
Proofs of Parseval’s Theorem & the Convolution Theorem
(using the integral representation of the δ-function)

1 The generalization of Parseval’s theorem

The result is ∫ ∞

−∞
f(t)g(t)∗ dt =

1

2π

∫ ∞

−∞
f(ω)g(ω)∗ dω (1)

This has many names but is often called Plancherel’s formula.

The key step in the proof of this is the use of the integral representation of the δ-function

δ(τ) =
1

2π

∫ ∞

−∞
e±iτω dω or δ(ω) =

1

2π

∫ ∞

−∞
e±iτω dτ . (2)

We firstly invoke the inverse Fourier transform

f(t) =
1

2π

∫ ∞

−∞
f(ω)eiωt dω (3)

and then use this to re-write the LHS of (1) as
∫ ∞

−∞
f(t)g(t)∗ dt =

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
f(ω)eiωt dω

)(
1

2π

∫ ∞

−∞
g(ω′)∗e−iω

′t dω′
)

dt . (4)

Re-arranging the order of integration we obtain
∫ ∞

−∞
f(t)f(t)∗ dt =

(
1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞
f(ω)g(ω′)∗

(∫ ∞

−∞
ei(ω−ω

′)t dt

)

︸ ︷︷ ︸
Use delta−fn here

dω′ dω . (5)

The version of the integral representation of the δ-function we use in (2) above is

δ(ω − ω′) =
1

2π

∫ ∞

−∞
eit(ω−ω

′) dt . (6)

Using this in (5), we obtain
∫ ∞

−∞
f(t)g(t)∗ dt =

1

2π

∫ ∞

−∞
f(ω)

(∫ ∞

−∞
g(ω′)∗δ(ω − ω′) dω′

)

dω

=
1

2π

∫ ∞

−∞
f(ω)g(ω)∗ dω . (7)

(7) comes about because of the general δ-function property
∫∞
−∞ F (ω

′)δ(ω − ω′) dω′ = F (ω).

2 Parseval’s theorem (also known as the energy theorem)

Taking g = f in (1) we immediately obtain
∫ ∞

−∞
|f(t)|2 dt =

1

2π

∫ ∞

−∞
|f(ω)|2 dω . (8)

The LHS side is energy in temporal space while the RHS is energy in spectral space.

Example: Sheet 6 Q6 asks you to use Parseval’s Theorem to prove that
∫∞
−∞

dt
(1+t2)2

= π/2.

The integral can be evaluated by the Residue Theorem but to use Parseval’s Theorem you will
need to evaluate f(ω) =

∫∞
−∞

e−iωtdt
1+t2

. To find this, construct the complex integral
∮
C
e−iωzdz
1+z2

and
take the semi-circle C in the upper (lower) half-plane when ω < 0 (> 0). The answers are πeω

when ω < 0 and πe−ω when ω > 0. Then evaluate the RHS of (8) in its two parts.
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3 The Convolution theorem and the auto-correlation function

The statement of the Convolution theorem is this: for two functions f(t) and g(t) with Fourier
transforms F [f(t)] = f(ω) and F [g(t)] = g(ω), with convolution integral defined by1

f ? g =

∫ ∞

−∞
f(u)g(t− u) du , (10)

then the Fourier transform of this convolution is given by

F (f ? g) = f(ω) g(ω) . (11)

To prove (11) we write it as

F (f ? g) =
∫ ∞

−∞
e−iωt

(∫ ∞

−∞
f(u)g(t− u) du

)

dt . (12)

Now define τ = t− u and divide the order of integration to find

F (f ? g) =
∫ ∞

−∞
e−iωuf(u) du

∫ ∞

−∞
e−iωτg(τ) dτ = f(ω) g(ω) . (13)

This step is allowable because the region of integration in the τ −u plane is infinite. As we shall
later, with Laplace transforms this is not the case and requires more care.

The normalised auto-correlation function is related to this and is given by

γ(t) =

∫∞
−∞ f(u)f

∗(t− u) du
∫∞
−∞ |f(u)|

2 du
. (14)

1It makes no difference which way round the f and the g inside the integral are placed: thus we could write

f ? g =

∫ ∞

−∞

f(t− u)g(u) du . (9)
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