pattern matching . 38
3.2.7 Dictionary construction . 40

3.3 Code generation in practice using Isabelle/HOL 48
3.3.1 Code generator default setup 48
3.3.2 class and instantiation . 51
3.3.3 The preprocessor . 53
3.3.4 Equality . 54
3.3.5 Producing well-sorted systems 55

3.4 Concerning serialisation . 57
3.4.1 Adaptation . 57
3.4.2 Subtle situations and borderline cases 57

3.5 What is “executable”? . 59

4 Turning specifications into programs 63
4.1 Datatype abstraction . 64

4.1.1 Amortised queues revisited 64
4.1.2 Implementing rational numbers 66
4.1.3 Mappings . 68
4.1.4 Stocktaking . 72

4.2 Combining code generation and deductions 72
4.2.1 Enumerating finite types . 72
4.2.2 Binary representation of natural numbers 75
4.2.3 Inductive predicates . 78

4.3 Mastering destructive data structures 81
4.3.1 Side effects, linear type systems and state monads 81
4.3.2 A polymorphic heap in HOL 82
4.3.3 Putting the heap into a monad 83
4.3.4 Interfacing with destructive code 85

4.4 A quickcheck implementation in Isar 87
4.4.1 Evaluation and reconstruction 87
4.4.2 A random engine in HOL . 89
4.4.3 Generating random values of datatypes 90
4.4.4 Checking a proposition . 91

4.5 Normalisation by evaluation . 91
4.6 Applications of proof terms for code generation 93

4.6.1 Extraction from constructive proofs 93
4.6.2 Definitional eliminating of overloading 96

5 Conclusion 97
5.1 Stocktaking and evaluation . 97
5.2 Bolstering the foundation of the code generator 98

5.2.1 Formalised meta-theory of the intermediate language 98
5.2.2 Operational semantics of target languages 98
5.2.3 Evaluation strategies and termination 98

5.3 Extending the foundation of the code generator 99
5.3.1 Invariants . 99
5.3.2 Predicate subtyping . 99
5.3.3 Logics other than HOL . 100

5.4 Extending the code generator infrastructure 100

Contents xiii

5.4.1 Further target languages . 100
5.4.2 Managing scope and accessibility 101

5.5 Deductive tools and advanced applications 101
5.5.1 Packing machinery . 101
5.5.2 Infinite data structures . 102
5.5.3 Parallelism . 102

A Notions of the Pure logic and their notations 105
A.1 Expressions . 105
A.2 Theory context . 105
A.3 Theory extensions . 106

B Selected ingredients of Isabelle/HOL 107

C Code examples 109
C.1 Rational numbers . 109
C.2 Mappings — naive implementation 110
C.3 Mappings — implementation by association lists 111
C.4 Mappings — implementation by binary trees 112
C.5 Beta-normalisation of λ-terms . 113

D Cantor’s first diagonalisation argument 117

Bibliography 121

xiv Contents

C H A P T E R 1

Introduction

Cuiusvis hominis est errare,
nullius nisi insipientis in errore perseverare.

Marcus Tullius Cicero, Roman orator,
from: Oratio Philippica Duodecima

1.1 Scenario

The practical motivation of this work is software development. More than thirty
years ago, F. L. Bauer introduced an essay with the following paragraph [3]1:

Programmieren ist die Erfüllung eines Kontrakts: Das Problem wird ver-
einbart, das lösende Programm wird abgeliefert. Die meisten Programme
sind heute, zumindest auf den ersten Anhieb, nicht korrekt (manche blei-
ben auch ewig falsch und werden doch verkauft): sie erfüllen den Kontrakt
nicht. Dieser ist häufig auch gar nicht ganz eindeutig formuliert. Darin
ist aber der Grund für die vielen ”Programmierfehler“ nicht oder nur
teilweise zu suchen. Er liegt vielmehr hauptsächlich in der undisziplinier-
ten Art, mit der von jung und alt landauf, landab das Programmieren
betrieben wird.

Nowadays it is widely acknowledged that programming is no ad hoc task combined
with some kind of black art, but requires care and diligence; software development
has become an established engineering discipline, namely software engineering. A
typical computer science curriculum contains at least one lecture [11] discussing
issues like software development workflow methodologies, project communication,
visual modelling languages etc. — the human-oriented side of software development,
so to speak.

1Translation by the author: Programming is the fulfilment of a contract: The problem is agreed
on, the solving program is delivered. Most programs today are, at least in the first attempt, not
correct (some remain wrong eternally and sell nonetheless): they do not fulfil the contract. Often
it is not formulated precisely either. This however should not be taken as the cause for the many
“programming mistakes”, at least not in general. The reason is the undisciplined habit in which
programming is carried out by young and old all over the country.

2 Chapter 1. Introduction

Similarly, approaches for a rigorous treatment of programming languages have
been developed: the key idea is to describe their semantics in a precise mathemat-
ical framework [64]. This provides a general framework to think and reason about
programs — the machine-oriented side of software development, so to speak.

These techniques allow to develop formal methods to avoid or detect implementa-
tion errors in software systems; the most rigorous of those is formal verification: both
the desired behaviour (abstract specification) and the implementation (executable
specification) are formalised in a suitable logical calculus, and the equivalence of
both is proved.

Applying this procedure on paper only is unsatisfactory: numerous technical de-
tails are a drudgery to deal with, and worse, subtle details could escape the attention
of a human reviewer. This suggests to use a proof assistant for proof checking and
automation.

A consequent next step is to mechanise the transition from logic to executable
code: code generation. This allows to translate a certain class of specifications
directly to corresponding code respecting the original specification.

The component which carries out this translation, the code generator, is critical: an
erroneously implemented code generator could produce code which does not respect
the original specification. Thus the code generator must be developed with enough
diligence in order to be trusted and reliable.

The development and presentation of such a code generator is the purpose of this
thesis. Beside the purely scientific results we also hopefully provide a tool which helps
bridge the gap between logic and programming and thus opens up new applications
for formal techniques in software engineering.

1.2 Contributions

Our overall aim is to bring the worlds of theorem proving and functional program-
ming closer together:

Generic principles. We want to give a precise foundation of code generation in
terms of ingredients of the underlying logical calculus without dependencies on
a particular implementation.

Concrete system. We are not interested in developing a sophisticated new calculus
on paper only but to pragmatically extend an existing environment to obtain
a practically usable system.

Similarly, contributions are both conceptual and technical:

• We give a precise characterisation of code generation by shallow embedding.
This characterisation, the foundation of code generation, is kept as simple
as possible and as rich as necessary. It is elaborated on the meta-theoretic
level once and for all and not extended later. Previously code generation
has usually been considered a “trivial syntactic transformation”; consequently,
existing code generator approaches base to a large extent on intuition and
folklore. Our investigation will show that shallow embedding is a very generic
approach to code generation which even provides a simple concept of datatype
abstraction.

1.2. Contributions 3

• The logical calculus we will use provides type classes in the manner of Haskell
1.0 [26], which we consider for code generation to support overloading; this
clarifies the relationship between the operational and logical aspect of type
classes.

• As proof assistant we choose Isabelle/HOL, an implementation of Church’s
higher-order logic [16]. We provide a code generator which translates logical
descriptions in higher-order logic to a state-of-the-art functional programming
language containing the typed λ-calculus as subset (see §2.4.3); concrete in-
stances of such languages are SML, OCaml and Haskell.

• The code generator interacts closely with other parts of the system, in par-
ticular existing deductive infrastructure. This allows to extend the range of
executable constructs dramatically while leaving the foundation of the code
generator unchanged.

Our choice for Isabelle/HOL is motivated by the following observations:

• Higher-order logic is quite near to functional programming, following the equa-
tion “higher-order logic = functional programming plus logic”. Programmers
familiar with functional programming get acquainted with Isabelle/HOL rather
fast.

• Higher-order logic allows to express many programming paradigms inside the
same framework and to establish different views on the same logical concept
(see §4.1.3).

• Isabelle/HOL includes a user interface which facilitates interaction with the
proof assistant, thus relieving the user from many technical details.

• Abundant successful projects close to real-world programs have been carried
out with higher-order logic over the years (e.g. semantics of Java-like languages
[32], calculations forming part of the proof of the Kepler conjecture [43], a
compiler for a subset of C [35]).

Although restricting to functional programming languages might be considered too
limited, we argue that especially Haskell has proved able to absorb low-level issues
seamlessly into a purely functional world (notably imperative data structures, I/O
[30], concurrency, transactions [27]).

The thesis is structured as follows:

• This introduction continues which a presentation of related work.

• The relevant foundation are set out in §2.

• §3 is dedicated to the principles of the code generator, its architecture and its
foundations.

• The usability of the system is bolstered by various examples in §4.

• A conclusion §5 sketches future extensions.

4 Chapter 1. Introduction

1.3 Related work

Most state-of-the-art theorem proving systems support some form of code generation.
There are two fundamental code generation principles:

Shallow embedding: Types in the programming language are identified with types
in the logic, functions in the programming language with constants in the logic;
code generation is nothing else than the inverse image of that identification.
This works best for logics which are already close to functional programming
languages in structure and expressiveness . The translation by the code gen-
erator is usually conceptually simple.

Proof extraction: Proof terms are animated in the spirit of the Curry-Howard
isomorphism [19]. That is, proofs are interpreted constructively. Traditionally
this approach is applied in logics with a rich (dependent) type system. Thus
the translation is more involved, since the type system of the logic is much
more expressive than that of a functional programming language.

Let us illustrate these two principles by examining three typical representatives.

1.3.1 Calculus of inductive constructions — Coq

The Coq [57] proof assistant is based on the calculus of inductive constructions
[9], a dependent type theory where types, terms and proof terms are syntactically
represented uniformly.

Due to its logic, Coq is a natural candidate for proof extraction. Here an example
how subtraction of natural numbers can be specified:

(* A Lemma *)

Theorem le_Sm_n_pred:
forall m n: nat, S m <= n -> { q : nat | S q = n }.

proof.
let m: nat, n: nat.
per cases on n.
suppose it is 0.
assume (S m <= 0).
hence thesis by (le_Sn_O m).

suppose it is (S q).
thus thesis using exists q; reflexivity.

end cases.
end proof. Qed.

(* The Main Theorem *)

Theorem exists_minus:
forall m n: nat, m <= n -> { q : nat | m + q = n }.

proof.
let m: nat.
per induction on m.
suppose it is 0.
let n: nat.
thus thesis using simpl; exists n; reflexivity.

suppose it is (S q) and hyp: thesis for q.
let n: nat.
assume Sq_n: (S q <= n).
then ex_r: {r : nat | S r = n} by (le_Sm_n_pred q n).
consider r such that (S r = n) from ex_r.

1.3. Related work 5

then n_Sr: (n = S r).
then (S q <= S r) by Sq_n.
then (q <= r).
then ex_s: {s : nat | q + s = r} by hyp.
consider s such that qsr: (q + s = r) from ex_s.
thus (S q + s = n) by n_Sr, plus_Sn_m, qsr.

end induction.
end proof. Qed.

The specification is given as a dependent type which for each pair of natural numbers
m and n with m ≤ n yields a natural number q such that the m + q = n. The
existence of a member of this type is witnessed by a proof which essentially is an
induction on an existential proposition. From this the following Haskell code can be
extracted:

module Coq_nat_extraction where

import qualified Prelude

__ = Prelude.error "Logical or arity value used"

false_rect :: () -> a1
false_rect _ =

Prelude.error "absurd case"

false_rec :: () -> a1
false_rec _ =

false_rect __

data Nat = O
| S Nat

type Sig a = a
-- singleton inductive, whose constructor was exist

le_Sm_n_pred :: Nat -> Nat -> Nat
le_Sm_n_pred m n =

case n of
O -> false_rec __
S h -> h

exists_minus :: Nat -> Nat -> Nat
exists_minus _main_arg n =

case _main_arg of
O -> n
S h -> exists_minus h (le_Sm_n_pred h n)

Notice how the proof of an existential proposition is turned into the computation of
the corresponding witness, while an induction is turned into a recursion.

Curry-Howard notwithstanding, extraction of code from proofs is delicate since
it has to re-separate the categories types, terms (with computational content) and
proofs (without computational content) which coincide in the logical calculus but
not in executable code [57]. In particular, the user must decide before starting a
formal development which parts of it should to be executable and must take this
into account both during definitions and proofs.

Code generation in Coq also works using shallow embedding, e.g. by primitive
recursion which is denoted in Coq by the Fixpoint statement.

Fixpoint minus (n : nat) (m : nat) {struct m} : nat :=
match n, m with
| n, 0 => n

6 Chapter 1. Introduction

| 0, m => 0
| S n, S m => minus n m

end.

Here is the corresponding code:

module Coq_nat_translation where

import qualified Prelude

data Nat = O
| S Nat

minus :: Nat -> Nat -> Nat
minus n m =
case n of
O -> (case m of

O -> n
S n0 -> O)

S n0 -> (case m of
O -> n
S m0 -> minus n0 m0)

1.3.2 ACL2

ACL2 is, in its own words, “both a programming language in which you can model
computer systems and a tool to help you prove properties of those models” [31]. It
appears to the user as a purely functional fragment of Common Lisp [39], which is
also its implementation language. Also the user interface is modelled in the manner
of a Lisp toplevel, allowing direct evaluation of functions.

Due to its very nature, a distinguished code generator functionality is not necessary
for ACL2 : specified programs can be run directly on Common Lisp systems. This
can be seen as a shallow embedding drawn to its ultimate consequence. The absence
of explicit proofs rules out proof extraction.

As an example we give here functions for appending and concatenating lists, which
bear no surprise for programmers familiar with the typical Lisp-style nil/cons lists,
together with a theorem stating that the reverse of the reverse of a list is the list
itself:

(defun app (xs ys)
(if (endp xs) ys (cons (car xs) (app (cdr xs) ys))))

(defthm app_xs_nil
(implies (true-listp xs) (equal (app xs nil) xs)))

(defthm app-assoc
(equal (app (app xs ys) zs)
(app xs (app ys zs))))

(defun rev (xs)
(if (endp xs) nil (app (rev (cdr xs)) (cons (car xs) nil))))

(defthm rev-true_listp
(implies (true-listp xs) (true-listp (rev xs))))

(defthm rev-app-commute
(implies (true-listp ys)
(equal (rev (app xs ys)) (app (rev ys) (rev xs)))))

1.3. Related work 7

(defthm rev-involutary
(implies (true-listp xs) (equal (rev (rev xs)) xs)))

This examples exhibits key concepts of ACL2 :

• There is no static type system, and ACL2 is total. Practically, this means that
(rev (cons 42 1705)) is a valid expression which can be evaluated according
to the semantics in the logic to (cons 42 nil). This requires certain type-like
assumptions such as “is a proper list” to be encoded explicitly into propositions,
e.g. in the formulation of theorem rev-involutary. ACL2 has a concept
named guards which has no logical relevance but reconciliates the totality of
ACL2 with the semantics of Common Lisp: guards are assertions on function
arguments and results which can be checked statically for consistency among a
set of functions. Consistent guard annotations guarantee that these functions
behave the same way in the logic as under evaluation in Common Lisp.

• ACL2 features a different interaction paradigm than other provers: sophis-
ticated automation and proof planning facilities allow the user to “define”
theorems, and the system gives a detailed complaint when it is not able to
prove them on its own.

1.3.3 Higher-order logic

Higher-order logic (HOL) is based on works by Church [16] and Gordon [22]. It
combines a simply-typed λ-calculus with logical connectives such as implication and
quantifiers. There are many implementations of HOL available. Classical HOL proof
assistants (e.g. HOL4 [53], HOL Light [28]) expose their implementation language
(SML or OCaml) as a meta-language to the user which is used for combining proof
tactics etc. The HOL implementation of our particular interest, Isabelle/HOL [42],
deviates from that tradition by providing a distinguished specification and proof
language, Isar, restricting the use of SML to system development proper [15].

HOL is already quite near to a functional programming language. Thus code gen-
eration via shallow embedding is a natural procedure. Previously to the work pre-
sented here, a code generator for SML did already exist [7]: given the Isabelle/HOL
specification

datatype nat = Zero | Succ nat

fun minus :: nat ⇒ nat ⇒ nat where
minus n Zero = n
| minus Zero m = Zero
| minus (Succ n) (Succ m) = minus n m

Isabelle/HOL generated the following SML program:

datatype nat = Succ of nat | Zero;

fun minus (Succ n) (Succ m) = minus n m
| minus Zero (Succ v) = Zero
| minus n Zero = n;

8 Chapter 1. Introduction

In this simple example code generation superficially appears as a naive syntactic
transformation. Our work supersedes the existing code generator by a far more
general approach.
Another particularity of Isabelle/HOL is that it provides optional proof terms which
allow also for proof extraction (see further §4.6.1).

1.4 A note on notation

The concepts presented in this thesis range over different layers; to provide a mini-
mum of orientation, we distinguish two of them with different notational conventions:

The abstract layer: This consists of plain text like the sentence you are currently
reading, containing semi-formal statements like Definition or Synopsis. It
includes logical concepts without reference to a particular implementation;
typically this is typeset in italics or sanserif.

The concrete layer: This covers Isar theory text and SML, OCaml or Haskell
source text; in the case of Isar we adopt the best-style typesetting of theories;
for the programming languages we write typewriter. In some cases we do
not give explicit Isar theory text which shows how to accomplish a formal
development in detail but merely quote results (types, terms, theorems, . . .)
in italics.

This thesis is written using the typesetting facilities of Isabelle. In particular this
means that the ingredients of the concrete layer have been formally checked by the
system itself, thus reducing the risk of typos.

Further conventions:

• We abbreviate vectors of symbols s1, s2, . . . , sn by sn; if n is irrelevant we
write just s. Such vectors are neither tuples nor lists but shallow in the sense
that they disappear in any context which allows for a “flattening”, e.g. f xn
abbreviates f x1 . . . xn, not f (x1, . . . , xn). Also zip comprehensions are used:
x ⊗ y implies that both x and y have same length and denotes the vector (x1

⊗ y1) . . . (xn ⊗ yn), where ⊗ is an arbitrary infix operator.

• A wildcard pattern denotes an anonymous variable occurring only once in an
expression.

• Angle brackets 〈. . . 〉 help to separate formal notations belonging to different
levels, e.g. 〈f x = x 〉 ∈ A denotes that the proposition 〈f x = x 〉, not the
boolean value f x = x, is contained in set A.

C H A P T E R 2

Foundations

Do you pine for the days when men were men
and wrote their own device drivers?

Linus Torvalds, operating system architect, from:
Just for Fun: The Story

of an Accidental Revolutionary.

We give an overview over relevant characteristics of the Isabelle/HOL system.
Equipped with this logical foundations we introduce an equational logics frame-
work which provides the formal base for a treatment of code generation by
shallow embedding.

Contents
2.1 The logical framework Isabelle/Pure 10

2.1.1 Logical expressions . 10

2.1.2 Theory extensions . 11

2.1.3 Putting on the LCF glasses 13

2.1.4 A glimpse at the Isar language 14

2.2 The Isabelle/HOL system 14

2.2.1 Isabelle/HOL as extension of Isabelle/Pure 14

2.2.2 The Isabelle/HOL toolbox 15

2.2.3 Example proof: The natural numbers are well-founded . 16

2.3 Type classes . 18

2.3.1 Syntactic properties . 18

2.3.2 Logical interpretation . 20

2.3.3 End-user view . 21

2.4 A framework for describing code generation 22

2.4.1 Higher-order rewrite systems 23

2.4.2 Pure as a HRS . 23

2.4.3 HRSs as model for target languages 24

2.4.4 Code generation using shallow embedding 25

10 Chapter 2. Foundations

2.1 The logical framework Isabelle/Pure

Isabelle [46] is a generic proof assistant designed for interactive reasoning in a vari-
ety of logics, notably higher-order logic and set theory. All these are implemented
on top of the logical framework Isabelle/Pure (for short, Pure). This architecture
allows to reuse infrastructure applicable to different calculi (object logics in Isabelle
terminology). Indeed, Pure is a versatile framework for applications involving formal
methods and logic.

In this chapter we give a synopsis of Pure’s characteristics that are relevant in
our context. This involves a considerable amount of formal notation; for better
orientation §A gives a short reference on this.

2.1.1 Logical expressions

Synopsis 1 (the Pure logic)

The logical calculus of Pure is a minimalistic higher-order logic of simply-typed
schematically polymorphic λ-terms; in other words, there are three categories of
logical expressions:

types τ consist of type constructors κ with a fixed arity and type variables α:

τ :: = κ τ1 · · · τk | α

Function space α ⇒ β is simply a binary type constructor with right-
associative infix syntax.

terms t include application, abstraction, (local) variables of a particular type,
and constants:

t ::= t1 t2 | λx ::τ . t | x ::τ | f

proofs are abstract derivations; resulting propositions are identified with terms
of a distinguished type prop, containing

implication P =⇒ Q
and universal quantification

∧
x ::τ . P x, where by convention outermost

quantifiers can be omitted.

αβη-equivalence is implicit. Concluded proofs are theorems. In derivations
axioms and theorems are represented uniformly as proof constants [5]. We do
not give much attention to proof terms or proof text, denoting their presence
simply by 〈proof 〉.

Constants are schematically polymorphic, meaning that each constant is assigned a
most general type scheme f :: ∀α1 . . . αn. τ . This schematic polymorphism carries
over to proof constants (though we do not use any explicit notation for this).

Notationally, we adhere to the following conventions:

• Typing contexts are avoided by assuming consistent type annotations for local

2.1. The logical framework Isabelle/Pure 11

variables x ; for conciseness they can be omitted.

• Type schemes are closed, i.e. in f :: ∀α1 . . . αn. τ , the set {α1, . . . , αn} is
exactly the set of type variables in τ listed in a canonical order.

• If necessary, constant types are clarified either by an explicit type annotation
f ::τ , or by System-F-style type instantiations f [τ1, τ2, . . . , τn] with respect
to f ’s most general type scheme f :: ∀α1 α2 . . . αn. τ .

• The notation τ [τ1, τ2, . . . , τn] denotes a substitution on the type level where
τ contains exactly n (distinct) type variables which according to a canonical
order are replaced by the type arguments τ1, τ2, . . . , τn.

• All presented formal entities are well-typed (with respect to an implicit con-
text).

Conceptually types are implicit due to Hindley-Milner type inference; proofs are
irrelevant (§2.1.3). Thus, in type theoretic parlance, the structure of the logic is
determined by terms depending on terms λx ::τ . t, proofs depending on terms

∧
x ::τ .

P x, and proofs depending on proofs P =⇒ Q.

2.1.2 Theory extensions

In informal mathematics, theories are developed incrementally, by enriching an im-
plicit global context with definitions and theorems (where either may depend on
previous definitions and theorems). For formal reasoning, this must be made ex-
plicit.

Pure provides a notion of hierarchical theories Θ. The type of theories is an
extensible sum type, containing logical and extra-logical data [63]. Thus Θ can be
thought of as a tuple consisting of an unbounded but finite number of components
Θ = (C1, C2, C3, . . . , Cn). If in a particular theory Θ a particular judgement A
holds, we write Θ ` A. Since any such judgement A is induced by a finite number
of components Cl1, Cl2, . . . , Clm in Θ, it is also legitimate to write (Cl1, Cl2, . . . ,
Clm) ` A, ignoring the other components in the theory. The same situation can be
denoted by Θ = (Cl1, Cl2, . . . , Clm, . . .) ` A.

In the implementation of Pure, the different components Ck are just data in the
SML environment; if necessary we will represent them here by partial functions.

Recall that the logical expressions may contain three kinds of global named enti-
ties: type constructors κ, constants f and theorems. We represent each of these by
the following judgements with respect to Θ:

Synopsis 2 (basic logical propositions)

type arities Θ = (Υ, . . .) ` κ :: ∗ → · · · → ∗ map a type constructor κ to its
arity, which we give here as flat kind. Type arities are managed as function
Υ which maps a type constructor to its arity.

constant types Θ = (Ω, . . .) ` f :: ∀α1 . . . αn. τ associate a constant f with
its most general type scheme ∀α1 . . . αn. τ . Constant types are managed
as a function Ω which maps a constant to its type scheme.

theorem propositions Θ ` a : P associate a proof constant a with its corre-

12 Chapter 2. Foundations

sponding proposition P ; i.e. the name of a proof constant also serves as
name of the corresponding proved proposition.

The initial Pure theory Θ0 which is the base of all theory developments already
contains some ingredients, notably

type of propositions
Θ0 ` prop :: ∗

function space
Θ0 ` (⇒) :: ∗ → ∗ → ∗

equality
Θ0 ` (≡) :: ∀α. α ⇒ α ⇒ prop

rule of reflexivity
Θ0 ` reflexive :

∧
x . x ≡ x

rule of symmetry
Θ0 ` symmetric :

∧
x y . x ≡ y =⇒ y ≡ x

rule of transitivity
Θ0 ` transitive :

∧
x y z . x ≡ y =⇒ y ≡ z =⇒ x ≡ z

combination rule
Θ0 ` combination :

∧
f g x y . f ≡ g =⇒ x ≡ y =⇒ f x ≡ g y

abstraction rule
Θ0 ` abstraction :

∧
x y . x ≡ y =⇒ λz . x ≡ λz . y

Others may be introduced by means of theory extensions, particular schemes of
adding new data to Θ. In our theory context model, theory extensions manifest as
monotonic extension of one or more underlying components, i.e. component functions
are assigned values at formerly undefined input values. This monotonicity guarantees
that theory extensions themselves are conservative, i.e. if a judgement holds (Θ `
A), it also holds after a theory extension (Θ ′ ` A).

Synopsis 3 (basic theory extensions)

constant definition constdef f def : (f :: τ [α]) :≡ t

adds a new constant with f :: ∀α. τ with a corresponding theorem f def : f
≡ t, given that t does not contain free variables, the set of type variables in
t is exactly {α}, and f does not occur in t. Monotonicity implies that f has
not yet been introduced.

theorem definition theorem a: P 〈proof 〉
adds a new theorem with a : P, where 〈proof 〉 does not refer to a.

Both schemes are easy to justify: theorem definitions can be inlined by replacing
each reference to a by P, similarly constant definitions can be inlined by replacing
each f in a term to t and each f def in a proof to reflexivity

∧
x . x ≡ x. In other

words, both kinds of extension can be eliminated in an extra-logical step; therefore
they are definitional theory extensions.

Further important extension schemes:

2.1. The logical framework Isabelle/Pure 13

Synopsis 4 (further theory extensions)

type declaration typedecl κ :: ∗ → · · · → ∗
adds a new type constructor κ with a fixed arity.

constant declaration constdecl f :: ∀α. τ
adds a new constant with f :: ∀α. τ which is not specified further.

overloaded definitions overload f κ def : (f :: τ [κ α]) :≡ t

adds a new definition for an existing constant, given that t does not contain
free variables, the set of type variables in t is exactly α, there has been
no previous definition for f with the same or a more general type, and
occurrences of f in t refer either to any α or to other instances κ ′ τ such
that corresponding definitions do not refer to κ Together with type
classes, these definitions allow for overloading in the manner of Haskell 1.0
(see [24] for details).

These theory extensions can be proved consistency-preserving on the meta-theoretic
level. Other extension schemes put on the user the burden to ensure that no nonsense
is introduced; these are called axiomatic and meant to be used rarely, mainly for
defining object logics. As the most generic axiomatic scheme:

Synopsis 5 (axiom declaration)

axiom declaration axiom a: P

adds a new theorem a : P.

2.1.3 Putting on the LCF glasses

Isabelle is an LCF -style proof assistant [21]. In traditional LCF -style systems, proofs
are not recorded explicitly to save memory. Only the propositions are kept as values
of an abstract datatype thm. Primitive inferences are implemented as ML functions
operating on the concrete representation of values of type thm; the corresponding
program module is referred to as the LCF kernel.

This has two consequences: From an implementation point of view, each sophis-
ticated deduction is composed of primitive inferences; indeed, one typical discipline
in LCF -style proof assistant is to implement advanced deductions by breaking them
down to primitive inferences, leaving the logical foundations untouched. From a
conceptual point of view, this requires proof irrelevance: the properties of every the-
orem are completely specified by means of its proposition. In particular, whether a
proof constant foo : f ≡ t is an axiom, a definition or a derived theorem does not
matter. Similarly, there is no distinction between primitive rules of the framework
and derived ones.

Isabelle deviates from the classical LCF style by optionally providing explicit proof
terms. Thus, though most parts of the system follow the principle of proof irrele-
vance, there are some proof-dependent applications where the construction of defi-

14 Chapter 2. Foundations

nitions and theorems actually matters, notably extraction of programs from proofs
(§4.6.1) and elimination of overloading (§4.6.2); but this is outside the core calculus.

2.1.4 A glimpse at the Isar language

The interaction between the Isabelle system and the user happens through the Isar
language. An Isar text is structured as a series of Isar commands, each consisting
of a particular keyword followed by text denoting logical and non-logical entities
(types, terms, names, . . .). When processed incrementally, each command performs
a corresponding transaction on an underlying state.

A major class of commands issues theory updates; for example, there is a command
definition providing a user-view to primitive definitions:

definition K :: α ⇒ β ⇒ α where
K def : K x y ≡ x

Concrete Isar syntax deviates from the abstract notation we have used so far, no-
tably the use of postfix notation for type application. This definition produces the
following theory updates internally:

constdef K def raw : (K :: α ⇒ β ⇒ α) :≡ λx y . x
theorem K def :

∧
x y . K x y ≡ x 〈proof 〉

Note that the free variables in the specification as given by the user are implicitly
generalised.

Similarly, theorems can be added using the lemma command:

lemma K equals:
x ≡ y =⇒ K x z ≡ K y w
unfolding K def by (rule reflexive)

The theorem is stated as a proposition, accompanied by proof text that builds the
corresponding derivation. That proof text typically contains references to proof
commands and proof methods which perform certain reasoning steps. Here, we do
unfolding of the theorem

∧
x y . K x y ≡ x and conclude the proof by using the

rule of reflexivity
∧

x . x ≡ x ; we do not take further heed of the proof text here,
but see §2.2.3. The resulting theory update follows:

theorem K equals:
∧

x y z w . x ≡ y =⇒ K x z ≡ K y w 〈proof 〉

Again, free variables are implicitly generalised.
The commands theorem and corollary are synonyms for lemma but allow to

emphasise different levels of relevance for theorems as a formal comment.

2.2 The Isabelle/HOL system

2.2.1 Isabelle/HOL as extension of Isabelle/Pure

Isabelle/HOL is an implementation of higher-order logic as an extension of Pure:
types of Pure are identified with types in Isabelle/HOL (for short, HOL); HOL in-
troduces a distinguished type bool with constants True and False denoting truth

2.2. The Isabelle/HOL system 15

values in connection with typical logical connectives like implication (−→), quantifi-
cation ∀ x . P x, ∃ x . P x and equality (=), of which logical equivalence (←→) is a
special case. Terms of type bool are embedded into prop by a judgement Trueprop ::
bool ⇒ prop which is usually inserted automatically and not printed by the syntax
layer. Sets on type α by convention are represented as predicates of type α ⇒ bool
with comprehension syntax {x . P x} and membership operator (∈). This object
logic also provides a consistency-preserving type introduction primitive:1

Synopsis 6 (HOL type definition)

type definition typedef κ α = {x ::τ . P x} 〈proof 〉
adds a new type constructor κ as a copy of an existing type τ (with the same
parameters α), restricting the representable values x to those satisfying the
predicate P. Since the meta-theory of higher-order logic demands types to
be non-empty, a witness that κ is inhabited must be provided.

Built on top of these basic ingredients, HOL provides further notions: products α
× β and pairs (x , y); natural numbers nat with Peano-style constructors 0 and Suc
n; lists α list with constructors

[
| |
]

and x : xs, together with list enumeration syntax[
|x1, x2, x3, . . . |

]
. These and corresponding operations are fairly standard and will

be used without detailed explanations; but see §B for a quick overview.

2.2.2 The Isabelle/HOL toolbox

Using the type definition and constant definition primitives, HOL provides derived
definition schemes which internally are mapped down to primitive ones but provide
a more comfortable interface to the user. We give the most important ones here by
example with concrete Isar syntax.

Inductive definitions (inductive) allow to specify a predicate with introduction
rules:

inductive partition :: (α ⇒ bool) ⇒ α list ⇒ α list ⇒ α list ⇒ bool where
partition f

[
| |
] [
| |
] [
| |
]

| f x =⇒ partition f xs ys zs =⇒ partition f (x : xs) (x : ys) zs
| ¬ f x =⇒ partition f xs ys zs =⇒ partition f (x : xs) ys (x : zs)

Internally, they are based on fixed point constructions using the Knaster-Tarski fixed
point theorem [47]. Corresponding elimination and induction rules are derived.

Inductive datatypes (datatype) correspond to datatype declarations in functional
programming language:

datatype expr = Number nat | Var string
| Plus expr expr (infixl ⊕ 65) | Times expr expr (infixl ⊗ 65)

Constructors satisfy the logical characterisations of injectivity and distinctness, e.g.
1Consistency-preserving relative to the HOL standard models which are only a subset of all Pure

models; there are Pure models which are incompatible with typedef!

16 Chapter 2. Foundations

∧
expr1 expr2 expr1 ′ expr2 ′. expr1 ⊕ expr2 = expr1 ′ ⊕ expr2 ′ ←→ expr1 =

expr1 ′ ∧ expr2 = expr2 ′∧
expr1 ′ expr2 ′ list . expr1 ′ ⊗ expr2 ′ 6= Var list

Datatypes are internally constructed by an appropriate inductive predicate together
with a type definition.

For each datatype, a corresponding recursion combinator is constructed which allows
for primitive recursive functions (primrec) on the structure of datatypes:

primrec reverse :: α list ⇒ α list where
reverse

[
| |
]

=
[
| |
]

| reverse (x : xs) = reverse xs @
[
|x |
]

A huge class of terminating recursive functions with pattern matching (fun) are
definable using the construction of explicit function graphs [33]:

fun map2 :: (α ⇒ β ⇒ γ) ⇒ α list ⇒ β list ⇒ γ list where
map2 f

[
| |
]

=
[
| |
]

| map2 f
[
| |
]

=
[
| |
]

| map2 f (x : xs) (y : ys) = f x y : map2 f xs ys

The attentive reader may note that datatype and primrec/fun form the nucleus
of a functional programming language embedded into HOL. Although it will become
apparent in §3.1.3 that code generation itself by no means depends on these spec-
ification mechanisms, they are indispensable tools for anybody who wants to write
functional programs in HOL without tinkering with low-level constructions such as
typedef, constdef etc.

In §4.2.3 we also explain how to turn inductive definitions into executable specifi-
cations, thus extending the programming language to a functional-logic language.

2.2.3 Example proof: The natural numbers are well-founded

We give a small, non-trivial example of a Isar theory development; its primary
purpose is to give a taste of how Isar developments work out in practice.

datatype nat = Zero | Succ nat

A copy of the natural numbers is specified as datatype: each natural number is either
Zero or successor (Succ) of another natural number.2

primrec less (infix ≺ 50) where
m ≺ Zero ←→ False
| m ≺ Succ n ←→ (case m of Zero ⇒ True | Succ m ⇒ m ≺ n)

2Natural numbers are an integral part of the HOL distribution, as is also everything shown in
this section.

2.2. The Isabelle/HOL system 17

We specify the “is less than” relation by means of primitive recursion; the operation
is given infix syntax (≺).

lemma less self :
n ≺ Succ n
by (induct n) simp all

A lemma: each natural number is less than its successor. The primary proof device
is natural induction via method induct which fits nicely with the primitive recursion
scheme. The simp all method invokes the simplifier which performs automated
equational reasoning.

The next proof is already a bit more involved:

lemma less SuccE :
m ≺ Succ n =⇒ m ≺ n ∨ m = n

We state: If a natural number m is less than the successor of another number
n, then either m is less than n or m is equal n.

proof (induct m arbitrary : n)

The proof again opens by induction on m with the additional requirement to
generalise over n. This leaves us with two sub-propositions to prove:

1.
∧

n. Zero ≺ Succ n =⇒ Zero ≺ n ∨ Zero = n
2.
∧

m n. (
∧

n. m ≺ Succ n =⇒ m ≺ n ∨ m = n) =⇒
Succ m ≺ Succ n =⇒ Succ m ≺ n ∨ Succ m = n

On the proof text level, the hypothetical parts of those emerge as fix and
assume, while the conclusions emerge as show.

fix n
show Zero ≺ n ∨ Zero = n by (cases n) simp all

next
fix m n
assume

∧
n. m ≺ Succ n =⇒ m ≺ n ∨ m = n

and Succ m ≺ Succ n
then show Succ m ≺ n ∨ Succ m = n by (cases n) simp all

qed

The proof of the desired induction theorem is given here in full:

lemma less induct :
(
∧

n. (
∧

m. m ≺ n =⇒ P m) =⇒ P n) =⇒ P n
proof −

assume wellfounded :
∧

n. (
∧

m. m ≺ n =⇒ P m) =⇒ P n
have

∧
q . q ≺ Succ n =⇒ P q

proof (induct n)
fix q
have R: P Zero by (rule wellfounded) simp
assume q ≺ Succ Zero
then have q = Zero by (cases q) simp all

18 Chapter 2. Foundations

with R show P q by simp
next

fix n q
assume step:

∧
q . q ≺ Succ n =⇒ P q

assume q ≺ Succ (Succ n)
then have q ≺ Succ n ∨ q = Succ n using less SuccE by blast
then show P q
proof

assume q ≺ Succ n then show P q by (rule step)
next

assume q = Succ n
then show P q by (auto intro: wellfounded step)

qed
qed
with less self show P n by auto

qed

Without going into detail, the primary ingredients of the Isar proof language can be
glimpsed at:

• Pending subgoals of the form
∧
x. P x =⇒ Q x correspond to fix x assume

P x show Q x; the choice of names is up to the writer.

• Proofs are conducted stepwise, accumulating facts (“have”) where each de-
duction is carried out by a subproof.

• Full-blown sub-proofs are bracketed by proof and qed, where both may apply
a method, e.g. induct .

• by denotes a degenerate subproof: by method1 method2 is short for proof
method1 qed method2.

• The block-structure of subproofs is implicit.

For more details see [8].

2.3 Type classes

2.3.1 Syntactic properties

A characteristic property of the Pure logic are type classes [24]. These correspond
to type classes in their classical formulation in Haskell 1.0 [60]. Pure type classes
can also be interpreted as an instance of order-sorted algebra [41]. The admissible
extension of the calculus is accomplished as follows:

• Sorts are added as a further level of logical expressions; sorts s are (possibly
empty) intersections of finitely many classes c: s ::= c1 ∩ . . . ∩ cl.

• Sorts are represented canonically as minimal intersections of finitely many
classes, ordered according to a total order of classes.

• > denotes the empty class intersection, the top sort.

2.3. Type classes 19

• Type variables are decorated by consistent sort annotations: τ ::= κ τ1 . . . τk
| α::s; sort constraints are sometimes omitted in the text, especially if the sort
is >.

This induces the following judgements:

Synopsis 7 (rules for order-sorted algebra)

subclass relation f maps a class c to the set of its direct superclasses {c1, . . . ,
ck}.

arity signature Σ maps a pair of type-constructor κ and class c to their cor-
responding sort arguments sn. Such type-constructor/class pairs are called
instances and written as cκ.

subsort

c ∈ s
f ` c ⊆ s

c ′ ∈ s c ′ ∈ f c
f ` c ⊆ s

f ` c1 ⊆ s · · · f ` cn ⊆ s
f ` c1 ∩ · · · ∩ cn ⊆ s

well-sorted

(f, Σ) ` τ1 :: s1 · · · (f, Σ) ` τn :: sn Σ cκ = sn

(f, Σ) ` κ τn :: c
constr

(f, Σ) ` (α::(· · · ∩ c ∩ · · ·)) :: c
var

(f, Σ) ` τ :: c ′ c ∈ f c ′

(f, Σ) ` τ :: c classrel

(f, Σ) ` τ :: c1 · · · (f, Σ) ` τ :: cn
(f, Σ) ` τ :: c1 ∩ · · · ∩ cn

sort

The subsort relation s1 ⊆ s2 lifts the primitive subclass relation induced by f to sorts
according to the rules of transitivity and intersection. Primitive instance relations
(arities) induced by Σ are lifted to well-sortedness judgements τ :: s in virtue of the
rules of well-sortedness.

Both f and Σ are components of the theory context 〈Θ = (. . . , f, Σ, . . .)〉 and
have to obey some well-formedness conditions:

• f is acyclic, i.e. the transitive closure of the primitive subclass relations induced
by f is cycle-free; in consequence ⊆ is antisymmetric.

• Σ is coregular : if Σ cκ = sn, then for all superclasses c ′ of c (i.e. c ⊆ c ′) holds
that Σ c ′κ = s ′n, where each s ′k in s ′n is a supersort of the corresponding sk
in sn (i.e. sk ⊆ s ′k). Coregularity guarantees important meta-theoretic prop-
erties such as most general unifiers [41] as well as the possibility of dictionary
construction (see §3.2.7).

• f is minimal in the sense that it does not contain transitive edges, e.g. if c1
∈ f c2 and c2 ∈ f c3, then c1 /∈ f c3 since this edge is subsumed. In other
words, f forms a Hasse diagram.

20 Chapter 2. Foundations

Note that subclassing itself is no essential property of order-sorted algebra: by
expanding a sort s to the complete sort

⋂
c. c ⊆ s, the subclass relation becomes

irrelevant since the sort representation subsumes all potential superclasses.

2.3.2 Logical interpretation

The type class properties presented so far allow to use type classes for syntactic
restriction of type instantiation. However such purely syntactic type classes are
rarely used in practice. Type classes gain their usefulness when we assign a logical
meaning to them:

• Types τ are embedded as terms by means of a type constructor itself :: ∗ →
∗ and an unspecified constant TYPE of type ∀α. α itself. By convention we
write the term TYPE of type τ itself as TYPE τ .

• Each type class c is logically interpreted by attaching a constant C with type
∀α. α itself ⇒ prop which acts as a predicate for the judgement τ :: c. As
suggestive notation we write the proposition C (TYPE τ) as (|τ :: c|).

• This notation lifts to sorts naturally: (|τ :: c1 ∩ · · · ∩ cn|) ≡ (|τ :: c1|) ∧ · · · ∧
(|τ :: cn|).

What we want to achieve is implicit reasoning with type classes: if τ :: s is derivable
then also (|τ :: s|) holds. For this sake we ensure that for each c1 ∈ f c2 and Σ cκ
= sn respectively, the corresponding logical witnesses

(|α :: c2|) =⇒ (|α :: c1|)

(|β1 :: s1|) =⇒ . . . =⇒ (|βn :: sn|) =⇒ (|κ βn :: c|)

are provided by means of the following definitional theory extension schemes for
logically interpreted type classes:

Synopsis 8 (theory extensions for order-sorted algebra)

class definition classdef c ⊆ c1 ∩ . . . ∩ cn: P [α]

adds a new class c as subclass of c1 ∩ . . . ∩ cn (by updating the underlying
f at point c with {c1, . . . , cn}), together with the following logical steps:

constdef c def : (|α :: c|) :≡ P [α] ∧ (|α :: c1|) ∧ . . . ∧ (|α :: cn|)
theorem c axiom: P [α :: c] 〈proof 〉
theorem c c1: (|α :: c|) =⇒ (|α :: c1|) 〈proof 〉
theorem . . .
theorem c cn: (|α :: c|) =⇒ (|α :: cn|) 〈proof 〉

The proofs for the logical witnesses follow easily from the definition of (|α ::
c|).

instance definition instance κ :: (s) c 〈proof 〉
proves the theorem

theorem cκ: (|κ β::sn :: c|) 〈proof 〉

2.3. Type classes 21

using the proof given for instance, from where follows the witness (|β1 :: s1|)
=⇒ . . . =⇒ (|βn :: sn|) =⇒ (|κ βn :: c|) easily. Then Σ at point cκ is updated
to s (given that Σ remains coregular).

Since the inference rules for well-sortedness judgements τ :: s mimic the correspond-
ing deductions on predicate judgements (|τ :: s|), these extension schemes guarantee
that τ :: s and (|τ :: s|) are interchangeable; in other word, the following inferences
are admissible [62]:

(|(α::c) :: c|)

P [α :: s]
(|α :: s|) =⇒ P [α :: >]

Note that we have not introduced sort constraints on the type parameters of type
schemes. The reason is that, given the logical interpretation of type classes above,
these bear no logical relevance: it is always safe, given a constant f :: ∀α. τ , to write
down terms containing f in an unconstrained manner. In contrast, for theorems
there is a difference: P (f [α::>]) cannot be derived from P (f [α::c]). Though sort
constraints on type schemes play no role in the foundation of the calculus, for the
benefit of the user the type checker allows to declare sort constraints for constants.

Observe that on the foundational level the typical association of classes and con-
stants (class parameters) known from Haskell is not present; it emerges in the user-
view (see §2.3.3).

The matter of type classes exhibits an inherent oddity of Pure: though instance
judgements explicitly refer to type constructors κ, the logic itself does not provide an
extension scheme to introduce new κs with specific properties, only unspecified κ by
means of type declarations. Nonetheless, derived object logics may provide mecha-
nisms to introduce semantically meaningful type constructors, like HOL typedef (see
§2.2.1).

2.3.3 End-user view

The user is seldom exposed to the foundation of type classes sketched so far. The
user interface for type classes treats them as a special case of abstract algebraic
specifications (locales in Isar terminology [2, 25, 24]). We need not go into details
here but merely present the look-and-feel to the end-user, using the following example
taken from algebra:

class semigroup =
fixes mult :: α ⇒ α ⇒ α (infixl ⊗ 70)
assumes assoc: (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)

Classes are introduces using the class statement. The class is specified given hypo-
thetical operations (fixes, class parameters) together with hypothetical properties
(assumes, class axioms). These are immediately lifted to a global constant (⊗) ::
α ⇒ α ⇒ α with constraint α::semigroup together with a corresponding theorem∧

(x ::α::semigroup) (y ::α::semigroup) z :: α::semigroup. (x ⊗ y) ⊗ z = x ⊗ y ⊗ z.

22 Chapter 2. Foundations

Here, the typical association of class parameters (⊗) to a class (semigroup) emerges.
It is managed by a context component function ω mapping classes to constant names,
in our case: ω semigroup = {(⊗)}.

Instantiation of a type class consists of two parts: giving appropriate specifications
for the class parameters and proving that these satisfy the class axioms:

instantiation nat :: semigroup
begin

In this example the specification of the class parameter specialised on type nat is
given by primrec.

primrec mult nat :: nat ⇒ nat ⇒ nat where
(0::nat) ⊗ n = n
| Suc m ⊗ n = Suc (m ⊗ n)

Internally instantiation takes care that this specification is realised by an over-
loaded definition (in this case, overload mult nat def : (⊗) [nat] :≡ . . .).

Before concluding the target, a proof is carried out that the given specifications
respects the class specification (command instance):

instance proof
fix m n q :: nat
show m ⊗ n ⊗ q = m ⊗ (n ⊗ q)

by (induct m) auto
qed

end

Subclassing is specified by giving a list of superclasses (here, semigroup), together
with further specification elements:

class monoid = semigroup +
fixes neutral :: α (1)
assumes neutl : 1 ⊗ x = x

and neutr : x ⊗ 1 = x

2.4 A framework for describing code generation

Now we turn our attention to a formal description of code generation by shallow
embedding. For this purpose we use equational logic in higher-order rewrite systems
(HRS) as an abstract unified view on both logic and programming language.

In the following direct references to the languages ML and Haskell are made.
These are mainly for illustration; the described principles could easily transferred to
other languages like Scala [44], Python [58], Scheme [56] or F# [49], although no
implementation effort has been done so far in that direction; see Definition 10 for a
precise characterisation of the necessary language properties.

2.4. A framework for describing code generation 23

2.4.1 Higher-order rewrite systems

Synopsis 9 (higher-order rewrite systems)

HRSs [38] describe an equivalence relation ≈ on λ-terms induced by a set of
equations E modulo αβη-conversion; each equation lhs ≡ rhs in E may contain
free variables such that free variables in lhs are a superset of the free variables
in rhs. Due to βη-conversion we can assume that both lhs and rhs are in η-long
normal-form.

Particular instances of HRSs are referred to by their set of equations E.

HRSs provide two interchangeable views:

Reduction systems: A term t is rewritten by applying an equation lhs ≡ rhs from
E to a subterm s in t, which means to instantiate lhs ≡ rhs to lhs ′ ≡ rhs ′ such
that lhs ′ is s and then replace s by rhs ′, resulting in u. This is written as E

t −→ u.

Equational logic: The equivalence relation ≈ is defined as follows:

〈t ≡ u〉 ∈ E
E
 σ t ≈ σ u axiom (where σ is a term substitution)

E
 t ≈ t refl E
 u ≈ t
E
 t ≈ u

sym E
 t ≈ v E
 v ≈ u
E
 t ≈ u

trans

E
 t ≈ u E
 v ≈ w
E
 t v ≈ u w comb E
 v ≈ w

E
 λx . v ≈ λx . w abs

In HRSs α-equivalent terms are identified. We may assume w.l.o.g. that after each
reduction step 〈E
 t −→ u〉, u is in long βη-normal-form, which is reached by β-
normalising and then η-expanding; then the following holds: E
 t ≈ u is equivalent
to E
 t ←→∗ u, where ←→∗ is the symmetric transitive reflexive closure of −→.
This justifies to use both the single-step operational view −→ and the abstract view
≈ interchangeably, depending which is more appropriate in a particular context.

For terms in our HRSs, we choose the Pure term language; terms are well-formed
with respect to an implicit typing context (Υ, Ω, f, Σ). For succinctness we omit
outermost quantifiers in equations, in other words, free variables in equations are
implicitly bound.

Observe the strict separation of the two symbols ≡ and ≈: ≡ serves as separator
between the left-hand side and the right-hand side of directed equations, whereas
≈ denotes the equivalence relation induced by stepwise application of those rewrite
rules; in a certain sense, the equations in E denote the static or compile-time view on
the HRS, whereas the equivalence t ≈ u represents a particular dynamic or runtime
instance of that HRS.

2.4.2 Pure as a HRS

Pure is trivially suitable to simulate a HRS:

24 Chapter 2. Foundations

• Take equational theorems
∧
x. t ≡ u as equations t ≡ u in E.

• Using Pure equality ≡ as the equivalence relation ≈, the inference rules for
equational logic are all primitive Pure inferences as listed in §2.1.2; the axiom
rule is trivial since equations and equivalences coincide and substitutions of
rules are admissible.

2.4.3 HRSs as model for target languages

We now use HRSs to develop a model for target languages which abstracts from
enough details to provide a firm base for code generation.

So far we have used the term “target language” in a loose fashion; the following
definition characterises which properties a programming language has to supply to
serve as target language:

Definition 10 (target language)

A (fragment of a) programming language is a target language if the following
properties hold:

1. Expressions of the language are expressive enough to embed the typed λ-
calculus and its semantics.

2. Evaluating terms representable in the typed λ-calculus leads again to terms
representable in the typed λ-calculus.

3. A facility for syntactic pattern matching is provided.

4. Syntactically, a program can be seen as a list of statements.

5. Semantically, a (well-formed) program P can be described reasonably as a
HRS with equations EP , where each statement contributes a (finite) number
of equations to EP .

For illustration of this definition, have a look a the following diagram depicting an
SML program:

sum [Suc Zero_nat, Suc Zero_nat]

Suc (Suc Zero_nat)

datatype nat = Zero_nat | Suc of nat;

fun plus_nat (Suc m) n = plus_nat m (Suc n)
| plus_nat Zero_nat n = n;

fun sum [] = Zero_nat
| sum (m :: ms) = plus_nat m (sum ms);

This (well-formed) program consists of three statements datatype nat, fun plus_nat
and fun sum; the latter two induce equations which form a HRS which, in the ex-
ample, normalises sum [Suc Zero_nat, Suc Zero_nat] to Suc (Suc Zero_nat).

2.4. A framework for describing code generation 25

Definition 10 refrains from using parts of the language which have no straightfor-
ward interpretation in the typed λ-calculus; this rules out catchable exceptions, im-
perative data structures, etc. Also any kind of structuring devices like name spaces,
abstraction principles, visibility rules, module systems, etc., are not considered.

For ML-like languages, the requirements of Definition 10 are surely reasonable:
points 1, 2 and 3 are satisfied, and programs in essence consist of val/fun/function
definitions which are equations (points 4, 5).

Definition 11 (target language semantics)

Given a target language as characterised by Definition 10, the semantics of any
well-formed program P in that language is given by a HRS by means of point 5
in Definition 10.

This definition already establishes an abstraction level: a HRS does not define any
notion of rule precedence, evaluation order etc., whereas a target language is likely
to do so. So, while a particular HRS might permit a couple of reduction sequences
for a given term, it is not stated which of these the corresponding program will
perform. Since we will only guarantee partial correctness for generated programs,
this is admissible.

2.4.4 Code generation using shallow embedding

Considering code generation using shallow embedding, the HRS abstraction level
from the previous section yields the following conclusions:

• When translating Pure to a target language, point 1 in Definition 10 allows us
to silently identify terms. Formally this identification can be described by a
suitable implicit morphism on terms. For the moment we ignore type classes;
later dictionary construction will allow to eliminate type classes explicitly (see
§3.2.7).

• Point 2 guarantees that each term stemming from an evaluation in the target
language has an inverse image in Pure.

• HRSs may serve as a common abstract view on both Pure and target languages.

Before we establish this common abstract view, an auxiliary definition classifying a
relationship between two HRSs:

Definition 12 (compatibility)

A HRS E1 is compatible with another HRS E2 if for each derivation E1
 t −→∗
u also E2
 t −→∗ u holds, and vice versa.

Obviously, the relation “compatible with” is an equivalence relation.

Definition 13 (code generation)

Given a Pure theory Θ with a set of equations EΘ, we call a target language pro-
gram P the program generated from EΘ if P is well-formed and EP is compatible
with EΘ.

26 Chapter 2. Foundations

In other words, a generated program can be seen as the implementation of a Pure
system of equations, as visualised in the following picture:

P EP

EΘ

t

t

u

u

semantics

*

*

code generation

Compatibility guarantees that each equivalence EP
 t ≈ u stemming from a run
of EP
 t −→∗ u can be simulated by EΘ; thus partial correctness of generated
programs is guaranteed. If EΘ and EP are equal, compatibility holds trivially;
however the definition of compatibility provides enough freedom to cope with slightly
different but appropriately related EΘ and EP , which is a necessity if the term
language of EP is richer than that of EΘ (see §3.2.6 and §3.2.7).

Definition §13 formulates requirements for a program P generated from EΘ but
does not state how such a P shall be constructed. This will be the focus of the next
chapter.

Code generation via shallow embedding only employs notions which have a direct
representation in the logic, e.g. terms, types, equations or patterns; it does not state
anything about concepts which are not represented within the logic but appear by
inspecting the logic from outside: evaluation order, termination, complexity. Our
humble restriction to partial correctness relieves us from dealing with those non-
logical aspects. Obviously, it would be desirable to have a smaller semantic gap, but
practically there are two obstacles:

• There might be no formal specification at all, e.g. for Haskell.

• Even the existence of a rigorous standard does not promise that it is imple-
mented in any real system, as is the case for SML.

For this reasons we are content with the abstraction we have gained using the HRS
model and concentrate on the conclusions and possibilities following from that; in-
deed, our equational logic view is widely accepted as “morally correct” e.g. in the
Haskell community [18].

C H A P T E R 3

Code generation

We do not retreat from reality, we rediscover it.
C. S. Lewis, British author, from:

On Stories, and Other Essays on Literature

Starting with the equational logics framework from the the last chapter, we
introduce the code generator’s architecture. The transition from Pure logic to
an abstract program is given in detail, with special diligence dedicated to the
treatment of type classes. We illustrate how this abstract system is put to work
in collaboration with the HOL system.

Contents
3.1 Towards a concrete code generator 28

3.1.1 Pure and HOL . 28

3.1.2 Patterns and code equations 28

3.1.3 Architecture overview . 30

3.2 An abstract intermediate language 31

3.2.1 Motivation . 31

3.2.2 Definition . 32

3.2.3 Well-formed programs and their semantics 33

3.2.4 A correct translation . 35

3.2.5 Well-sorted systems . 37

3.2.6 Local pattern matching 38

3.2.7 Dictionary construction 40

3.3 Code generation in practice using Isabelle/HOL 48

3.3.1 Code generator default setup 48

3.3.2 class and instantiation 51

3.3.3 The preprocessor . 53

3.3.4 Equality . 54

3.3.5 Producing well-sorted systems 55

3.4 Concerning serialisation 57

3.4.1 Adaptation . 57

3.4.2 Subtle situations and borderline cases 57

3.5 What is “executable”? 59

28 Chapter 3. Code generation

3.1 Towards a concrete code generator

As stated in the last chapter, the essential problem of code generation is to turn a
system of equations EΘ into a corresponding program P satisfying definition §13.
In the following sections we introduce a suitable framework in a top-down manner,
starting with the big picture and ending with details; this streamlined presentation
sometimes comes with the necessity to leave certain issues to the intuition of the
reader at a certain stage, postponing the discussion of subtleties to a later point.

We only guarantee partial correctness. On the one hand, this relieves us from lots
of technical problems; on the other hand, in that sense a program P yielding no
equations is always correct. It is at the discretion of the user to make something
“meaningful” or “practically applicable” out of code generation. This issue will be
taken up in §3.5, leading to a couple of example applications in §4.

The deliberate simplicity of most aspects in the following sections has not been
established a priori but rather evolved from a continuous process of reconsideration
and elimination of superfluous concepts. Arguably, the main achievement is not what
is required but what has been left out while retaining a practically usable system.

3.1.1 Pure and HOL

More has to be said about
the relationship of Pure and
HOL concerning code gener-
ation. The foundation of the
code generator, i.e. the re-
lationship between abstract
logic and executable code, is
completely explained inside
Pure. Since HOL is an exten-
sion of Pure, each HOL the-
ory is also a Pure theory and
thus accessible to code gen-
eration directly. Even more,
in most practical applications
the user of the code genera-

tor is not expected to juggle with raw Pure ingredients in order to derive code from
them, although this is possible of course; instead, HOL is likely to be used, including
its powerful specification and automation tool box. For this sake different scattered
components of the HOL system have been tailored to work smoothly together to
accomplish a practically usable system.

The superficial ambivalence Pure vs. HOL has also an impact in presentation:
abstract generic considerations will use Pure equality (≡), while most concrete ex-
amples will use HOL equality (=). This lifting is admissible since t = t ′ implies t ≡
t ′.

3.1.2 Patterns and code equations

We will syntactically restrict the kind of equations EΘ in the HRS we examine; as
motivation, have a look at these equational theorems:

3.1. Towards a concrete code generator 29

inv :: (int ⇒ int) ⇒ int ⇒ int
inv (λk . k + 1) = (λk . k − 1)

(+) :: int ⇒ int ⇒ int∧
k l r :: int . k + (l + r) = (k + l) + r

The following “Haskell” fragments correspond with those:

inv :: (Integer -> Integer) -> Integer -> Integer
inv (\k -> k + 1) = (\k -> k - 1)

plus :: Integer -> Integer -> Integer
plus k (plus l r) = plus (plus k l) r

Although syntactically these equations are perfect translations, they are not valid
Haskell : the left-hand side of the equations contain abstractions and non-constructor
constants, which is not allowed. Therefore EΘ shall only contain equations of a
particular syntactic shape; to describe these, we need an auxiliary definition:

Definition 14 (pattern)

A pattern is a term which is either a variable or a constant from a set of con-
structors Ξ which is fully applied to arguments which themselves are patterns. To
distinguish patterns from general terms, we write p instead of t, and C instead of
f. More explicitly, (Ω, Ξ) ` pattern p denotes that p is a pattern relative to Ω and
Ξ.

Whenever patterns are involved, the set of constructors Ξ is treated as implicit part
of the typing context (Υ, Ω, f, Σ, Ξ). The choice of the constructor set Ξ has no
logical relevance; its purpose is to guarantee that all constants showing up in terms
which are restricted to patterns are constructors and will therefore not come into
conflict with the strict requirements of patterns in target languages.

Definition 15 (code equation)

An equation f [τ] p ≡ t is called a code equation with head f, arguments p and
right-hand side t if the following syntactic properties hold:

1. the p are patterns,

2. all free variables of t occur in p,

3. all free type variables of t occur in τ ,

4. no free variable occurs more than once in p (left-linearity),

5. if there exists a class c such that f ∈ ω c, then [τ] is a singleton [κ α::s];
otherwise the [τ] are all distinct type variables [α::s].

This syntactic restrictions are the same as found in function definitions of typical
functional programming languages; the different treatment of code equations re-
ferring to class parameters resembles overloading as accomplished by Isabelle type
classes (cf. §2.3.3).

30 Chapter 3. Code generation

3.1.3 Architecture overview

Synopsis 16 (code generator architecture)

The code generator itself consists of three major components carrying out three
steps sequentially as follows:

specification tools user proofs

raw code equations E 0 preprocessing code equations EΘ

intermediate program P serialisation

SML

OCaml

(. . .)

Haskell

translation

• Starting point is a collection of raw code equations E0 in a Pure theory Θ;
due to proof irrelevance their origin does not matter, but typically this will
be either a specification tool or an explicit proof by the user.

• Before these raw code equations E0 are continued with, they can be subjected
to theorem transformations. This preprocessor is an interface which allows
to apply the full expressiveness of ML-based theorem transformations to
code generation; motivating examples are shown in §3.3.3. The result of the
preprocessing step is a structured collection of code equations EΘ.

• These code equations are translated to a program P in an abstract interme-
diate language. Conceptually this covers the whole transition from logic to
code and satisfies the requirements of Definition 13, as will be elaborated in
§3.2.

• Finally, the abstract program P is serialised into concrete source code of
a target language. This step only produces concrete syntax but does not
change the program in essence; all conceptual transformations occur in the
translation step. Therefore we will not consider concrete target languages
at all but discuss any meta-theory at the level of the abstract intermediate
language.

There are two conflicting requirements for a code generator: trustability and flexi-
bility. Simplicity increases the first but prevents the latter; additional functionality
endangers the first. The key to reconcile both can be found in the architecture:

• The architecture clearly separates translation, which is conceptually involved
but technically simple, from serialisation, which is technically involved but
conceptually simple. These two steps are kept to the essential minimum.

• The preprocessing step allows to retain flexibility and to obtain a practically

3.2. An abstract intermediate language 31

usable system: arbitrary transformations can be carried out on raw code equa-
tions, allowing for optimisation etc. All these transformations are guarded
by LCF inferences and do not endanger trustability; this can be seen as an
adaptation of the traditional LCF paradigm to code generation (cf. §2.1.3).

3.2 An abstract intermediate language

3.2.1 Motivation

specification tools user proofs

raw code equations E0 preprocessing code equations EΘ

intermediate program P serialisation

SML

OCaml

(. . .)

Haskell

translation

The abstract intermediate language
plays a central role in the whole
process since it marks the tran-
sition between (formally checked)
logical entities and target language
source code. Its purpose is to cap-
ture the essence of target languages
while still abstracting from techni-
cal, target-language specific details,
motivated by three observations:

• By capturing the essence of target languages once and for all, code infrastruc-
ture is shared conveniently among different target languages.

• An intermediate language facilitates examination of properties of the transla-
tion since it provides a rest point before the “dirty” and diverse world of a
target language is entered. One could also think about a formalisation of its
properties.

• A key difference between logic and target languages is the following: logical
entities from a theory Θ like equations and declaration are constructed and
derived in a certain way, but after this has been accomplished, the construc-
tion is not relevant any longer (cf. §2.1.3). On the opposite, target languages
naturally require an explicit construction in a program.

To illustrate the last issue, two small counterexamples for SML “programs” which
would not compile, but their fictive inverse images are easily constructible:

fun g x y = y;
fun f x = f (g (h x) x);

does not compile since the constant h mentioned in the function definition of f is not
present. A series of declarations yielding a suitable theory Θ could look like this:

constdecl h :: ∀α. α ⇒ α
constdef g def : (g :: α ⇒ β ⇒ β) :≡ λx y . y
constdef f def : (f :: α ⇒ α) :≡ λx . x
theorem g code: g x y ≡ y 〈proof 〉
theorem f code: f x ≡ f (g (h x) x) 〈proof 〉

using the theorems g code and f code as equations for EΘ.

The second “program”

32 Chapter 3. Code generation

fun f (x, y) = (f x, f y);

would not typecheck in SML due to type circularity. With overloading this can be
easily accomplished in HOL:

constdecl f :: ∀α. α ⇒ α
overload f × def : (f :: α × β ⇒ α × β) :≡ λp. (f (fst p), f (snd p))
theorem f × code: f (x , y) ≡ (f x , f y) 〈proof 〉

So, the translation from logic to intermediate language is a process of “coagulation”
which groups free-floating equations and logical entities from Θ to an intermediate
program P. Thereby enough “structure” is added so that the final transition step to
a target language program does not produce “garbage” as in the examples above,
but well-formed programs. This step is common to all target languages, thus it is
reasonable to place it at this stage.

3.2.2 Definition

We define the intermediate language as a kind of “Mini-Haskell” which coagulates
free-floating logical entities onto four statements: data for datatypes, fun for func-
tions, class and inst for type classes and overloading.

Definition 17 (statements of the intermediate language)

data κ αk = f1 of τ1 | · · · | fn of τn

fun f :: ∀α::sk. τ where
f [α::sk] p1 = t1
| . . .
| f [α::sk] pn = tn

class c ⊆ c1 ∩ · · · ∩ cm where
f1 :: ∀α. τ1, . . . , fn :: ∀α. τn

inst κ α::sk :: c where
f1 [κ α::sk] = t1, . . . , fn [κ α::sk] = tn

Terms are Pure terms; later we will extend the term language with local pattern
matching (§3.2.6).

A notable deviation to Haskell is that inst only permits one single equation per
class parameter; this is merely for technical reasons since it facilitates dictionary
construction (§3.2.7). In practice this is not really a restriction, see §3.3.2.

In the next section we will equip the intermediate language with

• a definition of well-formedness,

• an equational semantics describing how an intermediate program P yields a
HRS EP .

3.2. An abstract intermediate language 33

These are chosen in a way that they mirror the given well-formedness requirements
and equational semantics of target languages; since serialisation does not involve any
conceptual transformations but only produces concrete syntax, each well-formed
intermediate program can be serialised to a well-formed target-language program
with the same equational semantics.

3.2.3 Well-formed programs and their semantics

Informally, well-formedness demands that in a program everything “fits together”.
It is a forward-link to concrete target languages which guarantees that the result of
serialisation is a compilable target language program.

For this reason it is sufficient to understand the intermediate language intuitively
as a fragment of Haskell where data, class and inst correspond to data, class and
instance respectively and fun is syntactic sugar for function bindings. Explicit
dictionary construction (cf. §3.2.7) will explain how class and inst statements can be
eliminated by intermediate programs; the remaining data and fun statements map
to SML and OCaml programs in a straightforward manner.

We define well-formedness by associating each statement with prerequisites and
results; prerequisites of a statement are judgements which must be well-formed for a
statement to be well-formed; results are typing declarations which can be assumed
for the whole program to hold if the statement is well-formed. These declarations are
similar to theory declarations as introduced in §2.4 and §2.3. Contrary to a theory
Θ whose number of components is extensible, we are now in a fixed setting and thus
the typing context is not an extensible sum but a fixed tuple ΓP = (ΥP , ΩP , Ξ,
fP , ΣP , ωP) whose components roughly correspond to those of theories Θ with the
following functions as components:

ΥP maps type constructors κ to their arity ∗ → . . . → ∗.

ΩP maps constants f to their most general type ∀α::sk. τ ; unlike as in Pure, sort
constraints are an integral part of the type since they have operational rele-
vance.

Ξ denotes the set of all constants f that are constructors; recall that the choice of Ξ
does not contribute to the semantics, but is relevant for well-formedness since
in target languages the distinction between constructors and non-constructors
is essential.

fP , ΣP , ωP are the subclass relation, the arity signature and the constant-to-class
association as described in §2.3.

Prerequisites and results for the four kinds of statements are as follows:

Definition 18 (prerequisites and results)

data κ αk = f1 of τ1 | · · · | fn of τn

prerequisites τ1, . . . , τn
results ΥP κ = ∗k → ∗,

ΩP f1 = ∀αk. τ1 ⇒ κ αk, . . . , ΩP fn = ∀αk. τn ⇒ κ αk,
f1 ∈ Ξ, . . . , fn ∈ Ξ

34 Chapter 3. Code generation

fun f :: ∀α::sk. τ ⇒ τ where
f [α::sk] p1 = t1
| . . .
| f [α::sk] pn = tn

prerequisites p1 :: τ , . . . , pn :: τ , t1 :: τ , . . . , tn :: τ ,
pattern p1, . . . , pattern pn

results ΩP f = ∀α::sk. τ ⇒ τ

class c ⊆ c1 ∩ · · · ∩ cm where
f1 :: ∀α. τ1, . . . , fn :: ∀α. τn

prerequisites c1, . . . , cm, τ1, . . . , τn
results fP c = {c1, . . . , cm}, ωP c = {f1, . . . , fn},

ΩP f1 = ∀α::c. τ1, . . . , ΩP fn = ∀α::c. τn

inst κ α::sk :: c where
f1 [κ α::sk] = t1, . . . , fn [κ α::sk] = tn

prerequisites κ :: ∗k → ∗, s1, . . . , sk, c,
ωP c = {f1, . . . , fn},
f1 :: ∀α::c. τ1, . . . , fn :: ∀α::c. τn,
t1 :: τ1 [κ α::sk], . . . , tn :: τn [κ α::sk]

results ΣP cκ = α::sk

Results of the data statement effectively restrict the type signatures of constructors.
Prerequisites and results of the inst statement couple together arities κ α::sk :: c
and type parameters [κ α::sk] of overloaded code equations.

Definition 19 (programs and well-formedness)

A set P of statements is called a program. A program is well-formed if all prereq-
uisites of all statements in P are typeable in the typing context ΓP induced by
all results stemming from all statements in P plus the initial context declaration
of the function space ΥP (⇒) = ∗ → ∗ → ∗.

This description may seem more complicated then necessary but it accomplishes
recursion and mutual mutual recursion (between funs, datas, insts) quite easily. The
initial presence of function space (⇒) means that the function spaces of Pure, the
intermediate language and (by way of consequence) the target language are identified.

The equational semantics of a program is now easily captured:

Definition 20 (semantics of a program)

Let P be a well-formed program. Then its semantics is given as a pair (ΓP , EP)
where ΓP is the typing context induced by all results stemming from all statements
in P and EP is the set of all equations contained in fun and inst statements.

3.2. An abstract intermediate language 35

3.2.4 A correct translation

A translation can be modelled by a partial function transl from a set of code equations
EΘ to an intermediate program P ; the definition of correctness follows directly from
Definition 13:

Definition 21 (correct translation)

A translation transl is correct if for any input argument EΘ it either fails or yields
a well-formed P such that EP is compatible with EΘ.

In the context of the whole code generation procedure, compatibility is a backlink
from intermediate language to logic. Compatibility is implied by the following two
properties:

• EP is syntactically the same as EΘ.

• Each expression occurring in EP is also typeable in Θ.

The first is easily accomplished. Concerning the second, according to the definition
of EP , each expression in EP also occurs in P ; well-formedness of P implies that
each expression in EP is well-typed with respect to ΓP . Therefore it is sufficient to
guarantee that each type judgement derivable wrt. ΓP is also derivable wrt. Θ.

For this purpose, each statement in a program P is associated with a certificate
in the logic; such a certificate consists of a bunch of equations and statements about
the context:

Definition 22 (certificates for intermediate statements)

data κ αk = f1 of τ1 | · · · | fn of τn

context Υ κ = ∗k → ∗
Ω f1 = ∀αk. τ1 ⇒ κ αk
. . .
Ω fn = ∀αk. τn ⇒ κ αk

fun f :: ∀α::sk. τ where
f [α::sk] p1 = t1
| . . .
| f [α::sk] pn = tn

equations f [α::sk] p1 ≡ t1
. . .
f [α::sk] pn ≡ tn

context Ω f = ∀αk. τ

class c ⊆ c1 ∩ · · · ∩ cm where
f1 :: ∀α. τ1, . . . , fn :: ∀α. τn

context f c = {c1, . . . , cm}
ω c = {f1, . . . fn}
Ω f1 = ∀α. τ1

. . .
Ω fn = ∀α. τn

36 Chapter 3. Code generation

inst κ α::sk :: c where
f1 [κ α::sk] = t1, . . . , fn [κ α::sk] = tn

equations f1 [κ α::sk] ≡ t1
. . .
fn [κ α::sk] ≡ tn

context (f, Σ) ` κ α::sk :: c

The translation is guided by these certificates according to

Definition 23 (translation respecting certificates)

A translation transl from a system of code equations EΘ to a program P respects
the certificates in Definition 22 if each context judgement induced by P holds in
Θ and EP is exactly EΘ.

We discuss the certificates briefly:

data What seems astonishing at first sight is that datatypes are characterised purely
syntactically; the typical injectivity and distinctness properties of constructors
known from HOL datatypes are absent. The reason is that in our HRS model
an equations holds regardless of which logical interpretation the constants in
its term patterns obey.

Here again the non-logical role of constructors Ξ comes to light: Ξ is not
referred to in any certificate at all since the requirement to classify constants
into constructors and non-constructors is a requirement of the target language,
not the logic.

In the extreme case, two logically equal constants f ≡ g, each of a type foo
could serve as datatype constructors for type foo; of course both would be
distinguishable by their different representation in the target language (e.g. by
means of target-language built-in equality), but this does not damage compat-
ibility.

The absence of logical properties of datatypes gives some freedom in choosing
constructors and allows for simple datatype abstraction, which we examine
further in §4.1.

fun The logical equations match the semantics of the corresponding fun exactly, as
to be expected. The sort constraints of the constant’s type are not determined
by the theory context Θ, where they are not represented anyway, but by the
code equations.

class This merely echos the logical subclass structure and class parameter associa-
tion.

inst The overloaded code equations match the semantics of the corresponding inst
exactly. The context statement concerning the instance cκ is formulated such
that the sort arguments need not be the same as in the underlying theory but
may be more special; this freedom allows an appropriate treatment of equality
to be discussed in §3.3.4.

3.2. An abstract intermediate language 37

To show how the certificates for intermediate statements guarantee compatibility,
we examine the relationship between ΓP = (ΥP , ΩP , Ξ, fP , ΣP , ωP) and Θ = (Υ,
Ω, f, Σ, ω, . . .):

• ΥP , fP and ωP are projections of Υ, f and ω.

• Ξ has no relation to the theory context Θ.

• Stripping the sorts from any type scheme of ΩP yields the corresponding type
scheme of Ω.

• Sort arguments in ΣP are not more general than in Σ.

Therefore, ΓP does not permit any typing judgements more general than Θ. In
addition, certificates guarantee that EP and EΘ are the same. In conclusion, the
following lemma characterises the translation sufficiently:

Lemma 24

Let transl be a translation which respects the certificates in Definition 22 and
produces only wellformed programs P ; then the resulting program P yields a
HRS EP which is compatible with EΘ.

3.2.5 Well-sorted systems

Definitions 19 and 22 of well-sorted programs and certificates also characterise sys-
tems of code equations EΘ which can actually be translated to a well-formed pro-
grams P ; necessary properties are e.g. a suitable choice of Ξ such that constants
are either constructors or non-constructors consistently across the whole system EΘ.
Further, given a constant f which is not a class parameter, all equations in EΘ con-
taining f as head must have the same sort arguments — this corresponds to the
equations of a fun statement. Most of these properties are self-evident, with one
exception which deserves closer attention: the role of ΣP .

Sort constraints in ΩP f are determined by the sort constraints of the correspond-
ing code equations for constant f ; sort arguments in ΣP cκ are determined by Σ
and corresponding code equations g [κ α::s] ≡ t for all g ∈ ω c. Thus ΩP and ΣP
are mutually dependent: sort constraints in ΩP may require a specialisation of ΣP ,
which in turn can induce more special sort constraints in ΩP etc. If the translation
of a system of code equations EΘ shall yield a well-formed program, it demands
that sort arguments in ΣP are chosen appropriately; this motivates the following
definition:

Definition 25 (well-sorted systems)

A tuple (f, ΣP , ω, EΘ) is called well-sorted if each equation in EΘ is well-sorted
wrt. (f, ΣP) and

• all code equations f [α::sk] p ≡ t headed by a constant f which is not a class
parameter have the same sort constraints sk on their type arguments αk,

• there is at most one code equation f [κ α::sk] p ≡ t for each pair of a class
parameter f and a type constructor κ,

38 Chapter 3. Code generation

• for each code equation f [κ α::sk] p ≡ t headed by a class parameter f of
class c (i.e. f ∈ ω c) and instance cκ with sort arguments ΣP cκ = s ′k holds
∀ 1≤i≤k . (f, ΣP) ` s ′i ⊆ si.

In other words, a well-sorted system guarantees that sort constraints stemming from
equations relevant for fun and inst statements do not break well-formedness (§3.2.3).
ΣP is then also the arity signature of the resulting program.

How ΣP is determined practically will be sketched in §3.3.4 together with moti-
vating examples.

3.2.6 Local pattern matching

A common idiom in target languages is local pattern matching:

case t of p1 ⇒ t1 | · · · | pn ⇒ tn

where t, t1, . . . , tn are terms and p1, . . . , pn are patterns. Pattern matching occurs
in further variants:

λ(C y). t | (D y). u for (λx . case x of C y ⇒ t | D y ⇒ u)
let C y = x in t for case x of C y ⇒ t
. . .

It is advantageous to have an explicit representation of pattern matching in the
intermediate language. First, an extension of HRSs with pattern matching:

Definition 26 (HRS with local pattern matching)

A HRS with local pattern matching extends the term language by explicit case
expressions case t of p1 ⇒ t1 | · · · | pn ⇒ tn where t is a term of type τp, t1, . . . ,
tn are terms of type τ t and p1, . . . , pn are patterns of type τp.

The semantics of such a case expression is given by a decomposition into an
additional fun statement in the underlying program

fun g :: τ ⇒ τp ⇒ τ t where
g x p1 = t1
| . . .
| g x pn = tn

and a corresponding case-free expression g x t, where g is a fresh constant symbol
in the program and x::τ are all free variables in tn.

Simultaneously we extend the term language of the intermediate language with ex-
plicit pattern matching.

But how do case expressions emerge from Pure terms? HOL creates the illusion
of case expressions by providing for each datatype κ α with constructors C1 of τ1

· · · Cn of τn a case combinator

caseκ :: (τ1 ⇒ β) ⇒ · · · ⇒ (τn ⇒ β) ⇒ κ α ⇒ β

where the special syntax

3.2. An abstract intermediate language 39

case t of C1 x1 ⇒ t1 | · · · | Cn xn ⇒ tn

is represented by

caseκ (λx1. t1) · · · (λxn. tn) t

Similarly we enrich the translation from Pure to the intermediate language by an
explicit concept of case combinators:

Definition 27 (case combinators and case certificates)

A constant caseκ is named case combinator if it is accompanied with a case cer-
tificate of the form∧

wn x1. caseκ w1 · · · wn (C1 x1) ≡ w1 x1

. . .∧
wn xn. caseκ w1 · · · wn (Cn xn) ≡ wn xn

Until now, we have identified the term language of Pure and the intermediate lan-
guage; so the transformation of Pure terms to terms in the intermediate language
has been identity. With the introduction of case expressions the transformation gets
more involved: If caseκ is a case combinator, then the Pure expression

caseκ w1 · · · wn t

is mapped to

case t of C1 x1 ⇒ w1 x1 | · · · | Cn xn ⇒ wn xn

with cases wk xk normalised modulo βη.
This modification is admissible: the mapping of Pure caseκ expressions is revert-

ible; thus it is still possible to identify terms in EΘ and EP . Further observe that
case certificates for a case combinator caseκ are also code equations for caseκ. These
simulate the equational semantics of the corresponding case expression; in other
words, the two systems

f · · · ≡ · · · case t of C1 x1 ⇒ w1 x1 | · · · | Cn xn ⇒ wn xn

and

f · · · ≡ · · · caseκ w1 · · · wn t

caseκ w1 · · · wn (C1 x1) ≡ w1 x1

. . .
caseκ w1 · · · wn (Cn xn) ≡ wn xn

have the same equational semantics. Thus case expressions can be seen as mere
syntactic sugar which inlines a set of code equations representing the corresponding
case certificate:

Lemma 28

Let EΘ be a system of code equations with a subset Ecase ⊆ EΘ of case certificates.

40 Chapter 3. Code generation

Then the translation from EΘ \ Ecase to a program P with local pattern matching
by means of case certificates Ecase yields a HRS EP which is compatible to EΘ.

The modified translation can be slightly extended to accomplish further HOL syntax
facilities: beyond simple patterns, HOL syntax also supports nested and partial
patterns; nesting is achieved by a suitable combination of case combinators, partial
patterns map each non-present pattern to the unspecified constant undefined in
HOL. The code generator takes this into account when translating case expressions
by leaving clauses with undefined out, thus yielding a pattern match failure if the
corresponding pattern would occur, which is legitimate since we only demand partial
correctness. Indeed, arbitrary constants can be treated like undefined.

Another syntactic HOL device is a simple let for local bindings without polymor-
phism. This can be seen as a degenerate case with the case certificate∧

w x . Let x w ≡ w x

All these minor extensions are admissible.

3.2.7 Dictionary construction

The underlying idea. For target languages with type classes like Haskell, the
serialisation of class and inst statements is straightforward. Otherwise, type classes
and overloading are eliminated by means of dictionary construction. The idea behind
is simple: eliminate overloading by abstraction. E.g. if in a function

fun greater :: ∀α. α ⇒ α ⇒ bool where
greater [α] x y = not (less eq x y)

less eq refers to a class parameter, this overloading can be eliminated by abstracting
greater over less eq :

fun greater :: ∀α. (α ⇒ α ⇒ bool) ⇒ α ⇒ α ⇒ bool where
greater [α] less eq x y = not (less eq x y)

Each call to greater is then augmented by passing an appropriate less eq, which is
either also an abstracted additional parameter or an appropriate instance of less eqκ
on a particular type, as follows:

fun between :: nat ⇒ nat ⇒ nat ⇒ bool where
between m n q = less eqnat m n ∧ greater less eqnat n q

Intuitively, the choice of the overloaded definition to take in a particular place is
propagated through a system of equations until typing allows for a decision.

Type classes describe a discipline of how to domesticate this idea. A class state-
ment for class c defines a record-like data type δc α (dictionary type) which contains
fields for all class parameters of c. The class parameters themselves are defined as
funs which project the appropriate field from a value of type δc α. An inst state-
ment for an instance cκ provides a concrete record-like value of type δc (κ α::sk)
containing the concrete instances for class operations of class c on type constructor
κ, which is given as dictionary term cκ.

3.2. An abstract intermediate language 41

Superclasses are accomplished by extending dictionary types with additional fields
for superclass dictionaries and corresponding projections πc ′→c. By construction,
different projection paths πc1→c ◦ πc ′→c1 and πc2→c ◦ πc ′→c2 in a diamond diagram
yield the same result, making the exact choice of a projection path irrelevant.

Dictionary construction on intermediate programs. Definition 29 gives the
rules for dictionary construction on intermediate programs in detail.

The transformation of a program P into a program P∆ where type classes and
overloading are eliminated by means of dictionary construction is shown in tabular
form; beside the transformation of class and inst statements sketched above, also
funs must be translated to abstract over and insert dictionaries appropriately; for
this purpose two notations are used:

• {|∀α::s. τ |} adds dictionary type parameters to a type scheme ∀α::s. τ .

• {|t |} inserts dictionaries into a term t ; this is almost identity, except for con-
stants f [τ1, . . . , τn].

Dictionary construction proper for a constant f [τ1, . . . , τn] is accomplished by
a constructive interpretation of the underlying well-sortedness judgements τ1 :: s1

. . . τn :: sn, where {|τ :: s|} maps a well-sortedness judgement to the correspond-
ing dictionaries. This inserts occurrences of concrete dictionary terms cκ as well as
dictionary variables; by convention dictionary variables are named after the corre-
sponding type variable with an additional index αj , or α∆ if the index does not
matter.

Type expressions τ themselves are invariant under dictionary construction — sort
constraints on type variables are only an annotation convention and no syntactic
part of the type itself.

Definition 29 (dictionary construction)

relative to a fixed context (ΩP , fP , ΣP):

for well-sortedness judgements

ΣP cκ = sn
{|κ τ1 · · · τn :: c|} = cκ {|τ1 :: s1|} · · · {|τn :: sn|}

{|constr|}

{|(α::(c1 ∩ · · · ∩ cj ∩ · · · ∩ cn)) :: cj |} = αj
{|var|}

c ∈ fP c ′

{|τ :: c|} = πc ′→c {|τ :: c ′|}
{|classrel|}

{|τ :: c1 ∩ · · · ∩ cn|} = {|τ :: c1|} · · · {|τ :: cn|}
{|sort|}

for type schemes

{|∀α1 :: (c1;1 ∩ · · · ∩ c1;k1) · · · αn :: (cn;1 ∩ · · · ∩ cn;kn). τ |} =
∀α1· · ·αn. δc1;1 α1 ⇒ · · · ⇒ δc1;k1

α1

⇒ · · · ⇒ δcn;1 αn ⇒ · · · ⇒ δcn;kn
αn ⇒ τ

42 Chapter 3. Code generation

for terms

ΩP f = ∀α1::s1 · · · αn::sn. τ
{|f [τ1, . . . , τn]|} = f {|τ1 :: s1|} · · · {|τn :: sn|}

{|const|}

{|x ::τ |} = x ::τ

{|λx ::τ . t |} = λx ::τ . {|t |}

{|t1 t2|} = {|t1|} {|t2|}

for programs

statement transformed statement(s)

data κ αk =
f1 of τ1 | · · · | fn of τn

data κ αk =
f1 of τ1 | · · · | fn of τn

fun f :: ∀α::sk. τ where
f [α::sk] p1 = t1
| . . .
| f [α::sk] pn = tn

fun f :: {|∀α::sk. τ |} where
{|f [α::sk] p1|} = {|t1|}
| . . .
| {|f [α::sk] pn|} = {|tn|}

class c ⊆ c1 ∩ · · · ∩ cm where
g1 :: ∀α. τ1, . . . ,
gn :: ∀α. τn

data δc α =
∆c of (δc1 α) · · · (δcm

α) τ1 · · · τn

fun πc→c1 :: ∀α. δc α ⇒ δc1 α where
πc→c1 (∆c xc1 · · · xcm

xg1 · · · xgn
) = xc1

. . .
fun πc→cm :: ∀α. δc α ⇒ δcm α where
πc→cm (∆c xc1 · · · xcm

xg1 · · · xgn
) = xcm

fun g1 :: ∀α. δc α ⇒ τ1 where
g1 (∆c xc1 · · · xcm

xg1 · · · xgn
) = xg1

. . .
fun gn :: ∀α. δc α ⇒ τn where
gn (∆c xc1 · · · xcm

xg1 · · · xgn
) = xgn

inst κ α::sk :: c where
g1 [κ α::sk] = t1, . . . ,
gn [κ α::sk] = tn

fun cκ :: {|∀α::sk. δc (κ α::sk)|} where
{|κ α::sk :: c|} = ∆c

{|κ α::sk :: c1|} · · · {|κ α::sk :: cn|}
{|t1|} · · · {|tn|}

with fP c = {c1, . . . , cn}

The transformation of inst statements also reveals the role of coregularity (cf. §2.3.1)
for dictionary construction: syntactically, the presence of the instance κ α::sk :: c
also demands the presence of all instances κ α::sk :: ci for all ci in fP c.

Next we discuss why correctness is maintained under dictionary construction.

3.2. An abstract intermediate language 43

Well-formedness. Following Definition 19 we have to set prerequisites and results
of P and P∆ in relation to each other. Results induce typing contexts ΓP = (ΥP ,
ΩP , Ξ, fP , ΣP , ωP) and Γ∆ = (Υ∆, Ω∆, Ξ∆, f∆, Σ∆, ω∆), which are related as
follows:

• By construction f∆, Σ∆ and ω∆ are empty.

• Ξ∆ = Ξ ∪ {∆c. c ∈ dom fP } and Υ∆ = ΥP ∪ {(δc, ∗). c ∈ dom fP }.

• Ω∆ = {(f , 〈{|∀α::sk. τ |}〉). ΩP f = 〈∀α::sk. τ〉 ∧ @ c. f ∈ ωP c}
∪ {(πc→c ′, 〈∀α. δc α ⇒ δc ′ α〉). c ′ ∈ fP c}
∪ {(g , 〈∀α. δc α ⇒ τ〉). g ∈ ωP c ∧ ΩP g = 〈∀α. τ〉}
∪ {(cκ, 〈{|∀α::sk. δc (κ α::sk)|}〉). ΣP cκ = sk}

From this the prerequisites of data statements in P∆ follow easily; concerning funs,
we first prove:

Lemma 30 (types of dictionary values)

Γ∆ ` {|τ :: c1 ∩ . . . ∩ cn|} :: (δc1 τ) · · · (δcn τ)

The proof follows by induction over the dictionary construction rules for well-sortedness
judgements. Next follows:

Lemma 31 (type preservation under dictionary construction)

ΓP ` t :: τ
Γ∆ ` {|t |} :: τ

Proof by induction over the dictionary construction rules for terms: except {|const|}
all rules in the translations of terms are trivial to prove; the additional arguments
added to a particular constant f by {|const|} have exactly the same type as the
arguments added to the type scheme of the fun statement which introduces f.

From this follows well-typedness of equations in fun statements. What remains to
be shown is that the transformed equations meet the syntactic requirements of code
equations (cf. Definition 15):

• Equations are headed by function symbols: f in equations stemming from fun
statements in P, cκ in equations stemming from inst.

• On the left hand side, distinct fresh dictionary variables α∆ are added, which
are trivially patterns and left-linear.

• By hypothesis, every free type variable on the right hand side occurs on the
left hand side; thus all dictionary variables added on the right hand side also
occur on the left hand side.

• Since constructors’ type schemes have empty sort constraints, constructors do
not gain dictionary parameters; thus patterns are left unchanged by dictionary
construction.

Thus P∆ is well-formed.

44 Chapter 3. Code generation

Towards compatibility. Next we turn our attention to the rewrite systems in-
duced by P and P∆, named EP and EP∆ . The major difference between both
systems is that EP∆ contains additional constants ∆c which complicate the analysis.
To cope with these we first state a lemma which allows to view reduction sequences
EP∆
 t −→ · · · −→ u in a normal form where reduction steps involving ∆c only
occur at certain places.

Lemma 32 (normalising of tuple projections)

Let ∆, π1, . . . , πk be dedicated constants in a HRS whose set of equations de-
composes into three partitions:

• E∆ = {〈f x ≡ ∆ t〉} where only x occur as free variables in t;

• Eπ = {〈π1 (∆ xk) ≡ x1〉, . . . , 〈πk (∆ xk) ≡ xk〉};

• E whose equations are left-linear and do not contain ∆.

Then each reduction sequence

E] E∆] Eπ
 t −→ · · · −→ u

where t does not contain ∆ has a normal form where each reduction step using
E∆ occurs in only two kinds of positions:

• directly in front of a corresponding Eπ step;

• in a (possibly empty) trailing reduction sequence consisting only of E∆ steps
and consequent rewrites below the corresponding ∆ constants (subsequently
referred to as “tail”).

Metaphorically speaking, we have one rule E∆ introducing tuples, corresponding
tuple eliminations Eπ and generic rules E that do not influence the structure of
tuples. Then w.l.o.g. E∆ steps occur lazily.

The proof works by shifting each E∆ step (denoted by ∆−→) as far to the right as
possible. A step following a ∆−→ falls into one of the following categories:

• π−→: a corresponding Eπ step;

• ‖−→: an orthogonal non- ∆−→ step;

• a−→: a step above the ∆ introduced by ∆−→, but no ∆−→ itself;

• b−→: a step below the ∆ introduced by ∆−→, but no ∆−→ itself.

A ∆−→ step directly followed by a corresponding π−→ is already normalised. To
account for this by convention we treat such pairs as a monolithic singleton step
∆π−→. These steps are not treated specially: in the classification scheme above a ∆π−→
can be classified e.g. as a

‖−→ relative to some ∆−→ step.

3.2. An abstract intermediate language 45

A critical observation is that in the reduction sequence ∆−→ · b−→ the order cannot
be swapped. Thus we cannot move a singleton ∆−→ rightward but have to consider
a compound ∆−→ · b−→∗ instead. Their occurrences are shift right as follows:

1. t ∆−→ · b−→k · π−→ u ; t ∆π−→ · b−→k−l u

2. t ∆−→ · b−→k · ‖−→ u ; t
‖−→ · ∆−→ · b−→k u

3. t ∆−→ · b−→k · a−→ u ; t a−→ · (∆−→ · b−→k)∗ u

Each of these shifts is valid since the initial and resulting term remain the same:

• In case 1, all steps in b−→k which do not affect the part of the redex (∆ . . .)
projected by π−→ can be stripped; the remaining steps b−→k−l can take place
after the projection step π−→.

• In case 2, the swapped steps do not interfere at all.

• In case 3, the redex (∆ . . .) may be dropped or replicated; the compound steps
∆−→ · b−→k must be iterated accordingly.

If applied iteratively, these shifts produce the desired normal form by pushing each
∆−→

• either to its corresponding π−→ step, resulting in a normalised ∆π−→ step

• or into a trailing series of compounds ∆−→ · b−→∗, which is the “tail” from the
lemma proposition.

The procedure terminates according to the following argument: any reduction se-
quence matches the pattern

· ((∆−→ | ∆π−→) · b−→∗)r1 · −→ · ((∆−→ | ∆π−→) · b−→∗)r2 ·
−→ · · · · · −→ · ((∆−→ | ∆π−→) · b−→∗)rn ·

where −→ denotes an arbitrary step not being of class b−→ wrt. to the precedent
∆−→ or ∆π−→ step. This pattern induces a tuple (r1, r2, . . . , rn); the corresponding

lexicographic order can be employed as termination measure:

• In case 1: (v, r , s, w) ; (v, r + s, w)

• In case 2: (v, r , s, w) ; (v, r − 1, s + 1, w)

• In case 3: (v, r , s, w) ; (v, r − 1, s + ∗, w)

46 Chapter 3. Code generation

Compatibility. Going back to Definition 12, the property that two HRSs are
compatible refers to an implicit morphism which translates terms in one HRS into
the other, and back. So far, this morphism has always been identity or a simple
one-to-one translation in the case of case expressions (cf. §3.2.6). With dictionary
construction, the matter gets more complicated and deserves our special attention.
Unsurprisingly, the morphism from EP and EP∆ is the (injective) dictionary con-
struction function {|·|}. The morphism back from EP∆ to EP strips all terms oc-
curring as dictionary arguments; we denote this (surjective) function by |}·{|. These
morphisms are no bijection: it holds |}({|t |}){| = t but not {|(|}w{|)|} = w. The reason
is that EP∆ has richer term expressions, mainly due to superclass projections πc→c ′.
Having set out these prerequisites, the propositions to prove in the first place are

1. EP
 t −→∗ u implies EP∆
 {|t |} −→∗ {|u|}

2. EP∆
 w −→∗ u implies EP
 |}w{| −→∗ |}u{|

For case 2, we can assume w.l.o.g. that w is the image of a term t under dictionary
construction; thus w = {|t |} and |}w{| = |}({|t |}){| = t, which simplifies the proposition
to

2. EP∆
 {|t |} −→∗ u implies EP
 t −→∗ |}u{|

Intuitively, dictionary construction separates the decision which equation to take for
a particular overloaded constant g from its actual application. Lemma 32 allows us
to rejoin both: We apply it for each class c occurring in P ; the tuple constructor
is ∆c, the corresponding introduction equation is 〈cκ α∆ = ∆c . . . 〉 the projections
are equations with overloaded constants 〈g (∆c . . . x . . .) = x 〉 and superclass
projections 〈πc→c ′ (∆c . . . x . . .) = x 〉. Thus we can examine reduction sequences
in EP∆ in normal form such that each application of an equation 〈cκ α∆ = ∆c . . . 〉

• either is immediately followed by an application of a corresponding equation
〈g (∆c . . . x . . .) = x 〉 or 〈πc→c ′ (∆c . . . x . . .) = x 〉, forming compounds,

• or occurs in the “tail” of the reduction sequence.

We can ignore the “tail” entirely: given such a “tail” u −→∗ u ′, all reduction steps
in −→∗ occur at redex positions which are stripped away by |}·{|, so |}u{| = |}u ′{|.

Further we can now merge the cκ / g / πc→c ′ equations in EP∆ , resulting in a
system {|EP |} which in structure is quite similar to EP :

equations in EP equations in {|EP |}

〈f [α::s] p ≡ t〉 〈{|f [α::s] p|} ≡ {|t |}〉
 〈f α∆ p ≡ {|t |}〉

〈g [κ β::s] ≡ u〉 〈{|g [κ β::s]|} ≡ {|u|}〉
 〈g (cκ β∆) ≡ {|u|}〉

〈πc→c ′ (cκ β∆) ≡ c ′κ . . . 〉

For each equation 〈lhs = rhs〉 in EP there is a corresponding equation 〈{|lhs|} =
{|rhs|}〉 in {|EP |}. Let us denote these two classes of equations as E and {|E|}, re-
spectively. As a distinguished property {|EP |} contains equations of class {|π|} that
normalise superclass projections πc→c ′. Dictionary construction on the left hand
side of an equation for a non-overloaded constant f produces additional left-linear
arguments α∆. In case of an equation for an overloaded constant g, it produces as

3.2. An abstract intermediate language 47

argument a constant cκ applied to additional left-linear arguments β∆; here cκ serves
as syntactic discriminator which overloaded equation for g to use exactly: different
instances κ τ and κ ′ τ ′ produce different discriminators cκ and cκ ′. Note further
that

• if a E equation can be applied to a particular redex in a term t, the correspond-
ing {|E|} equation can be applied to the corresponding redex in term {|t |}

• and correspondingly, if a {|E|} equation can be applied to a particular redex in
a term t, the corresponding E equation can be applied to the corresponding
redex in term |}t{|.

This holds due to the structure of left hand sides in {|E|} equations: dictionary con-
struction only inserts new free variables but does not restrict or widen the patterns
themselves.

Applying Lemma 32, the propositions to prove are

1. EP
 t −→∗ u implies {|EP |}
 {|t |} −→∗ {|u|}

2. {|EP |}
 {|t |} −→∗ u implies EP
 t −→∗ |}u{|

Proof of (1). The reduction sequence EP
 t −→∗ u consists of a series of E
steps; each of these we can simulate by a corresponding {|E|} step and a subsequent
normalising of superclass projections, according to the following picture:

EP

{|EP |}

t

{|t |}

w

w ′ {|w |}

{|·|}

E

{|E|} {|π|}∗

{|·|}

Proof of (2). In the opposite direction, the situation is more delicate since the mere
existence of dictionary values cκ . . . breaks the direct correspondence: Reductions
in a term t which take place under a cκ have no effect in |}t{|! The solution is to
use an appropriate amortisation when constructing the reduction sequence in EP ;
whenever a step in {|EP |} is to be simulated in EP , the following rules apply:

• If the step occurs below any cκ, this reduction is “memorised” at the next cκ
directly above in the term structure.

• Otherwise, the corresponding step in EP is applied directly.

• If the step strips a cκ by projecting it, all memorised steps at this cκ which
remain valid after projection are simulated right after; this can happen re-
cursively, e.g. the stripping of a cκ underneath a cκ ′ can lead to new steps
memorised at cκ ′.

• If the steps drops a cκ by other means, the memorised steps are ignored —
they have no relevance for construction of the reduction sequence in EP at all.

48 Chapter 3. Code generation

Both proof directions together show that EP is compatible with {|EP |}. By means
of Lemma 32, EP then is compatible with EP∆ . With transitivity follows that EΘ

is compatible with EP∆ .

Finally with well-formedness of P∆ follows:

Lemma 33

Let P a well-formed program; let P∆ be the program constructed by applying
dictionary construction to P. Then P∆ is well-formed and EP∆ is compatible with
EP .

3.3 Code generation in practice using Isabelle/HOL

specification tools user proofs

raw code equations E0 preprocessing code equations EΘ

intermediate program P serialisation

SML

OCaml

(. . .)

Haskell

translation

With the properties discussed so far,
code generation is explained thor-
oughly. In the following, we illus-
trate how this manifests in prac-
tice — from the user perspective,
HOL offers everything needed for
writing down reasonable executable
specifications without much need
to think what happens behind the
scene. The key technique to achieve this is the provision of a suitable set of code
equations EΘ. Here the preprocessor component plays a central role.

The requirements put on the translation in §3.2.3 and §3.2.4 give three degrees of
freedom:

• Code equations EΘ can be chosen freely from the theorems of the theory Θ.
Internally, the code generator does bookkeeping on a pool of raw code equations
E0 selected by the user implicitly or explicitly, from which a subset is chosen
and transformed by the preprocessor to derive EΘ. Case certificates Ecase ⊆
E0 are a special instance of code equations.

• Constructor constants Ξ can be chosen freely, as long as they conform to the
syntactic restrictions imposed by Definition 22 and the patterns in code equa-
tions and case patterns contain only constructor constants. In theory it is
possible to infer Ξ from the code equations, but it is more robust from the user
perspective to be explicit here.

• Sort constraints in ΩP and ΣP are not fixed; they are implicitly relative to Σ
and EΘ.

3.3.1 Code generator default setup

As noted in §2.2.2, datatype and definition/primrec/fun form the core of a func-
tional programming language inside HOL. To accommodate for this, these statements
are instrumentalised the following way:

3.3. Code generation in practice using Isabelle/HOL 49

• A datatype registers the given constructors in Ξ and registers the correspond-
ing case combinator certificate in Ecase.

• definition/primrec/fun registers the resulting equations in E0, internally
lifting every HOL equation (=) to a Pure equation (≡).

This means that “naive” code generation can proceed without further ado. For
example, here a simple “implementation” of amortised queues [14]:

datatype α queue = Queue (α list) (α list)

definition empty :: α queue where
empty = Queue

[
| |
] [
| |
]

primrec enqueue :: α ⇒ α queue ⇒ α queue where
enqueue x (Queue xs ys) = Queue (x : xs) ys

fun dequeue :: α queue ⇒ α option × α queue where
dequeue (Queue

[
| |
] [
| |
]
) = (None, Queue

[
| |
] [
| |
]
)

| dequeue (Queue xs (y : ys)) = (Some y , Queue xs ys)
| dequeue (Queue xs

[
| |
]
) =

(case rev xs of y : ys ⇒ (Some y , Queue
[
| |
]

ys))

Then the corresponding Haskell code looks as follows:

module Example where {

fold :: forall a b. (a -> b -> b) -> [a] -> b -> b;
fold f [] s = s;
fold f (x : xs) s = fold f xs (f x s);

rev :: forall a. [a] -> [a];
rev xs = fold (\ a b -> a : b) xs [];

list_case :: forall t a. t -> (a -> [a] -> t) -> [a] -> t;
list_case f1 f2 (a : list) = f2 a list;
list_case f1 f2 [] = f1;

data Queue a = Queue [a] [a];

empty :: forall a. Queue a;
empty = Queue [] [];

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (Queue [] []) = (Nothing, Queue [] []);
dequeue (Queue xs (y : ys)) = (Just y, Queue xs ys);
dequeue (Queue (v : va) []) =

let {
(y : ys) = rev (v : va);

} in (Just y, Queue [] ys);

enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (Queue xs ys) = Queue (x : xs) ys;

}

Some observations and remarks:

50 Chapter 3. Code generation

• Code generation performs a dependency analysis to generate all statements
necessary for a consistent program: if a constant f occurs on the right hand
side of a code equations, all code equations headed by f are included in EΘ.

• The translations for type α queue and functions empty and enqueue bear no
surprise.

• The generated code for lists and option values uses the Haskell built-in lists
and Maybe values due to a default serialiser setup whose discussion we postpone
for a moment (see §3.4.1).

• In the last clause of the dequeue function, observe that compared to the original
fun specification, the first list argument for the Queue constructor in the left-
hand side pattern is split into a (:) expression. This is not due to the code
generator but due to fun which disambiguates overlapping patterns by splitting
them sequentially [33]:

dequeue (Queue
[
| |
] [
| |
]
) = (None, Queue

[
| |
] [
| |
]
)

dequeue (Queue xs (y : ys)) = (Some y , Queue xs ys)
dequeue (Queue (v : va)

[
| |
]
) =

(case rev (v : va) of y : ys ⇒ (Some y , Queue
[
| |
]

ys))

• The “partial” case (whose remaining clauses internally are undefined, cf. §3.2.6)
is mapped to a case with only one clause, which by convention is printed as a
let.

It is emphasised that, though in this example the Isar source text and the resulting
Haskell text appears quite similar, what happens is not a translation of the source
text; instead, the source text produces a theory Θ from which the resulting program
text is ultimately generated. Θ can also be enriched manually to produce different
code — e.g. we could provide an alternative fun for dequeue proving the following
equations explicitly:

lemma [code]:
dequeue (Queue xs

[
| |
]
) =

(if xs =
[
| |
]

then (None, Queue
[
| |
] [
| |
]
) else dequeue (Queue

[
| |
]

(rev xs)))
dequeue (Queue xs (y : ys)) = (Some y , Queue xs ys)
by (cases xs, simp all) (cases rev xs, simp all)

The annotation code is an Isar attribute which states that the given theorems should
be considered as code equations for a fun statement — the corresponding constant
is determined syntactically. The resulting code:

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (Queue xs (y : ys)) = (Just y, Queue xs ys);
dequeue (Queue xs []) =
(if null xs then (Nothing, Queue [] [])
else dequeue (Queue [] (rev xs)));

Note that the equality test xs =
[
| |
]

has been replaced by the predicate null xs.
This is due to a default setup in the preprocessor to be discussed further in §3.3.3.

For examples for user-specified constructors for datatypes see §4.1, §4.2.2 and
§4.2.3.

3.3. Code generation in practice using Isabelle/HOL 51

3.3.2 class and instantiation

Concerning type classes and code generation, let us again examine an example from
abstract algebra (cf. §2.3.3):

class semigroup =
fixes mult :: α ⇒ α ⇒ α (infixl ⊗ 70)
assumes assoc: (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)

class monoid = semigroup +
fixes neutral :: α (1)
assumes neutl : 1 ⊗ x = x

and neutr : x ⊗ 1 = x

instantiation nat :: monoid
begin

primrec mult nat where
0 ⊗ n = (0::nat)
| Suc m ⊗ n = n + m ⊗ n

definition neutral nat where
1 = Suc 0

lemma add mult distrib:
fixes n m q :: nat
shows (n + m) ⊗ q = n ⊗ q + m ⊗ q
by (induct n) simp all

instance proof
fix m n q :: nat
show m ⊗ n ⊗ q = m ⊗ (n ⊗ q)

by (induct m) (simp all add : add mult distrib)
show 1 ⊗ n = n

by (simp add : neutral nat def)
show m ⊗ 1 = m

by (induct m) (simp all add : neutral nat def)
qed

end

We define the natural operation of the natural numbers on monoids:

primrec pow :: nat ⇒ α::monoid ⇒ α::monoid where
pow 0 a = 1
| pow (Suc n) a = a ⊗ pow n a

This we use to define the discrete exponentiation function:

definition bexp :: nat ⇒ nat where
bexp n = pow n (Suc (Suc 0))

52 Chapter 3. Code generation

The corresponding code:

module Example where {

data Nat = Zero_nat | Suc Nat;

plus_nat :: Nat -> Nat -> Nat;
plus_nat (Suc m) n = plus_nat m (Suc n);
plus_nat Zero_nat n = n;

class Semigroup a where {
mult :: a -> a -> a;

};

class (Semigroup a) => Monoid a where {
neutral :: a;

};

pow :: forall a. (Monoid a) => Nat -> a -> a;
pow Zero_nat a = neutral;
pow (Suc n) a = mult a (pow n a);

neutral_nat :: Nat;
neutral_nat = Suc Zero_nat;

mult_nat :: Nat -> Nat -> Nat;
mult_nat Zero_nat n = Zero_nat;
mult_nat (Suc m) n = plus_nat n (mult_nat m n);

instance Semigroup Nat where {
mult = mult_nat;

};

instance Monoid Nat where {
neutral = neutral_nat;

};

bexp :: Nat -> Nat;
bexp n = pow n (Suc (Suc Zero_nat));

}

An inspection reveals that the equations stemming from the primrec statement
within instantiation of class semigroup with type nat are mapped to a separate
function declaration mult_nat which in turn is used to provide the right-hand side
for the instance Semigroup Nat. This perfectly agrees with the restriction that
inst statements may only contain one single equation for each class class parameter
(see §3.2.2). The instantiation mechanism manages that for each class parameter
f [κ α::sk] to be defined by term t a shadow constant fκ [α::sk] is defined as follows:

constdef fκ primitive def : fκ [α::sk] :≡ t
overload fκ overload def : f [κ α::sk] :≡ fκ [α::sk]

From this the proper definition follows by transitivity:

theorem fκ def : f [κ α::sk] ≡ t 〈proof 〉

Equation fκ overload def is used for the inst statement; using it as a rewrite rule,
code equations for f [κ α::sk] can be turned into code equations for fκ [α::sk]. This
happens transparently, providing the illusion that class parameters can be instanti-
ated with more than one equation.

3.3. Code generation in practice using Isabelle/HOL 53

This is a convenient place to show how explicit dictionary construction manifests
in generated code. Here, the same example in OCaml :

module Example =
struct

type nat = Zero_nat | Suc of nat;;

let rec plus_nat
x0 n = match x0, n with Suc m, n -> plus_nat m (Suc n)
| Zero_nat, n -> n;;

type ’a semigroup = {mult : ’a -> ’a -> ’a};;
let mult _A = _A.mult;;

type ’a monoid = {semigroup_monoid : ’a semigroup; neutral : ’a};;
let neutral _A = _A.neutral;;

let rec pow _A
x0 a = match x0, a with Zero_nat, a -> neutral _A
| Suc n, a -> mult _A.semigroup_monoid a (pow _A n a);;

let neutral_nat : nat = Suc Zero_nat

let rec mult_nat
x0 n = match x0, n with Zero_nat, n -> Zero_nat
| Suc m, n -> plus_nat n (mult_nat m n);;

let semigroup_nat = ({mult = mult_nat} : nat semigroup);;

let monoid_nat =
({semigroup_monoid = semigroup_nat; neutral = neutral_nat} :
nat monoid);;

let rec bexp n = pow monoid_nat n (Suc (Suc Zero_nat));;

end;; (*struct Example*)

The translation follows the abstract rules given in §3.2.7 but uses a little bit syntactic
sugar: instead of datatypes, it uses record types for dictionary types.

3.3.3 The preprocessor

As introduced in §3.1.3, the preprocessor allows to employ arbitrary transformations
on the initial raw code equations E0. The preprocessor does not interfere with
the meta-theory behind the code generator since all the steps it is able to do are
carried out through the LCF inference kernel — it just provides means of implicit
automation. Typical tasks of the preprocessor include:

• dependency analysis: if a constant f occurs on the right hand side of a code
equation in EΘ, all code equations in E0 headed by f are added to EΘ.

• normalising type arguments such that they are the same across all code equa-
tions for a particular constant f.

• specialising sort constraints in EΘ to achieve a well-sorted system (f, ΣP , ω,
EΘ) (see further §3.3.5).

Beyond that, arbitrary LCF-style rewrite transformations can be configured, which
typically include:

54 Chapter 3. Code generation

• replacing non-executable constructs by executable ones;
e.g. rewrite rule

∧
x xs. x ∈ set xs ←→ member xs x

• replacing executable but inconvenient constructs;
e.g. rewrite rule

∧
xs. xs =

[
| |
]
←→ null xs

Various more ambitious applications will be presented in §4.2.2 and §4.2.3.

3.3.4 Equality

An interesting question is how HOL equality (=) is handled by the code generator.
Constant (=) is characterised in HOL by the following axiomatisation:

refl :
∧

t . t = t
subst :

∧
s t P . s = t =⇒ P s =⇒ P t

ext :
∧

f g . (
∧

x . f x = g x) =⇒ f = g

It is anything but obvious how this shall yield something executable. One Haskellish
option could be to ignore (=) entirely but instead provide a different equality opera-
tion eq belonging to a type class eq which is then supposed to implement the desired
notion of “equality”. But this is not feasible in practice — people tend to use (=)
quite often, and this would burden the user to provide two versions of theorems, one
with (=) and the other with eq. However the use of a type class shows the way. The
key addition is to ensure that (=) and eq behave the same:

class eq =
fixes eq :: α ⇒ α ⇒ bool
assumes eq : eq x y ←→ x = y

This allows

• to implement (=) by eq using the equation x = y ←→ eq x y

• to provide suitable code equations for eq on a particular type – which for
datatypes can be automated easily.

What remains is to propagate the constraint eq through the whole system of code
equations, to achieve a well-sorted system. For example, the equations for the list
membership test:

member [α::type] :: α list ⇒ α ⇒ bool
member [α::type]

[
| |
]

y ←→ False
member [α::type] (x : xs) y ←→ x = y ∨ member [α::type] xs y

are given an additional class constraint eq on the list type in order to fit together
with the code equation x = y ←→ eq x y of (=):

member [α::eq] :: α::eq list ⇒ α::eq ⇒ bool
member [α::eq]

[
| |
]

y ←→ False
member [α::eq] (x : xs) y ←→ x = y ∨ member [α::eq] xs y

3.3. Code generation in practice using Isabelle/HOL 55

This propagation of sort constraints need not be done manually by the user since
the preprocessor does this automatically.

The sketched approach towards implementing equality has two major advantages:
it does not touch the foundation of the code generator since only inner-logical devices
are applied, and it does not depend on any notion of equality in target languages
which can be quite different from HOL equality.

3.3.5 Producing well-sorted systems

The eq class yields an example demonstrating how sort constraints in fP may influ-
ence sort arguments in ΣP :

class total order =
fixes less eq :: α ⇒ α ⇒ bool (infixl � 50)
assumes order refl : x � x
and order trans: x � y =⇒ y � z =⇒ x � z
and antisym: x � y =⇒ y � x =⇒ x = y
and linear : x � y ∨ y � x

lemma not less eq :
¬ x � y ←→ y � x ∧ x 6= y
using linear by (auto simp: order refl antisym)

instantiation ∗ :: (total order , total order) total order
begin

definition less eq prod :: α × β ⇒ α × β ⇒ bool where
x � y ←→ fst x � fst y ∧ fst x 6= fst y
∨ fst x = fst y ∧ snd x � snd y

instance proof
qed (auto simp: less eq prod def order refl not less eq

intro: order trans dest : antisym)

end

definition between :: α::total order ⇒ α ⇒ α ⇒ bool where
between x y z ←→ x � y ∧ y � z

definition framed :: α::total order ⇒ α × α ⇒ α ⇒ bool where
framed x p y ←→ between (x , x) p (y , y)

The following generated Haskell code uses the built-in Eq class due to a default
adaptation setup (see §3.4.1), a fact that need not bother here:

module Example where {

class Total_order a where {
less_eq :: a -> a -> Bool;

};

56 Chapter 3. Code generation

less_eqa ::
forall a b.
(Eq a, Total_order a, Total_order b) => (a, b) -> (a, b) -> Bool;

less_eqa x y =
less_eq (fst x :: a) (fst y :: a) && not (fst x == fst y) ||
fst x == fst y && less_eq (snd x :: b) (snd y :: b);

instance (Eq a, Total_order a,
Total_order b) => Total_order (a, b) where {

less_eq = less_eqa;
};

between :: forall a. (Total_order a) => a -> a -> a -> Bool;
between x y z = less_eq x y && less_eq y z;

framed :: forall a. (Eq a, Total_order a) => a -> (a, a) -> a -> Bool;
framed x p y = between (x, x) p (y, y);

}

What is essential is that the instance eq× which in the logic has arity

× :: (total order , total order) total order

under code generation maps to

inst × (α :: total order ∩ eq) (β :: total order) :: total order

How does the additional eq constraint on α enter the stage? Observe the code
equation for (�) [α::total order × β::total order] on the product type:

(�) [α::total order × β::total order] x y ←→ (�) [α::total order] (fst x) (fst y)
∧ fst x 6= fst y ∨ fst x = fst y ∧ (�) [β::total order] (snd x) (snd y)

The occurrence of (=) on type α issues the preprocessor to add an eq constraint on
α:

(�) [α::(eq ∩ total order) × β::total order] x y ←→
(�) [α::(eq ∩ total order)] (fst x) (fst y) ∧ fst x 6= fst y ∨
fst x = fst y ∧ (�) [β::total order] (snd x) (snd y)

Recalling §3.3.2, internally the class parameter (�) [α::total order × β::total order]
on products is replaced by (�×) [α::type] [β::type]. The equation underlying the inst
for total order× then is

(�) [α::total order × β::total order] =
(�×) [α::total order] [β::total order]

Since the (�×) [α::type] [β::type] on the right hand side again enforces an eq con-
straint on α, this requires to specialise the equation:

(�) [α::(eq ∩ total order) × β::total order] =
(�×) [α::(eq ∩ total order)] [β::total order]

Consequently the whole inst is specialised.

This propagating of sort constraints through a system of code equations is per-
formed by the preprocessor by means of a fixpoint algorithm. Equality using class eq
is a canonical example how the preprocessor propagates sort constraints through a
system of code equations; a further instance of this problem can be found in §4.2.1.

3.4. Concerning serialisation 57

3.4 Concerning serialisation

specification tools user proofs

raw code equations E0 preprocessing code equations EΘ

intermediate program P serialisation

SML

OCaml

(. . .)

Haskell

translation

Serialisation prints an intermedi-
ate program piecewise into concrete
source code of a target language pro-
gram; since the structure of the in-
termediate program already is close
to the target program, this concep-
tually involves little further trans-
formations. Accomplishing con-
crete target language source code is
rather technical; we will only touch the subject here and point to the documentation
for further reading [23].

3.4.1 Adaptation

Technically, each serialiser consists of a generic part providing specific printing rules
for statements, terms, types etc., and an adaptation layer allowing for special printing
of particular constants, type constructors and classes. Typically applications of
adaptation include:

• readability and aesthetics; e.g. for fundamental types like tuples, lists and
options, the default setup is to use the corresponding target-language counter-
parts, including pretty syntax.

• efficiency; e.g. the possibility to implement HOL ints by target-language built-
in integers as described in §4.2.2.

• interaction with predefined target-language ingredients; e.g. mastering imper-
ative data structures as described in §4.3.

3.4.2 Subtle situations and borderline cases

In practically rarely occurring situations, serialisation is not straightforward. We
give a cursory glance of some:

data without constructors. The certificates for data statements permit degener-
ated types without any constructor. Though this is of little practical use, it is not
rejected by the translation. Serialisation for Haskell bears no problem; concerning
ML, such an empty datatype foo is serialised as datatype foo = Foo, where Foo
is an identifier not used elsewhere in the program.

fun without equations. A further degenerate case are fun statements without
any equations. These can be seen as functions which always fail. For this reason it is
legitimate to translate such empty fun statements into functions raising an exception
or error.

58 Chapter 3. Code generation

Mutual recursion between fun statements. Traditionally, ML languages dis-
tinguish between value bindings val (without function arguments) and function
bindings fun (with function arguments). Value bindings do not permit mutual re-
cursion; however in some higher-order situations (e.g. §4.2.3), fun statements with
no arguments can be mutually recursive. This is accomplished by adding unit values
() as pseudo-arguments to the function bindings and invocations; after this mutu-
ally recursive block, simple value bindings val foo = foo () allow to use foo in
the further run naively without an additional (). The same mechanisms allows to
accomplish mututal recursion between fun and inst statements in ML.

Haskell has just one function declaration concept and therefore does not need this
workaround.

Polymorphic recursion. Polymorphic recursion occurs when a constant in a re-
cursive specification occurs with different type instances. In traditional Hindley-
Milner type inference as implemented in ML and Isabelle, this is not possible since
the inference cannot cope with this. However there can still be a valid Hindley-
Milner type: Haskell masters this problem by requiring an explicit type constraint
which then has just to be checked rather than inferred.

Although the HOL specification tools themselves do not allow for polymorphic
recursion, nonetheless code equations can be constructed which contain polymorphic
recursion, e.g. the following equations for list reversal:

rev (x : xs) = flat (rev
[
|
[
|x |
]
, rev xs |

]
)

rev
[
|x , y |

]
=
[
|y , x |

]
rev

[
|x |
]

=
[
|x |
]

rev
[
| |
]

=
[
| |
]

Interesting examples of polymorphic recursion [45] require advanced recursive data-
types which are beyond the capabilities of the datatype command, but this does
not imply that these types cannot be constructed some other way. So, although
this example is pathological, it demonstrates that code equations with polymorphic
recursion can occur in principle.

The ML serialiser does not provide a workaround for this; the code is naively
generated:

fun rev [] = []
| rev [x] = [x]
| rev [x, y] = [y, x]
| rev (x :: xs) = flat (rev [[x], rev xs]);

and then rejected by the ML compiler.

Dictionaries in contravariant position. Another issue affects type classes whose
parameters have a type of a particular form:

class typerank =
fixes typerank :: α itself ⇒ nat

Here the type variable α occurs only in the input arguments, not in the output value;
let us call this contravariant position.1 The class typerank allows to encode the rank

1The type α itself is the phantom type used in the logical interpretation of type classes (see
§2.3.2); the corresponding intermediate statement is data α itself = TYPE.

3.5. What is “executable”? 59

of a type in the logic: the rank of an atomic type is 0, for a parametrised type the
rank is the successor of the maximum of the ranks of all its arguments. E.g. for nat
and α × β, the instances look this:

instantiation nat :: typerank
begin

definition
typerank (:: nat itself) = 0

instance ..

end

instantiation ∗ :: (typerank , typerank) typerank
begin

definition
typerank (:: (α × β) itself) =

Suc (max (typerank (TYPE α)) (typerank (TYPE β)))

instance ..

end

Let us inspect the generated code for typerank on products in Haskell :

data Itself a = Type;

class Typerank a where {
typeranka :: Itself a -> Nat;

};

typerank ::
forall a b. (Typerank a, Typerank b) => Itself (a, b) -> Nat;

typerank Type =
Suc (maxa (typeranka (Type :: Itself a))

(typeranka (Type :: Itself b)));

The occurrences of Type on the right hand side are decorated with explicit type
constraints; otherwise the context would provide too little information to infer the
type of each Type. The Haskell serialiser uses an heuristic to determine whether
such type annotations are necessary.

In ML dictionaries are represented explicitly, so this problem does not occur there.

3.5 What is “executable”?

Until this moment we have refrained to state explicitly which fragment of HOL is
“executable”. On the one side, in §3.2.5 some properties were given which a system
of code equations EΘ must obey to be translatable to an intermediate program P :
most notably a suitable choice of constructors Ξ, and well-sortedness.

60 Chapter 3. Code generation

On the other side, practically this answer is not very helpful: First, it does not
state anything whether EΘ is actually “meaningful” — the empty system EΘ = {}
is well-sorted and yields a partially correct program by definition! Second, even a
system violating those criteria need not to be inherently non-executable because it
could just result from an inappropriate choice of code equations — look ahead to
§4.1.2 to see an example of something that looks non-executable at first sight but in
fact is.

For this reason we do not use the attribute “executable” in a formal way but
pragmatically: specifications are executable if they can be turned into executable
programs in a target language using the code generator with support of the pre-
processor, still leaving open the question whether the generated program is able to
perform something “useful”. This leads to the following classification of executable
specifications: executable Isar specifications include

• datatype and class statements;

• definition, primrec and fun statements with only executable constants on
the right hand side;

• instantiations using executable means of specification;

• types and constants with an explicit executable implementation consisting of
appropriate constructors and code equations;

• constants which are turned executable by a suitable preprocessor setup (e.g. equal-
ity on proper datatypes, cf. §3.3.4).

Note that in equations stemming from primrec and fun only patterns occur on the
left hand side (cf. §3.2.3). For generic functions with explicit construction proofs
this does not hold necessarily:

function even :: nat ⇒ bool where
even (2 ∗ n) ←→ True
| even (2 ∗ n + 1) ←→ False

proof −
fix P :: bool
fix m :: nat
assume 0:

∧
n. m = 2 ∗ n =⇒ P

and 1:
∧

n. m = 2 ∗ n + 1 =⇒ P
show P proof (cases m mod 2 = 0)

case True then have m = 2 ∗ (m div 2) by arith
with 0 show P .

next
case False then have m = 2 ∗ (m div 2) + 1 by arith
with 1 show P .

qed
qed (simp all , arith)

termination even by rule+

This is a perfect logically consistent function specification, but the left hand sides of
the resulting equations contain non-constructors!

3.5. What is “executable”? 61

The following chapters contain many fragments of executable specifications, ei-
ther built with the HOL specification tool box or manually using explicit proofs of
equations. They illustrate various practically reasonable ways to develop executable
specifications using HOL and the code generator together and thus are example ap-
plications supporting the aim of this thesis: bringing the worlds of theorem proving
and functional programming closer together.

62 Chapter 3. Code generation

C H A P T E R 4

Turning specifications into programs

My thesis is that programming is not at the bottom of
the intellectual pyramid, but at the top. It’s creative

design of the highest order. It isn’t monkey or donkey
work; rather, as Edsger Dijkstra famously claimed, it’s
amongst the hardest intellectual tasks ever attempted.

Richard Bornat, British computer scientist,
from: In defence of programming

So far we have presented the basic ingredients of the code generator. We now
turn the focus to the question how we can actually make use of it. To this end
we discuss various specification examples which illustrate datatype abstraction
in HOL, a fundamental principle to turn abstract specifications into executable
ones. We sketch some applications combining the code generator with the ex-
isting expressiveness of the deductive system: executing inductive predicates,
propositions on finite types, binary representation of natural numbers. As an
example for an adaptation of the serialiser, we discuss possibilities to operate
with destructive data structures within the pure logic of HOL. Further sections
demonstrate how the code generator collaborates with other parts of the system:
evaluation, counterexample generation, proof terms, and proof extraction.

Contents
4.1 Datatype abstraction . 64

4.1.1 Amortised queues revisited 64

4.1.2 Implementing rational numbers 66

4.1.3 Mappings . 68

4.1.4 Stocktaking . 72

4.2 Combining code generation and deductions 72

4.2.1 Enumerating finite types 72

4.2.2 Binary representation of natural numbers 75

4.2.3 Inductive predicates . 78

4.3 Mastering destructive data structures 81

4.3.1 Side effects, linear type systems and state monads 81

64 Chapter 4. Turning specifications into programs

4.3.2 A polymorphic heap in HOL 82

4.3.3 Putting the heap into a monad 83

4.3.4 Interfacing with destructive code 85

4.4 A quickcheck implementation in Isar 87

4.4.1 Evaluation and reconstruction 87

4.4.2 A random engine in HOL 89

4.4.3 Generating random values of datatypes 90

4.4.4 Checking a proposition . 91

4.5 Normalisation by evaluation 91

4.6 Applications of proof terms for code generation 93

4.6.1 Extraction from constructive proofs 93

4.6.2 Definitional eliminating of overloading 96

4.1 Datatype abstraction

In the examples shown so far (e.g in §3.3.1), the constructors stem directly from
HOL datatype declarations. This is just a convenience since in many cases this
will be the desired thing. Nonetheless the choice of constructors for datatypes in
generated code is free as long as the types of constructors conform to some syntactic
restrictions (cf. §3.2.3). This freedom establishes a simple concept for datatype
abstraction, which we will examine with some examples.

In contrast to the previous chapter which describes how the code generator works,
this one focusses on how it can be applied. So all specification and proof develope-
ments are carried out by the user of the system, unless it is explicitly indicated that
particular steps occur automatically.

4.1.1 Amortised queues revisited

From a practical point of view, the amortised queues presented in §3.3.1 are not
wholly convincing: the amortised representation is convenient for execution but
clutters proofs involving queues considerably.

One improvement could be to establish enough abstract properties of amortised
queues once and for all which can be used in further proofs and hide the primitive
details of the specification.

Here we give a different, more direct approach. Let us start with a logical specifi-
cation of queues in a straightforward manner:

datatype α queue = Queue (α list)

empty :: α queue
empty = Queue

[
| |
]

enqueue :: α ⇒ α queue ⇒ α queue
enqueue x (Queue xs) = Queue (xs @

[
|x |
]
)

dequeue :: α queue ⇒ α option × α queue
dequeue (Queue

[
| |
]
) = (None, Queue

[
| |
]
)

dequeue (Queue (x : xs)) = (Some x , Queue xs)

4.1. Datatype abstraction 65

On top of this, we are able to provide an alternative amortised characterisation of
queues as follows: first, we specify:

AQueue :: α list ⇒ α list ⇒ α queue
AQueue xs ys = Queue (ys @ rev xs)

Thus AQueue logically describes the embedding of a pair of lists representing an
amortised queue into the corresponding value of type α queue. With this definition
the following equations are easily proved:

empty = AQueue
[
| |
] [
| |
]

enqueue x (AQueue xs ys) = AQueue (x : xs) ys

dequeue (AQueue xs
[
| |
]
) =

(if xs =
[
| |
]

then (None, AQueue
[
| |
] [
| |
]
) else dequeue (AQueue

[
| |
]

(rev xs)))
dequeue (AQueue xs (y : ys)) = (Some y , AQueue xs ys)

We can use these equations as code equations for queues immediately:

data Queue a = AQueue [a] [a];

empty :: forall a. Queue a;
empty = AQueue [] [];

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue xs []) =

(if null xs then (Nothing, AQueue [] [])
else dequeue (AQueue [] (rev xs)));

enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (AQueue xs ys) = AQueue (x : xs) ys;

In contrast to the amortised queues from §3.3.1, these proof steps for setting up code
generation need only be made once; all other proofs about queues just refer to the
plain, direct specification from above.

This approach mirrors an established methodology in software engineering: data-
type abstraction [29]. The idea is to encapsulate the concrete representation of an
abstract type (in our example, α queue) such that only primitive operations (here,
empty, enqueue and dequeue) are allowed to operate directly on it; the primitive
operations then form an interface to the outside world through which operations on
values of the abstract type take place.

What does access to the concrete representation mean in our setting? The em-
bedding of the concrete representation α list, α list to the abstract type α queue
is mediated by the constant AQueue :: α list ⇒ α list ⇒ α queue. Accessing the
representation of a value of type α queue means to inverse the function application
of AQueue. This inversion is not expressed by an explicit constant; rather, the value
is matched against a pattern with AQueue as constructor, e.g. in the equations for
enqueue and dequeue. The scenario is depicted in the following picture:

66 Chapter 4. Turning specifications into programs

representation

abstraction

[
|c, b |

]
,
[
|a |
] [
|c |
]
,
[
|a, b |

]

Queue
[
|a, b, c |

]

α list, α list

α queue

A
Q

ue
ue

A
Q

ueue
It is obvious that the abstraction function (in our case AQueue) does not need to
be injective, e.g. AQueue

[
|c, b |

] [
|a |
]

and AQueue
[
|c |
] [
|a, b |

]
represent the same

value. In other words, when matching a term against AQueue there is no guarantee
that the arguments are in a canonical representation. It does not matter in this
queue example but will rear its head in the next section: we are not able to specify
invariants on representations.

This datatype abstraction concept is implicit since it naturally stems from the
meta-theory of code generation without any additional checks necessary: violations
of encapsulation are impossible by construction. E.g. if we would specify a further
operation

tap :: α queue ⇒ α option
tap (Queue

[
| |
]
) = None

tap (Queue (x : xs)) = Some x

which makes use of the logical datatype constructor Queue, this would be rejected
since under code generation Queue is not the datatype constructor for type α queue.
Nonetheless we can introduce tap as another primitive operation proving the follow-
ing equation:

tap (AQueue xs ys) =
(case ys of

[
| |
]
⇒ if xs =

[
| |
]

then None else Some (last xs)
| y : x ⇒ Some y)

which again respects the rules of encapsulation.

4.1.2 Implementing rational numbers

Not every HOL type is a datatype in the logical sense; some rather represent
abstract logical concepts. A prominent example are rational numbers, type rat.
Internally, they are constructed as a quotient of pairs of integer numbers of type int
[48] and a corresponding typedef. For concrete rat values the following constant is
provided:

Fract :: int ⇒ int ⇒ rat

Fract p q is the value p
q ; in the case q = 0, the value is 0.1

Fract is not injective, e.g.

Fract 35 42 = Fract 5 6
1It would be possible the leave Fract p q underspecified for q = 0; HOL is a total logic, so the

totalisation by defining Fract k 0 = 0 does not harm but sometimes avoids dull case distinctions.

4.1. Datatype abstraction 67

and thus Fract is no datatype constructor in the strict HOL sense. But Fract can
serve as a constructor in a data statement for the rat type:2

data Rat = Fract Integer Integer;

Appropriate equations, e.g. for multiplication, are easily proved:

Fract a b ∗ Fract c d = Fract (a ∗ c) (b ∗ d)

resulting in

times_rat :: Rat -> Rat -> Rat;
times_rat (Fract a b) (Fract c d) = Fract (a * c) (b * d);

For addition, case distinctions are needed:

Fract a b + Fract c d =
(if b = 0 then Fract c d
else if d = 0 then Fract a b else Fract (a ∗ d + c ∗ b) (b ∗ d))

resulting in

plus_rat :: Rat -> Rat -> Rat;
plus_rat (Fract a b) (Fract c d) =

(if b == 0 then Fract c d
else (if d == 0 then Fract a b else Fract (a * d + c * b) (b * d)));

Is there a possibility to avoid the case distinctions on the denominators? The estab-
lished methodology in software engineering for dealing with such pathological cases
are invariants: the primitive operations which are permitted access to the represen-
tation of values of an abstract datatype have to respect an appropriate invariant. In
our case, an appropriate invariant would be that the denominator never equals 0.
This is typically expressed using equations with premises, e.g.

b 6= 0 =⇒ d 6= 0 =⇒ Fract a b + Fract c d = Fract (a ∗ d + c ∗ b) (b ∗ d)

But these we cannot use within our code generator framework, so we are not able
to employ invariants. This turns out even more unsatisfactory when we consider the
code equation for equality

eq (Fract a b) (Fract c d) ←→
(if b = 0 then c = 0 ∨ d = 0
else if d = 0 then a = 0 ∨ b = 0 else a ∗ d = b ∗ c)

with the corresponding code

eq_rat :: Rat -> Rat -> Bool;
eq_rat (Fract a b) (Fract c d) =

(if b == 0 then c == 0 || d == 0
else (if d == 0 then a == 0 || b == 0 else a * d == b * c));

2For convenience all rat examples use a setup of the serialiser which maps HOL int to Haskell
Integer; see §3.4.1.

68 Chapter 4. Turning specifications into programs

A convenient invariant would be that the denominator is strictly positive and enu-
merator and denominator are coprime; then the equality check could simply check
enumerators and denominators for equality. In lack of this, we must compute the
cross product explicitly, and check the denominators for zero.

Despite this deficiency, it can be reasonable to normalise enumerator and denom-
inator. We can make use of the fact that in the logic rat is an abstract type without
any notion of concrete representation. So we define a normaliser operation Fract↓ as
equivalent to Fract :

Fract↓ a b = Fract a b

Next we prove a suitable code equation for Fract↓ which normalises its arguments:

Fract↓ a b =
(if a = 0 ∨ b = 0 then Fract 0 1
else let c = gcd a b

in if 0 < b then Fract (a div c) (b div c)
else Fract (− (a div c)) (− (b div c)))

Finally we replace each Fract by Fract↓, which is trivial since both are equal.
The resulting code equations for multiplication and addition thus look as follows:3

Fract a b ∗ Fract c d = Fract↓ (a ∗ c) (b ∗ d)

Fract a b + Fract c d =
(if b = 0 then Fract c d
else if d = 0 then Fract a b else Fract↓ (a ∗ d + c ∗ b) (b ∗ d))

In the case of rational numbers, the lack of a concept for invariants leads to a loss
of efficiency; in the examples in the next section more fundamental problems arise.

4.1.3 Mappings

A common device in higher-order settings are mappings, associations from keys α to
values β, which are logically represented as functions α⇒ β option. This lightweight
approach is very convenient for reasoning, but code generated directly from that is
rarely feasible: the naive encoding results in inconvenient towers of λ-abstractions.

Our datatype abstraction concept turns out helpful here. As a prerequisite, we
wrap up the type α ⇒ β option into a trivial datatype:

datatype (α, β) map = Map (α ⇒ β option)

This wrapping is necessary since we need an explicit type constructor map to provide
constructors for. On top of this we define primitive operations:

Mapping .empty :: (α, β) map

Mapping .lookup :: (α, β) map ⇒ α ⇒ β option

Mapping .update :: α ⇒ β ⇒ (α, β) map ⇒ (α, β) map

Mapping .delete :: α ⇒ (α, β) map ⇒ (α, β) map

Mapping .size :: (α, β) map ⇒ nat
3See §C.1 for the corresponding Haskell code.

4.1. Datatype abstraction 69

Naive code equations using cascaded λ-abstractions look as follows, where the func-
tion point :: α ⇒ (β ⇒ β) ⇒ (α ⇒ β) ⇒ α ⇒ β represents a point-wise update on
a function value.4

Mapping .empty = Map (λx . None)

Mapping .lookup (Map f) = f

Mapping .update k v (Map f) = Map (point k (λ . Some v) f)

Mapping .delete k (Map f) = Map (point k (λ . None) f)

These equations exhibit the deficiencies of this approach: encoding each mapping up-
date into a function update is inefficient, and the mapping values are not inspectible,
e.g. there is no way to determine the number of keys in a mapping.

Association lists. A step to a more execution-oriented implementation are asso-
ciation lists, i.e. explicit mappings of α × β values:

AList .lookup :: (α × β) list ⇒ α ⇒ β option
AList .lookup

[
| |
]

k = None
AList .lookup (x : xs) k =
(if k = fst x then Some (snd x) else AList .lookup xs k)

AList .update :: α ⇒ β ⇒ (α × β) list ⇒ (α × β) list
AList .update k v

[
| |
]

=
[
|(k , v) |

]
AList .update k v (x : xs) =
(if k = fst x then (k , v) : xs else x : AList .update k v xs)

AList .delete :: α ⇒ (α × β) list ⇒ (α × β) list
AList .delete k

[
| |
]

=
[
| |
]

AList .delete k (x : xs) =
(if k = fst x then AList .delete k xs else x : AList .delete k xs)

We specify the corresponding constructor AList :: (α × β) list ⇒ (α, β) map for
mappings as

AList
[
| |
]

= Mapping .empty
AList (x : xs) = Mapping .update (fst x) (snd x) (AList xs)

which enables us to prove:5

Mapping .empty = AList
[
| |
]

Mapping .lookup (AList xs) = AList .lookup xs

Mapping .update k v (AList xs) = AList (AList .update k v xs)

Mapping .delete k (AList xs) = AList (AList .delete k xs)

Mapping .size (AList xs) = length (distinct (map fst xs))

In a conventional implementation the invariant would hold that no key occurs more
than once in an association list. Since we cannot express invariants, the code equa-
tions for Mapping .delete has to run through whole the association list since keys

4See §C.2 for the corresponding Haskell code.
5See §C.3 for the corresponding Haskell code.

70 Chapter 4. Turning specifications into programs

could occur duplicated; likewise Mapping .size must ignore duplicate keys “manu-
ally”.

Binary search trees. Another suitable implementation of mappings are binary
search trees:

datatype (α, β) tree = Empty
| Branch β α ((α, β) tree) ((α, β) tree)

Tree.lookup :: (α::linorder , β) tree ⇒ α ⇒ β option
Tree.lookup Empty = Map.empty
Tree.lookup (Branch v k l r) =
(λk ′. if k ′ = k then Some v

else if k ′ ≤ k then Tree.lookup l k ′ else Tree.lookup r k ′)

Tree.update :: α ⇒ β ⇒ (α::linorder , β) tree ⇒ (α::linorder , β) tree
Tree.update k v Empty = Branch v k Empty Empty
Tree.update k ′ v ′ (Branch v k l r) =
(if k ′ = k then Branch v ′ k l r
else if k ′ ≤ k then Branch v k (Tree.update k ′ v ′ l) r

else Branch v k l (Tree.update k ′ v ′ r))

Tree.keys :: (α, β) tree ⇒ α list
Tree.keys Empty =

[
| |
]

Tree.keys (Branch uu k l r) = k : Tree.keys l @ Tree.keys r

Tree.size :: (α, β) tree ⇒ nat
Tree.size t =
length (map filter (Tree.lookup t) (distinct (Tree.keys t)))

Then we define a constructor Tree :: (α, β) tree ⇒ (α, β) map for mappings as

Tree t = Map (Tree.lookup t)

with the following implementation of the mapping operations:6

Mapping .empty = Tree Empty

Mapping .lookup (Tree t) = Tree.lookup t

Mapping .update k v (Tree t) = Tree (Tree.update k v t)

Mapping .size (Tree t) = Tree.size t

How does the absence of invariants affect the implementation? A search tree in-
variant in our case would express that all nodes in the left branch are less than the
current key and all nodes in the right branch are strictly greater than the current
key:

invariant Empty ←→ True
invariant (Branch v k l r) ←→
(∀ k ′∈set (Tree.keys l). k ′ ≤ k) ∧
(∀ k ′∈set (Tree.keys r). k < k ′) ∧ invariant l ∧ invariant r

6See §C.4 for corresponding Haskell code

4.1. Datatype abstraction 71

Since we cannot express invariants, one might ask why our implementation works
anyway. Have a look at the following example of a tree violating invariant :

2

d

7

b

5

e

0

a

1

c

* * * *

* *

The node with key 7 violates the invariant and renders itself and its right branch
dead : none of the values of these nodes is ever considered by Tree.lookup. Similarly
Tree.update does just pass through dead nodes while searching for a place to insert or
replace a node; thus Tree.lookup and Tree.update also works on non-invariant trees.
Not every operation is as liberal, especially when the tree structure is re-arranged.
Consider a rotation to right in the tree root; in trees satisfying invariant rotation
does not change the corresponding mapping; but in a tree containing dead nodes
this does not hold in general:

7

b

0

a

2

d

1

c

5

e

* *

* * * *

Here tree node 7 has become alive whereas nodes 2 and 5 have become dead. So
all operations involving a restructuring of the tree cannot ignore dead nodes, which
makes it difficult to implement operations like Mapping .delete or balanced trees.

It would be possible to specify an operation

cut :: (α, β) tree ⇒ (α, β) tree

satisfying the properties∧
t . Tree.lookup (cut t) = Tree.lookup t∧
t . invariant (cut t)

I.e. cut eliminates all dead nodes from a tree. Then the implementation of all
operations involving tree restructuring would have to cut their input argument tree
first. Ironically, the operations to build trees inductively (Empty, Tree.update) never
produce trees with dead nodes, but due to the lack of an invariant concept there is no
way to utilise this. This makes any workaround like cut appear more like a parody
than a solution.

72 Chapter 4. Turning specifications into programs

4.1.4 Stocktaking

This survey yields two central results:

• The meta-theory of code generation yields an implicit concept for datatype
abstraction. Indeed, the construction of appropriate representations for ab-
stract types is the central proficiency in applying code generation. The used
principles follow established techniques in software development, e.g. gradual
improvement. This seems to indicate that code generation using shallow em-
bedding is quite “natural” and intuitive.

• Datatype abstraction is useful but restricted due to the deficiency to express
invariants. There is no simple way to circumvent this, but we will discuss
possible solutions in §5.3.

4.2 Combining code generation and deductions

The preprocessor (c.f. §3.3.3) plays an essential role to obtain a practically usable
system. We will illustrate this statement by a couple of examples whose main focus
is to provide a suitable preprocessor setup to accomplish particular solutions. Some
of them are used in the applications shown in §4.3 and later.

4.2.1 Enumerating finite types

§3.3.4 has shown how type classes accomplish executable equality; it has been demon-
strated in §3.3.5 that this demands a sort inference algorithm to obtain a practically
usable system. This sort inference mechanism is also useful in other applications
than equality, one of which we discuss in this section.

As a motivating example, consider a specification involving character encodings.
Encodings themselves are directly represented by functions char ⇒ nat, where char
is a type consisting of 256 character symbols.7

Let us assume that the hypothetical specification which uses such encodings would
involve the following things:

• Check whether a given encoding is injective.

• Check whether two given encodings are distinct.

Both concepts involve equality on functions, which is not executable in general. But
in this example the domain of the underlying function type is char which is finite.
Intuitively this allows to decide equality since we just have to enumerate the elements
of the domain.

We develop a generic abstract specification which employs finiteness of types to
provide an executable characterisation of equality and related concepts on functions.
Finiteness of types is expressed using a type class:

7Logically type char is a datatype; for convenience we use here a code generator setup mapping
values of type char on target language characters.

4.2. Combining code generation and deductions 73

class enum =
fixes enum :: α list
assumes in enum: x ∈ set enum

Class enum provides an explicit enumeration of all elements of that type. Instances
for finite base types (unit, bool, char) are provided in a straightforward manner.
Finiteness maps over product and sum types as expected:

instantiation ∗ :: (enum, enum) enum
begin

definition
enum = flat (map (λx . map (Pair x) enum) enum)

instance proof
qed (auto intro: in enum simp add : enum prod def)

end

instantiation + :: (enum, enum) enum
begin

definition
enum = map Inl enum @ map Inr enum

instance proof
fix x :: α + β
show x ∈ set enum

by (cases x) (simp all add : enum sum def in enum)
qed

end

These instances can serve as patterns how to lift finiteness over an arbitrary non-
recursive datatype.

Class enum will enable us to provide executable injectivity test and executable
equality for functions with a finite domain; as a preliminary, a universal quantifier
for lists:

primrec every :: (α ⇒ bool) ⇒ α list ⇒ bool where
every f

[
| |
]
←→ True

| every f (x : xs) ←→ f x ∧ every f xs

Equipped with this we can provide a code equation for universal quantification over
finite types:

lemma all code [code]: (∀ x :: α::enum. P x) ←→ every P enum
proof −

74 Chapter 4. Turning specifications into programs

have
∧

xs. every P xs ←→ (∀ x ∈ set xs. P x)
proof −

fix xs
show every P xs ←→ (∀ x ∈ set xs. P x)

by (induct xs) simp all
qed
then show ?thesis by (auto intro: in enum)

qed

For injectivity, the primitive definition may serve as code equation:

inj f ←→ (∀ x y . f x = f y −→ x = y)

The last step is then to define executable equality on functions by means of exten-
sionality:

instantiation fun :: (type, eq) eq
begin

definition
eq class.eq f g ←→ (∀ x . f x = g x)

instance proof
qed (simp all add : eq fun def expand fun eq)

end

Equipped with this we return to our two desired checks from above, using the fol-
lowing contrived definition:

definition
example :: ((char ⇒ nat) ⇒ bool) × ((char ⇒ nat) ⇒ (char ⇒ nat) ⇒ bool)
where example = (inj , λe1 e2. e1 = e2)

Let us examine how the corresponding generated code looks like:

class Enuma a where {
enum :: [a];

};

every :: forall a. (a -> Bool) -> [a] -> Bool;
every f [] = True;
every f (x : xs) = f x && every f xs;

alla :: forall a. (Enuma a) => (a -> Bool) -> Bool;
alla p = every p enum;

implies :: Bool -> Bool -> Bool;
implies p q = not p || q;

inj :: forall a b. (Enuma a, Eq a, Eq b) => (a -> b) -> Bool;
inj f = alla (\ x -> alla (\ y -> implies (f x == f y) (x == y)));

eq_fun :: forall a b. (Enuma a, Eq b) => (a -> b) -> (a -> b) -> Bool;
eq_fun f g = alla (\ x -> f x == g x);

4.2. Combining code generation and deductions 75

instance (Enuma a, Eq b) => Eq (a -> b) where {
a == b = eq_fun a b;

};

instance Enuma Char where {
enum = [’\0’..’\255’];

};

example ::
((Char -> Nat) -> Bool, (Char -> Nat) -> (Char -> Nat) -> Bool);

example = (inj, (\ a b -> a == b));

The code equations for inj and eq on functions as well as the instance eq⇒ have
received an additional enum constraint. This has not been added by the user but
by the sort inference algorithm during preprocessing; the additional constraint is
induced by the code equation All p ←→ every p enum.

4.2.2 Binary representation of natural numbers

Motivation and principle. In this section we introduce a preprocessor setup
which deals with natural numbers nat. Natural numbers in their application typically
show two different facets:

• as an inductive datatype with constructors 0 :: nat and Suc :: nat ⇒ nat,
typically used in connection with operations on other inductive datatypes,
e.g. length of lists, height of trees.

• as an algebraic and numeric type providing basic operations like (+) :: nat ⇒
nat ⇒ nat, (≤) :: nat ⇒ nat ⇒ bool, etc.

The explicit 0/Suc representation grows linearly with the size of represented num-
bers. Considering efficiency this is unsatisfactory; therefore in computing usually
logarithmic radix representations are used, typically base 2. The same approach
also works in HOL, where a binary representation of nats can be accomplished as
follows:

Dig zero :: nat ⇒ nat (/•/0)
n•0 = n + n

Dig one :: nat ⇒ nat (/•/1)
n•1 = n + n + 1

These operations represent appending a zero or one bit respectively to a binary nu-
meral. The annotated syntax allows for a suggestive notation of binary numerals,
e.g. 1•0•1•0•1•0 is syntax for the decimal number 42; the leading digit 1 is the con-
ventional constant 1 for natural numbers. Equipped with this, the basic operations
addition and multiplication can be expressed in a straightforward manner using the
following equations:

0 + n = n
n + 0 = n
1 + 1 = 1•0
1 + m•0 = m•1

76 Chapter 4. Turning specifications into programs

1 + m•1 = m + 1•0
n•0 + 1 = n•1
n•0 + m•0 = n + m•0
n•0 + m•1 = n + m•1
n•1 + 1 = n + 1•0
n•1 + m•0 = n + m•1
n•1 + m•1 = n + m + 1•0

0 ∗ n = 0
n ∗ 0 = 0
1 ∗ n = n
n ∗ 1 = n
n•0 ∗ m = n ∗ m•0
n•1 ∗ m•0 = n ∗ m•0 + m•0
n•1 ∗ m•1 = n ∗ m•1 + m•1

Binary numerals in HOL — Embedding the integers into natural num-
bers. For historical reasons, HOL’s binary numerals are slightly different: they
carry a sign and therefore are equivalent to integers, with concrete values are built
from the four constants Int .Pls = 0, Int .Min = − 1, Int .Bit0 k = k + k and Int .Bit1
k = 1 + k + k.8 Numerals on nats are expressed using those integer numerals and
re-embedding them into the natural numbers using a conversion logically equivalent
to nat :: int ⇒ nat which maps a non-negative int value to its corresponding nat
value and a negative int value to 0:

lemma plus nat int :
n + m = nat (int n + int m)
by simp

lemma times nat int :
n ∗ m = nat (int n ∗ int m)
unfolding of nat mult [symmetric] by simp

Here int :: nat ⇒ int is the coercion from nats to ints.

Using binary numerals for code generation. For the sake of efficiency, it is
desirable to represent natural numbers in target languages in binary form. We can
use the existing numeral infrastructure in HOL to accomplish this by choosing nat
:: int ⇒ nat as datatype constructor for nat. This pragmatic choice has another
technical advantage: if target language integers are used for HOL ints, also nats
directly inherit the increased performance.

This alone however is not enough in practice: the inductive representation of nats
is so fundamental and occurs so often that the user would need to eliminate any
0/Suc pattern matching manually in order to gain an executable specification which
would not break the abstraction over the representation of nat.

8This also answers the question of how int values are represented in generated code when
no target language integer values are used as in §4.1.2: these four constants serve as datatype
constructors.

4.2. Combining code generation and deductions 77

Eliminating pattern matching on natural numbers. To cope with this, we
provide a suitable preprocessor setup which eliminates 0/Suc pattern matching au-
tomatically in most cases.

For case distinction on nat a rewrite using an explicit if expression is sufficient:

lemma nat case if [code, code unfold]:
nat case = (λf g n. if n = 0 then f else g (n − 1))
by (auto simp add : expand fun eq dest !: gr0 implies Suc)

A pair of code equations matching on 0/Suc must be merged to one equation using
an explicit if expression:

lemma Suc if eq :
assumes f 0 = g and (

∧
n. f (Suc n) = h n)

shows f n = (if n = 0 then g else h (n − 1))
using assms by (cases n) simp all

This rule must be applied to a set of code equations repeatedly until every occurrence
of 0/Suc pattern matching has vanished. Example:

fun is even :: nat ⇒ bool where
is even 0 ←→ True
| is even (Suc 0) ←→ False
| is even (Suc (Suc n)) ←→ is even n

In this function specification the second and third equation match the premises of
Suc if eq and can be merged, resulting in

is even 0 ←→ True
is even (Suc n) ←→ (if n = 0 then False else is even (n − 1))

The next iteration merges these remaining equations:

is even n ←→
(if n = 0 then True
else if n − 1 = 0 then False else is even (n − 1 − 1))

There are examples which this merging scheme cannot cope with:

function take :: nat ⇒ α list ⇒ α list where
take n

[
| |
]

=
[
| |
]

| take 0 xs =
[
| |
]

| take (Suc n) (x : xs) = x : take n xs
by pat completeness auto

termination take by lexicographic order

Here the 0 counterpart for the Suc clause is missing. In such situations it is still up
to the user to provide pattern-match free code equations, which is straightforward
in this case:

78 Chapter 4. Turning specifications into programs

lemma take code [code]:
take n xs =

(if n = 0 ∨ xs =
[
| |
]

then
[
| |
]

else head xs : take (n − 1) (tail xs))
by (cases n, simp all) (cases xs, simp all)

Examples of such code equations however seem to occur rarely in practice; the
whole machinery for implementing nats in binary representation has proved to run
smoothly in large-sized applications (e.g. calculations in the proof of the Kepler
conjecture [43]).

4.2.3 Inductive predicates

In §2.2.2 inductive was introduced as a fundamental HOL specification tool in
connection with the promise that even a certain class of inductively defined predicates
shall be accessible for code generation. Here we focus on the principles to turn
inductive specifications into executable programs; [6] gives a detailled description
how this is automated.

As a running example we use a formalisation of λ-terms with de-Bruijn indices
modelled by an inductive datatype:

datatype lambda = Var nat | App lambda lambda (infixl · 200) | Abs lambda

Application is expressed using pretty infix notation t · u. Next index-lifting lift and
variable substitution subst are specified:

primrec lift :: nat ⇒ lambda ⇒ lambda where
lift k (Var i) = (if i < k then Var i else Var (i + 1))
| lift k (s · t) = lift k s · lift k t
| lift k (Abs s) = Abs (lift (k + 1) s)

primrec subst :: nat ⇒ lambda ⇒ lambda ⇒ lambda where
subst k s (Var i) =

(if k < i then Var (i − 1) else if i = k then s else Var i)
| subst k s (t · u) = subst k s t · subst k s u
| subst k s (Abs t) = Abs (subst (k + 1) (lift 0 s) t)

Using this, beta-reduction is defined inductively:

inductive beta :: lambda ⇒ lambda ⇒ bool (infixl →β 50) where
Abs s · t →β subst 0 t s
| s →β t =⇒ s · u →β t · u
| s →β t =⇒ u · s →β u · t
| s →β t =⇒ Abs s →β Abs t

Intuitively, we would expect beta-reduction (→β) to be executable. To be more
precise, inductive predicates describe enumerations of possible arguments such that
the predicate expression evaluates to True. The key technique to distill such enu-
merations from a given inductive specification are mode assignments: an analysis of
dataflow tells us which arguments are at least required for a predicate in order that

4.2. Combining code generation and deductions 79

the remaining arguments can be computed using the underlying inductive specifica-
tion [54]. In the (→β) example, one possible mode classifies the first argument as
input and the second one as output, thus enumerating all normal forms of a given
input term.

How are these enumerations expressed inside the logic? The central idea is to
provide a dedicated type to represent enumerations isomorphic to sets

datatype α pred = Pred (α ⇒ bool)

together with a complementary projection

eval :: α pred ⇒ α ⇒ bool
eval (Pred f) = f

This allows to characterise a particular mode assignment of a predicate to be ex-
pressed as an enumeration, in our example:

betaio :: lambda ⇒ lambda pred
betaio t = Pred (λu. t →β u)

Enumerations form a plus monad with the following basic operations:

⊥ :: α pred is the empty enumeration:
⊥ = Pred (λx . False)

single :: α ⇒ α pred is the singleton enumeration:
single x = Pred (λy . y = x)

(>>=) :: α pred ⇒ (α ⇒ β pred) ⇒ β pred takes a function which returns an
enumeration applies it to every element of an enumeration and flattens the re-
sulting enumerations:
P >>= f = Pred (λx . ∃ y . eval P y ∧ eval (f y) x)

(t) :: α pred ⇒ α pred ⇒ α pred forms the union of two enumerations:
P t Q = Pred (eval P t eval Q)

To illustrate how enumerations are constructed using these operations and the in-
troduction rules of a predicate, we give here the equation constructed for betaio:

betaio t =
single
t >>= (λx . case x of Abs s · t ⇒ single (subst 0 t s) | · t ⇒ ⊥

| ⇒ ⊥) t single
t >>= (λx . case x of

s · u ⇒ betaio s >>= (λx . single (x · u))
| ⇒ ⊥) t single

t >>= (λx . case x of u · s ⇒ betaio s >>= (λx . single (u · x))
| ⇒ ⊥) t single

t >>= (λx .
case x of Abs s ⇒ betaio s >>= (λx . single (Abs x)) | ⇒ ⊥)

80 Chapter 4. Turning specifications into programs

It is not our main focus here to explain how this equation is proved using the defini-
tion of betaio and the basic enumeration operations; instead we concentrate on the
question of how to make the enumerations executable. Unsurprisingly, the key to a
solution is to choose an appropriate set of datatype constructors. As a prerequisite,
here is an auxiliary type:

datatype α seq = seq .Empty | seq .Insert α (α pred)
| seq .Join (α pred) (α seq)

Values of type α seq are embedded into type α pred by defining:

pred of seq :: α seq ⇒ α pred
pred of seq seq .Empty = ⊥
pred of seq (seq .Insert x P) = single x t P
pred of seq (seq .Join P xq) = P t pred of seq xq

This we use to provide a constant Seq which will serve as datatype constructor for
type α pred.

Seq :: (unit ⇒ α seq) ⇒ α pred
Seq f = pred of seq (f ())

Two further auxiliary constants mediate between α pred and α seq :

apply :: (α ⇒ β pred) ⇒ α seq ⇒ β seq
apply f seq .Empty = seq .Empty
apply f (seq .Insert x P) = seq .Join (f x) (seq .Join (P >>= f) seq .Empty)
apply f (seq .Join P xq) = seq .Join (P >>= f) (apply f xq)

adjunct :: α pred ⇒ α seq ⇒ α seq
adjunct P seq .Empty = seq .Join P seq .Empty
adjunct P (seq .Insert x Q) = seq .Insert x (Q t P)
adjunct P (seq .Join Q xq) = seq .Join Q (adjunct P xq)

On top of this, we prove the following code equations for our α pred operations:

⊥ = Seq (λu. seq .Empty)

single x = Seq (λu. seq .Insert x ⊥)

Seq g >>= f = Seq (λu. apply f (g ()))

Seq f t Seq g =
Seq (λu. case f () of seq .Empty ⇒ g ()

| seq .Insert x P ⇒ seq .Insert x (P t Seq g)
| seq .Join P xq ⇒ adjunct (Seq g) (seq .Join P xq))

We give the corresponding SML code in full:

structure Example =
struct

datatype ’a seq = Empty | Insert of ’a * ’a pred |
Join of ’a pred * ’a seq

and ’a pred = Seq of (unit -> ’a seq);

4.3. Mastering destructive data structures 81

fun bind (Seq g) f = Seq (fn u => apply f (g ()))
and apply f Empty = Empty

| apply f (Insert (x, p)) = Join (f x, Join (bind p f, Empty))
| apply f (Join (p, xq)) = Join (bind p f, apply f xq);

val bot_pred : ’a pred = Seq (fn u => Empty)

fun single x = Seq (fn u => Insert (x, bot_pred));

fun seq_case f1 f2 f3 (Join (pred, seq)) = f3 pred seq
| seq_case f1 f2 f3 (Insert (a, pred)) = f2 a pred
| seq_case f1 f2 f3 Empty = f1;

fun adjunct p Empty = Join (p, Empty)
| adjunct p (Insert (x, q)) = Insert (x, sup_pred q p)
| adjunct p (Join (q, xq)) = Join (q, adjunct p xq)

and sup_pred (Seq f) (Seq g) =
Seq (fn u =>

(case f () of Empty => g ()
| Insert (x, p) => Insert (x, sup_pred p (Seq g))
| Join (p, xq) => adjunct (Seq g) (Join (p, xq))));

end; (*struct Example*)

In shape this follows a well-known ML technique for lazy lists: each inspection
of a lazy list by means of an application f () is protected by a constructor Seq.
Thus we enforce a lazy evaluation strategy for predicate enumerations even for eager
languages.9

Enumerations also demonstrate that datatypes in target languages need not sat-
isfy the usual logical characteristics of inductive HOL datatypes (cf. §3.2.4): the
generated types α pred and α seq describe potentially infinite data structures; a lit-
eral construction of both types by means of datatype would only allow finite data
structures.

4.3 Mastering destructive data structures

In this section we sketch an adaptation of the code generator to interact with de-
structive data structures (references, arrays) in SML, OCaml and Haskell.

Typically, functional programming languages distinguish pure and impure expres-
sions: pure expressions are plain λ-terms, whereas impure expressions may issue side
effects on an underlying state.

4.3.1 Side effects, linear type systems and state monads

The logic HOL is pure. How to model impure expressions then? One reasoning
device for side effects is a denotational semantics [64] where side effects are modelled
explicitly as transformations of an underlying state σ:

σ ⇒ α × σ

The choice of σ depends on which kind of side effects are to be modelled; for our
purpose we will consider σ as a structure representing a heap, a mapping from
addresses to (typed) data.

9See §C.5 for the corresponding SML code in full.

82 Chapter 4. Turning specifications into programs

An explicit state σ allows to describe impure effects in a pure setting. This,
however, results in a discrepancy to the “real world”: nothing prevents to write
down a term λs::σ. (s, s) which forks a state — this is not what we expect from a
real program where the state is threaded through, i.e. each particular state value is
used exactly once since after an update the former state value has been destroyed
(single-threadedness).

To escape this deficiency, linear type system have been proposed [59]. The idea
is to define a type system which allows to encode notions like “this value is used
exactly once” (linear typing). Thus if state values of type σ can be typed linear,
they are used single-threadedly by construction.

The ACL2 logic mentioned in §1.3.2 uses this approach: it incorporates a simplistic
linearity check which allows to implement certain values destructively, which is useful
to implement highly efficient simulators [10].

We will follow a different path: single-threadedness can also be accomplished using
a state monad, where the state is lifted into a higher-order datatype:

datatype α Heap = Heap (σ ⇒ α × σ)

Thus a value of type α Heap represents a computation which may affect the un-
derlying state and returns a result of type α. To access the encapsulated state
transformations, two combinators (>>=) and return are provided:

(>>=) :: α Heap ⇒ (α ⇒ β Heap) ⇒ β Heap
Heap f >>= g = Heap (λs. let (x , s ′) = f s in case g x of Heap h ⇒ h s ′)

return :: α ⇒ α Heap
return x = Heap (λs. (x , s))

(>>=) composes two computations such that the result of the first is the argument to
the second and the state is threaded through both, resulting in a new computation;
return lifts a pure value to a computation which has no effect on the underlying state.
α Heap is an abstract type, there are no other means to access σ.

A monadic program then consists of an entry point main :: α Heap which may
contain impure parts composed by (>>=) and pure parts lifted by return. Single-
threadedness guarantees that the underlying state can be implemented destructively.

The monadic approach to destructive data structures is canonical in Haskell [30],
where the heap monad type is ST s a; hereby a corresponds to α from above, the
role of s will be clarified below. In what follows we describe how the key techniques
of the monadic approach are transferred to HOL; for details see [12].

4.3.2 A polymorphic heap in HOL

A crucial question is how to model a polymorphic heap in HOL. The technique we
present here uses type classes to encode values of countable types into a model of
an unbounded memory of natural numbers. Here is a type class of countable types
with explicit mappings from and to the natural numbers:

class countable =
fixes nat of :: α ⇒ nat
fixes of nat :: nat ⇒ α
assumes nat of inject : nat of x = nat of y =⇒ x = y
assumes of nat of : of nat (nat of x) = x

4.3. Mastering destructive data structures 83

For arbitrary first-order datatypes over countable types, canonical instances for class
countable can be provided (see §D for details). It is important to note that these
encodings only have a logical purpose – they are not used for execution.

A heap suitable for first-order types can thus be encoded as

datatype heap = Heap (nat ⇒ nat list) nat

where the first field is mapping from addresses to encoded values and the second
field describes the lowest “unallocated” memory position.

Then arrays are just functions from references to addresses:

datatype α array = Array nat

Though addresses themselves are untyped, the array type carries its type parameter
as a phantom type, which enables us to combine the primitive untyped world of heap
and array with the typed surrounding world by three fundamental operations: alloc
allocates an array using an initial value, peek reads from an array and poke changes
an array.

primrec alloc :: α::countable list ⇒ heap ⇒ α array × heap where
alloc xs (Heap memory limit) =

(Array limit , Heap (point limit (λms. map nat of xs) memory) (Suc limit))

fun peek :: heap ⇒ α array ⇒ α::countable list where
peek (Heap memory limit) (Array addr) = map of nat (memory addr)

fun poke :: α array ⇒ (α::countable list ⇒ α list) ⇒ heap ⇒ heap where
poke (Array addr) f (Heap memory limit)

= Heap (point addr (map nat of ◦ f ◦ map of nat) memory) limit

Mediation between typed values (α) and their untyped encodings (nat) happens
through the operations nat of :: α ⇒ nat and of nat :: nat ⇒ α of the countable
class, where the type α is determined by the phantom type parameter of the cor-
responding array reference. Logically, a value of type α array relative to a heap
corresponds to a list of type α list, the array value.

The injectivity of the underlying countable mapping allows to establish basic prop-
erties of those operations, e.g.∧

heap heap ′ xs a. (a, heap ′) = alloc xs heap =⇒ peek heap ′ a = xs

For simplicity we restrict the presentation here to arrays; references can be handled
as arrays of length one.

4.3.3 Putting the heap into a monad

The next step is to wrap up the heap into a monad:

datatype α Heap = churning (heap ⇒ α × heap)

For simplified usage of Heap operations various combinators are provided:

84 Chapter 4. Turning specifications into programs

primrec execute :: α Heap ⇒ heap ⇒ α × heap where
execute (churning f) = f

definition peeking :: (heap ⇒ α) ⇒ α Heap where
peeking f = churning (λheap. (f heap, heap))

definition poking :: (heap ⇒ heap) ⇒ unit Heap where
poking f = churning (λheap. ((), f heap))

Thus we have three combinators to lift operations on bare heaps into the monad
type α Heap

peeking :: (heap ⇒ α) ⇒ α Heap for read access
poking :: (heap ⇒ heap) ⇒ unit Heap for write access
churning :: (heap ⇒ α × heap) ⇒ α Heap for combined read/write access

and one unpacking operation

execute :: α Heap ⇒ heap ⇒ α × heap

These primitives allow us to define the basic monad combinators return and (>>=):

definition return :: α ⇒ α Heap where
return x = peeking (λ . x)

definition bind :: α Heap ⇒ (α ⇒ β Heap) ⇒ β Heap (infixl >>= 54) where
f >>= g = churning (λheap. let (x , heap ′) = execute f heap

in execute (g x) heap ′)

On top of this we provide fundamental array operations:

definition array :: α::countable list ⇒ α array Heap where
array xs = churning (alloc xs) — array allocation

definition index error :: nat ⇒ nat ⇒ α where
index error i n = undefined

definition nth :: α::countable array ⇒ nat ⇒ α Heap where
nth a i = peeking (λheap. let xs = peek heap a;

n = length xs
in if i < n then xs ! i else index error i n) — array read access

definition upd :: nat ⇒ (α::countable ⇒ α) ⇒ α array ⇒ unit Heap where
upd i f a = poking (poke a (λxs. let n = length xs

in if i < n then map nth i f xs else index error i n)) — array write access

definition len :: α::countable array ⇒ nat Heap where
len a = peeking (λheap. length (peek heap a)) — array length determination

The operations upd and len involve a subtlety: if the index exceeds the length of
the underlying array, a dedicated constant index error is used. This is just to be

4.3. Mastering destructive data structures 85

understood as a symbolic marker — it well never show up in generated code (see
below).

An alternative for upd would be to ignore updates on non-existing positions en-
tirely, but we want to model the primitive array operations as closely to operations
on arrays in target languages as possible.

To actually reason about monadic programs involving such array operations, ad-
ditional reasoning infrastructure is needed, which is presented thoroughly in [12].

4.3.4 Interfacing with destructive code

We aim now to identify the array, nth, upd and len with corresponding array op-
erations in Haskell. Before we attempt this, we have to overcome a fundamental
discrepancy: in the logic modelling we use (naturally) natural numbers of type nat
for indexing arrays, whereas for Haskell a built-in numeral type shall be used. How
to mediate between these two? The solution is to provide a HOL type index which
is logically isomorphic to nat but is mapped to target language built-in integers by
convention. Type index is also an instance of countable, so we can just use nat of
and of nat to coerce.

This allows us to introduce variant operations for nth, upd and len that use index
instead of nat ; we also introduce a further operation corresponding to array since the
Haskell array operation we want to use later has a slightly different type signature.

primrec arrayi :: index × index ⇒ α::countable list ⇒ α array Heap where
arrayi (k , l) xs = array ((take (nat of l − nat of k) ◦ drop (nat of k)) xs)

lemma array code [code]:
array xs = arrayi (0, of nat (length xs)) xs
by simp

definition nthi :: α::countable array ⇒ index ⇒ α Heap where
nthi a k = nth a (nat of k)

lemma nth code [code]:
nth a n = nthi a (of nat n)
unfolding nthi def by simp

definition updi :: α array ⇒ index ⇒ α::countable ⇒ unit Heap where
updi a k x = upd (nat of k) (λ . x) a

lemma upd code [code]:
upd n f a = (let k = of nat n in

nthi a k >>= (λx . updi a k (f x)))
unfolding nthi def updi def by (simp add : Let def)

definition leni :: α::countable array ⇒ index Heap where
leni a = len a >>= (λn. return (of nat n))

lemma len code [code]:
len a = leni a >>= (λk . return (nat of k))

86 Chapter 4. Turning specifications into programs

unfolding leni def by simp

A suitable adaptation setup (cf. §3.4.1) maps the pseudo-destructive primitives onto
corresponding Haskell counterparts as follows:

HOL Haskell
α Heap Control.Monad.ST.ST Control.Monad.ST.RealWorld α
α array Data.Array.ST.STArray Control.Monad.ST.RealWorld α
f >>= g f >>= g
return x return x
arrayi (k , l) xs Data.Array.ST.newListArray (k, l) xs
leni a Control.Monad.liftM snd (Data.Array.ST.getBounds a)
nthi a n Data.Array.ST.readArray a n
updi a n x Data.Array.ST.writeArray a n x

The index error constant in the definition of nth and upd does not occur in the code
equations for nth and upd at all — its only purpose is to pragmatically guarantee
that nth and upd behave “underspecified” for index out of bounds. Otherwise,
nthi and updi would yield “reasonable” results while Data.Array.ST.readArray
and Data.Array.ST.writeArray would break with an exception. Formally, this
behaviour would be correct since we only guarantee partial correctness for generated
code. However it would be counter-intuitive.

The explicit conversions between nat values and index values are formally correct
but are inefficient. Fortunately, everything needed to avoid these conversions has
already been presented in §4.2.2: implementing natural numbers by target language
integers. The only thing which has to be added is the mapping of the conversions
of nat :: nat ⇒ index and nat of :: index ⇒ nat to identity; thus there occurs no
conversion between values at all at runtime.

Something has to be said about the s argument in the Control.Monad.ST s a
type. Its purpose is to permit computations involving destructive data structures to
be embedded in pure ones by means of a combinator

runST :: (forall s. Control.Monad.ST s a) -> a

Its type is of higher-rank polymorphism and in conventional notation would be writ-
ten as (∀σ. ST σ α) ⇒ α. The bound σ is a phantom type whose purpose is to
prevent any value depending on the heap from “escaping” the Control.Monad.ST
monad: each value depending on the heap has some σ in its type, which pre-
vents that α contains σ since it is locally bound. We do not attempt to transfer
this to HOL: in the mapping above s is instantiated to be the fixed type value
Control.Monad.ST.RealWorld.

Let us conclude with a short evaluation. We have presented a lightweight approach
to model destructive data structures in HOL, where we use only existing infrastruc-
ture: logical specifications and a simple adaptation of the Haskell serialiser. What
remains unsatisfactory is that the identification of HOL operations and Haskell op-
erations is only based on intuition; a more ambitious justification would have to set
an explicit model for Haskell arrays in relation to the existing HOL model.

4.4. A quickcheck implementation in Isar 87

4.4 A quickcheck implementation in Isar

Quickcheck [17] is a Haskell library which allows a developer to specify simple propo-
sitions about functions and to implement generators for random values of particular
datatypes. Both in combination then are applied to search for counterexamples, val-
ues for which the functions violate the specified propositions. This allows to discover
erroneous function implementations quite quickly and thus quickcheck has become
a standard tool for program development in Haskell.

For interactive theorem proving, unsuccessful attempts to prove theorems about
erroneous specifications are even more annoying and cost time. One approach is
to search for finite counter models using SAT-solving [61]. Another possibility is
quickcheck, which has been adopted successfully to HOL using the previously existing
code generator tailored towards SML [55].

What makes quickcheck so attractive is its simplicity: it builds directly on the
bare bones of the underlying Haskell language without much additional infrastruc-
ture. In this section we will show how to transfer this principle to HOL, using as
much existing infrastructure as possible. Beside the practical benefit, our quickcheck
implementation also illustrates the relevance of overloading and type classes, and is
an elegant example how HOL can be used as a programming language.

4.4.1 Evaluation and reconstruction

One prerequisite for quickcheck is the evaluation of a given term t in the logic:

1. t is compiled to its corresponding term t ′ in the system language SML.

2. t ′ is evaluated to its normal form u ′ in the system runtime.

3. This result u ′ is then reconstructed into its corresponding term u in the logic
again.

In this situation we employ Definition 13 from where follows that it is admissible to
assume t ≡ u. The underlying system of equations E contains all code equations
referring to constants in t and their transitive dependencies.

The open question is how to reconstruct a term u ′ in the system language back
to a term in the logic u. Technically speaking, an SML value u ′ of an SML type τ
must be translated into an SML value u ′′ of SML type term, where term implements
the term representation of HOL such that its logical interpretation is u. Fortunately
this can be easily accomplished using existing HOL facilities, roughly as follows:

• Provide a logical type term which corresponds to the SML implementation of
term representations.

• Provide a type class term of with a class parameter term of :: α ⇒ term.

• Provide suitable instances of class term of for all types contained in an evalu-
ated term.

• To evaluate and reconstruct a term t, just evaluate term of t.

88 Chapter 4. Turning specifications into programs

Before we come to the technical details, there is a further prerequisite: generating
code referring to internal representation of terms inadvertently contains string lit-
erals, e.g. for constant names. To achieve this, the HOL string type could be used
and mapped to SML target language strings. But this would impose the decision
to translate HOL strings to SML strings for every occurrence of strings. Instead,
we provide a dedicated type message string which logically is a copy of string but is
always mapped to SML strings, thus not interfering with string at all.

Since the term representation term necessarily also involves type representations,
we start with a datatype representing (monomorphic) types:

datatype type = Tyco message string (type list)

The convention is that

concrete term Tyco κ
[
|τ1, . . . , τk |

]
represents abstract type κ τ1 · · · τk

Concerning term representation, there is a fundamental restriction: reconstruction
of an SML term u ′ of type τ requires its representation to be inspectible on the SML
level. For datatypes this is possible using pattern matching, given that the types
appearing in the corresponding constructors are themselves inspectible. So u ′ may
not contain any function type. Due to the evaluation semantics of SML, u ′ then is
a closed term containing only constructors fully applied to arguments. This enables
us to keep the term representation to the essential minimum:

datatype term = Const message string (type list) (term list)

where

concrete term Const f
[
|τ1, . . . , τk |

] [
|t1, . . . , tn |

]
represents abstract term f [τ1] · · · [τk] t1 · · · tn

Concrete values of types type and term can easily be re-transferred to the internal
SML representation of types and terms in Isabelle. Logically they are constructed
using an appropriate class specification:

class term of =
fixes type of :: α itself ⇒ type

and term of :: α ⇒ term

The α itself phantom type has been introduced in §2.3.2. Given a datatype κ α1

. . . αk with constructors f1, . . . , fl, the construction of instances for term of is
canonical and happens automatically:

type of [κ α1 . . . αk] (TYPE κ α1 . . . αk)
= Tyco ”κ”

[
|type of [α1] (TYPE α1), . . . , type of [αk] (TYPE αk) |

]
term of (f1 [τ1] . . . [τm1] x1 . . . xn1)

= Const ”f1”
[
|type of [τ1] (TYPE τ1), . . . , type of [τm1] (TYPE τm1) |

][
|term of x1, . . . , term of xn1 |

]
. . .
term of (fl [τ1] . . . [τml] x1 . . . xnl)

= Const ”fl”
[
|type of [τ1] (TYPE τ1), . . . , type of [τml] (TYPE τml) |

][
|term of x1, . . . , term of xnl |

]

4.4. A quickcheck implementation in Isar 89

As example we present here the corresponding instances for the binary trees from
§4.1.3:

type of [tree α::term of β::term of] (TYPE (α, β) tree) =
Tyco ”tree”[
|type of [α::term of] (TYPE α), type of [β::term of] (TYPE β) |

]
term of [tree α::term of β::term of] Empty =
Const ”Empty”[
|type of [α::term of] (TYPE α), type of [β::term of] (TYPE β) |

] [
| |
]

term of [tree α::term of β::term of] (Branch v k l r) =
Const ”Branch”[
|type of [α::term of] (TYPE α), type of [β::term of] (TYPE β) |

][
|term of [β::term of] v , term of [α::term of] k ,
term of [tree α::term of β::term of] l ,
term of [tree α::term of β::term of] r |

]
Then evaluation of a term t :: τ proceeds by generating code for term of t :: term,
resulting in an SML term u ′ :: term, whose re-translation into the internal SML
representation of terms is straightforward.

4.4.2 A random engine in HOL

To obtain random values, we implement a simple random engine following [34].
Random values are generated from random seeds, pairs of natural numbers. We

use the index type introduced in §4.3.4 to represent the natural number values. The
reason is that we want to map random seeds to target language numerals; logically,
index is a plain copy of nat. The fundamental operation is next which computes a
“random” value of type index from a random seed which is updated in the course of
the computation:

types seed = index × index

definition minus shift :: index ⇒ index ⇒ index ⇒ index where
minus shift r k l = (if k < l then r + k − l else k − l)

primrec next :: seed ⇒ index × seed where
next (v , w) = (let

k = v div 53668;
v ′ = minus shift 2147483563 (40014 ∗ (v mod 53668)) (k ∗ 12211);
l = w div 52774;
w ′ = minus shift 2147483399 (40692 ∗ (w mod 52774)) (l ∗ 3791);
z = minus shift 2147483562 v ′ (w ′ + 1) + 1

in (z , (v ′, w ′)))

Typically, computations involving random seeds have the type signature τ ⇒ seed
⇒ τ ′ × seed. To compose such computations we will use two infix combinators:

(◦>) :: (α ⇒ β) ⇒ (β ⇒ γ) ⇒ α ⇒ γ
f ◦> g = (λs. g (f s))

(◦>>) :: (α ⇒ β × γ) ⇒ (β ⇒ γ ⇒ δ) ⇒ α ⇒ δ
f ◦>> g = (λs. let (x , s ′) = f s in g x s ′)

90 Chapter 4. Turning specifications into programs

These combinators form an “open” state monad where the state is not wrapped up
in a type constructor (cf. §4.3.1).

The core function which all complex computations depending on random values
will use is range which computes a “random” value of type index within a given
range [0. . . k [:

fun log :: index ⇒ index ⇒ index where
log b i = (if b ≤ 1 ∨ i < b then 1 else 1 + log b (i div b))

fun iterate :: index ⇒ (β ⇒ α ⇒ β × α) ⇒ β ⇒ α ⇒ β × α where
iterate k f x = (if k = 0 then Pair x else f x ◦>> iterate (k − 1) f)

definition range :: index ⇒ seed ⇒ index × seed where
range k = (if k = 0 then Pair 0

else iterate (log 2147483561 k)
(λl . next ◦>> (λv . Pair (v + l ∗ 2147483561))) 1
◦>> (λv . Pair (v mod k)))

Where does the initial value for the random seed in a random computation stem
from? The scenario is that a random computation in the logic of type seed ⇒ τ ×
seed is subject to code generation to the system language SML, resulting in an SML
term f of type seed -> T * seed. From this the random-value dependent result x
of type T is extracted by applying f to an extralogically supplied random seed.

4.4.3 Generating random values of datatypes

Generators for random values of arbitrary types are accomplished using another type
class:

class random =
fixes random :: index ⇒ seed ⇒ α × seed

Constant random :: index ⇒ seed ⇒ τ × seed computes a random value of type τ
relative to a random seed; the first argument specifies a size of the result, where the
exact interpretation of this size parameter is not relevant.

Particular instances of random can be supplied by the user. For convenience this is
automated for datatypes, following [55]. For example, here is a possible instantiation
for lists:

instantiation list :: (random) random
begin

fun list random :: index ⇒ index ⇒ seed ⇒ α list × seed where
list random i j =
range i ◦>>
(λl . if i ≤ l + 1 then Pair

[
| |
]

else random j ◦>> (λx . list random (i − 1) j ◦>> (λxs. Pair (x : xs))))

definition
random i = list random i i

4.5. Normalisation by evaluation 91

instance ..

end

4.4.4 Checking a proposition

We conclude with a description of how the key requirements from the previous
sections are used for searching counterexamples of propositions.

Suppose a proposition10
∧
x::τn. Trueprop (P xn) will be checked for counter-

examples, given that τ :: (random ∩ term of) for all τn. The proposition is turned
into an abstraction λx::τn. P xn. This is then wrapped in a series of computations
of random values for each parameter:

λsize. random size
◦>> (λx1::τ1. random size
◦>> (λx2::τ2. random size
◦>> (λx3::τ3. . . .
◦>> (λxn::τn. if (P x1 x2 x 3 · · · xn) then None
else Some [term of x1, term of x2, term of x 3, . . . , term of xn]) . . .)))

which is of type index ⇒ seed ⇒ term list option × seed. This term t then is
subjected to code generation, yielding an SML term which checks the underlying
proposition using random value assignments, relative to a given size; when a ran-
dom value assignment refutes the proposition, the assigned values are termified and
returned as a list of terms. This is finally used by the user interface to repeatedly
search for counterexamples, displaying the first counterexample found.

The use of type classes is the key advantage for an implementation of quickcheck
in HOL: the implementation benefits from dictionary construction directly and does
not need to produce this by hand.

4.5 Normalisation by evaluation

The code generator infrastructure also opens a possibility for a light-weight term eval-
uation machinery known as normalisation by evaluation (NBE) [4]. The underlying
idea is to delegate β-reduction and pattern matching to the runtime environment of
a functional programming language but still to maintain an embedded symbolic rep-
resentation of terms which allows normalised terms to be properly reconstructed and
to contain uninterpreted symbols, e.g. free variables. Compared with fully symbolic
evaluation this yields a considerable speedup.

We sketch briefly how the existing implementation of NBE in Isabelle uses the
existing code generator infrastructure; for details see [1]. First, the embedded rep-
resentation of terms in the implementation language SML:

datatype nterm = Symbol of name * nterm list | Abs of (nterm -> nterm);

fun apply (Symbol (name, ts)) t = Symbol (name, append ts [t])
| apply (Abs f) t = f t;

10Trueprop is the embedding of HOL boolean values of type bool into the propositional type prop
of the framework (cf. §2.2.1), which for clarity is printed here explicitly.

92 Chapter 4. Turning specifications into programs

Terms may contain uninterpreted symbols: constants, (free) variables, etc. We rep-
resent them uniformly by Symbol, assuming an appropriate naming scheme to dis-
tinguish the different categories. The exact representation of type name does not
matter; we will use strings here. Uninterpreted symbols may be applied to argu-
ments. Abstractions are represented as functions in SML.

Application is implemented by a function apply which for uninterpreted symbols
just appends its argument to the list of applied arguments, while for abstraction
the argument is applied to the underlying SML function — this in essence delegates
β-reduction to SML.

Code equations can be transformed to SML functions of type nterm list -> nterm,
e.g. the map function

map :: (α ⇒ β) ⇒ α list ⇒ β list
map f

[
| |
]

=
[
| |
]

map f (x : xs) = f x : map f xs

is represented on the nterm level as

fun map [f, Symbol ("Nil", [])] = Symbol ("Nil", [])
| map [f, Symbol ("Cons", [x, xs])] =
Symbol ("Cons", [apply f x, map [f, xs]])

| map [f, xs] = Symbol ("map", [f, xs]);

The first two equations are an exact translation of the given code equations; the third
is a default equation: if no previous equation matches, the whole nterm remains as
it is.

The key observation is that SML functions of type nterm list -> nterm can be
embedded into type nterm using the combinator:

fun function Zero_nat f xs = f xs
| function (Suc n) f xs = Abs (fn x => function n f (append xs [x]));

In non-recursive representation, function is

function n f [] =
Abs (fn x1 => Abs (fn x2 => . . . Abs (fn xn => f [x1, x2, . . ., xn]) . . .))

Applied to the map example, we get:

function 2 map [] = Abs (fn f => Abs (fn xs => map [f, xs]))

Here the connection to the code generator emerges: equations in fun statements
can be compiled seamlessly into nterm expressions which can themselves be used
in compilations of other equations. Thus the code generator provides the necessary
infrastructure for implementing a fast evaluator using NBE.

Also case expressions can make use of pattern matching in SML. The idea is to
compile case expressions in the intermediate language to case expressions in SML;
if no pattern matches, a last default clause falls back to the naive translation of the
whole combinator expression (cf. §3.2.6).

class and inst statements can be compiled away using an appropriate dictionary
construction (cf. §3.2.7).

Of what relevance are data statements for NBE? None. Recall (§3.2.4) that data
statements do not contribute to the equational semantics of a program anyway.
Their only purpose is to achieve the classification of some constants as constructors

4.6. Applications of proof terms for code generation 93

since typical target languages have to know about this. However NBE does not need
this. So for NBE the restrictions on code equations (cf. §3.1.2) can be weakened:
constants appearing in arguments on the left hand side need not be constructors. So
also equations like

(p ∧ q) ∧ r ←→ p ∧ (q ∧ r)

are usable for NBE; the practical gain however is marginal: terms occurring in
realistic evaluations seldom match such patterns.

The embedded term representation also allows to lift another restriction of code
equations: left-linearity. Equivalence of nterm values can be underapproximated
using the following check:

fun surely_same (Symbol (name1, ts1)) (Symbol (name2, ts2)) =
name1 = name2 andalso
(length ts1 = length ts2 andalso surely_sames ts1 ts2)

| surely_same (Abs f) (Abs g) = false
and surely_sames [] [] = true

| surely_sames (t1 :: ts1) (t2 :: ts2) =
surely_same t1 t2 andalso surely_sames ts1 ts2;

If surely_same returns true for two nterms, they are equivalent, otherwise no
statement is made. This allows us to consider equations with duplicated vari-
ables on the left hand side. Each duplicated variable x is made distinct by re-
placing it with new variables x1, . . . , xn. During runtime the expressions bound to
those variables are checked: surely same x1 x2 andalso surely same x2 x3 andalso

· · · andalso surely same xn−1 xn. If this check succeeds, the expressions are defi-
nitely equal and the proper equation can be applied; otherwise, the next equation is
considered.

An instance of this problem is reflexivity of equality. In evaluations containing
uninterpreted variables a term like if x = x then A else B may occur. Using the
above technique for lifting left-linearity, reflexivity

x = x ←→ True

can be used as a code equation which reduces the above term to A.

4.6 Applications of proof terms for code generation

Isabelle per se is an LCF-style prover where proofs are irrelevant (c.f. §2.1.3), but also
provides optional proof terms which can be animated in extra-logical applications.
Two such applications are proof extraction and elimination of overloading ; we discuss
their relation to code generation briefly.

4.6.1 Extraction from constructive proofs

Extraction from constructive HOL proofs to executable programs has already been
extensively studied [5]: when extracting from a proof prf, the result is formally de-
fined in HOL by a constdef fprf def : fprf :≡ . . . and it is proved that the defined
constant satisfies the property specified in prf. Code generation itself then proceeds
using fprf def as an equation. Due to this architecture our code generator is acces-
sible for proof extraction directly without any additional effort.

94 Chapter 4. Turning specifications into programs

There remains one particular benefit to mention which stems from type classes;
examine the following constructive proof:

lemma split last :
fixes xs :: α list
assumes xs 6=

[
| |
]

shows ∃ y ys. xs = ys @
[
|y |
]

using assms proof (induct xs)
case Nil then have False by simp
then show ?case ..

next
case (Cons x xs) show ?case proof (cases xs)

case Nil then have x : xs =
[
| |
]

@
[
|x |
]

by simp
then show ?thesis by iprover

next
case Cons then have xs 6=

[
| |
]

by simp
with Cons.hyps have ∃ y ys. xs = ys @

[
|y |
]

.
then obtain y ys where xs = ys @

[
|y |
]

by iprover
then have x : xs = (x : ys) @

[
|y |
]

by simp
then show ?thesis by iprover

qed
qed

The extracted definition looks as follows:

split last ≡
λx . list rec default

(λx xa H 2.
case xa of

[
| |
]
⇒ (x ,

[
| |
]
)

| a : list ⇒ let (xa, y) = H 2 in (xa, x : y))
x

Since HOL is a total logic, the constant split last must return a value of type α even
if it is given the empty list, which is not supposed to happen in the context of an
extracted program since the premise does prevent this. Thus an arbitrary value of α
can serve as a formal placeholder. Following Coq, the standard approach is to choose
an unspecified constant (here, default). Then the canonical translation of default is
an exception (cf. §3.4.2):

split_last :: forall a. [a] -> (a, [a]);
split_last a =
list_rec (error "default")
(\ x xa h2 ->
(case xa of {
[] -> (x, []);
aa : list -> let {

ab = h2;
(xaa, y) = ab;

} in (xaa, x : y);
}))

a;

Presuming that the actual value of the first argument to list rec is never used, this
fits nicely to a language with a lazy semantics (e.g. Haskell), but is problematic for

4.6. Applications of proof terms for code generation 95

eager languages: not being used does not necessarily prevent the placeholder to be
evaluated. Since the actual choice of the placeholder value does not matter, this
problem can be circumvented by mechanisms which substitute a user-supplied value
for default. Beside some brittleness, this cannot deal with polymorphism properly
either.

Type classes offer a natural and elegant solution to this problem: default is spec-
ified as parameter of a class default. This makes it possible to instantiate default as
follows:11

instantiation ∗ :: (default , default) default
begin

definition
default = (default , default)

instance ..

end

instantiation list :: (type) default
begin

definition
default =

[
| |
]

instance ..

end

How default is defined on particular instances is not relevant since the actual choice
of placeholder values has no impact on the correctness of the extracted code. With
these instantiations, code generation can proceed canonically:

class Default a where {
defaultb :: a;

};

defaulta :: forall a b. (Default a, Default b) => (a, b);
defaulta = (defaultb, defaultb);

split_last :: forall a. (Default a) => [a] -> (a, [a]);
split_last a =

list_rec defaulta
(\ x xa h2 ->
(case xa of {
[] -> (x, []);
aa : list -> let {

ab = h2;
(xaa, y) = ab;

} in (xaa, x : y);
}))

a;

11This could be easily automated for arbitrary datatypes, but the system relieves the decision
how default is actually defined to the user.

96 Chapter 4. Turning specifications into programs

4.6.2 Definitional eliminating of overloading

The rules behind dictionary construction presented in §3.2.7 can also be applied
to proof terms [24]. Thus it is possible to transform a system of definitions and
proofs involving overloading and logically interpreted type classes such that both
are eliminated by dictionaries, where class parameters f in terms t [f] become term
parameters λx . t [x] and type class judgements (|α :: c|) in proofs P [(|α :: c|)] become
hypotheses H =⇒ P [H].

This might suggest that it is possible to compile away type classes from code
equations to a system of code equations not referring to type classes at all. That
however is not the case: when compiling away type classes from a code equation,
the result may contain logical parts of a type class as a premise and hence is no code
equation any more.

We illustrate this with an example:

class decr = wellorder + bot +
fixes decr :: α ⇒ α
assumes decr bot : decr ⊥ = ⊥
assumes decr less: x 6= ⊥ =⇒ decr x < x

The class decr enriches a well-founded order (class wellorder) with a universal least
element ⊥ (class bot) by an explicit decrement operation decr which respects the
underlying order.

Next function distance specifies an explicit counting of the number of decr steps
until ⊥ is reached:

function distance :: α::decr ⇒ nat where
distance x = (if x = ⊥ then 0 else Suc (distance (decr x)))

by pat completeness auto

termination distance
proof

from wf show wf {(y ::α::decr , x). y < x} .
next

fix x :: α::decr
assume x 6= ⊥
with decr less have decr x < x .
then show (decr x , x) ∈ {(y , x). y < x}

by simp
qed

The termination proof brings the problem to the surface: the proof inadvertently
depends on the well-foundedness (theorem wf) and the strictness of decr (theorem∧

x . x 6= ⊥ =⇒ decr x < x); this has the consequence that the proof of the equation
distance x = (if x = ⊥ then 0 else Suc (distance (decr x))) depends on both. Af-
ter extralogical dictionary construction these dependencies would persist as explicit
premises for this theorem, turning the former equation to an implication with an
equation as conclusion; this obviously violates the syntactic requirements of code
equations.

C H A P T E R 5

Conclusion

5.1 Stocktaking and evaluation

In the introduction we stated that our aim is the close integration of logic and
programming, both in theory and in practice. We admit that this aim on its own is
far too ambitious to be covered exhaustively within the range of a single PhD thesis.
Nonetheless our investigation has yielded results and experiences which provide a
firm base for further work in this area:

• Numerous example applications (see §4) suggest that code generation using
shallow embedding matches the intuition behind the equation “higher-order
logic = functional programming plus logic” quite well; the code generator is
simple to use and practically applicable.

• Though the details of the code generation meta-theory (see §2.4) seem a lit-
tle daunting, equational logic is appropriate to guarantee partial correctness.
Restricting the executable content of a logical theory to equations is simplis-
tic but honest: code generation only relies on properties which have a direct
representation inside the logic. We refrain from stating anything about gen-
erated code concerning evaluation order, termination etc. since these issues
have no logical representation in a shallow embedding. Similarly we do not
use operational models for our target languages. Instead we view programs as
equational rewrite systems; interaction with target-language specifics is possi-
ble but requires diligence and careful thinking (cf. §3.4.1 and §4.3).

• The principle of proof irrelevance is applied consequently, i.e. all equational
theorems have the same status, regardless of their origin. This gives great
flexibility in weaving implementations (see §3.2.4) and an incomplete but nev-
ertheless useful concept for datatype abstraction (see §4.1).

• Isabelle’s type classes are essential; they have a straightforward interpreta-
tion as an instance of order-sorted algebra which is both the foundation for
their logical content (see §2.3.2) as also for their operational elimination using
dictionary construction (see §3.2.7). Though Isabelle’s type classes are quite
restrictive from the perspective of the current type class facilities in Haskell
(e.g. multi-parameter type classes and type constructor classes), they open up
a number of applications, notably equality (§3.3.4), whose treatment was the
original motivation for type classes anyway.

98 Chapter 5. Conclusion

• Deductive transformations are valuable tools for transforming “raw” specifica-
tions given by the user into something accessible for code generation (e.g. equal-
ity in §3.3.4, or examples in §4.2); they leave the foundation of the code gener-
ator untouched but increase the practically executable concepts in HOL dra-
matically.

• Infrastructure shared between target languages saves a lot of duplicated work;
the interfaces of the code generator allow for derived applications (e.g. §4.4)
without the need to re-code the same tasks over and over.

• Formal program specification, gradual improvement, datatype refinement, etc.,
are well-established methodologies in software development, but practically
their application is still largely restricted to “preliminary thoughts” and (prob-
ably erroneous) paper proofs. HOL and the code generator together provide an
environment in which those techniques can be applied thoroughly in a checked
and smooth manner.

Using this as a starting point, further questions and applications can be dealt with,
which we will sketch in the next sections.

5.2 Bolstering the foundation of the code generator

The meta-theory of code generation could be further studied and strengthened:

5.2.1 Formalised meta-theory of the intermediate language

When presenting the intermediate language in §3.2 we gave only rough proof sketches
of its properties; a rigorous treatment would require a formalisation of the inter-
mediate language itself, especially the issue of order-sorted algebra and dictionary
construction.

5.2.2 Operational semantics of target languages

The last phase of code generation, the serialisation, has been dealt with only cursory
in §3.4. A first step towards a formal treatment would be to give a precise justification
for the equational semantics model (Definition 10) for selected target languages,
presuming a suitable operational semantics exists. This could open a perspective for
a precise treatment of specific adaptations, e.g. the interaction with imperative data
structures (see §4.3).

5.2.3 Evaluation strategies and termination

The equational logic model is honest in the sense that it uses only notions which
are explicit in the logic. It does not cover notions like evaluation strategies and
termination which have no correspondence in the logic. Therefore, no device is
provided to guarantee total correctness of generated code, or, more generally, to
distill the preconditions under which generated code is totally correct.

A possibility to reason about termination would be to embed the termination
behaviour deeply into the logic: relations model input arguments and result values of

5.3. Extending the foundation of the code generator 99

function calls; well-founded relations certify termination (e.g. [13]). A trusted checker
has to ensure that a termination certificate matches the structure of corresponding
code equations.

5.3 Extending the foundation of the code generator

Some shortcomings in the code generator can only be amended by extending its
foundation:

5.3.1 Invariants

The inability to specify invariants (see §4.1) turned out to be tiresome. The question
is how to encode them into the code equations. As an example, imagine we would
choose set :: α list ⇒ α set as constructor for implementing sets. Removal of a
single element from such a set can be described by a guarded equation together with
an invariant preservation statement:∧

xs x . no duplicates xs =⇒ set xs − {x} = set (remove x xs)∧
xs x . no duplicates xs =⇒ no duplicates (remove x xs)

which reads: under the assumption that the elements in the representing list are
distinct, we can remove an element from the set by removing its first occurrence
in the representing list; the elements in the resulting representing list are also dis-
tinct. Here, no duplicates describes the invariant which arguments to set must obey.
Permitting guarded code equations would demand a policy like the following: be
C a constructor whose arguments t in at least one code equation are guarded by a
predicate P, then

• each occurrence of some C p on the left hand side of a code equation can be
guarded by P p;

• each occurrence of some C t on the right hand side of a code equation must
be guarded by P t.

Informally that means that any application of C must be guaranteed to respect P,
while any pattern matching against C can assume that its arguments respect P.

5.3.2 Predicate subtyping

The PVS proof system provides a logic similar to HOL with one outstanding facility:
predicate subtypes [50]. The set of values of a predicate subtype is described as the
set of values of a type satisfying a predicate. This allows to operate with notions
like “the type of all natural numbers which are multiples of three” directly.

An adaptation of this concept could offer a perspective to deal with partial func-
tions. Assume we have the following guarded equation specifying the half of even
natural numbers:∧

n. even n =⇒ half n = (if n = 0 then 0 else Suc (half (n − 2)))

100 Chapter 5. Conclusion

Code generation currently cannot cope with such “partial” functions. A solution
could be to view such guards as predicate subtype specifications. In the example
this would mean that each occurrence of half on the right hand side must by guarded
by even:∧

n. even n =⇒ even (n − 2)

This goes in a similar direction as datatype invariants.

5.3.3 Logics other than HOL

Code generation currently is based directly on Isabelle/Pure and its extension Is-
abelle/HOL. However there are other object logics which could likewise serve as a
framework for development of executable specifications. One natural candidate for
this is Isabelle/HOLCF, a formalisation of domain theory on top of Isabelle/HOL
[40]. Continuous functions in HOLCF are modelled by a separate continuous func-
tion space α → β equipped with an embedded continuous application (·) :: (α →
β) ⇒ α ⇒ β. Therefore, specifications involving the continuous function space do
not yield code equations, e.g. the characteristic equation of the continuous identity
function

id→·x = x

is not a code equation since the continuous application on the left hand side violates
the syntactic requirements (cf. Definition 15).

One possibility to accommodate for this could be to put an object-logic specific
foundation layer between translation and logic; this layer would provide an ab-
stract view on logical ingredients and explain how “operational” entities (equations,
types, classes, . . .) are retrieved from logical ones (theorems, context, . . .). In the
Pure/HOL case, the layer would just hand things through, whereas for HOLCF
continuous application would be mapped onto Pure application etc. Of course each
foundation layer would need to be justified according to the specifics of the corre-
sponding object logic.

5.4 Extending the code generator infrastructure

Within the fixed meta-theoretical framework of the code generator, the following
additions can be thought of:

5.4.1 Further target languages

In §2.4 we gave a characterisation of the requirements a language has to fulfil to
serve as target language within our framework. Beside the existing serialisers for
SML, OCaml and Haskell, two further promising candidates are Scheme [56] and
Scala [44]. Scheme itself has no notion of patterns, but these can be simulated using
a combinator, as the code extraction of Coq does [36].

5.5. Deductive tools and advanced applications 101

5.4.2 Managing scope and accessibility

Currently, code is generated as a bulk of statements; when this is supposed to be
used in a bigger program, we silently assume that the programmer knows how to use
this code and where its entry points are supposed to be. Maybe this is unsatisfactory
for larger developments; the code generator could be enhanced such that the user
can specify which functions are to be exported and which not.

5.5 Deductive tools and advanced applications

The extensions discussed below do not affect the code generator at all: they provide
richer automation and expressiveness to the user for specifications and increase the
domain of generated code.

5.5.1 Packing machinery

When discussing datatype abstraction in §4.1.3, we had to introduce the trivial
datatype datatype (α, β) map = Map (α ⇒ β option) in order to establish an
abstraction over its concrete representation. A similar situation occurs with sets in
HOL which are represented as predicates α ⇒ bool. Developing an implementation
for finite sets is possible using constructors {} :: α set and insert :: α ⇒ α set ⇒
α set, but this also requires that values of sets are packed into a proper type (say, α
fset).

The unpacked types α ⇒ β option and α ⇒ bool have the advantage that proofs
operate directly on generic concepts which profit from existing rules and automation
without the need to pack and unpack values explicitly. For code generation, the
situation is the other way round: explicit type constructors are necessary to establish
a proper abstraction and perhaps distinguish different kinds of mappings or sets. So,
when starting a formal development, the user has to choose whether

• to use (duplicated) packed types (map, fset), thus complicating the proofs

• or to use the unpacked types (α ⇒ β option, α ⇒ bool) and deriving a (dupli-
cated) executable version in parallel which uses packed types (map, fset).

This situation is unsatisfactory. A possible solution would be an automated packing
machinery which could work roughly as follows:

• For a given type τ [α], define a packed type κ α as datatype with a constructor
Cκ :: τ [α] ⇒ κ α and a projection dκ :: κ α ⇒ τ [α] such that the inversions∧

x . Cκ (dκ x) ≡ x and
∧

x . dκ (Cκ x) ≡ x hold.

• Let the user supply one or more constants whose type signature and code
equations shall be packed (e.g. f :: nat ⇒ τ [α] ⇒ τ [α]); for each of these f
a packed constant f ′ is defined which a packed type (here, f ′ :: nat ⇒ κ α ⇒
κ α), using f, Cκ and dκ (here constdef f ′ :≡ λx . (Cκ (f (dκ x)))). With the
inversions from above substitution rules for each f (here, f ≡ λx . (dκ (f ′ (Cκ
x)))) are proved.

102 Chapter 5. Conclusion

• Using the substitution rules and the inversions, the code equations of each f are
packed into code equations for f ′ (e.g.,

∧
x . f x ≡ . . . x . . . is packed into

∧
x .

f ′ x ≡ Cκ (. . . dκ x . . .)); hereby the inversions eliminate every occurrence of
Cκ (dκ . . .) and dκ (Cκ . . .).

• In consequence, all code equations which depend on f are packed.

• The resulting set of code equations is the same as if type κ α would have been
present in the underlying specification from the beginning. Code equations
not containing Cκ or dκ use κ α abstract, while others access its concrete
representation τ [α]; for these an alternative implementation can be provided
using the existing concepts for datatype abstraction.

A prerequisite for this machinery are functorial lifters for all types which may contain
packed types as parameters; each such type κ ′ αk must provide such a lifter mapκ;i

:: (αi ⇒ β) ⇒ κ ′ α1 . . . αi−1 αi αi+1 . . . αk ⇒ κ ′ α1 . . . αi−1 β αi+1 . . . αk for
each type parameter αi such that

∧
f g y . (

∧
x . f (g x) = x) =⇒ mapκ;i f (mapκ;i

g y) ≡ y.

5.5.2 Infinite data structures

In lazy languages like Haskell, infinite data structures are a common modelling de-
vice, e.g. the list of all even natural numbers:

even :: [Integer]
even = even’ 0 where even’ n = n : even’ (n + 2)

For such lazy types currently no tool support is provided in HOL. One approach could
be coinductive datatypes which are defined as greatest rather than least fixpoints
[37, 20]. Another possibility is use a domain-theoretic approach using HOLCF (see
above §5.3.3); this would also demand to extend the foundation of the code generator
to cover HOLCF as well as sketched above.

5.5.3 Parallelism

With the advent of multi-core processors, the importance of parallelism has increased
dramatically. To adopt code generation for parallelism, suitable concepts from Par-
allel Haskell can be borrowed:

• A pure functional language permits parallelism inherently, e.g. the well-known
combinator map :: (a -> b) -> [a] -> [b] can apply its function argument to
all elements of its list argument in parallel without changing its equational se-
mantics. To apply this for code generation no further infrastructure is needed:
parallel combinators can be specified conventionally in HOL and mapped to
parallel counterparts using the existing adaptation mechanism (see §3.4.1).

• The currently rising star on the sky of concurrent programming is Software
Transactional Memory (STM) [27]. It provides a framework to implement
reentrant transactions using shared transactional variables; access conflicts are
resolved by the framework by rolling back transactions. This transactional ap-
proach to synchronisation is well-established in relational databases; it avoids

5.5. Deductive tools and advanced applications 103

the typical problems of primitive synchronisation mechanisms like deadlocks,
starvation, etc.

The challenge here is how to adopt STM to HOL. The transaction-based con-
currency framework has to be embedded into the purely functional logic. Also
means to reason about STM-based programs must be provided.

For me the chief thing is that I feel
that the whole matter is now “exorcised”,

and rides me no more.
I can turn now to other things.

John Ronald Reuel Tolkien,
author of the century [52],

from a letter to Stanley Unwin

104 Chapter 5. Conclusion

A P P E N D I X A

Notions of the Pure logic
and their notations

Isopropyl-propenyl-barbitursaures-phenyl-
dimethyl-dimethyl-amino-pyrazolon. . . .

So einfach, und man kann sich’s doch nicht merken.
Karl Valentin, from: In der Apotheke

A.1 Expressions

(c.f. Synopsis 1)

sorts s ::= c1 ∩ . . . ∩ cl
top sort >

types τ ::= κ τ1 . . . τk | α::s
type variables α, β, γ, . . .

terms t ::= t1 t2 | λx ::τ . t | x ::τ | f
terms t, u, v, w, . . .
variables x, y, z, . . .
constants f, g, . . .

proofs containing implication P =⇒ Q
and universal quantification

∧
x ::τ . P x

A.2 Theory context

(c.f. Synopsis 2 and 7)

Θ = (f, Σ, Υ, Ω, ω, . . .) with

subclass relation f c = {c1, . . . , ck}

106 Appendix A — Notions of the Pure logic and their notations

type arities Υ κ = ∗ → · · · → ∗

arity signature Σ cκ = s

constant types Ω f = ∀α1 . . . αn. τ

constant-to-class association ω f = c

A.3 Theory extensions

(c.f. Synopsis 3, 4, 5 and 8, also 6)

class definition

classdef c ⊆ c1 ∩ . . . ∩ cn: P [α]

type definition (no Pure theory extension, only HOL!)

typedef κ α = {x ::τ . P x} 〈proof 〉

type declaration

typedecl κ :: ∗ → · · · → ∗

instance definition

instance κ :: (s) c 〈proof 〉

constant definition

constdef f def : (f :: τ [α]) :≡ t

constant declaration

constdecl f :: ∀α. τ

overloaded definition

overload f κ def : (f :: τ [κ α]) :≡ t

theorem definition

theorem a: P 〈proof 〉

axiom declaration

axiom a: P

A P P E N D I X B

Selected ingredients of Isabelle/HOL

In his thinking, things had to be done.
And if no one else would be hacking them, he would.

Steven Levy, American journalist,
from: Hackers

booleans datatype bool = True | False
base connectives P ∧ Q, P ∨ Q, P −→ Q, P ←→ Q

sets α set
 (α ⇒ bool)
intersection A ∩ B
union A ∪ B
difference A − B
membership x ∈ A
empty set {}
set literals {a, b, c}
singleton insertion insert a A = {a} ∪ A

lattices
infimum x u y
supremum x t y
set infimum

d
{x , y , z , . . . } = x u y u z u . . .

set supremum
⊔
{x , y , z , . . . } = x t y t z t . . .

bottom element ⊥
top element >

arithmetic
natural numbers datatype nat = 0 | Suc nat
integer numbers int
number literals 42, 1705
basic arithmetic x + y, x − y, x ∗ y
comparisons x ≤ y, x < y, min x y, max x y
divisibility x div y, x mod y, gcd x y
conversions nat :: int ⇒ nat, int :: nat ⇒ int

108 Appendix B — Selected ingredients of Isabelle/HOL

products datatype α × β = Pair α β

tuples (a, b)
 Pair a b – (a, b, c)
 (a, (b, c))
projections fst :: α × β ⇒ α, snd :: α × β ⇒ β

sums datatype α + β = Inl α | Inr β

options datatype α option = None | Some α

lists datatype α list =
[
| |
]
| (:) α (α list)

destructors head (x : xs) = x
tail

[
| |
]

=
[
| |
]

tail (x : xs) = xs
functorials fold f

[
| |
]

s = s
fold f (x : xs) s = fold f xs (f x s)
map f

[
| |
]

=
[
| |
]

map f (x : xs) = f x : map f xs
filter P

[
| |
]

=
[
| |
]

filter P (x : xs) = (if P x then x : filter P xs else filter P xs)
map filter f

[
| |
]

=
[
| |
]

map filter f (x : xs) =
(case f x of None ⇒ map filter f xs | Some y ⇒ y : map filter
f xs)

concatenation
[
| |
]

@ ys = ys
(x : xs) @ ys = x : xs @ ys
flat

[
| |
]

=
[
| |
]

flat (x : xs) = x @ flat xs
reversal rev

[
| |
]

=
[
| |
]

rev (x : xs) = rev xs @
[
|x |
]

indexing length
[
| |
]

= 0
length (x : xs) = Suc (length xs)
(x : xs) ! n = (case n of 0 ⇒ x | Suc k ⇒ xs ! k)
map nth n f

[
| |
]

=
[
| |
]

map nth 0 f (x : xs) = f x : xs
map nth (Suc n) f (x : xs) = x : map nth n f xs

set conversion set
[
| |
]

= {}
set (x : xs) = insert x (set xs)

singleton removal remove x
[
| |
]

=
[
| |
]

remove x (y : xs) = (if x = y then xs else y : remove x xs)
duplicates no duplicates

[
| |
]
←→ True

no duplicates (x : xs) ←→ x /∈ set xs ∧ no duplicates xs
distinct

[
| |
]

=
[
| |
]

distinct (x : xs) =
(if x ∈ set xs then distinct xs else x : distinct xs)

A P P E N D I X C

Code examples

/* You are not expected to understand this */

if (rp -> p_flag & SSWAP) {
rp -> p_flag =& ~SSWAP;
aretu(u.u_ssav);

}

Sixth Edition Unix, lines 2240ff.

C.1 Rational numbers

(see §4.1.2)

{-# OPTIONS_GHC -fglasgow-exts #-}

module Rat where {

leta :: forall b a. b -> (b -> a) -> a;
leta s f = f s;

abs_int :: Integer -> Integer;
abs_int i = (if i < 0 then negate i else i);

split :: forall b c a. (b -> c -> a) -> (b, c) -> a;
split f (a, b) = f a b;

sgn_int :: Integer -> Integer;
sgn_int i = (if i == 0 then 0 else (if 0 < i then 1 else negate 1));

apsnd :: forall c b a. (c -> b) -> (a, c) -> (a, b);
apsnd f (x, y) = (x, f y);

divmod :: Integer -> Integer -> (Integer, Integer);
divmod k l =

(if k == 0 then (0, 0)
else (if l == 0 then (0, k)

else apsnd (\ a -> sgn_int l * a)
(if sgn_int k == sgn_int l
then (\k l -> divMod (abs k) (abs l)) k l

110 Appendix C — Code examples

else let {
a = (\k l -> divMod (abs k) (abs l)) k l;
(r, s) = a;

} in (if s == 0 then (negate r, 0)
else (negate r - 1, abs_int l - s)))));

mod_int :: Integer -> Integer -> Integer;
mod_int a b = snd (divmod a b);

zgcd :: Integer -> Integer -> Integer;
zgcd k l =
abs_int
(if l == 0 then k else zgcd l (mod_int (abs_int k) (abs_int l)));

data Rat = Fract Integer Integer;

div_int :: Integer -> Integer -> Integer;
div_int a b = fst (divmod a b);

fract_norm :: Integer -> Integer -> Rat;
fract_norm a b =
(if a == 0 || b == 0 then Fract 0 1
else let {

c = zgcd a b;
} in (if 0 < b then Fract (div_int a c) (div_int b c)

else Fract (negate (div_int a c))
(negate (div_int b c))));

plus_rat :: Rat -> Rat -> Rat;
plus_rat (Fract a b) (Fract c d) =
(if b == 0 then Fract c d
else (if d == 0 then Fract a b

else fract_norm (a * d + c * b) (b * d)));

minus_rat :: Rat -> Rat -> Rat;
minus_rat (Fract a b) (Fract c d) =
(if b == 0 then Fract (negate c) d
else (if d == 0 then Fract a b

else fract_norm (a * d - c * b) (b * d)));

times_rat :: Rat -> Rat -> Rat;
times_rat (Fract a b) (Fract c d) = fract_norm (a * c) (b * d);

divide_rat :: Rat -> Rat -> Rat;
divide_rat (Fract a b) (Fract c d) = fract_norm (a * d) (b * c);

}

C.2 Mappings — naive implementation

(see §4.1.3)

{-# OPTIONS_GHC -fglasgow-exts #-}

module Mapping_Naive where {

newtype Map a b = Map (a -> Maybe b);

empty :: forall a b. Map a b;
empty = Map (\ uu -> Nothing);

C.3. Mappings — implementation by association lists 111

point :: forall a b. (Eq a) => a -> (b -> b) -> (a -> b) -> a -> b;
point x g f z = (if z == x then g (f z) else f z);

delete :: forall a b. (Eq a) => a -> Map a b -> Map a b;
delete k (Map f) = Map (point k (\ uu -> Nothing) f);

lookupa :: forall a b. Map a b -> a -> Maybe b;
lookupa (Map f) = f;

update :: forall a b. (Eq a) => a -> b -> Map a b -> Map a b;
update k v (Map f) = Map (point k (\ uu -> Just v) f);

}

C.3 Mappings — implementation by association
lists

(see §4.1.3)

{-# OPTIONS_GHC -fglasgow-exts #-}

module Mapping_AList where {

data Nat = Zero_nat | Suc Nat;

mapa :: forall b a. (b -> a) -> [b] -> [a];
mapa f [] = [];
mapa f (x : xs) = f x : mapa f xs;

newtype Map a b = AList [(a, b)];

deletea :: forall a b. (Eq a) => a -> [(a, b)] -> [(a, b)];
deletea k [] = [];
deletea k (x : xs) =

(if k == fst x then deletea k xs else x : deletea k xs);

lookupb :: forall a b. (Eq a) => [(a, b)] -> a -> Maybe b;
lookupb [] k = Nothing;
lookupb (x : xs) k =

(if k == fst x then Just (snd x) else lookupb xs k);

updatea :: forall a b. (Eq a) => a -> b -> [(a, b)] -> [(a, b)];
updatea k v [] = [(k, v)];
updatea k v (x : xs) =

(if k == fst x then (k, v) : xs else x : updatea k v xs);

member :: forall a. (Eq a) => [a] -> a -> Bool;
member [] y = False;
member (x : xs) y = x == y || member xs y;

remdups :: forall a. (Eq a) => [a] -> [a];
remdups [] = [];
remdups (x : xs) = (if member xs x then remdups xs else x : remdups xs);

lengtha :: forall a. [a] -> Nat;
lengtha [] = Zero_nat;
lengtha (x : xs) = Suc (lengtha xs);

size :: forall a b. (Eq a) => Map a b -> Nat;
size (AList xs) = lengtha (remdups (mapa fst xs));

112 Appendix C — Code examples

empty :: forall a b. Map a b;
empty = AList [];

delete :: forall a b. (Eq a) => a -> Map a b -> Map a b;
delete k (AList xs) = AList (deletea k xs);

lookupa :: forall a b. (Eq a) => Map a b -> a -> Maybe b;
lookupa (AList xs) = lookupb xs;

update :: forall a b. (Eq a) => a -> b -> Map a b -> Map a b;
update k v (AList xs) = AList (updatea k v xs);

}

C.4 Mappings — implementation by binary trees

(see §4.1.3)

{-# OPTIONS_GHC -fglasgow-exts #-}

module Mapping_Tree where {

data Nat = Zero_nat | Suc Nat;

class Orda a where {
less_eq :: a -> a -> Bool;
less :: a -> a -> Bool;

};

mapa :: forall b a. (b -> a) -> [b] -> [a];
mapa f [] = [];
mapa f (x : xs) = f x : mapa f xs;

data Tree a b = Empty | Branch b a (Tree a b) (Tree a b);

append :: forall a. [a] -> [a] -> [a];
append [] ys = ys;
append (x : xs) ys = x : append xs ys;

class (Orda a) => Preorder a where {
};

class (Preorder a) => Order a where {
};

class (Order a) => Linorder a where {
};

keys :: forall a b. (Linorder a) => Tree a b -> [a];
keys Empty = [];
keys (Branch uu k l r) = k : append (keys l) (keys r);

member :: forall a. (Eq a) => [a] -> a -> Bool;
member [] y = False;
member (x : xs) y = x == y || member xs y;

remdups :: forall a. (Eq a) => [a] -> [a];
remdups [] = [];
remdups (x : xs) = (if member xs x then remdups xs else x : remdups xs);

C.5. Beta-normalisation of λ-terms 113

lookupb :: forall a b. (Eq a, Linorder a) => Tree a b -> a -> Maybe b;
lookupb Empty = (\ uu -> Nothing);
lookupb (Branch v k l r) =

(\ k’ ->
(if k’ == k then Just v
else (if less_eq k’ k then lookupb l k’ else lookupb r k’)));

is_none :: forall b. Maybe b -> Bool;
is_none (Just x) = False;
is_none Nothing = True;

filtera :: forall a. (a -> Bool) -> [a] -> [a];
filtera p [] = [];
filtera p (x : xs) = (if p x then x : filtera p xs else filtera p xs);

lengtha :: forall a. [a] -> Nat;
lengtha [] = Zero_nat;
lengtha (x : xs) = Suc (lengtha xs);

sizea :: forall a b. (Eq a, Linorder a) => Tree a b -> Nat;
sizea t =

lengtha
(filtera (\ x -> not (is_none x))
(mapa (lookupb t) (remdups (keys t))));

newtype (Linorder a) => Map a b = Tree (Tree a b);

updatea ::
forall a b. (Eq a, Linorder a) => a -> b -> Tree a b -> Tree a b;

updatea k v Empty = Branch v k Empty Empty;
updatea k’ v’ (Branch v k l r) =

(if k’ == k then Branch v’ k l r
else (if less_eq k’ k then Branch v k (updatea k’ v’ l) r

else Branch v k l (updatea k’ v’ r)));

size :: forall a b. (Eq a, Linorder a) => Map a b -> Nat;
size (Tree t) = sizea t;

empty :: forall a b. (Linorder a) => Map a b;
empty = Tree Empty;

lookupa :: forall a b. (Eq a, Linorder a) => Map a b -> a -> Maybe b;
lookupa (Tree t) = lookupb t;

update ::
forall a b. (Eq a, Linorder a) => a -> b -> Map a b -> Map a b;

update k v (Tree t) = Tree (updatea k v t);

}

C.5 Beta-normalisation of λ-terms

(see §4.2.3)

structure Lambda =
struct

type ’a eq = {eq : ’a -> ’a -> bool};
fun eq (A_:’a eq) = #eq A_;

datatype nat = Zero_nat | Suc of nat;

114 Appendix C — Code examples

fun eqop A_ a b = eq A_ a b;

fun eq_nat (Suc a) Zero_nat = false
| eq_nat Zero_nat (Suc a) = false
| eq_nat (Suc nat) (Suc nat’) = eq_nat nat nat’
| eq_nat Zero_nat Zero_nat = true;

val eq_nata = {eq = eq_nat} : nat eq;

val one_nat : nat = Suc Zero_nat

fun less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = true;

fun plus_nat (Suc m) n = plus_nat m (Suc n)
| plus_nat Zero_nat n = n;

datatype ’a seq = Empty | Insert of ’a * ’a pred |
Join of ’a pred * ’a seq

and ’a pred = Seq of (unit -> ’a seq);

fun minus_nat (Suc m) (Suc n) = minus_nat m n
| minus_nat Zero_nat n = Zero_nat
| minus_nat m Zero_nat = m;

fun bind (Seq g) f = Seq (fn u => apply f (g ()))
and apply f Empty = Empty
| apply f (Insert (x, p)) = Join (f x, Join (bind p f, Empty))
| apply f (Join (p, xq)) = Join (bind p f, apply f xq);

val bot_pred : ’a pred = Seq (fn u => Empty)

fun single x = Seq (fn u => Insert (x, bot_pred));

fun seq_case f1 f2 f3 (Join (pred, seq)) = f3 pred seq
| seq_case f1 f2 f3 (Insert (a, pred)) = f2 a pred
| seq_case f1 f2 f3 Empty = f1;

fun adjunct p Empty = Join (p, Empty)
| adjunct p (Insert (x, q)) = Insert (x, sup_pred q p)
| adjunct p (Join (q, xq)) = Join (q, adjunct p xq)

and sup_pred (Seq f) (Seq g) =
Seq (fn u =>

(case f () of Empty => g ()
| Insert (x, p) => Insert (x, sup_pred p (Seq g))
| Join (p, xq) => adjunct (Seq g) (Join (p, xq))));

datatype lambda = Var of nat | App of lambda * lambda | Abs of lambda;

fun lift k (Var i) =
(if less_nat i k then Var i else Var (plus_nat i one_nat))
| lift k (App (s, t)) = App (lift k s, lift k t)
| lift k (Abs s) = Abs (lift (plus_nat k one_nat) s);

fun subst k s (Var i) =
(if less_nat k i then Var (minus_nat i one_nat)
else (if eqop eq_nata i k then s else Var i))

| subst k s (App (t, u)) = App (subst k s t, subst k s u)
| subst k s (Abs t) =
Abs (subst (plus_nat k one_nat) (lift Zero_nat s) t);

fun lambda_case f1 f2 f3 (Abs lambda) = f3 lambda
| lambda_case f1 f2 f3 (App (lambda1, lambda2)) = f2 lambda1 lambda2
| lambda_case f1 f2 f3 (Var nat) = f1 nat;

C.5. Beta-normalisation of λ-terms 115

fun beta_1 x1 =
sup_pred
(bind (single x1)
(fn a =>
(case a of Var nat => bot_pred

| App (lambda1, t) =>
(case lambda1 of Var nat => bot_pred

| App (lambda1a, lambda2b) => bot_pred
| Abs s => single (subst Zero_nat t s))

| Abs lambda => bot_pred)))
(sup_pred
(bind (single x1)
(fn a =>
(case a of Var nat => bot_pred

| App (s, u) =>
bind (beta_1 s) (fn x => single (App (x, u)))

| Abs lambda => bot_pred)))
(sup_pred
(bind (single x1)
(fn a =>
(case a of Var nat => bot_pred

| App (u, s) =>
bind (beta_1 s) (fn x => single (App (u, x)))

| Abs lambda => bot_pred)))
(bind (single x1)
(fn a =>
(case a of Var nat => bot_pred

| App (lambda1, lambda2) => bot_pred
| Abs s => bind (beta_1 s) (fn x => single (Abs x)))))));

end; (*struct Lambda*)

116 Appendix C — Code examples

A P P E N D I X D

Cantor’s
first diagonalisation argument

It is reasonable to hope that the relationship
between computation and mathematical logic
will be as fruitful in the next century as that

between analysis and physics in the last.
John McCarthy, computer science pioneer, from:

A Basis for a Mathematical Theory of Computation,
1963

We give explicit proofs for the encoding of countable types from and to natural
numbers using Cantor’s first diagonalisation argument (e.g. [51]), as required for the
heap construction in §4.3.2. The diagonalisation is implemented by two complemen-
tary operations:

diagonalize :: nat ⇒ nat ⇒ nat
tupelize :: nat ⇒ nat × nat

with the characteristic properties:

tupelize diagonalize:
∧

m n. tupelize (diagonalize m n) = (m, n)
diagonalize inject :

∧
a b c d . diagonalize a b = diagonalize c d =⇒ a = c∧

a b c d . diagonalize a b = diagonalize c d =⇒ b = d

One suitable choice for diagonalize is

diagonalize m n = (let q = m + n in q ∗ Suc q div 2 + m)

This enables us to provide suitable instances for class countable:

class countable =
fixes nat of :: α ⇒ nat
fixes of nat :: nat ⇒ α
assumes nat of inject : nat of x = nat of y =⇒ x = y
assumes of nat of : of nat (nat of x) = x

118 Appendix D — Cantor’s first diagonalisation argument

For the natural numbers the encoding is just identity:

instantiation nat :: countable
begin

definition
[simp]: nat of = (id :: nat ⇒ nat)

definition
[simp]: of nat = (id :: nat ⇒ nat)

instance proof
qed simp all

end

Finite types like bool can be encoded directly:

instantiation bool :: countable
begin

definition
nat of b = (if b then (1::nat) else 0)

definition
of nat (n::nat) ←→ (n 6= 0)

instance proof
qed (simp all add : nat of bool def of nat bool def split : if splits)

end

The interesting case are products, where we use the diagonalisation argument:

instantiation ∗ :: (countable, countable) countable
begin

definition
nat of p = diagonalize (nat of (fst p)) (nat of (snd p))

definition
of nat n = (let (m, q) = tupelize n in (of nat m, of nat q))

instance proof
qed (auto simp add : split paired all nat of prod def of nat prod def

tupelize diagonalize of nat of dest : diagonalize inject nat of inject)

end

Sums can already use the existing encoding of products:

119

instantiation + :: (countable, countable) countable
begin

definition
nat of z = (case z of Inl x ⇒ nat of (False, nat of x)
| Inr y ⇒ nat of (True, nat of y))

definition
of nat n = (let (b, m) = of nat n in if b

then Inr (of nat m)
else Inl (of nat m))

instance proof
qed (auto simp add : nat of sum def of nat sum def of nat of

dest : nat of inject split : sum.splits)

end

The remaining concept for datatypes is recursion, for which lists are the canonical
example:

instantiation list :: (countable) countable
begin

primrec nat of list where
nat of

[
| |
]

= 0
| nat of (x : xs) = Suc (nat of (x , nat of xs))

fun of nat list where
of nat 0 =

[
| |
]

| of nat (Suc n) = (let (x , m) = of nat n in x : of nat m)

instance proof
fix xs ys :: α list
assume eq : nat of xs = nat of ys
then have length xs = length ys
proof (induct xs arbitrary : ys)

case Nil then show ?case by (cases ys) simp all
next

case (Cons x xs)
from Cons.hyps
have nat of xs = nat of (tail ys) =⇒ length xs = length (tail ys) .
with Cons.prems show ?case

by (cases ys) (auto dest : nat of inject)
qed then show xs = ys using eq by (induct rule: list induct2)

(auto dest : nat of inject)
next

fix xs :: α list
show of nat (nat of xs) = xs

by (induct xs) (simp all add : of nat of)

120 Appendix D — Cantor’s first diagonalisation argument

qed

end

All these example instances may serve as patterns how arbitrary first-order datatypes
can be equipped with countable instances.

Bibliography

[1] Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled implementa-
tion of normalization by evaluation. In Otmane Aı̈t Mohamed, César Muñoz,
and Sofiène Tahar, editors, TPHOLs ’08: Proceedings of the 21th International
Conference on Theorem Proving in Higher Order Logics, volume 5170 of Lecture
Notes in Computer Science, pages 352–367. Springer-Verlag, 2008.

[2] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Types for
Proofs and Programs (TYPES 2003), volume 2277 of Lecture Notes in Computer
Science, pages 34–50. Springer-Verlag, 2004.

[3] Friedrich Ludwig Bauer. Was ist Programmtransformation? Elektronische
Rechenanlagen, 18:229–233, 1976.

[4] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization
by evaluation. In B. Möller and J.V. Tucker, editors, Prospects for Hardware
Foundations, number 1546 in Lecture Notes in Computer Science, pages 117–
137. Springer-Verlag, 1998.

[5] Stefan Berghofer. Program extraction in simply-typed higher order logic. In
Herman Geuvers and Freek Wiedijk, editors, Types for Proofs and Programs
(TYPES 2002), volume 2277 of Lecture Notes in Computer Science, pages 21–
38. Springer-Verlag, 2002.

[6] Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive
into equational specifications. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, TPHOLs ’09: Proceedings of the 22th
International Conference on Theorem Proving in Higher Order Logics, volume
5674 of Lecture Notes in Computer Science, pages 131–146. Springer-Verlag,
2009.

[7] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs
and Programs (TYPES 2000), volume 2277 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2002.

[8] Stefan Berghofer and Makarius Wenzel. Logic-free reasoning in Isabelle/Isar. In
Mathematical Knowledge Management (MKM 2008), Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2008.

[9] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in The-
oretical Computer Science. Springer-Verlag, 2004.

122 Bibliography

[10] R. S. Boyer and J Strother Moore. Single-threaded objects in ACL2. In PADL
’02: Proceedings of the 4th International Symposium on Practical Aspects of
Declarative Languages, pages 9–27, London, UK, 2002. Springer-Verlag.

[11] Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineering:
Using UML, Patterns and Java, Second Edition. Prentice Hall International,
September 2003.

[12] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and John
Matthews. Imperative functional programming with Isabelle/HOL. In Ot-
mane Aı̈t Mohamed, César Muñoz, and Sofiène Tahar, editors, TPHOLs ’08:
Proceedings of the 21th International Conference on Theorem Proving in Higher
Order Logics, volume 5170 of Lecture Notes in Computer Science, pages 352–
367. Springer-Verlag, 2008.

[13] Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow. Finding lexicographic
orders for termination proofs in Isabelle/HOL. In K. Schneider and J. Brandt,
editors, TPHOLs ’07: Proceedings of the 20th International Conference on The-
orem Proving in Higher Order Logics, volume 4732 of Lecture Notes in Computer
Science, pages 38–53. Springer-Verlag, 2007.

[14] F. Warren Burton. An efficient functional implementation of FIFO queues. In
Information processing letters, volume 14, pages 205–206, 1982.

[15] Amine Chaieb and Makarius Wenzel. SML with antiquotations embedded into
Isabelle/Isar. In J. Carette and F. Wiedijk, editors, Programming Languages for
Mechanized Mathematics Workshop (CALCULEMUS 2007), Hagenberg, Aus-
tria, June 2007.

[16] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, pages 56–68, 1940.

[17] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

[18] Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons.
Fast and loose reasoning is morally correct. In Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’06, pages 206–217, New York, NY, USA, 2006. ACM Press.

[19] Jean H. Gallier. On the correspondence between proofs and lambda-terms. In
Philippe de Groote, editor, The Curry-Howard isomorphism, volume 8, pages
5–138. 2003.

[20] Jeremy Gibbons and Graham Hutton. Proof methods for corecursive programs.
Fundamenta Informatica, 66(4):353–366, April/May 2005.

[21] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edin-
burgh LCF: A Mechanized Logic of Computation, volume 78 of Lecture Notes
in Computer Science. Springer-Verlag, 1979.

[22] Mike Gordon. From LCF to HOL: a short history. pages 169–185, Cambridge,
MA, USA, 2000. MIT Press.

Bibliography 123

[23] Florian Haftmann. Code generation from Isabelle theories. http://isabelle.in.
tum.de/doc/codegen.pdf.

[24] Florian Haftmann and Makarius Wenzel. Constructive type classes in Isabelle.
In T. Altenkirch and C. McBride, editors, Types for Proofs and Programs
(TYPES 2006), volume 4502 of Lecture Notes in Computer Science. Springer-
Verlag, 2007.

[25] Florian Haftmann and Makarius Wenzel. Local theory specifications in is-
abelle/isar. In Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro, ed-
itors, Types for Proofs and Programs, International Conference, TYPES 2008,
Torino, Italy, March 26-29, 2008, Revised Selected Papers, volume 5497 of Lec-
ture Notes in Computer Science, pages 153–168. Springer-Verlag, 2009.

[26] Cordelia Hall, Kevin Hammond, S. Peyton Jones, and Philip Wadler. Type
classes in Haskell. ACM Transactions on Programming Languages and Systems,
18(2), 1996.

[27] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Com-
posable memory transactions. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
48–60, New York, NY, USA, 2005. ACM Press.

[28] John Harrison. HOL Light: a tutorial introduction. In Mandayam Srivas and
Albert Camilleri, editors, Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design, pages 265–269, 1996.

[29] C. B. Jones. Systematic Software Development using VDM. Prentice Hall In-
ternational, second edition, 1990.

[30] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In Conference record of the Twentieth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Charleston, South Carolina,
pages 71–84, 1993.

[31] Matt Kaufmann and J Strother Moore. An industrial strength theorem prover
for a logic based on Common Lisp. Software Engineering, 23(4):203–213, 1997.

[32] Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like
language, virtual machine, and compiler. ACM Trans. Program. Lang. Syst.,
28(4):619–695, 2006.

[33] Alexander Krauss. Partial recursive functions in higher-order logic. In Interna-
tional Joint Conference on Automated Reasoning, pages 589–603, 2006.

[34] P. L’Ecuyer. Efficient and portable combined random number generators. Com-
mun. ACM, 31(6):742–751, 1988.

[35] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the Formal Ver-
ification of a C0 Compiler: Code Generation and Implementation Correctness.
In SEFM ’05: Proceedings of the Third IEEE International Conference on Soft-
ware Engineering and Formal Methods, pages 2–12, Washington, DC, USA,
2005. IEEE Computer Society.

http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/codegen.pdf

124 Bibliography

[36] P. Letouzey. Programmation fonctionnelle certifiée – L’extraction de pro-
grammes dans l’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

[37] John Matthews. Recursive function definition over coinductive types. In Yves
Bertot, Gilles Dowek, André Hirschowitz, C. Paulin, and Laurent Théry, editors,
TPHOLs ’99: Proceedings of the 12th International Conference on Theorem
Proving in Higher Order Logics, volume 1690 of Lecture Notes in Computer
Science, pages 73–90. Springer-Verlag, 1999.

[38] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their con-
fluence. Theoretical Computer Science, 192:3–29, 1998.

[39] John L. McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i. Communications of the ACM, 3(4):184–195, 1960.

[40] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch. HOLCF
= HOL + LCF. Journal of Functional Programming, 9:191–223, 1999.

[41] T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and G. Plotkin,
editors, Logical Environments. Cambridge University Press, 1993.

[42] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[43] Tobias Nipkow, Gertrud Bauer, and Paula Schultz. Flyspeck I: Tame graphs.
In U. Furbach and N. Shankar, editors, International Joint Conference on Au-
tomated Reasoning, volume 4130 of Lecture Notes in Computer Science, pages
21–35. Springer-Verlag, 2006.

[44] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubo-
chet, Burak Emir, Sean McDirmid, Stphane Micheloud, Nikolay Mihaylov,
Michel Schinz, Lex Spoon, Erik Stenman, and Matthias Zenger. An overview of
the Scala programming language. Technical report, EPFL Lausanne, Switzer-
land, 2004.

[45] Chris Okasaki. Catenable double-ended queues. In In Proceedings of the second
ACM SIGPLAN international conference on Functional programming, pages
66–74. ACM Press, 1997.

[46] Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science. Academic Press, 1990.

[47] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive
definitions. In CADE-12: Proceedings of the 12th International Conference on
Automated Deduction, pages 148–161, London, UK, 1994. Springer-Verlag.

[48] Lawrence C. Paulson. Defining functions on equivalence classes. ACM Trans.
Comput. Logic, 7(4):658–675, 2006.

[49] Microsoft Research. The F# Language. http://research.microsoft.com/en-us/
um/cambridge/projects/fsharp/.

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

Bibliography 125

[50] John Rushby, Sam Owre, and N. Shankar. Subtypes for specifications: Predicate
subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709–720,
September 1998.

[51] Uwe Schöning. Theoretische Informatik – kurzgefasst. Spektrum, March 2001.

[52] Tom Shippey. J. R. R. T. Tolkien: author of the century. HarperCollins, 2001.

[53] Konrad Slind and Michael Norrish. A brief overview of HOL4. In TPHOLs ’08:
Proceedings of the 21st International Conference on Theorem Proving in Higher
Order Logics, pages 28–32, Berlin, Heidelberg, 2008. Springer-Verlag.

[54] Z. Somogyi, F. J. Henderson, and T. C. Conway. Mercury: an efficient purely
declarative logic programming language. In Proceedings of the Australian Com-
puter Science Conference, pages 499–512, 1995.

[55] Tobias Nipkow Stefan Berghofer. Random testing in Isabelle/HOL. In SEFM
’04: Proceedings of the Software Engineering and Formal Methods, Second Inter-
national Conference, pages 230–239, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[56] Gerald J. Sussman and Jr. Guy L. Steele. An interpreter for extended lambda
calculus. Technical report, Cambridge, MA, USA, 1975.

[57] The Coq Development Team. The Coq Proof Assistant Reference Manual –
Version 8.1, July 2006. http://coq.inria.fr.

[58] G. Van Rossum. The Python Language Reference Manual. Network Theory
Ltd., 2003.

[59] P. Wadler. Linear types can change the world! In IFIP TC 2 Working Confer-
ence on Programming Concepts and Methods, April 1990.

[60] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In
ACM Symposium Principles of Programming Languages, pages 60–76. ACM
Press, 1989.

[61] Tjark Weber. SAT-based Finite Model Generation for Higher-Order Logic. PhD
thesis, April 2008.

[62] Makarius Wenzel. Type classes and overloading in higher-order logic. In
TPHOLs ’97: Proceedings of the 10th International Conference on Theorem
Proving in Higher Order Logics, pages 307–322, London, UK, 1997. Springer-
Verlag.

[63] Makarius Wenzel and Burkhart Wolff. Building formal method tools in the
Isabelle/Isar framework. In Klaus Schneider and Jens Brandt, editors, TPHOLs
’07: Proceedings of the 20th International Conference on Theorem Proving in
Higher Order Logics, pages 352–367. Springer-Verlag, 2007.

[64] Glynn Winskel. The formal semantics of programming languages: an introduc-
tion. MIT Press, Cambridge, MA, USA, 1993.

http://coq.inria.fr

	Introduction
	Scenario
	Contributions
	Related work
	Calculus of inductive constructions --- Coq
	ACL2
	Higher-order logic

	A note on notation

	Foundations
	The logical framework Isabelle/Pure
	Logical expressions
	Theory extensions
	Putting on the LCF glasses
	A glimpse at the Isar language

	The Isabelle/HOL system
	Isabelle/HOL as extension of Isabelle/Pure
	The Isabelle/HOL toolbox
	Example proof: The natural numbers are well-founded

	Type classes
	Syntactic properties
	Logical interpretation
	End-user view

	A framework for describing code generation
	Higher-order rewrite systems
	Pure as a HRS
	HRSs as model for target languages
	Code generation using shallow embedding

	Code generation
	Towards a concrete code generator
	Pure and HOL
	Patterns and code equations
	Architecture overview

	An abstract intermediate language
	Motivation
	Definition
	Well-formed programs and their semantics
	A correct translation
	Well-sorted systems
	Local pattern matching
	Dictionary construction

	Code generation in practice using Isabelle/HOL
	Code generator default setup
	class and instantiation
	The preprocessor
	Equality
	Producing well-sorted systems

	Concerning serialisation
	Adaptation
	Subtle situations and borderline cases

	What is ``executable''?

	Turning specifications into programs
	Datatype abstraction
	Amortised queues revisited
	Implementing rational numbers
	Mappings
	Stocktaking

	Combining code generation and deductions
	Enumerating finite types
	Binary representation of natural numbers
	Inductive predicates

	Mastering destructive data structures
	Side effects, linear type systems and state monads
	A polymorphic heap in HOL
	Putting the heap into a monad
	Interfacing with destructive code

	A quickcheck implementation in Isar
	Evaluation and reconstruction
	A random engine in HOL
	Generating random values of datatypes
	Checking a proposition

	Normalisation by evaluation
	Applications of proof terms for code generation
	Extraction from constructive proofs
	Definitional eliminating of overloading

	Conclusion
	Stocktaking and evaluation
	Bolstering the foundation of the code generator
	Formalised meta-theory of the intermediate language
	Operational semantics of target languages
	Evaluation strategies and termination

	Extending the foundation of the code generator
	Invariants
	Predicate subtyping
	Logics other than HOL

	Extending the code generator infrastructure
	Further target languages
	Managing scope and accessibility

	Deductive tools and advanced applications
	Packing machinery
	Infinite data structures
	Parallelism

	Notions of the Pure logic and their notations
	Expressions
	Theory context
	Theory extensions

	Selected ingredients of Isabelle/HOL
	Code examples
	Rational numbers
	Mappings --- naive implementation
	Mappings --- implementation by association lists
	Mappings --- implementation by binary trees
	Beta-normalisation of -terms

	Cantor's first diagonalisation argument
	Bibliography

